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Abstract

Drug sensitivity prediction models for human cancer cell lines constitute important
tools in identifying potential driving factors of responsiveness in a pre-clinical setting.
Integrating information derived from a range of heterogeneous data is crucial, but
remains non-trivial, as differences in data structures may hinder fitting algorithms from
assigning adequate weights to complementary information that is contained in distinct
omics data. In order to counteract this effect that tends to lead to just one data type
dominating supposedly multi-omics models, we developed a novel tool that enables
users to train single-omics models separately in a first step and to integrate them into a
multi-omics model in a second step. Extensive ablation studies are performed in order
to facilitate an in-depth evaluation of the respective contributions of singular data types
and of combinations thereof, effectively identifying redundancies and interdependencies
between them. Moreover, the integration of the single-omics models is realized by a
range of distinct classification algorithms, thus allowing for a performance comparison.
Sets of molecular events and tissue types found to be related to significant shifts in drug
sensitivity are returned to facilitate a comprehensive and straightforward analysis of
potential drivers of drug responsiveness. Our two-step approach yields sets of actual
multi-omics pan-cancer classification models that are highly predictive for a majority of
drugs in the GDSC data base. In the context of targeted drugs with particular modes of
action, its predictive performances compare favourably to those of classification models
that incorporate multi-omics data in a simple one-step approach. Additionally, case
studies demonstrate that it succeeds both in correctly identifying known key drivers of
specific drug compounds as well as in providing sets of potential candidates for
additional driving factors of drug sensitivity.

Introduction 1

Large-scale pharmacogenomic cell line data bases featuring both in-depth multi-omics 2

characterizations and extensive pharmacological profiles of human cancer cell lines 3

constitute a crucial tool in uncovering potential driver mechanisms of drug sensitivity 4

towards anti-cancer drug compounds [1–3]. To this end, multiple studies have been 5

conducted building predictive models based on a range of different omics data types 6

separately to predict both pre-clinical and clinical drug sensitivity, including baseline 7
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gene expression patterns [4, 5], somatic mutations [1], copy number variations (CNVs) 8

and hypermethylation events [6, 7], or tissue lineage [2, 3]. 9

Moreover, several comparative studies have been performed that assess the 10

respective impact, benefits and shortcomings of specific modelling choices in the context 11

of cancer drug sensitivity prediction tasks: Working with a set of human breast cancer 12

cell lines, Costello et al. evaluate 44 drug sensitivity prediction algorithms proposed in 13

the framework of a DREAM challenge, including among others kernel methods, 14

non-linear, sparse linear and principal-component regression approaches, as well as 15

ensemble models [8]. They find that leveraging all available omics data in addition to 16

integrating external information, related for instance to biological pathways, improves 17

prediction performance, as does employing non-linear modelling approaches. Gene 18

expression data is found to constitute the most potent predictor variable, potentially as 19

a consequence of its data structure and the wealth of customized tools available to 20

process it. Jang et al. systematically assess the performance of distinct choices in five 21

components of the modelling pipeline, including the choice of input features and the 22

choice of fitting algorithm, as well as the overall impact of these components themselves 23

on model predictivity [9]. Concluding that the most important modelling factor is the 24

choice of features and agreeing with Costello et al. on the dominance of gene expression 25

data, they rate the choice of algorithm as the third most important modelling factor. 26

Expanding on this concept of systematically identifying optimal choices in distinct steps 27

of the modelling pipeline and applying it to translative modelling, Turnhoff et al. have 28

published an R package that can be used to perform even more intricate analyses in the 29

context of predicting clinical responses while training on cell line data [10,11]. 30

In addition to the missing consensus on optimal fitting strategies, another unsolved 31

problem is how to adequately integrate heterogeneous data types into one common 32

model while assigning the proper weights to complementary information from distinct 33

data. To this end, Aben et al. propose a two-stage approach that first utilizes upstream 34

omics data and consequently fits the resulting errors with a second model based on gene 35

expression [12,13] . By employing this method on the GDSC data set, they aim to 36

counteract the tendency of gene expression data to dominate models that are designed 37

to integrate information from distinct omics data types in a straightforward 38

approach [1, 2, 7–9,14,15]. This ansatz, however, fails to incorporate pathway 39

information and impedes a simple quantitative analysis into the relative importance of 40

the contributions of the entirety of data types to the model and consequently, into the 41

relative influence of possible driving mechanisms that determine drug sensitivity by 42

focusing mostly on the subset of upstream omics data. Their results demonstrate that 43

switching from a one-stage to a two-stage modelling approach yields negligible changes 44

in predictive performance, but can produce models that are more easily understandable, 45

which is imperative for translating the results to a clinical setting. 46

In this paper, we present a two-step modelling approach to classify pre-clinical drug 47

sensitivity in cancer based on six distinct feature types, namely basal gene expression, 48

somatic mutation, CNV and hypermethylation events, pathway activation scores 49

provided by the R package PROGENy [16,17], and information on tissue lineage. A set 50

of models is first trained on one data type each, before their respective outputs are 51

collectively utilized as input features in a second step, where a range of different 52

classification algorithms are employed, including a Näıve Bayes classifier, a shallow 53

Neural Network, Support Vector Machines, decision tree ensembles, and both linear and 54

logistic regression approaches with multiple distinct regularization schemes. This ansatz 55

leverages and applies the full range of crucial insights gained from the aforementioned 56

studies, such as the importance of integrating distinct and complementary data types, 57

especially pathway information and gene expression data, and the challenge of realizing 58

this when fitting models on all structurally heterogeneous data types simultaneously. In 59
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turn, our approach contributes substantially to the field of pre-clinical classification 60

models of drug sensitivity in cancer: In addition to enabling the user to construct 61

pan-cancer models that integrate various potentially complementary molecular and 62

genetic data types in a way that impedes any type to overpower the others based solely 63

on its structural properties, our ansatz also allows for a straightforward in-depth 64

analysis of the respective contributions of data types and combinations of data types as 65

well as the impact of singular features on drug sensitivity. Both the code of this tool as 66

well as the data discussed in this paper are publicly available and can be downloaded at 67

https://github.com/JRC-COMBINE/two-step-modelling. 68

Materials and methods 69

Data 70

The data to train and test the models on was originally generated in the context of the 71

Genomics of Drug Sensitivity in Cancer project (GDSC) [1, 18] and has been partially 72

processed by Iorio et al. [7, 19]. We use basal gene expression data, information on 73

somatic mutation, CNV and hypermethylation events as well as tissue descriptors of cell 74

lines as input features for our models. Moreover, we downloaded the PROGENy R 75

package developed by Schubert et al. [16, 17] and applied it to the gene expression data 76

in order to infer pathway activation scores. We obtained the area under the 77

dose-response curve (AUC) values as measure for drug sensitivity and detailed 78

annotations of genes, cell lines and drugs from the GDSC project. A detailed list of the 79

files downloaded and an in-depth description of processing steps can be found in Table 1. 80

Implementation 81

While Fig 1 provides a simplified overview of the model workflow, a more 82

comprehensive visualization can be found in S1 Fig. The MATLAB routine 83

twostepmodel.m is called with one input variable, namely the index of the drug 84

compound to be modelled in the GDSC data base, an integer between 1 and 265. The 85

drug compound annotation, as described in Table 1, holds the names of and additional 86

pieces of information about the compounds corresponding to any such index. 87

Fig 1. Two-step modelling workflow A simplified diagram of the two-step
modelling workflow, visualizing the link between the single-data type first-step models
and the integrated second-step models. Boxes shaded in dark blue symbolize sets of
models, while light-blue boxes represent individual models. Yellow boxes stand for sets
of discrete features that are linked to a shift in drug sensitivity. Ablation models are not
included in the graphic.

The two-step modelling routine computes three sets of drug-specific models across 88

ten cross-validation folds: six first-step models that are based on one single data type 89

each, 13 integrated second-step models that use all non-constant outputs of the 90

first-step models as inputs, and up to 41 ablation models per second-step model. The 91

latter result from applying all 13 fitting algorithms to reduced sets of inputs with up to 92

three input vectors missing. Model performances are evaluated by a range of different 93

metrics, including predictive accuracy and ROC-AUC, with the latter not being 94

computed for models based on the Näıve Bayes classifier. Singular discrete features of 95

interest that are found to be linked to a shift in drug sensitivity are returned to the user, 96

as are the weights and importance scores for the outputs of the first-step models, as 97

calculated by the second-step fitting algorithms. The twelve outputs of the routine are 98
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listed and explained in Table 2 and are designed to enable the user to comprehensively 99

analyse the resulting models and their respective features and performance. 100

Any results pertaining to the first-step models are ordered as follows: somatic 101

mutation-based, CNV-based, hypermethylation-based, tissue-based, pathway 102

activation-based and gene expression-based. Results of second-step models are ordered 103

in the same way that the corresponding algorithms are listed in the supplementary table 104

S1 Table, which contains a detailed list of the 13 algorithms used as well as their 105

parameter settings, whenever they diverge from the default settings provided by 106

MATLAB. 107

First-step models 108

The first-step models that predict drug sensitivity based on one of the four discrete data 109

types – somatic mutation, CNV, hypermethylation and tissue descriptors – are 110

structurally similar, as are the data they are utilizing: Both the hypermethylation and 111

the CNV matrix of cell lines versus genes are sparse, especially the latter, and they as 112

well as the somatic mutation matrix include columns that are highly correlated and 113

therefore contain information redundant for prediction purposes. The binary matrix 114

holding information about the tissues to which the cell lines belong according to the 115

descriptors used in the GDSC annotation features a significantly lower number of 116

columns, all of which are linearly independent. 117

All discrete first-step models aim to identify features that are associated with a shift 118

in responsiveness between cell lines that display such a feature versus those that lack it. 119

To this end, all features that can be used to split the set of all training cell lines in two 120

such subsets of sufficiently large size are tested for such an association. In the case of 121

the three genomic feature data types, namely mutation, CNV, and hypermethylation 122

data, all genes are screened to check if at least 15 instances of at least two distinct 123

states are present in the training data; if not, they are temporarily discarded. For tissue 124

data, tissue types are considered if they are featured at least ten times in the training 125

set. A two-sided t-test with a significance level of α = 0.05 and Bonferroni-correction is 126

conducted on the pre-binarization response data to identify significant differences in 127

responsiveness between the sets of cell lines where a specific feature is either present or 128

absent. All genes yielding statistically significant results are used to sort the training 129

cell lines into clusters where all members exhibit the exact identical pattern of 130

significant features being present or absent. If no such feature is identified, all training 131

cell lines are pooled into one trivial cluster and their mean binarized responsiveness is 132

set as the model prediction for all cell lines indiscriminately. Any model yielding such a 133

constant prediction vector that is devoid of information is subsequently removed and 134

not utilized as input to the second-step models. 135

Models identifying at least one feature significantly associated with a shift in 136

responsiveness use these to sort all training cell lines into 2n clusters, where n denotes 137

the number of non-redundant features found. Pairs of redundant features, that is two 138

features both present and absent in exactly the same subset of training cell lines, are 139

identified, and one of them is removed from the set of relevant features used for 140

clustering. Empty clusters are discarded, and for all remaining ones, the mean 141

responsiveness over all training cell lines associated with a cluster is computed. 142

Subsequently, it is used as the model prediction for any test cell line that would belong 143

to the respective cluster based on their profile of relevant features. Should the somatic 144

mutation-based model based identify two significant, non-redundant features, for 145

instance mutations in TP53 and BRAF, it would sort all training cell lines into four 146

clusters: the cluster of cell lines where both mutations are present, that of cell lines 147

where both mutations are absent, and two clusters of cell lines where exactly one of 148

these two mutations would be present. 149
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In order to speed up computation times, an upper limit to the number of 150

non-redundant relevant features has been introduced for mutation, CNV and 151

hypermethylation data. The routine returns the set of relevant features as well as the 152

reduced set of relevant, non-redundant features that is ultimately used for cluster 153

definition and drug sensitivity prediction. In addition, the user can access the 154

percentage of responding cell lines associated with each cluster as well as the exact state 155

of any relevant, non-redundant feature in each cluster. 156

In the case of tissue data, redundancy cannot occur and cell lines are sorted into 157

n+ 1 clusters if n tissue types are found to be associated with a significant change in 158

responsiveness: the last n clusters correspond to the n tissue types and the first one is 159

composed of the cell lines of all remaining tissues. This ordering applies to all outputs 160

pertaining to the clusters of the tissue models: for instance, the average percentage of 161

responding cell lines per cluster starts with that of the joined cluster of non-significant 162

tissue types and continues with the values corresponding to the singular-tissue clusters 163

in the order that these tissues are listed in the sets of significant features. A schematic 164

visualization of the structure of the first-step models that utilize the discrete data types 165

can be found in Fig 2 . 166

Fig 2. First-step models on discrete data types Schematic visualization of the
structure of the discrete first-step models built on genomic features. In the case of the
CNV-based model, single features fj may also take on values in {0,−1}, with the latter
value denoting a deletion event. The tissue-based model is structured similarly, but does
not require the removal of redundant features and defines n+ 1 clusters out of n
features identified as significant. Dotted lines represent routines that are computed on
the training data and subsequently applied to the test data set. Boxes in yellow refer to
sets of features, while those coloured light blue indicate subsets of cell lines.

As for the two continuous molecular data types, a principal component analysis is 167

performed on the basal gene expression data of the training cell lines and the first seven 168

components are used to fit a linear regression model to the binarized response data. 169

The number of principal components was chosen based on an analysis of their respective 170

variances, as computed on the complete data set; in particular, it was determined to 171

constitute a fitting trade-off between including the highest possible number of 172

potentially informative components and reducing the number of input vectors in order 173

to facilitate the fitting process. A second linear regression model is fitted on the eleven 174

pathway activation scores provided by the PROGENy package for the training cell lines. 175

The output vectors of these two models are normalized to the interval [0, 1] and an 176

optimal binarization cutoff is calculated such that the predictive accuracy is maximized. 177

Second-step models 178

After the computation of the six first-step models, constant model output vectors − the 179

results of models that failed to find any statistically significant relation between drug 180

sensitivity and at least one genomic event or tissue − are removed, while the remaining 181

ones are used as input feature vectors for 13 fitting algorithms in a second step. These 182

algorithms comprise both one straight-forward classification approach, namely a Näıve 183

Bayes classifier, as well as a diverse set of regression methods that are post-processed to 184

identify an optimal cut-off yielding a classification with maximal accuracy. For these 185

models, an additional performance evaluation metric is computed, the ROC-AUC, as 186

detailed in Table 1. 187

For a subset of second-step models, weights and importance scores can be calculated 188

in order to estimate the significance of the contributions of singular data types; in those 189

cases, namely all algorithms but the Neural Networks and the Näıve Bayes classifier, 190
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these coefficients are returned to the user. Since at least three of the data types used 191

have been shown to be interdependent and to contain highly redundant information, 192

these fitted coefficients may not accurately reflect the actual significance of the 193

information contained in any particular data type. In order to address this effect and to 194

gain an improved insight into this issue, ablation studies are performed subsequently. 195

Ablation studies 196

Since tissue types and genome-wide expression patterns such as principal components 197

have been shown to coincide [20] and since the PROGENy-derived pathway activation 198

scores are calculated by integrating pathway information and gene expression, we expect 199

these data types to contain highly correlated and redundant information. As a 200

consequence, ablation studies are performed where all possible combinations of up to 201

three first-step model outputs are omitted as inputs to the second-step fitting 202

algorithms, which are then run on the remaining inputs. In the case of all six data types 203

producing non-constant first-step models, a set of 41 ablation models is computed for 204

any of the 13 second-step fitting algorithms. Accuracy and ROC-AUC values are 205

calculated for any ablation model except for those applying a Näıve Bayes classifier, 206

where only the accuracy is calculated. 207

Results and discussion 208

Running the proposed two-step modelling routine on any of the 265 drug compounds 209

present in the GDSC data set results in 13 two-step integrated multi-omics models, six 210

first-step models based on one data type only, and up to 41 ablation models with 211

combinations of up to three first-step models removed for any of the aforementioned 13 212

algorithms. Additionally, sets of events associated with shifts in responsiveness, 213

performance evaluation metrics in training and testing and the weights or importance 214

associated with first-step models by a subset of the second-step models are computed 215

and returned to the user. All of these results are calculated for each of the 10 folds used 216

in the cross-validation scheme that is applied to the data. A detailed list of the entirety 217

of output objects and details about the exact pieces of information they hold is 218

presented in Table 2. 219

When computing the averaged test ROC-AUC over the cross-validation folds of each 220

model calculated on the 265 drug compounds, with the exception of the Näıve Bayes 221

classifier, we achieve a spread ranging from 0.92 for the best model across all drugs to 222

0.37 for the model yielding the overall worst test performance. The worst performance 223

over all drug-specific best models results in a mean test ROC-AUC of 0.50, while for 155 224

drugs, at least one model produces a mean test ROC-AUC of at least 0.7. A 225

visualization of these findings is provided in Fig1-3 in S1 Appendix; for any particular 226

drug compound, the distribution of the ten test ROC-AUCs of the one model yielding 227

the highest mean test ROC-AUC is shown. 228

Impact of drug classes and algorithms on the model 229

performances 230

Evaluating the distribution of the averaged test ROC-AUCs over all drug compounds 231

for all suitable two-step models separately, we observe no significant difference between 232

the distinct second-step fitting algorithms when correcting for multiple testing. Notable 233

are slightly lower means and medians for both of the decision tree ensembles and a lack 234

of models producing mean test ROC-AUCs over 0.87 for the bagged decision tree 235

ensembles. In addition, we find that the boosted decision tree ensembles exhibit signs of 236
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severe overfitting in drugs that feature less than 500 measurements across cell lines, as 237

depicted in Fig 1 in S2 Appendix. When excluding models fitted via boosted decision 238

tree ensembles, the remaining models tend to exhibit gradually fewer cases of overfitting 239

as their averaged training ROC-AUC increases, an effect that is visualized in Fig 2 in S2 240

Appendix. 241

In contrast to the choice of second-step algorithm, the type of drug compound to be 242

modelled greatly influences the performance of the resulting models. Using the official 243

annotation, the drug compounds featured in the GDSC data base can be sorted into 20 244

well-defined classes with respect to their target pathway or mechanism and one more 245

broadly-defined class titled ‘other’. After binning together all models calculated on any 246

drug compound of a particular class, a two-sided t-test with a Bonferroni-correction for 247

multiple testing is applied to the respective mean test ROC-AUC values and yields a 248

high number of significantly different results between drug classes. These findings 249

replicate the conclusions drawn by Jang et al [9] upon working with a prior version of 250

the GDSC data set, namely that the choice of input features and the compound to be 251

modelled exert a far stronger influence on the variance of predictive accuracy than the 252

choice of algorithm. The results of a statistical analysis of this effect can be found in S3 253

Appendix, while a visualization of the variation in model performance across different 254

algorithms and drug classes can be drawn from Fig 3. 255

Fig 3. Effects of the choice of fitting algorithms and target drug classes on
predictive performances
Distribution of mean test ROC-AUCs of models using different fitting algorithms for
the second-step models (left) and of models being fitted to drug compounds of distinct
classes, annotated by the target structure (right).

Comparison to one-step multi-omics classification models 256

The two-step multi-omics modelling approach presented in this paper is designed to 257

create drug compound-specific classification models of cancer cell lines that integrate a 258

range of distinct data types. This integration of heterogeneous data is realized in a 259

separate second step that minimizes the chance that any inherent structural difference, 260

such as sparsity or range, causes one data type to overpower additional ones and to 261

drown out crucial information. As a consequence, complementary information contained 262

in structurally heterogeneous data types can be conserved and utilized to not only 263

improve the predictive power of the models, but also to provide insight into the drivers 264

of responsiveness. Our routine additionally provides the opportunity to analyse and 265

quantify the importance of data types and to identify redundancies between the 266

information they contain in a straightforward and easily interpretable manner. 267

In order to contextualize the overall predictive performance of the resulting 268

classification models, the test ROC-AUC of any model is compared to the results 269

obtained by Jang et al. [9]. In their study, 114,000 classification models are computed 270

and applied to prior versions of the CCLE and the GDSC data sets with the aim to 271

systematically quantify the importance of five categories in the modelling workflow. To 272

the best of our knowledge, these results constitute the most fitting standard to compare 273

the performance of our algorithm to, since they, in contrast to other studies, fit 274

multi-omics pan-cancer classification models on the GDSC data set, using similar sets of 275

data types as predictors as well as AUC values as the metric quantifying drug 276

sensitivity. As evidenced by Aben et al. [12], we do not necessarily expect the two-step 277

modelling approach to yield significantly improved predictive performances, since the 278

algorithm was designed mainly to produce actual multi-omics models that enable an 279

intuitive and straightforward analysis of data contributions. 280
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While our study uses a more current version of the GDSC data base with 265 281

instead of 138 drugs and a higher number of input data types that additionally include 282

hypermethylation events, pathway activation scores and somatic mutation events 283

identified on all of the 17,737 genes present in the data set, comparability between the 284

studies is ensured by a number of steps. Firstly, a similar binarization regime on the 285

response data is applied by using upper and lower quartile thresholds, which results in a 286

number of cell lines to be modelled that is reasonably close to the one achieved by Jang 287

et al., who worked with a smaller number of cell lines and used tertiles as thresholds. 288

Secondly, for any model we calculate test ROC-AUCs by computing the concatenated 289

prediction vector over all each cross-validation folds and by comparing it to the vector of 290

measured responses that are binarized using the entire data set. In internal evaluations, 291

we prefer to study test ROC-AUCs averaged across all cross-validation folds, as the 292

model routine binarizes the measured response vectors by calculating the thresholds on 293

the training data only. Binarizing on the complete data set tends to result in a small 294

number of cell lines being labelled differently and consequently does not accurately 295

reflect the model performance; however, we treat these small alterations as negligible in 296

order to ensure a fair comparison. Lastly, we apply a cross-validation regime and utilize 297

a significant set of algorithms overlapping with the ones used by Jang et al., such as 298

regularized regressions, random forests and support vector machine approaches. 299

The findings of the Jang study demonstrate that the choice of genomic features used 300

to build a model and the drug compound to be predicted explain by far the most 301

significant share of variation in model performance across the complete set of models; 302

the choice of the fitting algorithm is found to be only the third most important with a 303

considerably smaller influence on the results. As evidenced by Fig 3 and S3 Appendix, 304

our study confirms that different drug classes can be associated with significantly 305

different distributions of performance measures, while there is little variation observed 306

between distinct fitting algorithms. 307

The results obtained for 138 distinct drug compounds that are present in both 308

versions of the GDSC data set and included in both studies are compared by selecting 309

for each drug compound the model yielding the best test ROC-AUC. The two-step 310

modelling approach produces higher-ranking performances for 23 drug compounds, with 311

a statistically significant enrichment for drugs targeting the EGFR signalling pathway. 312

The classes of drugs targeting the p53, the WNT, as well as the JNK and p38 signalling 313

pathway additionally yield statistically significant enrichment values in a single-test 314

setting. This hints at our two-step approach potentially being particularly useful and 315

capable of improving on the benefits of already existing modelling platforms in 316

applications involving targeted drugs with particular modes of action. A detailed 317

visualization of these results can be found in Fig 4 and S4 Appendix. 318

Fig 4. Two-step models outperforming one-step models.
Concatenated test ROC-AUC of the respective best-performing two-step model (blue) for
any drug where at least one two-step model outperforms all straightforward multi-omics
models generated in the study of Jang et al. (red).

In contrast to the approaches applied by Jang et al, our two-step models additionally 319

allow for an in-depth analysis of the absolute and relative contributions of data types − 320

the weightiest component of the modelling workflow − to the resulting model 321

performance and yield a list of the specific features that drive resistance or sensitivity to 322

a particular drug. Not only can the performance of any two-step model integrating 323

different data types be directly compared to that of up to six first-step models built on 324

one data type only in order to quantify the benefits of incorporating additional input 325

data, but extensive ablation studies enable the user to further analyse potential drops in 326

model performance upon excluding combinations of up to three input data types. Thus, 327
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redundant information that is featured in more than one data type may be identified 328

and the contribution of that data type to model performance can be quantified more 329

accurately. Moreover, weights and importance scores assigned to data types by eleven of 330

the second-step fitting algorithms can be assessed and studied. 331

Case study 1: Nutlin-3a 332

Nutlin-3a is a small cis-imidazoline molecule and, a as potent inhibitor of MDM2 -TP53 333

interactions, known to induce senescence in cancer cells that express wild-type 334

TP53 [21], therefore repressing tumour growth in the absence of mutations of the TP53 335

gene. It has been studied in pre-clinical settings in the context of a wide range of cancer 336

types [22,23]. Due to its well-understood mode of action, it constitutes a highly suitable 337

candidate for evaluating whether the two-step modelling algorithm succeeds in correctly 338

identifying drivers of drug responsiveness and in leveraging them in order to predict 339

drug efficacy. In particular, we expect the somatic mutation-based model to outperform 340

all other first-step models and to identify a mutation in TP53 as strongly linked to a 341

shift in responsiveness to Nutlin-3a. 342

Overall, the two-step modelling approach yields integrated models producing high 343

ROC-AUCs in testing, with the best-performing models, namely the logistic regression 344

approach with ridge or Elastic Net regularization, achieving a median ROC-AUC of 0.9 345

across all folds. In contrast, the majority of first-step models based on a singular data 346

type struggle to classify the cell lines correctly into responders and non-responders, with 347

the CNV-based, the hypermethylation-based, the tissue-based and, to a lesser extent, 348

the gene expression-based models producing median ROC-AUCs in the range of 0.54 to 349

0.67. The sole models yielding moderate to high median ROC-AUCs are the somatic 350

mutation-based and the pathway activation-based models with values of 0.86 and 0.8, 351

respectively, as visualized in Fig 1 in S5 Appendix. Consequently, the outputs of these 352

two models are assigned the highest averaged weights and importance factors, when fed 353

as input features into the second-step fitting algorithms, as evidenced by Tables 1-2 in 354

S5 Appendix. The remaining model outputs receive notably lower scores, as is consistent 355

with their inferior predictive performance. A notable exception is the tissue-based 356

model, which is assigned the lowest averaged weight, although it achieves a median 357

ROC-AUC of 0.64, significantly outperforming both the CNV- and methylation-based 358

models, only slightly below that of the gene expression-based model. This indicates a 359

potential overlap of the prediction-relevant information present in these two data types. 360

In order to disentangle such potential redundancies in the data and more accurately 361

quantify the individual contributions of data types to the predictive performance of the 362

integrated models, ablation studies are performed. Fig 5 demonstrates the resulting 363

relative mean loss of performance for every second-step algorithm separately: 41 364

ablation models per second-step algorithm are trained and tested across ten folds and 365

their respective performance is evaluated via ROC-AUC and accuracy for the best 366

cut-off; in the case of the Näıve Bayes classifier, only the latter metric is computed and 367

used for plotting. All of the remaining algorithms are evaluated by ROC-AUC. For each 368

algorithm, the resulting performance metrics of any ablation model are averaged across 369

all folds and then normalized by dividing by the mean performance metric of the 370

corresponding complete two-step model. Consequently, values close to 1 indicate that 371

the removal of a certain set of input data types on average does not affect any 372

particular reduced model, while values smaller than 1 hint at a loss of performance due 373

to information being discarded that cannot be compensated for by the remaining data 374

types. 375

As visible in Fig 5, the removal of CNV, tissue descriptor and gene expression data 376

fails to affect the performance of the integrated models, irrespective of the fitting 377

algorithm applied. Regarding the effect of hypermethylation data, the second-step 378
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Fig 5. Ablation study results for the compound Nutlin-3a.
Heatmap of the mean relative change in performance upon removing combinations of
first-step model outputs as input features for the integrated second-step models for
Nutlin-3a. Rows correspond to the fitting algorithms used to construct a model, while
columns denote the single data type – or combinations thereof – whose corresponding
first-step model outputs are removed as inputs. Colours indicate averaged test ROC-
AUCs – or accuracy scores in the case of the Näıve Bayes classifier – of ablation models
normalized by the respective value of the full model utilizing all available inputs. Values
close to 1 indicate that no noticeable change in performance occurred, while scores larger
than 1 denote improved predictivity and those smaller than 1 mark a loss in predictivity.

algorithms are split into two categories: in the case of regularized linear regression 379

approaches, the Näıve Bayes classifier and the Neural Network, removing them results 380

in no quantifiable loss of predictivity, whereas the remaining algorithms suffer a drastic 381

additive loss of performance of around 20%. A universal drop in model performance 382

across all algorithms can be observed in the absence of pathway activation and mutation 383

data, both individually and simultaneously, with the removal of pathway activation data 384

causing a loss of up to 5%, the removal of somatic mutation data generating a loss of up 385

to 11% and their simultaneous removal resulting in a loss of up to 29% in a majority of 386

algorithms. Over all, the regularized linear regression approaches, the Näıve Bayes 387

classifier and the Neural Network approach exhibit the most extreme drop in 388

performance of 27− 32% upon removing the combination of somatic mutation, pathway 389

activation and gene expression data, while the remaining algorithms suffer most when 390

the combination of somatic mutation, pathway activation and hypermethylation data is 391

not utilized. A notable exception is the bagged decision tree ensemble, which exhibits 392

its lowest predictive performance when hypermethylation, pathway activation and gene 393

expression data are removed from the fitting process. 394

These findings relate to known pharmacological properties of the compound, most 395

notably its mode of action: TP53 mutations are identified as statistically significant 396

drivers of resistance in all folds and consequently, the somatic mutation data yield not 397

only the best-performing first-step models, but are also assigned high weights and 398

importance scores by the second-step fitting algorithms. The eleven pathways featured 399

in the PROGENy-supplied pathway activation data include the TP53 signalling 400

pathway, which is consistently ranked the most significant by the linear regression 401

algorithm applied in the respective first-step model with averaged p-values of around 402

10−19. Other pathways determined to be significant, albeit to a lesser extent, are the 403

MAPK and the EGFR pathways. Pathway activation-based first step models constitute 404

the second-best performing first-step models and are assigned high weights or 405

importance scores by a majority of the second-step fitting algorithms. The sole 406

exceptions are the decision tree ensembles and the support vector machines, which 407

favour the mutation- or gene expression-based first-step models exclusively. The 408

aforementioned drastic drop in model performance induced by removing both somatic 409

mutation and pathway activation scores as inputs to the second-step fitting algorithms 410

might implicate that these two data types harbour complementary information 411

pertaining to cellular responsiveness to the compound Nutlin-3a. Considering that the 412

drop in model performance upon removing methylation data does only occur for a subset 413

of algorithms and is not mirrored in the methylation-based model being particularly 414

predictive on its own or even assigned a notable weight or importance score, we assume 415

the effect to be caused mainly by technicalities related to the fitting algorithms and not 416

any underlying biological or pharmacological rationale. This effect indicates that in 417

specific use cases, the choice of fitting algorithm might affect the predictive performance 418
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of the resulting models as well as the observed apparent contributions of data types. 419

Analysing the individual features determined to be significant drivers of 420

responsiveness to Nutlin-3a results in confirming well-known factors such as TP53 421

mutations and, to a lesser extent, tissue types such as skin [24] or hematopoietic and 422

lymphoid cells [25, 26], that have been shown to react positively to Nutlin-3a treatment. 423

This case study therefore serves as a proof of concept, demonstrating that the features 424

identified as significant by the algorithm do indeed drive the cellular response to the 425

drug. In addition, the models also yield a set of features that, to the best of our 426

knowledge, have yet to be studied in the context of driving tumour responsiveness to 427

Nutlin-3a specifically and therefore constitute promising potential targets for future 428

studies. These are visualized in Fig 6 and include for instance copy number aberrations 429

in JAK2, which have already been linked to tumour progression and 430

chemoresistance [27] as well as to responsiveness of lymphoma to a semi-selective kinase 431

inhibitor [28]. A complete list of the features found to be significantly related to shifts 432

of responsiveness can be found in Tables 1-2 in S5 Appendix. 433

Fig 6. Discrete features linked to responsiveness to Nutlin-3a.
Bars represent discrete features that are found to be associated with significant shifts
in cellular responsiveness to Nutlin-3a. Colours indicate the data type of the feature,
while the absolute bar height corresponds to the mean relative importance of the
first-step model based on the respective data type, as calculated by the second-step
algorithms. Error bars denote the standard deviation of said importance score. The
vertical orientation of any bar indicates whether the associated feature induces sensitivity
or resistance to Nutlin-3a, whereas its position on the horizontal axis shows how often it
is found in the 10 runs of the cross-validation procedure. Features that are identified at
least 7 times out of ten are considered stable.

Case study 2: Docetaxel 434

Docetaxel is a cytotoxic chemotherapeutic agent of the taxane family of drugs and is 435

routinely used in the treatment of a wide range of cancers including breast, lung, 436

gastric, colorectal, liver, renal, ovarian, prostate, and head and neck cancers as well as 437

melanoma. Its principal mode of action lies in interfering with the dynamics of 438

microtubule assembly and disassembly, which in turn impedes cell division and 439

promotes apoptosis [29]. In stark contrast to the case of the targeted drug Nutlin-3a, 440

where mutations in the TP53 gene are well-known to induce resistance, it is not evident 441

from the outset which data types and which corresponding first-step models ought to be 442

expected to perform best in predicting cellular responsiveness to Docetaxel. 443

Fitting the set of first-step models results in a lack of somatic mutations with a 444

significant link to shifts in responsiveness. CNV- and hypermethylation-based models 445

perform very poorly with averaged test ROC-AUCs rarely exceeding 0.6. Tissue-based 446

models fare moderately better, producing test ROC-AUCs that average 0.74, while gene 447

expression-based and, to a lesser extent, pathway activation-based models, yield models 448

with a high predictive performance with average ROC-AUCs of 0.89 and 0.8, 449

respectively. These findings are visualized in Fig 1 in S6 Appendix. Integrating the 450

first-step model outputs via a Neural Network approach results in models yielding a 451

median ROC-AUC of 0.9 in testing across all folds, slightly outperforming all other 452

second-step fitting algorithms and the gene expression-based first-step model. 453

As a consequence, the output of the gene expression-based first-step model is 454

consistently determined to constitute the most important and impactful input across all 455

second-step fitting algorithms that allow for an analysis of weights or importance 456

factors, as depicted in Fig 2 in S6 Appendix. Methylation-based and tissue 457
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descriptor-based model outputs are assigned a mean relative importance score of 0.24 458

and 0.2, respectively, while the corresponding scores for CNV-based and pathway 459

activation-based model outputs hover around 0.1. It can be hypothesized that the 460

relatively low importance scores of the comparatively well-performing pathway 461

activation-based and tissue descriptor-based model outputs are due to them containing 462

information that is equally present in gene expression-based model outputs. This 463

redundancy of information content might drive second-step fitting algorithms to assign 464

a high weight only to the gene expression-based input, given that the corresponding 465

first-step model yielded the highest average ROC-AUC. This effect can be observed to 466

be particularly exacerbated in algorithms that have been designed to assign only a small 467

number of non-zero weights to inputs, such as LASSO-regularized regressions. 468

In order to identify redundancies between data types, the results of the ablation 469

studies for Docetaxel, as visualized in Fig 7, can be evaluated. Since constant first-step 470

models − that is models that fail to find features associated with a shift in 471

responsiveness in a statistically significant way − are not used as inputs to second-step 472

fitting algorithms, the number of ablation models calculated might differ both between 473

distinct drug compounds as well as between different folds for one particular drug. 474

Ablation models that are computed in less than five the folds for any particular drug 475

are excluded in this analysis; as a consequence, the lack of significant somatic mutation 476

features in all but one fold results in only 25 ablation models being calculated with a 477

frequency high enough to warrant further evaluation. 478

Fig 7. Ablation study results for the compound Docetaxel.
Heatmap of the mean relative change in performance upon removing combinations of
first-step model outputs as input features for the integrated second-step models for
Docetaxel. Rows correspond to the fitting algorithms used to construct a model, while
columns denote the single data type – or combinations thereof – whose corresponding
first-step model outputs are removed as inputs. Colours indicate averaged test ROC-
AUCs – or accuracy scores in the case of the Näıve Bayes classifier – of ablation models
normalized by the respective value of the full model utilizing all available inputs. Values
close to 1 indicate that no noticeable change in performance occurred, while scores larger
than 1 denote improved predictivity and those smaller than 1 mark a loss in predictivity.

The heatmap visualizing the remaining relative average performance of two-step 479

models running on reduced sets of input features shows little difference between distinct 480

second-step fitting algorithms and can easily be divided into two parts. The cluster on 481

the left-hand side of the figure features 14 ablation models that about retain the 482

performance score of the full model with only minor deviations. In contrast, the cluster 483

on the right-hand side consists of eleven models that have been fitted without utilizing 484

the output of the gene-expression based first-step model and that exhibit an increasing 485

decline in performance when viewed from left to right: removing gene expression and 486

any combination of CNV and methylation data results in a drop of performance of 487

about 7− 8% in the majority of algorithms, while excluding both gene expression and 488

tissue information plus any combination of the aforementioned two additional data 489

types yields a drop of 9− 10% for a majority of fitting algorithms. In the case of holding 490

out the model outputs based on gene expression, pathway activation and all additional 491

data types but tissue types, a loss of performance of about 14− 16% can be observed for 492

a majority of algorithms, whereas removing gene expression, pathway activation and 493

tissue descriptor data simultaneously generates a sharp reduction of performance of 494

around 32− 33% in most algorithms. These findings strongly indicate an overlap among 495

the pieces of information present in these three data types, in particular between the 496

two continuously-valued data types of pathway information and gene expression. 497
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The two-step modelling routine proposed in this paper not only enables the user to 498

analyse and compare the contributions of data types to the overall prediction of the 499

integrated models, but also facilitates the study of the effects of individual features from 500

distinct data types on the distribution of responsiveness across the set of cell lines. 501

Fig 8 depicts the complete set of significant discrete features identified in at least one 502

fold, while a complete list of both discrete and continuous features can be found in 503

Tables 1-2 in S6 Appendix. The set of tissue types found to be linked significantly to a 504

shift in cellular responsiveness to Docetaxel in at least seven out of ten folds includes 505

the upper aerodigestive tract, which is associated with an increase in drug sensitivity 506

and reflects the routine application of Docetaxel in the treatment of head and neck 507

cancers [30]. The list of significant CNVs includes EGFR, which is known to constitute 508

a crucial target in cancer therapies in general [31] and that has been shown to drive 509

tumorigenesis in lung cancer when amplifications are present [32]. Relevant and stable 510

hypermethylation events occur, among others, in three members of the ZNF family, an 511

extensive set of genes involved in tumorigenesis, cancer progression and metastasis 512

formation [33]. Moreover, the list of crucial sites for hypermethylation events features 513

WNK4, a member of the WNK signalling pathway that has been linked to cancer 514

progression [34,35] and is known to interfere with the TGFB1 pathway. This particular 515

pathway in turn is identified as a significant pathway by the pathway activation models 516

with an average p-value of 10−4 and has been found to drive cancerogenesis when 517

misregulated [36]. Additional continuous-valued features include genome-wide 518

expression patterns, namely three principal components calculated on the gene 519

expression data, with averaged p-values of up to 10−10. 520

Fig 8. Discrete features linked to responsiveness to Docetaxel.
Bars represent discrete features that are found to be associated with significant shifts
in cellular responsiveness to Docetaxel. Colours indicate the data type of the feature,
while the absolute bar height corresponds to the mean relative importance of the
first-step model based on the respective data type, as calculated by the second-step
algorithms. Error bars denote the standard deviation of said importance score. The
vertical orientation of any bar indicates whether the associated feature induces sensitivity
or resistance to Docetaxel, whereas its position on the horizontal axis shows how often
it is found in the 10 runs of the cross-validation procedure. Features that are identified
at least 7 times out of ten are considered stable.

Future developments 521

Currently, the two-step modelling algorithm is specified to run on the GDSC data base 522

as it provides an immense depth of characterization of a wide range of human cancer cell 523

lines that have been tested against a high number of diverse drug compounds. Ideally, 524

in an effort to further prove the reliability of the obtained results and to minimize the 525

chances of them being overfitted to the GDSC data base, one would subsequently run 526

the algorithm on additional large pharmacogenomic data bases which overlap with the 527

GDSC data base in terms of the set of cell lines and drug compounds that are included 528

and the omics data types that are profiled. Unfortunately, to the best of our knowledge, 529

there is currently a lack of publicly available data bases that meet those requirements. 530

The CCLE data set would seemingly constitute the most appropriate candidate; 531

however, systematic analyses [37] have demonstrated that response measurements 532

regarding the small set of shared drug components between both data sets are highly 533

discordant. As a consequence, associations between genomic features and drug response 534

have also been shown to be extremely inconsistent between the two data bases, which 535

effectively renders the CCLE unsuitable to currently perform a comparative study on. 536
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We are looking forward to future publications or modifications of data sets that support 537

a cross-platform study of the stability of results on at least a subset of drug components 538

across a variety of cancer cell lines. However, the applications of the approach presented 539

in this paper do not have to remain limited to pre-clinical human cancer cell line sets. 540

Due the versatility of the underlying principle, the algorithm can easily be adapted to 541

aid research in a broad range of areas, where it is equally imperative to integrate 542

distinct heterogeneous data sources and to identify drivers of pharmacological effects. 543

Conclusion 544

In this paper, we propose a two-step multi-omics modelling approach for the pan-cancer 545

classification of cell lines into responders and non-responders with respect to a wide 546

range of anti-cancer drug compounds. Our algorithm is designed to integrate six distinct 547

data types in a manner that reduces the chance that the process of fitting weights to 548

the input data features is influenced more strongly by structural heterogeneity rather 549

than by the relevant information content. A range of different classification approaches 550

is used for the integration step, which enables users to compare their respective 551

performances. In addition, our algorithm allows for a straightforward in-depth analysis 552

of redundancies between the pieces of information present in the distinct data types and 553

of individual features that shift responsiveness. As a consequence, it produces more 554

interpretable models that not only show a predictive performance that is comparable to 555

the gold standard, but additionally yield valuable biological insights into driving 556

mechanisms and factors. The case studies presented in this paper underscore that our 557

approach succeeds both in correctly identifying established driving features of drugs 558

with a well-understood mechanism of action as well as in finding a set of as of yet 559

unrelated features that constitute suitable candidates for future studies. Comparing our 560

results on the GDSC data set with that of comparable studies implies that our ansatz 561

might be particularly well-suited to be applied to a particular set of targeted drug 562

compounds. Currently, the MATLAB routine is run on the GDSC data base, but the 563

design and implementation of the model is easily generalizable and can be modified and 564

applied to a range of data bases and classification problems. 565

Availability of data and materials 566

The preprocessed datasets analysed during the current study as well as the MATLAB 567

source code of the two-step modelling algorithm are available to be downloaded from 568

the official github repository of the Joint Research Center for Computational 569

Biomedicine, https://github.com/JRC-COMBINE/two-step-modelling [39]. It is 570

licensed under the GNU General Public License v3.0. 571
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Supporting information

S1 Fig. Extended modelling workflow Comprehensive figure of the complete
modelling workflow..

S1 Table. Model parameter details Table detailing the settings of model
parameters, as they differ from the default settings provided by MATLAB.

S1 Appendix. Overview over the model results. Visualizations of the
distributions of model performances; drug compounds are sorted according to their
target mechanism.

S2 Appendix. Overfitting effects for particular algorithms. Visualization of
the effects of low sample numbers on models fitted via Boosted Decision Tree Ensembles
and a depiction of overfitting effects as a function of the model training performance.

S3 Appendix Impact of drug class and algorithm on model performance
Heatmaps visualizing the significance of differences between the model performances on
distinct drug classes as well as between model performances of models fitted via distinct
algorithms.
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S4 Appendix. Comprehensive comparison of model performances to
one-step multi-omics models. Drug class-specific enrichment p-values of drug
compounds on which the two-step modelling approach outperforms the one-step models
constructed by Jang et al.; overview of drug compounds where one-step models were
found to be more predictive and a comparison of overall distributions of performance.

S5 Appendix. Discussion of results pertaining to Nutlin-3a List of discrete
and continuous features associated with shifts in sensitivity to Nutlin-3a; visualization
of the predictive performances of first-step models and their relative importance, as
quantified by second-step algorithms.

S6 Appendix. Discussion of results pertaining to Docetaxel List of discrete
and continuous features associated with shifts in sensitivity to Docetaxel; visualization
of the predictive performances of first-step models and their relative importance, as
quantified by second-step algorithms.
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Table 1. Data files used for model fitting and the respective processing
steps

Details Processing steps

Somatic mutation data:
SomaticMutation.mat

Coded genomic variants found via
whole-exome sequencing (WES) in
all cell lines versus all genes

Downloaded [19], con-
verted to a binary ma-
trix, and sorted

Copy number variation
data: CNV.mat

RACSs (focal recurrently aberrant
copy number segments) found in all
cell lines versus all genes

Downloaded [19], con-
verted to a discrete
matrix, and matched
to annotation from
the GDSC base

Hypermethylation data:
Hypermethylation.mat

Hypermethylated informative 5’C-
hosphate-G-3’ sites in gene promot-
ers (iCpGs) found in all cell lines
versus all genes

Downloaded [19], con-
verted to a binary ma-
trix, and matched to
annotation from the
GDSC base

Tissue data
TissueType.mat

Tissue type descriptors for all cell
lines versus all tissue types

Binary matrix created
from downloaded [18]
GDSC annotation

Inferred pathway
activation data:
PathwayActivation.mat

PROGENy-calculated pathway ac-
tivation scores based on consensus
gene signatures derived from pertur-
bation experiments for all cell lines
versus all pathways

R package down-
loaded [17] and run;
results matched to
the GDSC annotation

Basal gene expression
data: GeneExpression.txt

RMA-normalized basal expression
profiles for all cell lines versus all
genes

Downloaded [18] and
sorted

Response data:
Response AUC.mat

Area under the dose-response curve-
values for all cell lines versus all
drugs

Downloaded [18] and
sorted

Cell line annotation:
CelllineOrder.mat 1. Sample name

2. COSMIC identifier

3. GDSC tissue descriptor 1

4. GDSC tissue descriptor 2

Downloaded [18] and
condensed

Gene annotation:
GeneOrder.mat

Gene names as per HUGO gene
nomenclature

Downloaded [18]

Drug compound
annotation:
DrugOrder.mat

1. Drug name

2. Alternative drug name

3. Target molecules

4. Target pathway

Downloaded [18] and
condensed

Pathway annotation:
PathwayOrder.mat

PROGENy Pathway descriptors R package down-
loaded [17] and
run

Tissue annotation:
TissueOrder.mat

List of GDSC tissue descriptors 1 Downloaded [18]
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Table 2. Model outputs

Quantity of interest Details

First-step models Predicted response for all clusters calculated by the discrete first-
step models; pathway activation- and gene expression-based model;
feature values associated with the genetic-feature based clusters

Second-step
models

13 integrated multi-omics models

Predictions on
the training set

Binarized predictions of all first-step models and second-step mod-
els; pre-binarized predictions of all first-step models and all second-
step models minus the Näıve Bayes model

Predictions on
the test set

Binarized predictions of all first-step models and second-step mod-
els; pre-binarized predictions of all first-step models and all second-
step models minus the Näıve Bayes model

Measured
response

Measured response data, both unprocessed and binarized, in the
training and in the testing set

Model
performance on
the training set

Evaluation metrics – accuracy, precision, recall, f1-score, FDR –
for all first- and second step models in training

Model
performance on
the test set

Evaluation metrics – accuracy, precision, recall, f1-score, FDR –
for all first- and second step models in testing

ROC-AUCs ROC-AUCs of all first- and second-step models, with the exception
of the Näıve Bayes classifier, in training and testing

Significant
features

Sets of relevant mutation, CNV, and methylation events as well as
tissue types used in the discrete first-step models, in addition to
the three extended sets of genetic features, including redundant
features

Importance of
first-step models

Indices of all non-constant first-step models; input weights as
calculated by the linear and logistic regression models and the
SVMs as well as input importance scores calculated by the ensemble
models

Ablation studies Up to 41 ablation models for each second-step model; ROC-AUCS,
if applicable, and accuracy values of all ablation models in training
and testing

Cross-validation Partition object used for the 10-fold cross validation
Descriptions of outputs are listed in the order of them being returned by the routine; if not stated differently, all featured
quantities are computed for each of the 10 cross-validation folds, which correspond to rows in the resulting output objects.
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