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Exchanging genetic material with another individual seems risky from an evolutionary stand-

point, and yet living things across all scales and phyla do so quite regularly. The pervasiveness

of such genetic exchange, or recombination, in nature has defied explanation since the time of

Darwin1–4. Conditions that favor recombination, however, are well-understood: recombina-

tion is advantageous when the genomes of individuals in a population contain more selectively

mismatched combinations of alleles than can be explained by chance alone. Recombination

remedies this imbalance by shuffling alleles across individuals. The great difficulty in ex-

plaining the ubiquity of recombination in nature lies in identifying a source of this imbalance

that is comparably ubiquitous. Intuitively, it would seem that natural selection should re-

duce the imbalance by favoring selectively matched combinations of high-fitness alleles. We

show, however, that this widely-held intuition is wrong; to the contrary, we find that natural

selection has an encompassing tendency to assemble selectively mismatched combinations

of alleles, thereby increasing the imbalance and promoting the evolution of recombination

across demes in a structured population. We further show that, on average, selection-driven

changes in allele frequencies over time within a single evolving population generate a net im-

balance that promotes recombination, and additive fitness effects drive this imbalance. Our

findings provide a novel theoretical point of departure from which the enormous body of

established work on the evolution of sex and recombination may be viewed anew. They fur-

ther suggest that recombination evolved and is maintained more as a byproduct of natural

selection than as a catalyst.
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The ability to exchange genetic material through recombination (and sex) is a heritable trait5, 6

that is influenced by many different evolutionary and ecological factors, both direct and indirect,

both positive and negative. Evidence from nature clearly indicates that the net effect of these factors

must be positive: recombination across all levels of organismal size and complexity is undeniably

the rule rather than the exception2–4, 7. Theoretical studies, on the other hand, have revealed a va-

riety of different mechanisms and circumstances that can promote the evolution of recombination,

but each one by itself is of limited scope2, 4, 8. These studies would thus predict that the absence

of recombination is the rule and its presence an exception. The sheer abundance of these excep-

tions, however, can be seen as amounting to a rule in its own right – a “pluralist” view that has

been adopted by some authors to explain the ubiquity of recombination3, 7, 9. The necessity of this

pluralist view, however, may be seen as pointing toward a fundamental shortcoming in existing

theory: perhaps some very general factor that would favor recombination has been missing3, 4, 8, 10.

Existing theories of the evolution and maintenance of sex and recombination can be divided

into those that invoke direct vs indirect selection on recombination. Theories invoking direct se-

lection propose that recombination evolved and is maintained by some physiological effect that

mechanisms of recombination themselves have on survival or on replication efficiency. Such the-

ories might speak to the origins of sex and recombination but they falter when applied to their

maintenance1. Most theories invoke indirect selection: they assume that any direct or immediate

effect of recombination mechanisms is small compared to the trans-generational consequences of

recombination.
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While differing on the causal factors involved, established theoretical approaches that invoke

indirect selection are unanimous in their identification of the fundamental selective environment

required for sex and recombination to evolve: a population must harbor an excess of selectively

mismatched combinations of alleles across loci and a deficit of selectively matched combinations.

Recombination is favoured under these conditions because on average it breaks up the mismatched

combinations and assembles matched combinations. Assembling selectively matched combina-

tions increases the efficiency of natural selection: putting high-fitness alleles together can expedite

their fixation11–15, and putting low-fitness alleles together can expedite their elimination16, 17. This

fact was recognized by foundational figures of population genetics18, 19, who surmised that a com-

petition among populations should favor the evolution of recombination. A later study showed

that such across-population competition was not necessary and that, under restrictive conditions,

competition among recombination-rate variants (at a modifier locus) within the same population

can favor the evolution of recombination20. A common feature of these two approaches is an un-

derlying and intuitive assumption that recombinants themselves are not on average immediately

advantageous, and that several generations would be necessary for the advantage of recombination

to be realized.

In what follows, we question this underlying assumption by examining the effects of natural

selection on the immediate advantage or disadvantage of recombination. We begin by reducing the

problem to what we believe is its most essential form: we ask how the selective value of haploid

recombinants is affected when natural selection simply acts on standing heritable variation. We

ask this question for two common scenarios: 1) when parents of recombinant offspring come from
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different populations or from different demes in a structured metapopulation, and 2) when parents

come from within the same unstructured population. Respectively, we find that in the long run,

the net selective advantage of recombinants is non-negative: 1) after one or more fixations, and 2)

unconditionally.

We preface our developments with an essential technical point. In much of the relevant

literature, the measure of selective mismatch across loci affecting the evolution of recombination

is linkage disequilibrium (LD)8, 12, 13, 21–23, which measures bias in allelic frequencies across loci

but does not retain information about the selective value of those alleles. Here, the objectives

of our study require a slight departure from tradition: our measure of selective mismatch will

be covariance between genic fitnesses. This departure is necessary because covariance retains

information about both the frequencies and selective value of alleles, and it is convenient because

the mean selective advantage accrued by recombinants over the course of a single generation is

equal to minus the covariance (Methods and Fig S3). Our results will thus be given in terms

of covariance and we recall: negative covariance, like negative LD, means positive selection for

recombinants.

To present our findings, it suffices to consider a non-recombining haploid organism whose

genome consists of just two fitness-related loci labeled x and y. Genetically-encoded phenotypes at

these two loci are quantified by random variables X and Y , both of which are positively correlated

with fitness. These organisms exist in a large population in which some of the individuals carry

phenotype (X1, Y1) and have fitness Z1 = φ(X1, Y1) and the rest carry phenotype (X2, Y2) and
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have fitness Z2 = φ(X2, Y2). We note that, in the absence of epistasis or dominance, the scenario

we describe is formally equivalent to considering a diploid organism whose genome consists of

one locus and two alleles available to each haploid copy. The question we ask is this: Does the

action of natural selection, by itself, affect associations between X and Y , and if so, how? Figure

1 illustrates the problem by analogy to a canoe race. Figure 2 shows how the problem is posed

analytically.

On the surface, one might suspect that natural selection would promote well-matched com-

binations in which large values of X are linked to large values of Y , thereby creating a positive

association between X and Y . In fact, this notion is so intuitive that it is considered self-evident,

explicitly or implicitly, in much of the literature1–3, 7, 9, 14, 24, 25. If this notion were true, recombi-

nation would break up good allelic combinations, on average, and should thus be selectively sup-

pressed. Such allele shuffling has been called “genome dilution”, a label that betrays its assumed

costliness. We find, however, that the foregoing intuition is wrong. To the contrary, we find that

natural selection will, on average, promote an excess of mismatched combinations in which large

values of X are linked to small values of Y , or vice versa, thereby creating a negative association

between X and Y . Recombination will on average break up the mismatched combinations created

by natural selection, assemble well-matched combinations, and should thus be favoured.

Figure 3 illustrates why our initial intuition was wrong and why natural selection instead

tends to create negative fitness associations among genes. For simplicity of presentation, we as-

sume here that an individual’s fitness is Z = φ(X, Y ) = X + Y , i.e., that X and Y are simply
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additive genic fitness contributions, and that X and Y are independent. (In the Methods, SI, and

Fig 4, we relax these assumption and show that our qualitative results are true quite generally.)

In the absence of recombination, selection does not act independently on X and Y but on their

sum, Z = X + Y . Perhaps counter-intuitively, this fact alone creates negative associations. To

illustrate, we suppose that we know the fitness of successful genotypes to be some constant, z,

such that X + Y = z; here, we have the situation illustrated in Fig 3a and we see that X and

Y are negatively associated; indeed, covariance is immediate: σXY = −σXσY ≤ 0. Of course,

in reality the fitnesses of successful genotypes will not be known a priori nor will they be equal

to a constant; instead, they will follow a distribution of maxima of Z as illustrated in Fig 3b. If

populations consist of n contending individuals, then X(n) + Y(n) = Z [n], the nth order statistic

of Z with genic components X(n) and Y(n) (called concomitants in the probability literature26).

In general, Z [n] will have smaller variance than Z. Components X(n) and Y(n), therefore, while

not exactly following a line as in Fig 3a, will instead be constrained to a comparatively narrow

distribution about that straight line, illustrated by Fig 3b, thereby creating a negative association.

Figure 3c plots ten thousand simulated populations evolving from their initial (green dots) to final

(black dots) mean fitness components; this panel confirms the predicted negative association. We

note that if X and Y initially have strongly positive covariance as in Fig 4, more than one bout of

selection (more than one fixation) may be required to drive covariance to negative values.

What we have shown so far is that, if evolutionary “winners” – taken from different pop-

ulations, subpopulations, demes or clones within a structured population – were to shuffle their

genomes through recombination, the resulting offspring should be more fit than their parents, on
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average. This effect provides novel evolutionary insight into established observations that popu-

lation structure can favor recombination27–31 and may even speak to notions that out-crossing can

create hybrid vigour (heterosis).

Much of evolution indeed takes place in structured meta-populations; it is thought, for ex-

ample, that primordial life forms evolved primarily on surfaces that provided spatial structure32, 33.

It is also true, however, that much of evolution takes place within unstructured (or “well-mixed”)

populations; primitive life forms, for example, also existed in planktonic form34. We now turn to

the question of how evolution by natural selection affects the selective value of recombinants in

such unstructured populations.

To this end, we again reduce the problem to what we believe is its most essential form: our

setting is again a haploid population with standing heritable variation and no mutation. We again

ask how the selective value of potential recombinants is affected when natural selection simply

acts on the standing variation. But now our focus is on recombinants formed from two randomly-

chosen parents within the same unstructured population. To determine the selective value of such

recombinants, we ask whether the average covariance over the long run is positive or negative;

to this end, we integrate the covariance over the time required for natural selection to eliminate

the population’s heritable variation. This time-integrated covariance will be positive if natural

selection creates conditions that oppose recombination on average; it will be negative if those

conditions favour recombination.

In the Methods, we show that average covariance over the long run is unconditionally non-
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positive:
∫∞

0
σXY (t)dt ≤ 0. Remarkably, this finding requires no assumptions about the distri-

bution of X and Y ; in fact, a smooth density is not required. Indeed, this distribution can have

strongly positive covariance, and yet the net effect of natural selection is still to create negative

time-integrated covariance (Fig 4). Employing a combined analytical/numerical approach (SI), we

confirm that time-integrated covariance is indeed negative under a wide range of different distribu-

tions for X and Y and becomes increasingly negative as the number of alleles increases.

We further show that it is primarily the additive component of fitness that causes time-

integrated covariance to be negative. This fact stands in contrast with previous notions that non-

additive effects, specifically negative or fluctuating epistasis, are an essential ingredient in the

evolution of recombination21, 23, 35–38. Introducing a non-additive epistatic parameter κ to the fit-

ness function φ, we find there exists ε (which will depend on φ) such that when κ ∈ (−ε, ε),

time-integrated covariance is always non-positive. Some recent work39–41 suggests that if recom-

bination is introduced above a critical rate, the epistatic component becomes unimportant and the

selective value of recombinants depends only on the additive component (κ = 0), thus insuring

recombinant advantage.

Our mathematical analyses of across- and within-population covariance by themselves tell

us something fundamental about evolution: selection pressure for recombination is an unavoidable

consequence of natural selection. These results, however, derive from somewhat non-traditional

approaches and abstract math. To put our findings in perhaps a more familiar and tangible setting,

we simulated the evolution of a structured metapopulation (with no migration). To avoid introduc-
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ing the complexities of mutation, which will be addressed in a subsequent study, we here simply

add uncorrelated gaussian noise to X and Y every one hundred generations so that the population

undergoes repeated bouts of selection. Figure 4 plots covariance and correlation dynamics from

these simulations. The theory we have developed here (and in the SI for the case of many alleles)

makes quantitative and qualitative predictions about the change in both across- and within-deme

covariance over the course of each bout of selection. As our theory predicts, 1) within-deme co-

variance immediately plunges below zero despite starting out very strongly positive, and 2) across-

deme covariance is reduced in the first bout of selection but does not immediately go below zero;

it is not until the third bout of selection that it dips below zero. (We note that within-deme corre-

lation does not go below zero in the first bout of selection, but this is due to an averaging problem

introduced by indeterminate correlations when covariance is near zero.)

Some authors2, 42 have argued that negative associations build up within a population because

positive associations, in which alleles at different loci are selectively matched, are either removed

efficiently (when they are both similarly deleterious), or fixed efficiently (when they are both sim-

ilarly beneficial), thereby contributing little to overall within-population associations. Genotypes

that are selectively mismatched, on the other hand, have longer sojourn times, as the less-fit loci

effectively shield linked higher-fitness loci from selection. The net effect, it is argued, should be

that alleles across loci will on average be selectively mismatched within a population. Our findings

differ from these arguments in one respect, namely, we find that even genotypes that are ultimately

fixed carry selectively mismatched alleles. In another respect, however, these arguments are en-

tirely consistent with our findings: Equation (1) in Proposition 6 gives time-integrated covariance;
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it is intuitively more likely that the numerator of that equation will be negative when the denom-

inator is small, i.e., when Z1 and Z2 are close to each other. Negative values are thus amplified

because they tend to occur when total fitness of the two genotypes are close to each other and thus

coexist for a longer period of time before one displaces the other. Indeed this is the intuitive way

to understand Proposition 7.

We have identified a phenomenon that is an inherent consequence of natural selection and

gives rise to the fixation of selectively mismatched combinations of alleles across loci (or across

allelic pairs in diploids). Generally speaking, this pervasive phenomenon is an example of counter-

intuitive effects caused by probabilistic conditioning. For example, “Berkson’s bias”43, 44 arises

when a biased observational procedure produces spurious negative correlations. In the original

context, among those admitted to hospital due to illness, a negative correlation among potentially

causative factors was observed but only because those with no illness (who tended to have no

causative factors) were not admitted to the hospital and hence not observed. Similarly, negative

correlations arise across genic fitnesses in part because genotypes in which both loci have low

genic fitness are purged by selection. A key distinction between the phenomenon we describe and

Berkson’s bias is that the absence of low-fitness genotypes is not an observational bias but an actual

bias, as these genotypes no longer exist in the population.

As mentioned in the abstract, what we have presented here is a theoretical point of departure.

Several relevant issues are beyond the scope of this first study: 1) We have said nothing about the

magnitude of selection for recombinants. Our deterministic approach implicitly assumes an infi-
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nite population in which any selective advantage, however minute, can be effective. In real (finite)

populations, of course, this is not true. 2) Our approach implicitly assumes that recombination will

evolve because persistent recombinant advantage will indirectly select for an increased recombina-

tion rate, but we have not explicitly shown this. In simulations (SI), we show that our reductionist

approach with no mutation does indeed cause recombination modifiers to increase in frequency. 3)

We have not incorporated mutation.

Many previous studies, in one way or another, point to the increase in agility and efficiency

of adaptation that recombination confers as the primary cause of its evolution. Here, we invert

the perspective of those earlier studies, asking not whether recombination speeds adaptation, but

whether adaptation via natural selection generally creates selective conditions that make recombi-

nants directly and immediately advantageous. If so, as our findings indicate, then: 1) the ubiquity

of recombination in nature might be less enigmatic than previously thought, and 2) perhaps recom-

bination arose and is maintained more as a byproduct than as a catalyst of natural selection.

Methods

Notes. In the main text, we employ the shorthand σXY to denote covariance. In what follows,

however, we use σXY and Cov(X, Y ) (for clarity) interchangeably. Several of the proofs here are

abridged; full proofs are in the SI, as well as alternative and supplemental proofs.

Covariance and recombinant advantage. Much work on the evolution of recombination em-

ploys linkage disequilibrium (LD) as the measure of selective imbalance either favoring (negative
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LD) or opposing (positive LD) recombination. It is straight-forward to estimate LD from genomic

sequence data, which likely explains the popularity of this measure. LD, however, contains no

information about the selective cost of linkage. Covariance, on the other hand, retains all of the

information regarding both the prevalence of linkage and its selective cost (i.e., recombinant ad-

vantage), and is thus the measure we employ. We note that when the fitness function is a bivariate

Bernoulli distribution (φ(X, Y ) = P{X = i, Y = j} = pi,j, i, j ∈ {0, 1}) then covariance

and disequilibrium are equivalent (p1,1 − p1,•p•,1). Recombinants are formed from two randomly-

chosen contemporaneous parents such that their genetic makeup is simply an unbiased random

sampling of the pool of available alleles at the x and y loci. As such, their instantaneous advan-

tage is zero on average: ER[X + Y ] − E[X + Y ] = 0, where subscript R denotes recombinant

and no subscript denotes wildtype. Recombinants and wildtype, however, gain fitness at different

rates: ∂tER[X + Y ] = σ2
X + σ2

Y and ∂tE[X + Y ] = σ2
X + σ2

Y + 2σXY . A first order expansion

thus reveals that the selective advantage of recombinants after a single generation of growth is

∂tER[X + Y ] − ∂tE[X + Y ] = −2σXY ; a single-generation Moran model (Fig S3) shows co-

variance increases linearly in the first generation, implying that the mean selective advantage of

recombinants over that first generation is −σXY . A full treatment of the relation between covari-

ance and recombinant advantage is found in the SI, as well as the relation between our approach

and classical population genetics.

Two loci, two alleles: across populations or demes. The general setting for the two-loci two-

alleles case is layed out in the main text and in Fig 2. Here, we provide mathematical foundation for

our across-deme findings. No hypothesis on the fitness function φ is made at this point, apart from
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being measurable. For the sake compact presentation we assume here that (X1, Y1, X2, Y2) are

i.i.d.; departures from this and other simplifying assumptions are dealt with in the SI. As defined

in Fig 2, Zi = φ(Xi, Yi), Z [i] = φ(X(i), Y(i)), and Z [2] > Z [1].

PROPOSITION 1. Let ψ be any measurable function from R2 into R. Then: 1
2
E(ψ(X(1), Y(1))) +

1
2
E(ψ(X(2), Y(2))) = E(ψ(X1, Y1)) . In particular, the arithmetic mean of E(X(1)) and E(X(2)) is

E(X1).

PROOF: Consider a random index I ∈ {1, 2}, and for now P(I = 1) = P(I = 2) =

1/2, and I is independent of (X1, Y1, X2, Y2). The couple (XI , YI) is distributed as (X1, Y1).

Hence, E(ψ(XI , YI)) = E(ψ(X1, Y1)) , however, E(ψ(XI , YI)) = E(E(ψ(XI , YI) | I)) =

1
2
E(ψ(X(1), Y(1))) + 1

2
E(ψ(X(2), Y(2))) . �

PROPOSITION 2. We have: Cov(X(1), Y(1)) + Cov(X(2), Y(2)) = −(Cov(X(1), Y(2)) +

Cov(X(2), Y(1))) = −1
2
E(X(2) −X(1))E(Y(2) − Y(1)) .

PROOF: The couples (X(I), Y(I)) and (X(I), Y(3−I)) are both distributed as (X1, Y1). There-

fore their covariances are null. These covariances can also be computed by condition-

ing on I (see e.g. formula (1.1) in 45). For (X(I), Y(I)) we have: Cov(X(I), Y(I)) =

E(Cov(X(I), Y(I)|I)) + Cov(E(X(I)|I),E(Y(I)|I)) . On the right-hand side, the first term

is: E(Cov(XI , YI |I)) = 1
2
Cov(X(1), Y(1)) + 1

2
Cov(X(2), Y(2)) . The second term is:

Cov(E(XI |I),E(YI |I)) = 1
4
E(X(2)−X(1))E(Y(2)−Y(1)) . Similarly, we have: Cov(X(I), Y(3−I)) =

E(Cov(X(I), Y(3−I)|I)) + Cov(E(X(I)|I),E(Y(3−I)|I)) . The first term in the right-hand side is:

E(Cov(X(I), Y(3−I)|I)) = 1
2
Cov(X(1), Y(2)) + 1

2
Cov(X(2), Y(1)) . The second term in the right-

hand side is: Cov(E(X(I)|I),E(Y(3−I)|I)) = −1
4
E(X(2) −X(1))E(Y(2) − Y(1)) . Hence the result.
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�

PROPOSITION 3. Assume that the fitness function φ is symmetric: φ(x, y) = φ(y, x). Then the

couple (X(1), Y(2)) has the same distribution as the couple (Y(1), X(2)).

As a consequence, X(1) and Y(1) have the same distribution, so do X(2) and Y(2). Thus: E(X(2) −

X(1)) = E(Y(2) − Y(1)) = 1
2
E(Z [2] − Z [1]) . Another consequence is that: Cov(X(1), Y(2)) =

Cov(X(2), Y(1)) . Thus by Proposition 2: Cov(X(1), Y(2)) = Cov(X(2), Y(1)) = 1
16
E2(Z [2] −Z [1]) .

PROOF: Since φ is symmetric, the change of variable (X1, Y1, X2, Y2) 7→ (Y1, X1, Y2, X2) leaves

unchanged the couple (Z1, Z2). �

PROPOSITION 4. Assume that the ranking function φ is the sum: φ(x, y) = x+y. Then: E(X(1)) =

E(Y(1)) , E(X(2)) = E(Y(2)) , and E(X(1)) < E(X(2)) .

PROOF: The first two equalities come from Proposition 3. By definition, E(X(1)+Y(1)) < E(X(2)+

Y(2)). Hence the inequality. �

PROPOSITION 5. Assume that the ranking function φ is the sum, and that the common distribution

of X1, Y1, X2, Y2 is symmetric: there exists a such that f(x− a) = f(a− x). Then (a−X(1), a−

Y(1)) has the same distribution as (X(2) − a, Y(2) − a). As a consequence, Cov(X(1), Y(1)) =

Cov(X(2),Y(2)).

PROOF: The change of variable (X1, Y1, X2, Y2) 7→ (2a−X1, 2a− Y1, 2a−X2, 2a− Y2) leaves

the distribution unchanged. It only swaps the indices i and s of minimal and maximal sum. �
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If we summarize Propositions 1, 2, 3, 4, 5 for the case where the ranking function is the sum, and

the distribution is symmetric, one gets:

Cov(X(1), Y(1)) = Cov(X(2), Y(2)) < 0

Cov(X(1), Y(2)) = Cov(X(2), Y(1)) > 0

|Cov(X(1), Y(1))| = Cov(X(1), Y(2)) =
1

16
E2(Z [2] − Z [1]) .

Two loci, two alleles: over time within the same population. We note that proofs in this section

are abridged, and that full proofs and alternative proofs are given in the SI.

PROPOSITION 6. Within-population covariance integrated over time is:∫ ∞
0

σXY (t)dt = qE[
(X2 −X1)(Y2 − Y1)

|Z2 − Z1|
] (1)

where q is the initial frequency of the inferior genotype. No assumption about the distribution of

(X, Y ) is required. And Zi = φ(Xi, Yi) where fitness function φ can be any function.

PROOF: We let p denote initial frequency of the superior of the two genotypes, and we let q = 1−p

denote initial frequency of the inferior genotype. Time-integrated covariance is:∫ ∞
0

σX,Y (t)dt = E[(X(2) −X(1))(Y(2) − Y(1))

∫ ∞
0

pqe(Z[1]+Z[2])t(
peZ[2]t + qeZ[1]t

)2dt]

Integration by parts yields:∫ ∞
0

σXY (t)dt = qE[
(X(2) −X(1))(Y(2) − Y(1))

Z [2] − Z [1]
]

where q in Prop 6 is written as 1− p0. We observe that:

(X(2) −X(1))(Y(2) − Y(1)) = (X(1) −X(2))(Y(1) − Y(2)) = (X2 −X1)(Y2 − Y1)

and that

Z [2] − Z [1] = |Z2 − Z1|
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from which we have:

E[
(X(2) −X(1))(Y(2) − Y(1))

Z [2] − Z [1]
] = E[

(X2 −X1)(Y2 − Y1)

|Z2 − Z1|
]

�

PROPOSITION 7. We define spacings ∆X = X2 − X1, ∆Y = Y2 − Y1, and ∆Z = Z2 − Z1 =

∆X + ∆Y . If the pairs (Xi, Yi) are independently drawn from any distribution, then ∆X and ∆Y

are symmetric about zero, and time-integrated covariance is unconditionally non-positive:∫ ∞
0

σX,Y (t)dt = E[
∆X∆Y

|∆Z|
] ≤ 0

PROOF: There is no need to assume that (∆X,∆Y ) has a density. This proof also reveals that the

result also holds for discrete random variables. Let ∆X , ∆Y be two real-valued random variables

such that: (−∆X,∆Y ) has the same distribution as (∆X,∆Y ). We have:

E[∆X∆Y/|∆X + ∆Y |] = E[1∆X∆Y >0∆X∆Y/|∆X + ∆Y |] + E[1∆X∆Y <0∆X∆Y/|∆X + ∆Y |]

= E[1∆X∆Y >0∆X∆Y/|∆X + ∆Y |] + E[1−∆X∆Y <0(−∆X)∆Y/|∆Y −∆X|]

= E[1∆X∆Y >0∆X∆Y/|∆X + ∆Y |]− E[1∆X∆Y >0∆X∆Y/|∆Y −∆X|]

= E[1∆X∆Y >0∆X∆Y (1/|∆X + ∆Y | − 1/|∆Y −∆X|)]

≤ 0

When ∆X and ∆Y have the same sign as imposed by the indicator function in the last expectation,

we have |∆X + ∆Y | > |∆Y −∆X|, from which the inequality derives.

�
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COROLLARY 1. Proposition 7 holds for divergent expectations.

PROOF: Set U = |∆X| and V = |∆Y |; M = Max(U, V ), m = Min(U, V ). Then you can rewrite

the expectation as:

E[UV {1/(U + V )− 1/(|U − V |)}] = E[mM{−2m/(M2 −m2)}]

= −2E[Mm2/(M2 −m2)] ≤ 0

Indeed, if the expectation is divergent, then it is always −∞. This approach removes the need to

make the argument that U +V > |U −V | and avoids the need to take a difference of expectations.

An alternative approach is given in an expanded statement and proof of Proposition 7 in the SI. �

1. de Visser, J. A. G. M. & Elena, S. F. The evolution of sex: empirical insights into the roles of

epistasis and drift. Nat. Rev. Genet. 8, 139–149 .

2. Otto, S. P. The evolutionary enigma of sex. Am. Nat. 174 Suppl 1, S1–S14 .

3. Otto, S. P. & Lenormand, T. Resolving the paradox of sex and recombination. Nat. Rev. Genet.

3, 252–261 .

4. Barton, N. H. & Charlesworth, B. Why sex and recombination? Science 281, 1986–1990 .

5. Bodmer, W. F. & Parsons, P. A. Linkage and recombination in evolution. In Caspari, E. W. &

Thoday, J. M. (eds.) Advances in Genetics, vol. 11, 1–100 .

17

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 30, 2020. ; https://doi.org/10.1101/2020.08.28.271486doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.28.271486
http://creativecommons.org/licenses/by-nd/4.0/


6. Nei, M. Modification of linkage intensity by natural selection. Genetics 57, 625–641 .

7. Hartfield, M. & Keightley, P. D. Current hypotheses for the evolution of sex and recombina-

tion. Integr. Zool. 7, 192–209 .

8. Felsenstein, J. The evolutionary advantage of recombination. Genetics 78, 737–756 .

9. West, S. A., Lively, C. M. & Read, A. F. A pluralist approach to sex and recombination. J.

Evol. Biol. .

10. Otto, S. P. & Barton, N. H. Selection for recombination in small populations. Evolution 55,

1921–1931 .

11. Gerrish, P. J. & Lenski, R. E. The fate of competing beneficial mutations in an asexual popu-

lation. Genetica 102-103, 127–144 .

12. Otto, S. P. & Barton, N. H. The evolution of recombination: removing the limits to natural

selection. Genetics 147, 879–906 .

13. Barton, N. H. Linkage and the limits to natural selection. Genetics 140, 821–841 .

14. Agrawal, A. F. Evolution of sex: Why do organisms shuffle their genotypes? Curr. Biol. 16,

R696–R704 .

15. Arjan, J. A. et al. Diminishing returns from mutation supply rate in asexual populations.

Science 283, 404–406 .

16. Kondrashov, A. S. Deleterious mutations and the evolution of sexual reproduction. Nature

336, 435–440 .

18

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 30, 2020. ; https://doi.org/10.1101/2020.08.28.271486doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.28.271486
http://creativecommons.org/licenses/by-nd/4.0/


17. Keightley, P. D. & Otto, S. P. Interference among deleterious mutations favours sex and re-

combination in finite populations. Nature 443, 89–92 .

18. Fisher, R. A. The genetical theory of natural selection (Oxford Clarendon Press, 1930).

19. Muller, H. J. Some genetic aspects of sex. Am. Nat. 66, 118–138 .

20. Felsenstein, J. & Yokoyama, S. The evolutionary advantage of recombination. II. individual

selection for recombination. Genetics 83, 845–859 .

21. Barton, N. H. A general model for the evolution of recombination. Genet. Res. 65, 123–145 .

22. Barton, N. H. Genetic linkage and natural selection. Philos. Trans. R. Soc. Lond. B Biol. Sci.

365, 2559–2569 .

23. Otto, S. P. & Feldman, M. W. Deleterious mutations, variable epistatic interactions, and the

evolution of recombination. Theor. Popul. Biol. 51, 134–147 .

24. Jaffe, K. Emergence and maintenance of sex among diploid organisms aided by assortative

mating. Acta Biotheor. 48, 137–147 .

25. Redfield. A truly pluralistic view of sex and recombination. J. Evol. Biol. 12, 1043–1046 .

26. Yang, S. S. General distribution theory of the concomitants of order statistics. Ann. Stat. 5,

996–1002 .

27. Martin, G., Otto, S. P. & Lenormand, T. Selection for recombination in structured populations.

Genetics 172, 593–609 .

19

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 30, 2020. ; https://doi.org/10.1101/2020.08.28.271486doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.28.271486
http://creativecommons.org/licenses/by-nd/4.0/


28. Becks, L. & Agrawal, A. F. Higher rates of sex evolve in spatially heterogeneous environ-

ments. Nature 468, 89–92 .

29. Hartfield, M., Otto, S. P. & Keightley, P. D. The maintenance of obligate sex in finite, struc-

tured populations subject to recurrent beneficial and deleterious mutation. Evolution 66, 3658–

3669 .

30. Whitlock, A. O. B., Azevedo, R. B. R. & Burch, C. L. Population structure promotes the

evolution of costly sex in artificial gene networks. Evolution 73, 1089–1100 .

31. Lenormand, T. & Otto, S. P. The evolution of recombination in a heterogeneous environment.

Genetics 156, 423–438 .

32. Trevors, J. T. Hypothesized origin of microbial life in a prebiotic gel and the transition to a

living biofilm and microbial mats. C. R. Biol. 334, 269–272 .

33. Flemming, H.-C. & Wuertz, S. Bacteria and archaea on earth and their abundance in biofilms.

Nat. Rev. Microbiol. 17, 247–260 .

34. Miller, S. L., Schopf, J. W. & Lazcano, A. Oparin’s “origin of life”: Sixty years later. J. Mol.

Evol. 44, 351–353 .

35. Kouyos, R. D., Otto, S. P. & Bonhoeffer, S. Effect of varying epistasis on the evolution of

recombination. Genetics 173, 589–597 .

36. Otto, S. P. & Michalakis, Y. The evolution of recombination in changing environments. N. Jb.

Geol. Paläont. Mh. 486, 516 .

20

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 30, 2020. ; https://doi.org/10.1101/2020.08.28.271486doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.28.271486
http://creativecommons.org/licenses/by-nd/4.0/


37. Gandon, S. & Otto, S. P. The evolution of sex and recombination in response to abiotic or

coevolutionary fluctuations in epistasis. Genetics 175, 1835–1853 .

38. Peters, A. D. & Lively, C. M. The red queen and fluctuating epistasis: A population genetic

analysis of antagonistic coevolution. Am. Nat. 154, 393–405 .

39. Neher, R. A. & Shraiman, B. I. Competition between recombination and epistasis can cause a

transition from allele to genotype selection. Proc. Natl. Acad. Sci. U. S. A. 106, 6866–6871 .

40. Neher, R. A., Kessinger, T. A. & Shraiman, B. I. Coalescence and genetic diversity in sexual

populations under selection. Proc. Natl. Acad. Sci. U. S. A. 110, 15836–15841 .

41. Kosheleva, K. & Desai, M. M. Recombination alters the dynamics of adaptation on standing

variation in laboratory yeast populations. Mol. Biol. Evol. 35, 180–201 .

42. Barton, N. H. & Otto, S. P. Evolution of recombination due to random drift. Genetics 169,

2353–2370 .

43. Miller, J. B. & Sanjurjo, A. A bridge from monty hall to the hot hand: The principle of

restricted choice. J. Econ. Perspect. 33, 144–162 .

44. Berkson, J. Limitations of the application of fourfold table analysis to hospital data. Biometrics

2, 47–53 .

45. Joag-Dev, K. & Proschan, F. Negative association of random variables with applications. Ann.

Statist. 11, 286–295 .

21

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 30, 2020. ; https://doi.org/10.1101/2020.08.28.271486doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.28.271486
http://creativecommons.org/licenses/by-nd/4.0/


Acknowledgements The authors thank S. Otto and N. Barton for helpful conversations in the early

stages of this work. Special thanks go to E. Baake for her thoughts on later stages of this work

and help with some key mathematical aspects. Much of this work was performed during a CNRS-

funded visit (P.G.) to the Laboratoire Jean Kuntzmann, University of Grenoble Alpes, France, and

during a visit to Bielefeld University (P.G.) funded by Deutsche Forschungsgemeinschaft (German

Research Foundation, DFG) via Priority Programme SPP 1590 Probabilistic Structures in Evolu-

tion, grants BA 2469/5-2 and WA 967/4-2. The authors thank J. Streelman, R. Rosenzweig and

the Biology Department at Georgia Institute of Technology for critical infrastructure and compu-

tational support. P.G. and A.C. received financial support from the USA/Brazil Fulbright scholar

program. P.G. and P.S. received financial support from National Aeronautics and Space Adminis-

tration grant NNA15BB04A.

Author contributions P.G. conceived the theory conceptually; P.G., P.S., B.S. and A.C. developed

the theory verbally and with simulation; P.G, B.Y. and J.C. developed the theory mathematically;

B.Y. and J.C. provided mathematical proofs for the across-population part; P.G., V.V., F.C. and

N.H. provided mathematical proofs for the within-population part. P.G. wrote the paper with criti-

cal help and guidance from B.S., P.S. and B.Y.

Competing interests The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s....

22

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 30, 2020. ; https://doi.org/10.1101/2020.08.28.271486doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.28.271486
http://creativecommons.org/licenses/by-nd/4.0/


Correspondence and requests for materials should be addressed to P.G.

23

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 30, 2020. ; https://doi.org/10.1101/2020.08.28.271486doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.28.271486
http://creativecommons.org/licenses/by-nd/4.0/


0.98 1.08
1.05 1.07

Race 1

1.12 1.07
1.01 1.09

Race 2

1.09 1.15
1.07 1.02

Race 3

Paddler strength

Fig 1
∣∣ Canoe race analogy. Each canoe contains two paddlers. The strength of each paddler

is measured and reported in the table. In any given canoe race, there is no correlation between
paddler strengths A and B. In each race, paddler strengths are recorded (tables on right), and
the winning canoe is that in which the sum of the strengths of the two paddlers is the greatest
(highlighted). Three such canoe races are conducted. We ask: what is the covariance between the
strengths of paddlers A and B among winning canoes only? While it seems reasonable to suppose
that winning canoes would carry two strong paddlers thereby resulting in positive covariance, the
counter-intuitive answer we find is that the covariance is, for all practical purposes, uncondition-
ally negative. By analogy, paddlers are genes, paddler strength is genic fitness, and canoes are
genotypes. Natural selection picks the winner.
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Low fitness

Fig 2
∣∣ Two loci, two alleles. Here, a large (infinite) population consists of individuals whose

genome has only two loci x and y, each of which carries one of two alleles: genotype 1 encodes
quantified phenotype X1 at the x locus and Y1 at the y locus, and genotype 2 carries quantified
phenotype X2 at the x locus and Y2 at the y locus. Fitness is indicated by color. An individual’s
fitness is a function of the two phenotypes: Z = φ(X, Y ); here we make the simplifying assump-
tion that φ(X, Y ) = X + Y , so that the fitnesses of genotypes 1 and 2 are Z1 = X1 + Y1 and
Z2 = X2 + Y2, respectively. The fitter of these two genotypes has total fitness denoted Z [2] (i.e.,
Z [2] = Max{Z1, Z2}) and genic fitnesses X(2) and Y(2) (i.e., Z [2] = X(2) + Y(2)). Similarly, the
less-fit of these two genotypes has total fitness Z [1] = X(1) + Y(1). We note: Z [2] > Z [1] by defi-
nition, but this does not guarantee that X(2) > X(1) or that Y(2) > Y(1), as illustrated in the lower
box. The population labeled A consists of two distinct genotypes but selection acts to remove
the inferior genotype leaving a homogeneous population in which individuals are all genetically
identical (with fitness Z [2]) as illustrated in the population labeled B.
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X

Y

X X

Y Y

Fig 3
∣∣ Natural selection promotes negative associations. In the absence of recombination,

selection does not act independently on X and Y but organismal fitness which, for simplicity, we
here assume to be their sum, Z = φ(X, Y ) = X + Y . Perhaps counterintuitively, this fact alone
creates negative associations. As discussed in the main text, this fact gives rise to a correlation of
exactly negative one when the sum is a constant (a) and something intuitively negative when the
sum is distributed as expected (b), i.e., as an order statistic. c, Ten thousand simulated populations
move from their initial (green dots) to final (black dots) mean fitnesses. Here, the predicted negative
covariance in the final state is apparent. The heatmap bars indicate variance in Y along the x-axis
and variance in X along the y-axis, a manifestation of Hill-Robertson interference.
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a

b

Time (generations)

Fig 4
∣∣ Covariance dynamics in a metapopulation. Simulated metapopulations of size N = 500

begin with all individuals being assigned unique genic fitness pairs, (X, Y ), drawn at random from
a common bivariate normal distribution with correlation coefficient 0.9, means−0.1 and variances
0.2. Every 100 generations, uncorrelated gaussian noise was injected as follows: X ′ = X +Q and
Y ′ = Y + Q, where Q ∼ N (−.1, .1). Plotted is mean covariance (a) and mean correlation (b) of
2000 runs.
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