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 Abstract 9 

Forecasting changes in size and distributions of populations is at the forefront of 10 

ecological sciences in the 21st century. Such forecasts require robust estimators of fecundity, 11 

survival and density-dependence. While survival estimation is the main focus of mark-recapture 12 

modelling, fecundity and density dependence are rarely the subject of these models. Here, we 13 

demonstrate that these parameters can be simultaneously estimated in a Bayesian framework 14 

using only robust design mark-recapture data. Using simulated capture histories, we show that 15 

this framework (which we named CJS-pop) can estimate vital rates and their density dependence 16 

with little bias. When CJS-pop is applied to capture history data from Brown Creeper (Certhia 17 

americana), it provides estimates of fecundity that is expected from the breeding biology of this 18 

species. Finally, we illustrate that density dependence, even when estimated with uncertainty in 19 

the CJS-pop framework, regularizes population dynamics and reduces the frequent population 20 

extinctions and explosions observed under density-independent models.  While CJS-pop as a 21 

whole is a useful addition to the current mark-recapture modelling toolbox, we argue that the 22 

independent components of this framework in estimating fecundity and density dependence can 23 

be integrated to other CJS frameworks, potentially creating models capable of population 24 

projections. 25 

 26 

Keywords: CJS, CJS-pop, Fecundity, Mark-recapture, Population Models, Population 27 

projections, Population Viability Analysis, Simulations 28 

  29 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2020. ; https://doi.org/10.1101/2020.08.26.268656doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.26.268656
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 30 

Mark-recapture data analysis is a staple in population ecology for estimating survival, 31 

abundance, and recruitment rates (Lebreton et al. 1992, Williams et al. 2002, Cooch and White 32 

2016). More recently mark-recapture methods have been extended to work in parallel with 33 

different types of data in frameworks such as integrated population models (IPMs; Schaub and 34 

Abadi 2011) and to estimate dispersal and animal movement in spatial capture-recapture analysis 35 

(Ergon and Gardner 2014, Schaub and Royle 2014). When considering the wide applicability of 36 

mark-recapture methods for estimating parameters related to population dynamics, rarity of one 37 

parameter in the mark-recapture literature stands out: fecundity as defined in a population 38 

modelling setting, which is the number of juveniles per number of adults (for example, see Ryu 39 

et al. 2016). If fecundity can be estimated from mark-recapture data, then this single data source 40 

can be used on its own to parameterize stage-structured population models.  41 

Ryu et al. (2016) provided a framework for estimation of fecundity and other necessary 42 

population model parameters (stage-dependent survival, density dependence, and environmental 43 

stochasticity) from robust design mark-recapture data. However, their framework is a mixture of 44 

frequentist and Bayesian approaches of mark-recapture models and it requires multiple models to 45 

be fit sequentially. As a result, Ryu et al. (2016)’s different model components do not inform one 46 

another during estimation, which prevents making full use of the data at hand and propagating 47 

uncertainty in a hierarchical manner. Here, we present an update on Ryu et al. (2016)’s 48 

framework. We use both simulated and real data to show that; 1) fecundity can be estimated 49 

alongside adult survival and capture probability in a single Bayesian framework using only 50 

robust design mark-recapture data; 2) estimating fecundity reduces uncertainty in juvenile 51 

survival estimates; and, 3) when these vital rates estimates are combined with density 52 
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dependence, resulting stage-structured population models are useful for calculating conservation-53 

relevant metrics. 54 

Material and Methods 55 

 Model specifications 56 

Two basic parameters are estimated in a standard CJS model (Cooch and White 2016): 57 

survival and capture probability. Robust design mark-recapture data separates these two 58 

processes to primary capture occasions (for example years), and secondary capture occasions 59 

within primary occasions (for example months). Populations are assumed to be closed 60 

(individuals don’t die or leave the population) among secondary occasions within a primary 61 

occasion. Capture probabilities are estimated for each secondary occasion, which can then be 62 

used to estimate the population size for a given primary occasion. Populations are assumed to be 63 

open among primary occasions, so individuals can leave the population or die. Survival is 64 

estimated with information coming across primary occasions. Below, for simplicity in 65 

presentation, we assume primary occasions are years and secondary occasions are months.   66 

We denote 𝑝𝑥,𝑘,𝑡,ℎ  as the monthly capture probability of a stage 𝑥 individual at population 67 

𝑘, year 𝑡, and month ℎ; where, 𝑥 = 1,2,3 … , 𝑋; 𝑘 = 1,2,3. . . , 𝐾; 𝑡 = 1,2,3. . . , 𝑇; and ℎ =68 

1,2,3. . . , 𝐻. We can use this monthly capture probability to calculate a yearly capture probability: 69 

𝑃𝑥,𝑘,𝑡 = 1 − ∏(1 − 𝑝𝑥,𝑘,𝑡,ℎ)

𝐻

ℎ=1

 (1) 70 

 Then, we can use the heuristic estimator of populations size with a correction for years 71 

with no captures (Dail and Madsen 2011) to estimate the expected abundance of stage 𝑥 72 

individuals at population 𝑘, year 𝑡: 73 

𝑁𝑥,𝑘,𝑡 =
𝑛𝑥,𝑘,𝑡

𝑃𝑥,𝑘,𝑡
+

(1 − 𝑃𝑥,𝑘,𝑡)

𝑃𝑥,𝑘,𝑡
 (2) 74 
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Where, 𝑛𝑥,𝑘,𝑡 is the number of captured stage 𝑥 individuals in population 𝑘 and year 𝑡. Using the 75 

expected abundance time series of each population we calculate a density index: 76 

𝐷𝑘,𝑡 =
∑ 𝑁𝑥,𝑘,𝑡

𝑋
𝑥=1

∑ ∑ 𝑁𝑥,𝑘,𝑡
𝑋
𝑥=1

𝑇
𝑡=1

𝑇

(3)
 77 

where, 𝐷𝑘,𝑡 is the density index at population 𝑘, year 𝑡. The numerator in equation 3 is the total 78 

abundance of population 𝑘 at year 𝑡 across all stages, and denominator is the average expected 79 

total abundance across T years. 𝐷 is an index for the deviation of population abundance in a 80 

given year from the long term average population abundance and it can be considered as a 81 

relative population density. We use 𝐷 as a covariate for estimating density dependence strength 82 

of fecundity and survival. 83 

    All three parameters estimated by equations 1 to 3, namely, yearly capture probability, 84 

expected abundance, and density index can be used to estimate fecundity and its density 85 

dependence: 86 

log(𝐹𝑘,𝑡) =  𝜃 +  𝜁 ∙ 𝐷𝑘,(𝑡−1) + 𝜔𝑘,𝑡 (4𝑎) 87 

𝜔𝑘,𝑡 ∼ Normal(0, 𝜎𝑓
2) (4𝑏) 88 

where, 𝜃 is the fecundity in log scale at 0 density; 𝜁 is the change in fecundity in log scale with 89 

one unit change in population density index; 𝜔𝑘,𝑡 is the spatio-temporal random effect at 90 

population 𝑘 and time 𝑡; and 𝜎𝑓
2 is the spatio-temporal variance of fecundity at log scale. We link 91 

the fecundity estimate to the data, which is the number of captured juveniles in a given year and 92 

population, by using expected abundances for adults calculated in equation 2. Below we present 93 

a simple case for two stages where 𝑥 = 1 are juveniles and 𝑥 = 2 are adults: 94 

𝑁1,𝑘,𝑡
′ = 𝑁2,𝑘,𝑡 ⋅ 𝐹𝑘,𝑡 (5𝑎) 95 

𝑛1,𝑘,𝑡 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑃1,𝑘,𝑡 ⋅ 𝑁1,𝑘,𝑡
′ ) (5𝑏)  96 
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The expected number of juveniles is estimated twice in this framework: once as a derived 97 

variable (𝑁1,𝑘,𝑡) using the heuristic population size estimator, and a second time (𝑁1,𝑘,𝑡
′ ) as a 98 

function of density and expected number of adults. We discuss this and our choice of Poisson 99 

distribution in detail below. 100 

 So far, we have only used captured number of juveniles and adults as a data source. 101 

However, this form of a capture history is not enough to estimate parameters used in the above 5 102 

equations. So, we link these 5 equations with a more typical CJS model where survival and 103 

capture probability are used to model capture histories of individuals: 104 

logit(𝜙𝑥,𝑘,𝑡) = 𝛼𝑥 + 𝛽 ⋅ 𝐷𝑘,𝑡 + 𝜖𝑘,𝑡 (6𝑎) 105 

𝜖𝑡 ∼ Normal(0, 𝜎𝑠
2) (6𝑏) 106 

where, 𝜙𝑥,𝑘,𝑡 is the apparent survival probability of a stage 𝑥 individual at population 𝑘 and year 107 

𝑡; 𝛼𝑥 is the survival probability of a stage 𝑥 individual on logit scale at 0 density; 𝛽 is the change 108 

in survival in logit scale with one unit change in population density index; 𝜖𝑘,𝑡 is the spatio-109 

temporal random effect at population 𝑘 and time 𝑡; and 𝜎𝑓
2 is the spatio-temporal variance of 110 

survival at logit scale.  111 

Apparent survival changes the latent states of individuals in a population between time 112 

steps, from 𝑡 to 𝑡 + 1; this latent state indicates whether an individual is alive and in the 113 

population (𝑍 = 1), or it is dead or left the population (𝑍 = 0). The latent state of the ith 114 

individual, then, is determined by its state at time 𝑡 and its survival to time 𝑡 + 1.  115 

𝑍𝑖,(𝑡+1) ∼ Bernoulli(𝑍𝑖,𝑡 ⋅ 𝜙(𝑆𝑖,𝑡),(𝑔𝑖),𝑡) (7) 116 

where, 𝜙(𝑆𝑖,𝑡),(𝑔𝑖),𝑡 is the apparent survival probability at the breeding stage and population of the 117 

𝑖th individual from year 𝑡 to 𝑡 + 1; 𝑆𝑖,𝑡 is a matrix indicating the breeding stage of the ith 118 

individual in year 𝑡, and the vector 𝑔𝑖  indicates the population that the ith individual is in. Latent 119 
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state, 𝑍, also determines the potential capture of an individual; dead ones cannot be captured. 120 

Hence, every element of the capture history, 𝑦𝑖,𝑡,ℎ (1 if an individual is captured, 0 if it is not), is 121 

a Bernoulli random variable with a monthly capture probability, 𝑝(𝑆𝑖,𝑡),(𝑔𝑖),𝑡,ℎ, conditional on the 122 

individual being alive and in the population, 𝑍𝑖,𝑡.  123 

𝑦𝑖,𝑡,ℎ ∼ Bernoulli(𝑍𝑖,𝑡 ⋅ 𝑝(𝑆𝑖,𝑡),(𝑔𝑖),𝑡,ℎ) (8) 124 

For simplicity in referring to this framework, we named it CJS-pop; pop extension comes from 125 

the fact that it can estimate necessary parameters to build a stochastic and stage-based population 126 

model: Fecundity, staged-based survival, density dependence, and process variance. 127 

Simulated data 128 

We simulated several sets of capture histories in order to test CJS-pop’s ability to 129 

correctly retrieve true parameter values, and to uncover any inherent biases, especially when 130 

quantifying density dependence strength. We set up a simulation scheme where we explored the 131 

effect of sample size on quantifying density dependence strength. We set the time series length to 132 

17 years, which is the maximum time series length for Brown Creeper data set we are using (see 133 

below). We simulated three cases with 1, 5, and 10 populations, and three carrying capacities 134 

(which controls population size): 50, 100, 150. For each combination of the number of 135 

populations and carrying capacity, we generated capture history data sets using weak, moderate 136 

and strong density dependence on survival and fecundity, which created 27 separate simulation 137 

sets. For each simulation set, we generated 56 capture history data sets and fitted CJS-pop to 138 

each one. See Appendix S2 for more detailed discussion of the simulation framework and 139 

Appendix S3 for its code. 140 

Empirical data: Brown Creeper 141 
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We applied CJS-pop to Brown Creeper (Certhia americana) data obtained from the 142 

Mapping Avian Productivity and Survivorship (MAPS) program. Brown Creeper is a widespread 143 

North American songbird species. It is a resident, forest-dwelling bird in western U.S and along 144 

the coastline to Alaska, in north-eastern U.S, and southern Canada. We treated each MAPS 145 

location (a cluster of mist-netting and banding stations) of Brown Creeper to be a separate 146 

population. We only included data from populations which were located in the contiguous U.S., 147 

and which have been monitored for at least 5 years. This resulted in a data set with 2931 148 

individuals. We categorized any individual in its first year as a juvenile (MAPS age codes 2 and 149 

4), and older individuals as adults (MAPS age codes 1, 5, 6, 7, and 8). 150 

We made several adjustments and additions to basic CJS-pop framework presented above 151 

when applying to Brown Creeper data. First, we accounted for potentially transient individuals in 152 

the data set. In a CJS model, estimated survival rates are said to be “apparent” because the 153 

estimated survival rate cannot distinguish between dead individuals and the ones that just left the 154 

population. This can bias survival estimates to be lower than their true values. Accounting for 155 

transients is a partial way to correct for this bias and it is a frequently used technique in CJS 156 

literature (for example, Ahrestani et al. 2017). 157 

Second, we used the priors and population modelling structure of CJS-pop to our 158 

advantage to estimate a juvenile survival rate with less uncertainty. We use information from 159 

adult survival and fecundity estimates, and the fact that they are density dependent, to estimate 160 

juvenile survival: 161 

𝑆𝐴 + 𝑆𝐽 ∙ 𝐹 = 1 (9) 162 

where, 𝑆𝐴 and 𝑆𝐽 are survival rates of adults and juveniles at mean population size (when 𝐷 = 1) 163 

and 𝐹 is the fecundity at mean population size. This equation states that population growth rate 164 
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(𝜆) is equal to 1 when population abundance is at its long-term average. Using this equation, we 165 

would only need priors for adult survival and fecundity, and we can calculate juvenile survival 166 

as: 167 

𝑆𝐽 =
1 − 𝑆𝐴

𝐹
 (10) 168 

Third, we used a zero-inflated Poisson for modelling fecundity in equation 5b because 169 

there were several years and populations with no juvenile captures. Fourth, we did not use 170 

populations and years with no adult captures when modelling fecundity. While we account for no 171 

capture years in equation 2, we believe that limiting fecundity estimation to years with adult 172 

captures provides a more robust estimate.  173 

Fifth, we changed the spatio-temporal variance structure of survival to be only temporal. 174 

Spatio-temporal variance structure in survival for Brown Creeper proved to be problematic 175 

because it made convergence harder for multiple parameters while also reducing the effective 176 

sample size of their MCMC chains. Lastly, we standardized the density index (𝐷), calculated in 177 

equation 3, to be 0 at mean population size. This allowed for faster convergence of the MCMC 178 

chains in JAGS. See Appendix S2 for details on these adjustments to basic CJS-pop framework 179 

and goodness-of-fit testing of CJS-pop . 180 

We fit three different CJS-pop models to Brown Creeper data: 1) density dependent, 2) 181 

density independent, and 3) Density dependent without the residency model. 182 

Population Projections 183 

We ran population projections using a stage-structured population model with 184 

environmental and demographic stochasticity in both survival and fecundity. We parameterized 185 

these population models with 3 different parameter sets:  186 

1) True simulation parameters that we used to generate capture history data.  187 
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2) Parameter estimates from density-dependent and density-independent CJS-pop fit to 188 

simulated data. At each replication we randomly selected the parameters of CJS-pop fit to 189 

one of the 56 data sets with this population and carrying capacity combination. To further 190 

incorporate parameter uncertainty, we randomly used at each replication the 2.5%, 50%, 191 

or 97.5% percentiles of the selected parameters.  192 

3) Parameter estimates obtained from CJS-pop fit to the Brown Creeper data. We employed 193 

the full posterior distribution of the estimated parameters. At each iteration of the 194 

projections, parameter estimates were randomly selected from the posterior distributions 195 

of all parameters with respect to their correlation structure.  196 

Using each of these sets of parameters, we ran single-population projections, with a 197 

carrying capacity of 1000 and an initial population of 500 adults and 500 juveniles. We ran the 198 

projections with 1000 replicates, and each replicate for 20 years. In order to incorporate 199 

environmental stochasticity, at each iteration and at each year we generated random temporal 200 

effects separately for survival and fecundity using 𝜎𝑠
2 and 𝜎𝑓

2, respectively. We recorded the 201 

minimum abundance of the population across 20 years for each iteration, and the distribution of 202 

minimum abundance among iterations. The expected value of this distribution is called expected 203 

minimum abundance (EMA) and it is a more informative metric than extinction risk, because the 204 

latter often has a distribution restricted to near-zero or near-one values (McCarthy and 205 

Thompson 2001). 206 

Software 207 

See appendix S2 for a list of R packages used in the analysis. We used JAGS as the 208 

MCMC sampler when fitting CJS-pop to data. We ran the models with 4 chains, 50000 209 

iterations, 20000 burn in, and a thinning rate of 10 for simulated data sets, and with 4 chains, 210 
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100000 iterations, 50000 burn in and a thinning rate of 20 for Brown Creeper data. We checked 211 

convergence with R-hat values, and assumed chains were converged when 𝑅̂ was <1.05. See 212 

Appendix S4 for JAGS code of CJS-pop. Additionally, R and JAGS code of CJS-pop analysis, 213 

example simulation data , and results of Brown Creeper analysis are accessible here: 214 

https://github.com/bilgecansen/CJS-pop. The software source code has been archived and made 215 

accessible in Zenodo (DOI: 10.5281/zenodo.3736702). 216 

Results 217 

Simulations 218 

CJS-pop is able retrieve true parameter estimates without any apparent bias except for 219 

density dependence (Figs. S1-6). DD strength is estimated with no bias when strength of DD 220 

used to generate capture history data is moderate. Strong DD in data simulation leads to slight 221 

underestimation of DD strength. There is, however, considerable overestimation of true DD 222 

parameters when capture history simulation was carried out with weak DD strength (Fig. S1). 223 

Empirical Example: Brown Creeper 224 

We detected weak DD on survival (𝛽 = −0.27, Fig. 1a), and on fecundity (𝜁 = −0.13, 225 

Fig. 1b) for Brown Creeper. Process variance estimations are low for survival, and high for 226 

fecundity, (𝜎𝑠 = 0.23,   𝜎𝑓 = 0.97; Table S1). Survival at mean population size for adults and 227 

juveniles were estimated at 0.42 and 0.31, respectively. Our estimate of fecundity at mean 228 

population size was 1.94 (1.21 – 3.01) juveniles per adult (Table S1). In addition, Bayesian p-229 

values for both the survival and fecundity components indicated good model fits (0.24 and 0.50, 230 

respectively). 231 

Projections 232 
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Density-independent projections parameterized with CJS-pop fit to Brown Creeper data 233 

lead to frequent population extinctions and explosions, which is apparent in the population 234 

trajectory (Fig. 1c) and bi-modal distribution of minimum abundances (Fig. 2). Density 235 

dependence in population models lead to more regularized projections in which population 236 

extinctions and explosions are less frequent (Fig. 1c and Fig. 2). The distribution of minimum 237 

abundances from density-dependent projections of Brown Creeper show a generally similar 238 

pattern to projections parameterized with CJS-pop fit to simulated data irrespective of the DD 239 

strength of capture history simulations (Fig. 2). 240 

Projections made with population models that are parameterized with density-dependent 241 

CJS-pop fit to simulated data are close to projections made with true simulation parameters, 242 

especially when true simulation parameters included moderate or strong DD. This 243 

correspondence demonstrates, in a biologically relevant context, the ability of CJS-pop to fit 244 

realistic models to data (Figs 2c-d). In contrast, projections with density-independent CJS-pop 245 

(Figs 2b-d), and with CJS-pop fit to simulated capture history data with weak DD (Fig. 2b) were 246 

not close to projections with the true simulation models. Overestimation of DD strength in CJS-247 

pop fit to weak DD data also results in overestimation of projected minimum abundances. 248 

Density-independent projections tends to result in frequent population extinctions or explosions 249 

(Figs 2b-d). 250 

Discussion 251 

CJS-pop is ready to be applied to bird species captured in the MAPS program. It can be 252 

extended to include weather, climate and other exogenous factors in addition to population 253 

density. The true value of CJS-pop lies in its ability to use limited data to parameterize 254 

population models that in turn can be used to predict changes in population sizes and 255 
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distributions. We believe this is especially important for developing countries that do not yet 256 

have extensive bird banding and survey programs like MAPS and BBS. We don’t, however, 257 

think that whole CJS-pop framework needs to be used for the work we presented here to be 258 

useful. Rather, we argue that the independent ideas explained in estimating fecundity, juvenile 259 

survival and density dependence can be integrated to other CJS frameworks, potentially creating 260 

models capable of population projections. Below we describe 4 of the main advances CJS-pop 261 

provides to mark-recapture literature and discuss the trade-offs made when building the 262 

framework. 263 

1 – Fecundity Estimation 264 

We estimated fecundity in the simulation data with no apparent bias (Figure S4). The 265 

fecundity estimate for Brown Creeper (𝐹 = 1.94 (1.21 − 3.01); Table S1) is also biologically 266 

realistic; Brown Creepers tend to have a single brood with a clutch size of 5 to 6 eggs in a 267 

breeding season. The main contribution here is that every vital rate (including fecundity), capture 268 

probabilities, and nuisance parameters were estimated simultaneously in a single model run. This 269 

allows for propagation of uncertainty among these parameters but also makes it possible for 270 

parameters that are estimated with less data (juvenile survival) to be informed by parameters 271 

estimated with more data (fecundity and adult survival). 272 

2 – Juvenile Survival Estimation  273 

We detected no biases in juvenile survival estimates from CJS-pop in the simulation data 274 

(Figure S2). Juvenile survival estimates of Brown Creeper were similar between a density-275 

dependent CJS-pop, and a CJS model that did not include fecundity or density dependence 276 

estimation but accounted for “transient” juveniles that leave their population in their first year 277 

(0.32 and 0.30, respectively). However, using information from fecundity and adult survival in 278 
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setting the prior for juvenile survival reduced the estimation uncertainty considerably in CJS-279 

pop. The 95% credible interval for juvenile survival in the CJS model is 0.08 −  0.71, while in 280 

CJS-pop this interval is 0.19 − 0.48.  281 

3 – Density Dependence Strength Estimation 282 

Density dependence strength in mark-recapture studies is usually estimated using 283 

abundance directly as a covariate (for example, Nater et al. 2018). This approach can become 284 

problematic with more than one population, especially when each population has different 285 

habitat characteristics and therefore can support different number of individuals. If the goal is to 286 

estimate a species-specific density dependence strength that is applicable across all populations 287 

of the species, abundance of each population in each time step should be standardized with a 288 

proxy for how many individuals each population can support (e.g. carrying capacity). Here, we 289 

made this standardization using long-term abundance average of each population (equation 3). 290 

The density dependence strength we estimate is minimally biased for capture histories generated 291 

by moderate and strong density dependence (Fig. S1). There is a more apparent bias when 292 

capture histories are generated with weak density dependence (Fig. S1). However, the weak 293 

density dependence strength we used does not constitute a biologically realistic scenario if we 294 

consider the intrinsic growth rate associated with the density dependence strength from an 295 

allometric standpoint (See Appendix S2 for discussion on this). Most importantly, density 296 

dependence strength estimates of survival and fecundity are ready to be used for population 297 

projections. 298 

4 – Population Projections 299 

Estimation of fecundity, juvenile survival, and density dependence strength makes it 300 

possible to make population projections that are useful for conservation purposes. All of these 301 
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three vital rates and demographic parameters are required, in addition to what is estimated in 302 

standard CJS models, to build a stage-structured population model. However, instead of 303 

fecundity, a parameter called recruitment rate is frequently estimated from frameworks such as 304 

IPM (for example, Ahrestani et al. 2017). This parameter cannot be used in stage-structured 305 

population models because it combines information from both emigration rate and the number of 306 

new-born individuals. Additionally, including only fecundity estimation in a CJS framework is 307 

also not enough, because without density dependence, these population projections would not be 308 

biologically meaningful. Population projections tend to explode in size or go extinct under 309 

exponential growth when there is environmental stochasticity that is not regularized by density 310 

dependence (Fig 1). The usefulness of this regularizing effect is also visible in the distribution of 311 

minimum abundances from population projections. A density-independent model cannot capture 312 

the minimum abundance distribution generated with a stochastic and density-dependent 313 

simulation, even when density dependence is weak. (Fig 2). 314 

Trade-offs 315 

Using robust design mark-recapture data as the sole data set for the CJS-pop framework 316 

requires several trade-offs. First, we estimate expected juvenile abundance twice (𝑁1in equation 317 

2 and 𝑁1
′ in equation 5a). If we only use 𝑁1

′, JAGS will give an error regarding the circular 318 

structure of the model because 𝑁1
′ would also have been used in the denominator of equation 3. 319 

We see this as a minor issue because 𝑁1
′ is used in the estimation of fecundity and we showed 320 

that fecundity can be estimated without bias in this structure (Figure S4).  321 

Second, we estimate population sizes as expected values rather than random variables in 322 

CJS-pop framework. Modelling population sizes as random variables either requires informative 323 

priors on population sizes themselves or another data set, such as population counts, to make the 324 
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model more stable and allow convergence (this is essentially what IPMs do). Here, however, we 325 

wanted to show that the vital rates necessary for population models can be estimated using only 326 

mark-recapture data. Using expected abundance, while not ideal, ensures that this framework 327 

requires only a single data source.  328 

Third, we use a Poisson distribution instead of a binomial in equation 5b. Number of 329 

captured juveniles cannot be higher than the actual number of juveniles; this relationship is 330 

explicitly modelled as such with a binomial distribution. However, because we are using 331 

expected abundances in CJS-pop, there could be instances when there are more captured 332 

individuals than the expected abundance. Poisson distribution, by allowing such instances to 333 

occur, increases model stability and eases convergence. Because Bayesian p-value for brown 334 

creeper data is 0.5, we can say that this structure can represent the data well (Bayesian p-values 335 

close to 0.5 indicate better fit; Kéry and Royle 2016). Last but not least, the framework we 336 

present here is complex and in JAGS it takes for about 20 hours for Brown Creeper model to 337 

converge. 338 
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Figure Legends 371 

Figure 1: a) Relationship between adult survival and relative population density (𝐷)  of 372 

Brown Creeper as modeled by CJS-pop. b) Relationship between fecundity and relative 373 

population density (𝐷) of Brown Creeper as modeled by CJS-pop. c) Solid line indicates the 374 

median trajectory of population size, across 12000 trajectories, of Brown Creeper projected by a 375 

stage-structured population model that was parameterized with a Density-Dependent (DD) or 376 

Density-Independent (DI) CJS pop. Shaded areas include 50% of  the population trajectories. 377 

Carrying capacity was set to 1000 in the DD projections. Note the difference in scale in 378 

population size between DD and DI projections. 379 

Figure 2: Distributions of minimum abundances resulting from population projections 380 

made with stage-structured population models that were parameterized with CJS-pop fit to 381 

Brown Creeper data (a), and with CJS-pop fit to simulation sets that was generated with different 382 

density-dependence strengths (b,c,d). Light blue represents parameterizations of population 383 

models with density-independent (DI) CJS-pop, orange represents density-dependent (DD) CJS-384 

pop, and green (TRUE) represents population models that was parameterized with original 385 

simulation parameters that was used to generate capture history data. High probability density at 386 

0 and 1000 indicates frequent population extinctions and explosions, respectively. 387 
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