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Abstract: 

Motivation 

Phosphorylation by serine-threonine and tyrosine kinases is critical for determining 

protein function. Array-based approaches for measuring multiple kinases allow for the 

testing of differential phosphorylation between conditions for distinct sub-kinomes. While 

bioinformatics tools exist for processing and analyzing such kinome array data, current 

open-source tools lack the automated approach of upstream kinase prediction and 

network modeling. The presented tool, alongside other tools and methods designed for 

gene expression and protein-protein interaction network analyses, help the user better 

understand the complex regulation of gene and protein activities that forms biological 

systems and cellular signaling networks. 

 

Results 

We present the Kinome Random Sampling Analyzer (KRSA), a web-application for 

kinome array analysis. While the underlying algorithm has been experimentally 

validated in previous publications, we tested the full KRSA application on dorsolateral 

prefrontal cortex (DLPFC) in male (n=3) and female (n=3) subjects to identify differential 

phosphorylation and upstream kinase activity. Kinase activity differences between 

males and females were compared to a previously published kinome dataset (11 female 

and 7 male subjects) which showed similar patterns to the global phosphorylation 

signal. Additionally, kinase hits were compared to gene expression databases for in 

silico validation at the transcript level and showed differential gene expression of 

kinases. 

 

Availability and implementation: 

KRSA as a web-based application can be found at http://bpg-

n.utoledo.edu:3838/CDRL/KRSA/. The code and data are available at 

https://github.com/kalganem/KRSA. 

 

Supplementary information 

Supplementary data are available online.  
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1. Introduction: 

 Protein phosphorylation marks one of the most important biological mechanisms 

that underlies various normal cellular functions, acting in complex protein-substrate 

networks. Phosphorylation cascades are also perturbed in many disease states 

(Hanahan and Weinberg, 2011; Simpson et al., 2019). As a result, kinases are one of 

the most studied proteins given their central role in normal and abnormal cell biological 

mechanisms (Ardito et al., 2017; Lahiry et al., 2010; Pawson and Scott, 2005; Ubersax 

and Ferrell, 2007). Kinomics, or the study of kinases and kinase signaling, has 

expanded from individual activity assays, with one peptide to study one kinase, to array 

or chip-based technology of up to 1000 reporter peptides, called kinase arrays or 

kinome arrays (Baharani et al., 2017; Diks et al., 2004; Houseman and Mrksich, 2002). 

The selected reporter peptides are designed to cover a broad range of signaling 

pathways, with large numbers allowing for a better understanding of kinase interactions 

and global changes that occur between two states (i.e., disease, cell type). However, 

analyzing the data from these peptide arrays is a complex process given that many 

kinases can phosphorylate the same peptide and an individual kinase can 

phosphorylate many peptides, making accurate interpretation of the data a challenging 

task. As the use of these kinome arrays becomes more widespread, there is an 

increasing need for tools that efficiently and accurately analyze these datasets. In 

particular, analytic tools are needed for nonexpert users of kinome array platforms.  

Bioinformatics tools that are specifically designed to analyze kinome array 

datasets are beginning to emerge. One of these analytic tools is the Kinomics Toolkit, 

which gives users a platform for exploration of the peptide phosphorylation data, but 

does not provide upstream kinase predictions (Dussaq et al., 2018). This application 

pre-processes data, serves as a public data repository, and provides developers the 

opportunity to engage with the data in an SDK (software development kit). However, 

freely accessible tools for analyzing these kinome array data are relatively rare, with 

most research in this field relying on a mixture of manual statistical analysis, proprietary 

software such as BioNavigator by PamGene, or collaboration with bioinformatics 

experts. Another tool that was designed specifically to process kinase array data is the 

PamgeneAnalyzeR package, though this package is primarily focused on the pre-
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processing steps of kinase array datasets and not the downstream analysis (Bekkar et 

al., 2020).  

Prediction of upstream kinase activity and network-based analyses provides a 

biologically-meaningful springboard for further research that is currently lacking in a 

user-friendly application. There are existing tools that aim to predict upstream kinases 

based on an input of enriched genes or phosphopeptides, like KEA (Lachmann and 

Ma'ayan, 2009) and PTM-SEA (Krug et al., 2019). However, none of these tools are 

specifically designed to take raw data from kinome array datasets and run a complete 

analysis pipeline starting from pre-processing to visualizing kinome networks.  

A common and validated approach to predicting upstream kinase activity is to 

analyze the differences between 1) kinases predicted to be upstream of the peptides 

that are differently phosphorylated between two conditions and 2) kinases predicted to 

be upstream of the remaining peptides on the chip (Anderson et al., 2014; Isayeva et 

al., 2015). In a similar statistical approach, we have previously described a method 

which uses random sampling to identify highly active kinases from kinome array data 

(Bentea et al., 2019; Dorsett et al., 2017; McGuire et al., 2017). Briefly, we look at 

overrepresented/underrepresented kinases relative to an expected distribution using 

random permutation sampling of peptides. This type of analysis is valuable because it 

separates kinases that are truly differentially active from those who are highly active 

globally and don’t represent a change between states. 

Here we present the Kinome Random Sampling Analyzer, or KRSA, which 

automates many of the steps described above, including peptide filtering, random 

sampling, heatmap generation, and kinase network generation. This new software 

makes analyzing kinome array datasets accessible and eliminates much of the human 

workload that the previous method required. More importantly, KRSA represents the 

results in a bigger biological context by visualizing altered kinome signaling networks 

instead of individual kinases. By designing this application with the web-based Shiny 

platform in R, we have made KRSA with a graphical user interface that is interactive 

and customizable, and open to timely updates as well as future expansion. KRSA can 

be used by biologists and data scientists alike, with no knowledge of statistical software 

required. This all-in-one tool is designed to move raw data from the kinome array 
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through the processing pipeline to interaction network generation, creating 

downloadable figures and tables along the way to facilitate simple integration into 

publications and presentations.  

This method has been applied to multiple datasets and predictions have been 

experimentally validated in our laboratory through individual kinase activity assays and 

inhibitor studies (Bentea et al., 2019; Bentea et al., 2020; Dorsett et al., 2017; Flaherty 

et al., 2019; McGuire et al., 2017; Schrode et al., 2019). An early version of KRSA, 

containing only the random sampling algorithm, identified altered phosphorylation of 

peptides and subsequently perturbed kinase activity in the anterior cingulate cortex 

(ACC) between schizophrenia and control subjects (McGuire et al., 2017). This tool was 

also used to analyze date from frontal cortex and hippocampus of rats subjected to 

lateral fluid percussion as a model of traumatic brain injury (TBI) and their sham surgery 

counterparts to identify differences in kinase activity in these brain regions (Dorsett et 

al., 2017). We used the platform to explore the kinase activity in cortical neurons 

differentiated from induced pluripotent stem cells (iPSCs) from a schizophrenia patient 

with a 4-bp mutation in the DISC1 gene (Bentea et al., 2019). KRSA also was used to 

analyze kinome signatures of genetic perturbation of NRXN1 and FURIN1 in human 

induced pluripotent stem cell (hiPSC)-derived neurons (Flaherty et al., 2019; Schrode et 

al., 2019). More recently, KRSA has been utilized to analyze the kinome signature of 

mice with a genetic deletion of a specific subunit of cystine/glutamate antiporter system 

(xCT −/− mice) (Bentea et al., 2020). All of these published studies required significant 

use of multiple tools, some closed-access, and statistical expertise for quality control, 

network growth, pathway enrichment, and manually created graphs, heatmaps, and 

networks for visualization purposes. 

Interest within the neuroscience community in defining sex differences in the 

brain has increased over the past several decades. Differences in kinase activity and 

signaling between males and females have been implicated in sex-related variations in 

neuronal cell survival, outcomes after brain injury, and fear extinction, among other 

research areas (Armstead et al., 2017; Matsuda et al., 2015; Zhang et al., 2003). While 

these studies increased our confidence that we would be able to identify sex-based 

differences in kinase activity through the KRSA algorithm, we expected that these 
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differences in kinase activity would be small compared to previous experiments we 

performed in the areas of TBI and schizophrenia. We also paired this experiment with a 

previously published kinome array study to compare against our findings (Rosenberger 

et al., 2016).  

Indeed, we chose this research area to illustrate the use of KRSA and the 

importance of increasingly sophisticated bioinformatics tools in cases where the effect 

size is small and there are many confounding factors that limit interpretability. KRSA, in 

conjunction with other tools and methods designed for different steps in the gene 

expression process, can better elucidate the complex regulation of gene and protein 

activity that forms the basis of diversity. 
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2. Systems and Methods: 

 

2.1 Kinomics 

2.1.1 Sample preparation 

For comparing kinase activity levels between female and male dorsolateral prefrontal 

cortex (DLPFC), we analyzed postmortem tissue obtained from 3 male and 3 female 

control subjects (for demographics, see Supplementary Table S1). Samples were lysed 

on ice for 30 minutes using M-PER lysis buffer (ThermoFisher) containing 1:100 Halt 

Protease and Phosphatase Inhibitor Cocktail (ThermoFisher), and centrifuged (14000 

rpm, 10 min, 4oC). The supernatants were collected and assayed for total protein 

concentration (Pierce BCA Protein Assay Kit, ThermoFisher). Multiple aliquots of each 

sample were stored at -80oC. As freeze-thaw cycles can result in loss of kinase activity, 

frozen aliquots were used only once for kinase activity determination (Hilhorst et al., 

2013). 

 

2.1.2 Serine-threonine kinase activity data generation 

Profiling of serine-threonine kinase (STK) activity was performed as described in Bentea 

et al. (Bentea et al., 2019). Briefly, the activity assay was performed using the 

PamStation12 microarray (PamGene International) and STK PamChips containing 144 

consensus phosphopeptide sequences (142 unique sequences, 2 internal controls) per 

array. Each array was blocked with 2% bovine serum albumin (BSA) before 2 µg of 

protein, 157 µM adenosine triphosphate (ATP), and a primary antibody mixture as a part 

of two-step reaction process. For the second step, FITC-labeled anti-phospho serine-

threonine antibodies (PamGene) were added to each array. To facilitate interaction 

between kinases in the sample and specific peptides immobilized on the chip, the 

samples containing the active kinases and assay mix were pumped through the array. 

The phosphorylation levels, represented in this assay by the level of fluorescence in 

each array, were measured using Evolve kinetic image capture software (PamGene). 

Every 6 seconds for 1 hour the software captures FITC-labeled anti-phospho antibodies 

binding to each phosphorylated peptide. Peptide label intensity was captured at 10, 20, 

50, 100, 200 ms during the post-wash phase of the procedure.  
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2.1.3 Data analysis and filtering  

Linear regression slope of the signal intensity as function of exposure time was used to 

represent the peptide phosphorylation intensity for downstream comparative analyses, 

averaged across the 3 biological replicates. This is done to increase the dynamic range 

of the measurements. The signal ratio between female and male DLPFC was used to 

calculate fold change (FC) values. Peptides with a fold change of at least 35% (i.e. FC > 

1.35 or FC < 0.65) were considered differentially phosphorylated for the purposes of 

using KRSA. This threshold was chosen based on previous reports that suggest small 

changes in kinase activity are sufficient to trigger biologically relevant changes 

(Appuhamy et al., 2014; Dorsett et al., 2017; McGuire et al., 2017). Peptides that had 

very low signal or an R2 of less than 0.90 during the corresponding linear regression 

were considered undetectable or non-linear in the post-wash phase and were excluded 

from subsequent analyses.  

 

2.1.4 Heatmap and global phosphorylation plots 

For generating the peptide phosphorylation heatmap and comparing the global 

phosphorylation levels, the linear regression slope of each peptide was multiplied by 

100 and log2 transformed (Dorsett et al., 2017; McGuire et al., 2017). This interactive 

heatmap within the KRSA application is sorted in decreasing order of fold change 

between the given conditions. 

 

2.1.5 Independent kinome dataset 

We analyzed a previously published kinome array dataset that studies the changes in 

protein kinase activity during Alzheimer’s Disease (AD) pathogenesis (Rosenberger et 

al., 2016). This postmortem study was performed using hippocampal (HPC) brain 

section samples. From this dataset, we reanalyzed all of data for the control samples 

(Braak Stages 0-1) for both female and male subjects. Given the Braak Stage 0 

samples only contains male subjects and the apparent effect of Braak Staging on the 

kinome signatures, we limited ourselves to samples with Braak Stage 1, and that 

resulted into having 18 subjects (11 female and 7 male) to compare our results. We pre-
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processed this dataset identically to our established pre-processing methods, both for 

detectability and linearity of the slope in the post-wash phase. We generated a heatmap 

with unsupervised clustering and global phosphorylation plots. Given we have a higher 

number of samples in this dataset, we performed a principal component analysis (PCA) 

to cluster the dataset and also determine the factors that most explain the variance in 

these kinome signatures. 

 

2.1.6 Mapping upstream kinases 

Protein kinases predicted to act on phosphorylation sites within the array peptide 

sequences were identified using GPS 3.0 and Kinexus Phosphonet (Kinexus 

Bioinformatics) (Xue et al., 2010). These programs provide predictions for serine-

threonine kinases targeting peptide sequences ordered by likelihood of binding. The 

union of the highest ranked 5 kinases in Kinexus and kinases with scores more than two 

times the prediction threshold in GPS 3.0 were considered predicted kinases for each 

peptide and used in KRSA analysis (Bentea et al., 2019). This list was combined with 

kinases shown in the literature to act on the phosphorylation sites of the peptides via 

PhosphoELM (http://phospho.elm.eu.org) and PhosphoSite Plus 

(https://www.phosphosite.org). While the reporter peptides list remains largely stable 

across different versions of kinase array chips, some peptides are removed and 

replaced by the manufacturer to improve kinase predictions. Updates to the kinase-

peptide list should be made to reflect the assortment of peptides on the new chip prior 

to running KRSA in accordance with the above guidelines. The user also has the option 

to upload their own protein-substrate mapping files based on phosphosite found in the 

chip to perform the upstream kinase analysis.   

 

2.1.7 Waterfall plots and individual peptide phosphorylation curves 

In addition to the graphs and heatmaps automatically generated by the KRSA software, 

we used waterfall plots to illustrate the differences in phosphorylation across all 

peptides of the array in which the reporter peptides are displayed along the y-axis 

based on fold change values. Post-wash phosphorylation curves for individual reporter 
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peptides were additionally plotted using the peptide spot intensities captured at 10, 20, 

50, 100, 200 ms exposure times and averaged across the 3 biological replicates. 

 

2.1.8 Kinase network pathway analysis 

We used pathway enrichment analysis with Enrichr 

(https://amp.pharm.mssm.edu/Enrichr/) to gain insight into biological pathways of the 

most prominent hits in using the kinase-kinase network produced by KRSA 

(Supplementary Table S2) (Chen et al., 2013). Results are based on the KEGG 2016 

cell signaling pathway database (http://www.kegg.jp/) and ordered by the number of 

genes enriched in the pathway and significance of association. 

 

2.2. Transcriptional validation 

In order to identify whether the changes in kinase activity are mirrored by transcriptional 

changes in their corresponding genes, we looked for the kinase network genes 

(Supplementary Table S3) in two previously published region-level microarray 

databases of gene expression changes in female vs. male frontal cortex (Trabzuni et 

al., 2013; Xu et al., 2014). In addition, we probed the expression of the kinase network 

genes in a recently generated microarray dataset of laser capture micro-dissected 

(LCM) pyramidal neurons from deep and superficial DLPFC layers of control male and 

female subjects (Wu et al., 2020).  
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3. Algorithm 

 

To determine which upstream kinases are most likely to be important in driving the 

changes in phosphorylation between female and male DLPFC, we performed random 

sampling analysis via KRSA. The major steps when running the application are as 

follows: 

 

3.1 Inputs and Options 

1. Data Selection: The user-supplied kinase-peptide association file and the raw 

kinome array data file are selected as input. The kinase-peptide associations 

should be based on the predicted interactions in GPS 3.0 and Kinexus 

Phosphonet, as described in ‘2.1.5 Mapping upstream kinases’. Group 

classifications for the input samples are determined through drop-down menus 

which allow for clustering of samples within and across chips via manually 

concatenated input files. Expected inputs should be formatted as shown in the 

example files on the project GitHub (https://github.com/kalganem/KRSA) and 

conform to standards imposed by leading laboratories generating PamChip 

kinase data. Descriptions of pre-processing requirements, software use, and 

downstream validation techniques can also be found at the associated project 

GitHub.  

2. Peptide Filtering Options: Stringency options, including minimum exposure 

intensity > 2 at the last exposure time in the cycle (200 ms) and linearity of the 

post-wash curve as determined by linear regression (R2 > 0.9), are provided to 

reduce the total number of peptides evaluated to those meeting the quality 

control standards desired by the user, with these peptides denoted as s. Fold 

change thresholds are selected to identify differentially phosphorylated peptides 

(h, or “hits”) between selected groups. KRSA has a default cutoff of ± 35% as a 

fold change threshold, though modification should be made in cases where the 

bar for biological significance is substantially higher or lower. Line plots 

displaying the phosphorylation intensity in the post-wash phase for each sample 

are generated to allow for visual inspection of the selected peptides before 
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proceeding to the next step to ensure linearity and sufficient magnitude of 

phosphorylation for each differentially phosphorylated peptide. 

3.2 Empirical measures of statistical significance 

3. Random Sampling: KRSA performs random sampling of the available peptides 

on the kinase array to get distributions for associated kinase-peptide interactions. 

The number of iterations of sampling (i), between 0-5000, is selected by the user, 

where higher i values increases the stability of the kinase predictions while also 

increasing the run time of the software. For each iteration i, the same number of 

peptides as h are randomly selected without replacement from s available 

peptides (these randomly selected peptides are denoted as h’).  

4. Kinase Mapping: Predicted kinases are mapped to h’ using the default kinase-

peptide associations file (or supplied by the user) and the number of 

appearances for each kinase is calculated. When the sampling is complete, a 

distribution for each kinase is determined from the mean number of times each 

kinase was predicted based on the randomly sampled peptides and the 

corresponding confidence interval. The number of times a kinase is mapped to h 

(the differentially phosphorylated peptides) is also determined, and comparison 

of this kinase count to the mean kinase count from sampling allows us to 

determine differential kinase activity through a Z-score > 2 (alpha-level = 0.025).  

3.3 Outputs 

5. Tabular Results: Results of the above calculations are provided in tabular form, 

sorted in decreasing order by Z-score. Kinases appearing at the top of this table 

are those that are most likely to have significant alterations in activity between 

the control and the experimental groups. This table can be directly saved within 

the KRSA software for inclusion in publications. 

6. Visualization of Distributions: Histograms displaying the distribution of mappings 

for each kinase after random sampling are provided, with the h mapping (vertical 

line), h’ averages (bars), and h’ confidence interval (gray translucent region) 

overlaid. Histograms of kinases with h averages outside of the confidence 

interval in either direction are considered significantly altered and match the 

kinases shown in the tabular output. 
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7. Heatmap of Differential Phosphorylation: A user-customizable heatmap, 

generated using the R package ‘gplots2’, visualizing the fold-change differences 

for each peptide is provided and sorted in descending order. This heatmap can 

be saved as a PDF or image file directly within the KRSA software. 

8. Kinase Network: A network diagram connecting h kinases to predicted interacting 

proteins or kinases is generated using the Search Tool for Retrieval of Interacting 

Genes/Proteins (STRING) database data and graphed with the ‘igraph’ package 

in R (Szklarczyk et al., 2017). The generated network represents the direct 

interactions between protein kinases identified from KRSA, as well as additional 

kinases indirectly connected to the original seed kinases. STRING was used for 

growing and connecting the kinase network by selectively adding interacting 

kinases with the highest confidence interaction score. Because of the highly 

interactive and repetitive structure of kinase activity, we weighted the nodes of 

the network based on the number of interactions found for each kinase in the 

network. Confidence thresholds and connection type options are provided to 

allow for more control over the resultant graph.   
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4. Implementation: 

 

4.1 KRSA Shiny Application 

We developed the Kinome Random Sampling Analyzer (KRSA) as an R Shiny 

application to facilitate processing and interpretation of PamChip kinase array data. 

KRSA performs quality control filtering of peptides, random sampling to identify highly 

enriched kinases, and network expansion to grow the list of potentially affected kinases 

for pathway analysis (Fig. 1). The KRSA app includes sortable tables, interactive 

heatmaps, networks and graphs, as well as simple download options throughout for 

saving both processed data files and publication-ready images. The Kinome Random 

Sampling Analyzer is freely available at http://bpg-n.utoledo.edu:3838/CDRL/KRSA/, 

and all source code, documentation, and sample files are located at 

https://github.com/kalganem/KRSA. 

 

4.2 Global serine-threonine protein kinase activity in female vs. male DLPFC 

To elucidate differences in kinase activity between the brains of both males and 

females, we used KRSA to predict differential upstream kinase activity in conjunction 

with Enrichr for pathway analysis. KRSA filtered out 58 of the 144 peptides on the 

PamChip kinome array that were considered undetectable or were not linearly 

increasing with exposure time (based on R2 > 0.9). The signal at the remaining 86 

reported peptides is depicted in a heatmap with phosphorylation intensity for each 

reporter peptide matched between the two sample groups Fig. 2A. The global 

phosphorylation levels (calculated as the average phosphorylation intensity across all 

reporter peptides) were not significantly different in female vs. male DLPFC (Fig. 2A 

inset; p = 0.8234 using a Mann-Whitney test).  

 

4.3 Global serine-threonine protein kinase activity of the independent dataset 

To compare our observations against an independent kinome array study, we used the 

data of the control samples from the AD cohort (Rosenberger et al., 2016). In this 

dataset, all subjects were run using 5 to 6 technical replicates. For the analysis, all 

technical replicates were averaged (for demographics, see Supplementary Table S2). 
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Similar to our own dataset, we generated both a heatmap representing global 

phosphorylation levels as well as averaged global signal for females and males. We 

observed a significant difference between global female vs. male HPC kinome 

signatures. (Fig. 2B inset; p < 0.001, using a Mann-Whitney test). 

 

4.4 Altered kinase activity in female vs. male DLPFC 

To examine only peptides with robust changes in phosphorylation, we restricted our 

selection of peptides to those with a fold change difference of ±35% between the sexes, 

which resulted in 22 peptides changed in phosphorylation between female vs. male 

DLPFC (Fig. 3A, red bars). Representative phosphorylation intensity graphs 

automatically generated by KRSA are given in Fig. 3B, with each line representing a 

biological sample and the colors indicative of the groups (male or female). Using the 86 

peptides that remained following filtering, we performed random sampling analysis via 

KRSA to identify the upstream kinases predicted as differentially active and likely 

drivers of the differences observed in male vs. female brain (Dorsett et al., 2017; 

McGuire et al., 2017). This led to the identification of 7 different serine-threonine kinase 

families differentially represented in DLPFC (Table 1). Histograms are generated by 

KRSA for every potentially implicated kinase; Fig. 4 shows examples reflecting the 

results of the random sampling for kinases overrepresented in female vs. male DLPFC 

(CDK, PDK1, and P38, Fig. 4A-C; identified more than by random chance), as well as 

for kinases which were not differentially represented between the sexes (MAPKAP, 

MTOR, and GSK, Fig. 4D-F; identified as expected by random chance).  

 

4.5 Altered kinase activity in female vs. male in the independent dataset 

We used a similar method to determine the upstream kinase hits for the HPC cohort, 

and that analysis led to the identification of 5 different serine-threonine kinase families 

differentially represented in HPC between female and male control subjects (|Z score| 

>= 2). The list of kinase hits comprised of PKN, MLCK, SGK, TAO, and STE7 (Table 2).  

 

4.6 Kinase network model of female vs. male DLPFC 
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The complexity of cellular signaling ensures that kinases do not act in isolation, but 

instead as part of an interacting network with other kinases and proteins that regulate 

biological processes (Yao et al., 2015).  The nature of this system means that final 

KRSA predictions should include potentially interacting kinase families for downstream 

pathway analysis and hypothesis generation. To accomplish this goal, KRSA connects 

the initial set of 7 predicted kinases (Table 1) with kinase families that are known to 

interact with using the STRING database. Figure 5 depicts the extended kinase network 

including associated or indirect kinase interactions. This analysis revealed members of 

the CDK, PDK1, BARK2, P38, BUD32, WNK, and MLK kinase families as particularly 

large nodes of regulation of the female vs. male kinase network model. Enrichr was 

performed using the 103 genes that form the extended kinase network as input (any 

kinase with a Z score above 2) (Supplementary Table S3), which resulted in “MAPK 

signaling pathway”, “Neurotrophin signaling pathway”, “T cell receptor signaling 

pathway”, “FoxO signaling pathway”, and “TNF signaling pathway” as top cellular 

pathways associated with the female vs. male differential kinase network (Table 3). 

 

4.7 Changes in kinase gene expression in female vs. male DLPFC 

To identify whether the changes in kinase activity are mirrored by transcriptional 

changes in the corresponding genes, we queried the kinase network genes 

(Supplementary Table S3) in 2 previously published gene expression microarray 

databases of gene expression changes in female vs. male frontal cortex (region-level), 

as well as in a recently generated microarray dataset of LCM pyramidal neurons from 

deep or superficial layers of female vs. male DLPFC (unpublished data) (Trabzuni et al., 

2013; Xu et al., 2014). This revealed a complex transcriptional signature with a large 

subset of genes showing changes in expression in female vs. male DLPFC pyramidal 

neurons, some of which extended at region-level (Supplementary Tables S4 and S5). 

These findings support the kinase dysregulation profile we identified using KRSA and 

suggest that some of the changes in kinase activity may be attributed to changes in 

kinase gene expression, though other factors play a large role like a global kinase 

activity.   
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5. Discussion 

 

Alterations in kinase activity have been implicated in many diseases, both in and 

out of the nervous system, including cancers and neurological disorders (Dermit et al., 

2017; McGuire et al., 2014; Zheng et al., 2012). The core KRSA algorithm, prior to 

transformation into a publicly available web-application, has been used to answer many 

research questions and generate new hypothesis by our research team and 

collaborators (Bentea et al., 2019; Dorsett et al., 2017; Flaherty et al., 2019; McGuire et 

al., 2017; Schrode et al., 2019). Recently, we identified altered AKT and JNK activity in 

schizophrenia by performing the core KRSA algorithm on postmortem anterior cingulate 

cortex (McGuire et al., 2017). Additional kinome arrays with targeted inhibitors, protein 

and phosphoprotein measurement, and specific kinase assays confirmed our 

predictions and supported the previously unreported finding of JNK activity alterations in 

schizophrenia (Morris and Pratt, 2014). The KRSA methodology was also applied to a 

rat model of traumatic brain injury which showed global glutamate transporter 

dysregulation in the brain mediated by region-specific differences in kinase activity 

(Dorsett et al., 2017). These predictions were validated through protein and 

phosphoprotein measurement, targeted inhibitors, and glutamate uptake assays. With 

the method experimentally validated, the goal was to design KRSA as an accessible 

web-based application that automates the entire process from raw data filtering to 

kinase network generation.  

Unlike many diseases and conditions, where distinct high-magnitude changes in 

gene expression and subsequent downstream function occur because of the disease 

processes, differences between healthy male and female brains are theoretically subtler 

and harder to characterize. As an example of KRSA’s capabilities, we probed for kinase 

activity differences in the male and female brain using postmortem dorsolateral 

prefrontal cortex. KRSA predicted seven specific kinases to be different between males 

and females, which was grown to nine kinase families using the built-in STRING 

database. The kinase families and their members predicted by KRSA are key 

components of many signaling pathways, including MAPK, neurotrophin, T-cell 
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receptor, FoxO, and TNF signaling, indicating that a large network of subtle differences 

exist between males and females.  

We also compared our findings to a previously published kinome array study. 

The samples from that study showed a similar pattern of changes between female and 

male kinome signatures as an overall higher phosphorylation levels in the female 

samples. For the HPC cohort, the unsupervised clustering also showed a clear 

separation between male and female signatures. Given the higher number of samples 

in the independent dataset, we were able to statistically show a significant difference of 

kinome signatures between the two sexes (p< 0.001). Using Z-score threshold of 1.5, 

we saw an overlap of the STE7 family (MAPKK, MAP2K, MEK) among the two cohorts. 

Moreover, using Z score threshold of 1.25, we observe a bigger overlap with 6 kinase 

families (STE7, STE11, AMPK, HAL, PKN, PAKB) (Supplementary Figures S2). 

These results highlight the need of separating male and female sample groups 

given the apparent difference of their kinome signatures. Experiments that combine 

male and female samples with other independent variables may be difficult to interpret, 

as some of the changes in the kinome may be due to sex differences and not, for 

example, disease state. This supplements the findings at the gene transcript level 

where many studies showed sex-specific differences in gene expression and gene 

regulatory networks (Lopes-Ramos et al., 2020; Trabzuni et al., 2013).   

There are some limitations that may restrict the use of this application while at 

the same time leaving room for continued expansion and improvement. The magnitude 

and complexity of kinome array data, along with its relative uniqueness, has given rise 

to multiple methods for calculating intensity for the selection of significantly altered 

peptides, namely using end-level readings alone or in combination with kinetic data from 

the PamChip. While many laboratories have successfully used end-level readings to 

identify biologically relevant targets, this being the method that KRSA currently uses, 

Dussaq et al. notes that the kinetic data is under-utilized and has the potential to 

uncover additional relevant information. This is mainly applicable to the tyrosine kinase 

chip, but not the serine-threonine kinase chip used for this study (Dussaq et al., 2018). 

However, inclusion of these kinetic data could be implemented in KRSA in the next 

development version to expand the quality control and filtering capabilities. Another 
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possible limitation is the relatively rigid requirements for the input data format, which 

may necessitate pre-processing of the raw datasets in order to fit the required format for 

the KRSA. To alleviate some of this concern, we have provided example format files on 

our GitHub page to enable users to convert their files into a KRSA-friendly format. 

As research moves away from examining incremental biological steps in isolation 

and toward functional assays and whole systems-based approaches, experimental 

techniques like kinome chips and arrays will become more relevant and widely used. 

Bioinformatics has breached these areas, with cutting-edge tools being created for use 

primarily by other bioinformaticians and statisticians. In the area of kinomics, there is a 

need for end-to-end processing of kinome array data in a user-friendly, open source, 

and interactive environment. The Kinome Random Sampling Analyzer (KRSA) fills this 

gap in the field and will serve as a stepping stone for the use and interpretation of 

kinome array data for laboratory biologists and computational biologists alike. 
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Figures: 

  

Figure 1. Workflow overview illustrating the primary steps of the KRSA pipeline. The 

“Input Files” section outlines the initial input files for KRSA, including the raw kinome 

array data and the peptide-kinase association file as well as the initial filtering step in 

KRSA. The “Identify Kinases” section describes the random sampling and distribution 

evaluation methods used to identify differentially active kinases. Finally, the “Expand 

and Validate” portion of the figure shows the kinase network generation step of KRSA 

and confirmation experiments that can be used to validate the predictions from KRSA. 
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Figure 2. Global serine-threonine kinase activity in female vs. male DLPFC. (A) Global 

phosphorylation plots, showing changes in phosphorylation levels at each reporter 

peptide, as well as the average phosphorylation values (inset), when comparing female 

to male DLPFC. Data are presented as mean ± SEM and analyzed statistically using a 

Mann-Whitney test. Global phosphorylation heatmap generated by KRSA depicting the 

relative signal intensity at each reporter peptide for the 6 samples on the array (3 female 

and 3 male) (B) Global phosphorylation plots, showing changes in phosphorylation 

levels at each reporter peptide, as well as the average phosphorylation values (inset), 
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when comparing female to male subjects using 18 control samples from the AD cohort 

(11 female and 7 male). Data are presented as mean ± SEM and analyzed statistically 

using a Mann-Whitney test. To highlight differences, the heatmap is normalized per row 

to present relative changes at each individual peptide between the groups. Red 

indicates relatively higher levels of phosphorylation and yellow indicates relatively lower 

levels of phosphorylation. 
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Figure 3. Changes in phosphorylation at reporter peptides in female vs. male DLPFC. 

(A) Waterfall plot showing changes in phosphorylation at reporter peptides for female 

vs. male DLPFC. Peptides with increased (FC > 1.35) or decreased phosphorylation 

(FC < 0.65) are highlighted in red at the top and bottom, respectively. (B) 

Representative examples of post-wash phosphorylation curves of reporter peptides in 

female vs. male DLPFC (marked with * in panel A).  
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Figure 4. Observed frequency of selected kinases relative to expected random 

sampling distribution in female vs. male DLPFC. Examples are shown for kinases 

identified in the reporter peptides more than by random chance alone (CDK, PDK1, and 

P38; A-C), as well as for kinases identified as expected by random chance alone 

(MAPKAP, MTOR, and GSK; D-F). KRSA was performed with 5000 iterations and 

histograms were automatically generated. Gray areas between 2 blue lines indicate ± 2 

standard deviations from the expected distribution mean. The prevalence of the 

selected kinase within the identified differentially phosphorylated peptides is indicated in 

red. 

 

 

 

 

 

 

 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2020. ; https://doi.org/10.1101/2020.08.26.268581doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.26.268581
http://creativecommons.org/licenses/by-nd/4.0/


 

Figure 5.  Kinase network model of female vs. male DLPFC. The kinase network was 

obtained in KRSA by growing the kinome array hits with kinase interacting partners as 

identified using STRING. The kinome array hits are color coded: red circles reflect 

kinase families identified in the kinome array and gray circles represent indirect or 

associated hits obtained after growing the network in STRING. Circle size corresponds 

to the number of interactions, with larger circles having more interactions. Black lines 

represent interactions with a kinome array direct hit, while gray represent interactions 

made between associated STRING-expanded kinase families. 
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Tables: 

 

Table 1. Predicted kinases and distributions for female vs. male DLPFC. 

Kinase 
Observed 

Hits 
Distribution 

Mean 
Standard 
Deviation 

Z-
score 

Confidence 
Interval 

CDK 9 15.59 1.98 3.32 11.62 to 19.56 
PDK1 4 9.81 2.16 2.69 5.49 to 14.13 
P38 3 8.09 2.09 2.44 3.92 to 12.27 
BARK2 2 0.48 0.63 2.40 -0.78 to 1.75 
BUD32 1 0.15 0.36 2.34 -0.57 to 0.88 
WNK 1 0.16 0.36 2.32 -0.57 to 0.88 
MLK 6 2.79 1.42 2.26 -0.06 to 5.63 

 
 
 
Table 2. Predicted kinases and distributions for female vs. male Hippocampus 
(AD cohort, only control subjects) 

Kinase 
Observed 

Hits 
Distribution 

Mean 
Standard 
Deviation 

Z-
score 

Confidence 
Interval 

PKN 2 0.302 0.491 3.462 -0.68 to 1.28 
MLCK 3 0.768 0.802 2.782 -0.84 to 2.37 
SGK 8 3.888 1.694 2.428 0.50 to 7.28 
TAO 1 0.146 0.353 2.423 -0.56 to 0.85 
STE7 3 7.615 2.048 2.254 3.52 to 11.71 
AKT 9 6.034 1.884 1.574 2.27 to 9.80 
PKCD 0 1.937 1.239 1.563 -0.54 to 4.41 
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Table 3. Enrichr cell pathway analysis (KEGG 2016) of the female vs. male kinase 
network. 

Pathway p-
value 

Associated kinases 

MAPK signaling 
pathway 

1.22E-
47 

ZAK; NLK; IKBKB; RPS6KA3; PAK1; MAPK8; 
RPS6KA6; RPS6KA5; AKT2; MKNK1; RPS6KA2; AKT3; 
RPS6KA1; AKT1; PRKACA; MAP2K7; PRKACB; PAK2; 
MAP3K7; MAP2K6; MAP4K1; MAP2K3; MAP2K4; 
MAP2K1; MAP3K1; CHUK; PRKCB; BRAF; MAPK14; 
MAPK12; MAPK13; MAPK11; MAPKAPK3; MAPKAPK2; 
MAPKAPK5; RAF1; MAP3K13; MAP3K11; MAP3K12 

Neurotrophin 
signaling pathway 

1.91E-
39 

GSK3B; PIK3CD; PIK3CB; PIK3CG; IKBKB; RPS6KA3; 
MAPK8; RPS6KA6; RPS6KA5; AKT2; RPS6KA2; AKT3; 
RPS6KA1; ABL1; AKT1; MAP2K7; MAP2K1; MAP3K1; 
PDPK1; PRKCD; BRAF; MAPK14; MAPK12; MAPK13; 
MAPK11; PIK3CA; MAPKAPK2; RAF1 

Progesterone-
mediated oocyte 
maturation 

3.02E-
38 

ARAF; PIK3CD; PIK3CB; PIK3CG; RPS6KA3; MAPK8; 
RPS6KA6; AKT2; RPS6KA2; AKT3; RPS6KA1; AKT1; 
PRKACA; PRKACB; BUB1; MAP2K1; PLK1; BRAF; 
MAPK14; MAPK12; MAPK13; MAPK11; PIK3CA; CDK2; 
CDK1; RAF1 

T cell receptor 
signaling pathway 

1.14E-
33 

GSK3B; MAP2K1; CHUK; PDPK1; PIK3CD; PIK3CB; 
MAPK14; MAPK12; PIK3CG; MAPK13; IKBKB; 
MAPK11; PAK1; PIK3CA; CDK4; AKT2; AKT3; AKT1; 
PRKCQ; FYN; RAF1; MAP2K7; PAK2; MAP3K7 

Fc epsilon RI 
signaling pathway 

1.64E-
30 

MAP2K3; MAP2K4; MAP2K1; PDPK1; PIK3CD; 
PIK3CB; MAPK14; MAPK12; PIK3CG; MAPK13; 
MAPK11; MAPK8; PIK3CA; AKT2; AKT3; AKT1; FYN; 
RAF1; MAP2K7; MAP2K6 

FoxO signaling 
pathway 

1.27E-
32 

ARAF; PIK3CD; PIK3CB; NLK; PIK3CG; IKBKB; 
MAPK8; AKT2; AKT3; AKT1; MAP2K1; CHUK; PDPK1; 
PLK1; BRAF; CSNK1E; MAPK14; MAPK12; MAPK13; 
MAPK11; PIK3CA; CDK2; ATM; RAF1; SGK1 

ErbB signaling 
pathway 

4.4E-
28 

GSK3B; MAP2K4; MAP2K1; PRKCB; ARAF; PIK3CD; 
BRAF; PIK3CB; PIK3CG; PAK1; MAPK8; PIK3CA; 
RPS6KB1; AKT2; AKT3; ABL1; AKT1; RAF1; MAP2K7; 
PAK2 

TNF signaling 
pathway 

1.33E-
27 

MAP2K3; MAP2K4; MAP2K1; CHUK; PIK3CD; PIK3CB; 
MAPK14; MAPK12; PIK3CG; MAPK13; IKBKB; 
MAPK11; MAPK8; RPS6KA5; PIK3CA; AKT2; AKT3; 
AKT1; MAP2K7; MAP3K7; MAP2K6 
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Supplementary Data: 
 

 

Supplementary Figure 1.  Principal Component Analysis (PCA) of the independent 

dataset from the AD cohort. Using the subjects in AD cohort dataset (controls only) 

showing the clustering of samples and the factors that most explain the variance in the 

kinome signatures. PMI: postmortem interval, Barcode: Chip ID. 
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Supplementary Figure 2.  Venn diagrams showing overlap of the total of 

overrepresented/underrepresented kinases for both cohorts. DLPFC from current study, 

HPC from the AD cohort study (only control subjects). (A) Filtered kinase with absolute 

values of Z scores equal or above 1.5 for both datasets. (B) Filtered kinase with 

absolute values of Z scores equal or above 1.25 for both datasets. DLPFC: dorsolateral 

prefrontal cortex, HPC: hippocampus.  
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Supplementary Table S1. Kinome array subject demographics. 

Subject Sex Age pH PMI (h) 

M1 M 73 6.4 17 

M2 M 71 6.4 13 

M3 M 71 6.4 20 

F1 F 76 6.3 23 

F2 F 73 5.9 25 

F3 F 77 6.6 30 

 
 

Supplementary Table S2. Kinome array subject demographics for the AD cohort 
(control subjects only). 

Subject Sex Age PMI (h) 

TIS163 M 62 7 

TIS164 M 82 5.5 

TIS173 M 91 4 

TIS191 M 77 7 

TIS194 M 58 5 

TIS214 M 79 6 

TIS216 M 82 5 

TIS188 F 93 4 

TIS198 F 85 7 

TIS204 F 86 6 

TIS209 F 82 4 

TIS212 F 60 6.5 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2020. ; https://doi.org/10.1101/2020.08.26.268581doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.26.268581
http://creativecommons.org/licenses/by-nd/4.0/


TIS215 F 83 5 

TIS217 F 77 2.5 

TIS221 F 92 7 

TIS223 F 60 7 

TIS227 F 50 4 

TIS228 F 83 4 
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Supplementary Table S3. Female vs. male DLPFC kinase network gene list. 

Family Genes 

CDK CDK1; CDK2; CDK3; CDK4; CDK5; CDK6; CDK7; CDK8; CDK9; CDK10; 
CDK11A; CDK11B; CDK12; CDK13; CDK14; CDK14; CDK15; CDK16; 
CDK17; CDK18; CDK19; CDK20 

PDK1 PDPK1 
P38 MAPK11; MAPK12; MAPK13; MAPK14 
BARK2 ADRBK2 
BUD32 TP53RK 
WNK WNK1; WNK2; WNK3; WNK4 
MLK MAP3K7; MAP3K9; MAP3K10; MAP3K11; MAP3K12; MAP3K13; MLK4; 

ILK; TNNI3K; ZAK 
ABL ABL1 
AKT AKT1; AKT2; AKT3 
ATM ATM 
AUR AURKA; AURKB 
BUB BUB1; BUB1B 
CK1 CSNK1D; CSNK1E 
EEF2K EEF2K 
GRK ADRBK1 
GSK GSK3B 
IKK CHUK; IKBKB 
JNK MAPK8 
KHS MAP4K1 
MAPKAPK MAPKAPK2; MAPKAPK3; MAPKAPK5; MKNK1 
MARK MARK3 
MTOR RICTOR 
NEK NEK2 
NMO NLK 
PAKA PAK1; PAK2 
PI3K PI3KCA; PI3KCB; PI3KCD; PI3KCG 
PKA PRKACA; PRKACB 
PKCA PRKCB 
PKCD PRKCD; PRKCQ 
PKCH PRKCE 
PKN PKN1; PKN2 
PLK PLK1 
RAF ARAF; BRAF; KSR1; RAF1 
RSK RPS6KA1; RPS6KA2; RPS6KA3; RPS6KA5; RPS6KA6; RPS6KB1 
SGK SGK1 
SRC FYN 
STE11 MAP3K1 
STE7 MAP2K1; MAP2K3; MAP2K4; MAP2K6; MAP2K7 
STKR ACVR1 
WEE WEE1 

Legend: Red and bolded text indicates direct kinome array hit.  
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Supplementary Table S4. Gene expression changes in kinases emerging as direct 
kinome array hits in cell-level and region-level transcriptome databases of female vs. 
male frontal cortex. 

  CELL-LEVEL REGION-LEVEL 

  Female vs. Male 
DLPFC 

LCM Superficial 
Neurons 

Microarray 

Female vs. 
Male DLPFC 
LCM Deep 
Neurons 

Microarray 

Female vs. Male 
Prefrontal cortex 
Microarray (Xu et 
al., 2014) 

Female vs. Male 
Frontal cortex 
Microarray (Trabzuni 
et al., 2013) 

Family Gene Log2 
FC 

P-
value 

Log2 
FC 

P-
value 

Log2 FC P-value Log2 FC Probes 

CDK CDK1 -0.087 0.697 -0.395 0.348 - - 0.000 2 

  CDK2 -0.287 0.290 0.388 0.119 - - 0.013 2 

  CDK3 -0.048 0.731 0.169 0.337 0.011 0.876 0.029 1 

  CDK4 0.051 0.714 0.065 0.713 0.111 0.386 0.030 1 

  CDK5 -0.360 0.067 -0.280 0.416 -0.342 0.197 -0.014 1 

  CDK6 0.287 0.050 0.215 0.265 0.219 0.335 -0.028 1 

  CDK7 -0.938 0.053 0.571 0.276 -0.156 0.267 -0.056 1 

  CDK8 0.338 0.353 -0.170 0.501 -0.024 0.698 -0.042 1 

  CDK9 0.071 0.708 0.011 0.959 0.040 0.695 0.122 1 

  CDK10 0.129 0.688 -0.349 0.247 0.138 0.372 0.055 2 

  CDK11A 0.075 0.777 -0.154 0.679 - - 0.107 1 

  CDK11B 0.001 0.999 -1.828 0.132 - - 0.005 1 

  CDK12 -0.228 0.097 -0.072 0.694 - - -0.035 1 

  CDK13 -0.026 0.915 0.455 0.050 - - 0.054 2 

  CDK14 -0.187 0.282 -0.270 0.383 - - -0.116 1 

  CDK15 -0.283 0.222 -0.271 0.199 - - -0.005 2 

  CDK16 -0.245 0.394 -0.797 0.305 - - -0.028 2 

  CDK17 -0.284 0.177 -0.774 0.017 - - 0.030 1 

  CDK18 -0.279 0.535 0.205 0.757 - - 0.001 4 

  CDK19 0.177 0.643 -0.079 0.864 - - 0.009 1 

  CDK20 -0.212 0.325 -0.029 0.898 - - 0.013 2 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2020. ; https://doi.org/10.1101/2020.08.26.268581doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.26.268581
http://creativecommons.org/licenses/by-nd/4.0/


PDK1 PDPK1 0.242 0.220 -0.020 0.934 -0.005 0.971 -0.008 5 

P38 MAPK11 0.119 0.500 0.292 0.347 -0.031 0.838 -0.016 2 

  MAPK12 -0.123 0.396 0.389 0.032 -0.003 0.982 0.020 1 

  MAPK13 -0.023 0.935 -0.095 0.664 -0.330 0.195 -0.013 1 

  MAPK14 0.506 0.083 0.001 0.997 - - -0.033 4 

BARK2 ADRBK2 0.001 0.996 -0.213 0.474 - - - - 

BUD32 TP53RK 0.043 0.880 -0.317 0.135 -0.068 0.399 -0.051 1 

WNK WNK1 -0.057 0.919 0.199 0.685 0.366 0.255 0.012 3 

  WNK2 0.357 0.379 0.463 0.016 -0.005 0.970 0.079 1 

  WNK3 -0.242 0.215 -0.103 0.529 -0.002 0.975 -0.005 3 

  WNK4 0.223 0.359 -0.071 0.782 - - -0.008 1 

MLK MAP3K7 0.153 0.395 -0.023 0.942 -0.187 0.198 -0.012 2 

  MAP3K9 0.149 0.433 -0.353 0.158 -0.357 0.242 0.004 1 

  MAP3K10 0.157 0.575 0.067 0.730 0.124 0.570 -0.019 1 

  MAP3K11 0.304 0.281 -0.206 0.605 0.107 0.672 0.070 1 

  MAP3K12 -0.339 0.142 0.395 0.353 -0.012 0.936 0.095 1 

  MAP3K13 -0.235 0.498 0.029 0.926 0.115 0.447 0.000 1 

  MLK4 0.110 0.550 0.151 0.512 - - - - 

  ILK 0.078 0.764 -0.003 0.994 0.203 0.216 0.000 3 

  TNNI3K 0.052 0.761 0.030 0.899 -0.236 0.245 0.038 1 

  ZAK -0.210 0.271 0.073 0.795 0.304 0.188 0.035 3 

Legend: Red and bolded text indicates genes with log2 FC > 0.3, log2 FC < -0.3, or 
significant findings (p < 0.05) irrespective of FC values. 
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Supplementary Table S5. Gene expression changes in kinases emerging as indirect 
kinome array hits (i.e. connected via STRING with the direct kinome array hits) in cell-
level and region-level transcriptome databases of female vs. male frontal cortex. 

  CELL-LEVEL REGION-LEVEL 

  Female vs. 
Male DLPFC 

LCM 
Superficial 
Neurons 

Microarray 

Female vs. 
Male DLPFC 
LCM Deep 
Neurons 

Microarray 

Female vs. Male 
Prefrontal cortex 
Microarray (Xu et 
al., 2014) 

Female vs. Male 
Frontal cortex 
Microarray 
(Trabzuni et al., 
2013) 

Family Gene Log2 
FC 

P-
value 

Log2 
FC 

P-
value 

Log2 
FC 

P-value Log2 
FC 

Probes 

ABL ABL1 -0.270 0.298 0.247 0.457 0.158 0.247 0.015 3 

AKT AKT1 0.027 0.921 -0.608 0.062 0.243 0.249 0.060 3 

  AKT2 -0.236 0.465 0.356 0.508 - - -0.012 1 

  AKT3 -1.221 0.188 -0.513 0.570 0.023 0.526 0.008 4 

ATM ATM -0.101 0.753 -0.472 0.219 - - -0.026 3 

AUR AURKA 0.438 0.233 -0.786 0.054 -0.051 0.349 -0.004 2 

  AURKB -0.626 0.025 0.091 0.776 - - 0.007 1 

BUB BUB1 -0.134 0.687 0.115 0.681 - - 0.002 1 

  BUB1B -0.285 0.264 -0.130 0.517 0.005 0.927 0.020 1 

CK1 CSNK1D 0.049 0.732 0.308 0.087 -0.071 0.318 -0.041 2 

  CSNK1E 0.004 0.990 -0.052 0.858 0.131 0.303 0.008 3 

EEF2K EEF2K 0.029 0.864 0.131 0.458 0.177 0.374 0.012 1 

GRK ADRBK1 -0.105 0.706 0.281 0.395 - - - - 

GSK GSK3B -0.168 0.414 -0.767 0.005 0.054 0.748 0.099 1 

IKK CHUK -0.428 0.257 0.146 0.762 0.060 0.529 0.001 1 

  IKBKB 0.117 0.465 -0.063 0.709 0.118 0.203 0.046 2 

JNK MAPK8 -0.305 0.379 -0.394 0.279 -0.005 0.917 0.008 2 

KHS MAP4K1 0.035 0.867 -0.057 0.873 0.010 0.807 0.058 2 

MAPKAPK MAPKAPK2 -0.084 0.562 0.270 0.128 - - 0.018 2 

  MAPKAPK3 0.204 0.290 0.174 0.381 0.459 0.234 0.027 1 
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  MAPKAPK5 0.203 0.207 -0.084 0.721 -0.039 0.616 -0.063 2 

  MKNK1 0.117 0.447 0.116 0.485 - - 0.055 2 

MARK MARK3 -0.041 0.872 0.137 0.714 -0.113 0.209 0.033 1 

MTOR RICTOR -0.117 0.506 -0.223 0.288 - - 0.027 1 

NEK NEK2 -0.377 0.107 0.319 0.290 -0.035 0.693 0.020 2 

NMO NLK -0.770 0.008 -0.613 0.069 -0.298 0.243 -0.079 1 

PAKA PAK1 -0.492 0.059 -0.992 0.043 -0.670 0.188 -0.038 1 

  PAK2 0.381 0.139 0.001 0.996 0.083 0.368 0.015 2 

PI3K PI3KCA 0.428 0.221 -0.419 0.182 - - -0.003 2 

  PI3KCB -0.123 0.586 0.049 0.876 -0.194 0.365 -0.091 1 

  PI3KCD 0.061 0.834 0.233 0.518 -0.034 0.790 0.056 1 

  PI3KCG -0.174 0.314 -0.162 0.498 - - 0.034 2 

PKA PRKACA 0.646 0.226 0.179 0.738 0.001 0.991 -0.001 2 

  PRKACB -0.351 0.113 -0.584 0.317 - - -0.041 5 

PKCA PRKCB -0.407 0.155 -1.263 0.003 -0.503 0.250 -0.086 3 

PKCD PRKCD 0.722 0.058 0.566 0.016 - - -0.009 2 

  PRKCQ 0.213 0.195 -0.196 0.291 -0.227 0.316 -0.106 1 

PKCH PRKCE -0.596 0.011 -0.401 0.198 -0.551 0.197 -0.042 1 

PKN PKN1 -0.304 0.353 -0.618 0.060 - - 0.026 4 

  PKN2 0.361 0.190 0.160 0.477 0.071 0.345 0.091 1 

PLK PLK1 0.589 0.291 0.070 0.929 - - 0.010 1 

RAF ARAF -0.244 0.233 -0.079 0.840 0.255 0.207 0.043 1 

  BRAF 0.018 0.904 -0.296 0.136 - - -0.042 2 

  KSR1 0.359 0.243 -0.221 0.468 - - 0.010 1 

  RAF1 0.247 0.203 0.065 0.792 0.042 0.570 0.072 1 

RSK RPS6KA1 -0.517 0.511 1.728 0.012 -0.035 0.756 -0.002 2 

  RPS6KA2 0.413 0.203 0.561 0.222 0.153 0.203 0.015 3 

  RPS6KA3 1.152 0.037 -0.382 0.245 0.024 0.573 -0.002 4 

  RPS6KA5 0.237 0.411 -0.132 0.632 - - -0.042 2 
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  RPS6KA6 0.218 0.109 -0.145 0.400 - - 0.002 4 

  RPS6KB1 0.273 0.580 -1.161 0.009 -0.025 0.811 -0.006 1 

SGK SGK1 -0.526 0.471 -1.082 0.094 -0.088 0.820 -0.014 2 

SRC FYN -0.168 0.626 -0.036 0.944 0.142 0.270 0.022 4 

STE11 MAP3K1 0.193 0.228 0.091 0.738 0.385 0.189 0.054 1 

STE7 MAP2K1 -0.047 0.831 -0.310 0.201 -0.585 0.203 -0.142 1 

  MAP2K3 0.148 0.399 0.625 0.015 - - 0.002 6 

  MAP2K4 0.497 0.133 0.079 0.845 -0.406 0.189 -0.076 2 

  MAP2K6 0.323 0.287 -0.007 0.985 - - -0.034 1 

  MAP2K7 0.368 0.086 0.088 0.642 0.053 0.560 0.042 1 

STKR ACVR1 -0.722 0.028 -0.092 0.786 0.393 0.188 -0.042 1 

WEE WEE1 0.225 0.455 0.162 0.371 - - 0.024 1 

 

Legend: Red and bolded text indicates genes with log2 FC > 0.3, log2 FC < -0.3, or 
significant findings (p < 0.05) irrespective of FC values. 
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