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Abstract 
RNA sequencing (RNA-seq) is widely used to identify differentially expressed genes (DEGs) 

and reveal biological mechanisms underlying complex biological processes. RNA-seq is often 

performed on heterogeneous samples and the resulting DEGs do not necessarily indicate the cell 

types where the differential expression occurred. While single-cell RNA-seq (scRNA-seq) 

methods solve this problem, technical and cost constraints currently limit its widespread use. 

Here we present single cell Mapper (scMappR), a method that assigns cell-type specificity scores 

to DEGs obtained from bulk RNA-seq by integrating cell-type expression data generated by 

scRNA-seq and existing deconvolution methods. After benchmarking scMappR using RNA-seq 

data obtained from sorted blood cells, we asked if scMappR could reveal known cell-type 

specific changes that occur during kidney regeneration. We found that scMappR appropriately 

assigned DEGs to cell-types involved in kidney regeneration, including a relatively small 

proportion of immune cells. While scMappR can work with any user supplied scRNA-seq data, 

we curated scRNA-seq expression matrices for ~100 human and mouse tissues to facilitate its 

use with bulk RNA-seq data alone. Overall, scMappR is a user-friendly R package that 

complements traditional differential expression analysis available at CRAN. 

 

Highlights:  

• scMappR integrates scRNA-seq and bulk RNA-seq to re-calibrate bulk differentially 
expressed genes (DEGs).  

• scMappR correctly identified immune-cell expressed DEGs from a bulk RNA-seq analysis of 
mouse kidney regeneration. 

• scMappR is deployed as a user-friendly R package available at CRAN.  
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Introduction 
RNA-seq is a powerful and widely-used technology to measure transcript abundance and 

structure in biological samples (1). RNA-seq analyses typically compare transcript abundance 

between conditions by calculating differentially expressed genes (DEGs) (2, 3). When RNA-seq 

of a whole tissue (bulk RNA-seq) is completed, it is often a challenge to determine the extent to 

which changes in gene expression are due to changes in cell-type proportion (4). This challenge 

is addressed by single-cell RNA-seq (scRNA-seq) methods that measure gene expression at a 

single-cell resolution. Despite many advances, technical limitations (e.g., low gene detection per 

cell, cell dissociation optimization) and cost currently limit the use of scRNA-seq for hard-to-

dissociate cell types and large study designs (5, 6). Importantly, bioinformatics methods that 

integrate bulk RNA-seq and scRNA-seq demonstrate the highly complementary nature of these 

two technologies (7–16). 

 Single cell RNA-seq experiments readily indicate combinations of genes that are 

involved in the biological functions altered in an experiment or clinical condition. The value of 

these data is reflected in the growing number of repositories containing publicly available 

reprocessed scRNA-seq data such as PanglaoDB (17), scRNAseqDB (18), SCPortalen (19), 

Single Cell Expression Atlas (20) and the Human Cell Atlas (21), which allow for a consistent, 

tissue-aware reference to the cell-type specificity of individual genes. Indeed, such datasets can 

be used to interrogate cell-type specific gene expression and enhance bulk RNA-seq analyses in 

the absence of a matched scRNA-seq experiment (12, 22). 

 Several methods exist to integrate bulk RNA-seq and scRNA-seq, with the most common 

class of tools being cell-type deconvolution (12, 14, 15, 23–25). Cell-type deconvolution 
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leverages cell-type specific expression within a scRNA-seq dataset to estimate the relative cell-

type proportions within a bulk RNA-seq sample. Estimated cell-type proportions can then be 

directly compared between conditions to identify alterations in cell-type composition (26, 27). 

Bioinformatic tools such as csSAM (4) and subsequently released Bseq-sc (28) utilize estimated 

cell-type proportions to identify DEGs that were not considered differentially expressed with 

bulk differential analysis alone (2, 3, 29). While powerful, these tools require a larger number of 

samples than is typically performed in exploratory studies looking for DEGs (4, 28). For this 

reason, new methods that leverage scRNA-seq to interpret the results from typical bulk-RNA-seq 

experiments are of value, especially considering the growing number of scRNA-seq reference 

datasets.  

Here we present a tool called single-cell mapper (scMappR) that is designed to infer 

which cell-types are responsible for DEGs generated using common bulk RNA-seq experimental 

designs. The purpose of scMappR is to assign cell-type specificity scores to DEGs previously 

obtained from bulk RNA-seq experiments. Starting with a reference scRNA-seq dataset, 

scMappR integrates cell-type proportions and cell-type specific expression to compute and 

visualize the putative cell-type origins of DEGs identified in bulk RNA-seq analysis. We first 

demonstrate that scMappR can identify validated cell-type specific gene expression by taking 

advantage of a reference data set (23) where bulk RNA-seq was performed on cell-sorted 

samples. We show that scMappR can identify bonafide differential gene expression changes 

emanating from a minority cell population present in the mouse kidney during regeneration (13). 

Overall, scMappR is a freely available R package (available on CRAN) that provides important 

cell-type specificity to a set of user-provided DEGs. 
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Materials and methods 
 

R Package: scMappR 

 We built an R package which we call scMappR to compute and visualize the roles that 

different cell-types play upon the identification of DEGs. scMappR contains the bioinformatic 

pipeline to process scRNA-seq data from a count matrix to formats compatible with scMappR. 

scMappR is currently stored on CRAN (https://cran.r-

project.org/web/packages/scMappR/index.html). Reprocessed scRNA-seq cell-type matrices are 

stored in a separate Github repository (https://github.com/wilsonlabgroup/scMappR_Data). 

  

Computation and visualization of cell-type contextualized DEGs and cell-type specific 

pathway analysis 

scMappR combines differential expression, cell-type expression, and cell-type 

proportions to generate cell-weighted fold-changes (cwFold-changes, 𝑐𝑤𝛥 ). Specifically, 

scMappR reweighs the fold-changes of bulk DE (𝛥 ) genes by the fold-change of cell-type 

specificity (e.g., cell-type vs. other cell-types) identified in the reference scRNA-seq dataset 

(𝜉 ), and estimated cell-type proportion. These proportions are estimated through RNA-seq 

deconvolution with the inputted gene’s expression removed from the count and signature 

matrices. A signature matrix is defined as a gene-by-cell-type matrix populated with the relative 

expression of a gene in each cell-type. Cell-type proportions (𝜋) are estimated with 

DeconRNAseq (15) and cell-types with >1% of cell-type proportions are used in subsequent 

analyses (Figure 1). Then, estimated cell-type proportions are made independent from the cell-
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type expression of each gene using an orthogonalization method based on a leave-one-out 

approach (30) (Figure 1). Specifically, for each gene, the gene is removed from both the count 

matrix and the signature matrix (𝜉 ). Then, we complete RNA-seq deconvolution with 

DeconRNA-seq (15) with that gene excluded. This way, the expected cell-type proportions are 

independent of the cell-type expression of each gene on a per-gene basis. The average cell-type 

proportion per cell-type  (𝜋) and the ratio of cell-types proportion between two conditions 

(!𝑐𝑜𝑛𝑡𝑟𝑜𝑙	𝜋𝑐𝑎𝑠𝑒
) are integrated into scMappR (Figure 1). This reweighting is described in the formula 

below. 

𝑐𝑤𝛥 = 𝛥 ∗ 𝜉 ∗ 𝜋 ∗
𝜋#$%&'$(
	𝜋#)*+

	 

Cell-weighted fold-changes (𝑐𝑤𝛥 ) are computed for every DEG in each cell-type. 

cwFold-changes and endogenous cell-type specificity are then plotted with the Pheatmap R 

package (31). For every cell-type, each gene on the gene list is reranked by their cwFold-change. 

Pathway analysis is subsequently completed with g:ProfileR (32) package. By default, scMappR 

uses the following example command: gProfileR::gprofiler(genes, species, ordered = TRUE, 

src_filter = c(“GO:BP", “REAC”, “KEGG”), custom_bg = genes_in_bulk, correction_method = 

"fdr”) (32, 33) (Figure 1). In this paper we report precision as the g:Profiler summary statistic 

which g:Profiler defined as the proportion of inputted DEGs that are present in the gene set (32). 

Computation and visualization of the endogenous cell-type specific expression of a gene list 

In many instances, it is valuable to gain understanding of the endogenous cell-type 

expression of a list of genes even when fold-changes and cell-type proportions are not relevant 

(e.g., significant variants mapping to genes from a Genome Wide Association Study). scMappR 
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plots all of the putative cell-type specific genes in a given signature matrix, as well as the cell-

type specific genes that overlap with a user-specified list of human or mouse gene symbols, 

using the Pheatmap R package (31). scMappR then tests the enrichment of cell-type markers that 

overlap the user’s list with a Fisher’s exact test (odds ratio > 0, adjusted p-value < 0.05) (34) 

while using all cell-type markers for every cell-type in that tissue as a background.  

Generation of cell-type signature matrices from publicly available scRNA-seq 

Consistently reprocessed scRNA-seq samples were obtained from bulk data in the 

PanglaoDB (17) project (https://panglaodb.se/samples.html). Briefly, PanglaoDB (17) 

automatically downloads mouse and human scRNA-seq data before aligning and processing 

these data in a manner specific to their sequencing platform (Drop-seq, 10X Genomics, and 

Start-seq) (35, 36). The scMappR package provides the bioinformatic pipeline to convert any 

scRNA-seq count dataset into a signature matrix with named cell-types within the 

“process_dgTMatrix_lists” function within scMappR. A signature matrix is defined as a gene-

by-cell type matrix containing the likelihood that each gene is expressed in each cell-type. All 

normalization, clustering, and cell-type maker, and cell-type labelling steps detailed below also 

describe the “process_dgTMatrix_lists” function and how it was applied to the scRNA-seq data 

stored in the PanglaDB database (17). To generate signature matrices from scRNA-seq count 

data, we removed cells with abnormally high mitochondrial content (greater than two standard 

deviations above the mean in that given sample) (37). Then, normalization, clustering, scaling, 

and integration of technical replicates were completed using Seurat V3 with the integration 

anchors feature (38, 39). Cell-type markers are identified using the FindMarkers function in 

Seurat v3 (default parameters) (38, 39). This function completes differential expression 

(Wilcoxon’s test as default) between each cell-type and all of the other cell-types. Signature 
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matrices are populated with the rank (-log10(p-value)) to measure enrichment of a cell-type or 

fold-change output to calculate cwFold-changes. We further use these cell-type markers to define 

cell-types. Cell-types were identified by extracting the (at maximum) top 30 cell-type markers 

and converting each gene symbol to human or mouse when necessary using BioMart (40).  

Our automated cell-type identification pipeline is based on two gene set enrichment 

methods, namely the Fisher’s exact test of cell-type markers and Gene Set Variation Analysis 

(GSVA) of the average expression of each gene per cell-type (34, 41, 42), against two cell-type 

marker databases, CellMarker and PanglaoDB (16, 17). The CellMarker database manually 

curated cell-type markers using a literature search of over 100,000 papers and is updated four 

times per year (16). The PanglaoDB database was generated with a combination of manual 

curation, co-expression of putative cell-type markers, and community submission (17). scMappR 

automatically labelled cell-types by appending the most highly enriched cell-type from the 

CellMarker database to the most highly enriched cell-type using the Panglao database using a 

two-tailed Fisher’s exact test (16, 17, 34). Cell-types that do not contain significant enrichment 

with the Fisher’s exact test (34) were labelled unknown, however all cell-types (including 

unknown) have predicted labels from the GSVA method (41) stored as an output file.  Once cell-

types were labelled, signature matrices based on rank and fold-change were generated. scMappR 

reprocesses user-provided scRNA-seq count data with the same pipeline. 

We aggregated all the cell-types and cell-type markers into a gene-set database. Each 

gene-set is designated with the following notation: “SRA ID: tissue: cell-type”. All the cell-type 

markers within each gene list are consistently processed. This gene-set database can be used for 

gene-set enrichment using a Fisher’s exact test (34) within scMappR and the gene-set database 

can be downloaded for other gene-set enrichment analysis tools (33). 
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 The bioinformatic pipeline used to process scRNA-seq from count matrix data is part of 

the scMappR R package. Users can also provide their own scRNA-seq count matrix, which is 

converted into a Seurat (39) object that is then processed and converted into a signature matrix 

using the same methods described above. Users can additionally choose to save intermediary 

files generated by scMappR to process count matrices into a signature matrix. Specifically, 

scMappR saves the Seurat object, all cell-type markers, and all possible cell-type labels from 

both CellMarker and Panglao (using GSVA and the Fisher’s exact test) (16, 17, 34, 38, 39, 41, 

42). Finally, the vignette stored in CRAN provides the functions required to convert a Seurat 

object into a signature matrix. Together, this pipeline can be used as a consistent scRNA-seq 

processing pipeline from a count matrix of raw scRNA-seq data. 

Processing RNA-seq data from Monaco et al., 2019 

All fastq files from the peripheral blood mononuclear cells (PBMC) dataset and 29 

fluorescence activated cell sorted (FACS) immune cell-types were obtained from GSE107011 

(23) using sratoolkit (43). Samples were aligned to the hg38 genome with the STAR aligner (44) 

using default parameters for paired-end sequencing and filtered for blacklist regions. Reads were 

assigned to genes using featureCounts (version 1.5.3) with parameters “ -s 1 -Q 255 -t exon -O”. 

Gene models were obtained from GENCODE v33. Counts per million were then calculated for 

each gene using edgeR and principal component analysis (PCA) was performed (3). Sex 

differences (N=9 female, 4 male) were measured across the bulk PBMC dataset. Sex differences 

were also measured in the experiments where RNA-seq was completed after cell-sorting each 

immune subtype (N = 2 female, 2 male). In both cases, differential expression was completed 

using DESeq2 (Wald’s test; adjusted P-value < 0.05 and fold-change > 1.5) (2). Cell-type 

markers were then computed by measuring differential expression of genes in each cell-type 
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against all others (Wald’s test; adjusted P-value < 0.05 and fold-change > 2). Ggplot2 and 

ggfortify were used to generate all plots (45, 46). 

Processing RNA-seq data from Valle Duraes et al., 2020 

All fastq files related to RNA-seq on the bulk kidney were downloaded from 

ArrayExpress (E-MTAB-7957) using wget. These RNAseq bulk kidney samples were aligned to 

the mm10 genome with the STAR aligner (44) using default parameters for paired-end 

sequencing and filtered for blacklist regions. Reads were assigned to genes using featureCounts 

(version 1.5.3) with parameters “ -s 1 -Q 255 -t exon -O”. Gene models were obtained from 

GENCODE M11. Samples were then normalized according to library size and PCA was 

performed (45, 46). Samples were separated according to strain, sex, condition (i.e. fibrosis or 

regeneration) and time after injury before differential expression was measured using DESeq2 

(Wald’s test; adjusted P-value < 0.05 and fold-change > 1.5) (2). 

 

Results 

Summary of the scMappR R package and functionality. 
 

The scMappR R package contains a suite of bioinformatic tools that provide 

experimentally relevant cell-type specific information to a list of DEG. The primary function of 

scMappR is to integrate cell-type expression and cell-type proportions to calculate cell-weighted 

Fold-changes (cwFold-changes) and cell-type specific pathway analysis from inputted DEGs. 
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cwFold-changes for all genes is ordered within a cell-type to estimate the rank-order of DEGs 

within each cell-type before a cell-type specific pathway analysis. The cwFold-change for each 

gene is ordered across cell-types to determine which cell-types were most likely responsible for 

the differential expression. Investigating cwFold-changes provides context to any differential 

analysis of a bulk tissue. 

 scMappR ensures that the cell-type specific expression is relevant to the inputted gene 

list by containing a bioinformatic pipeline to process scRNA-seq data into a signature matrix, 

and pre-computed signature matrices of reprocessed scRNA-seq data (Supplementary Table 1) 

for researchers to choose from. scMappR also provides cell-type specific gene set enrichment of 

scRNA-seq data for researchers without RNA-seq data and just a gene list.  

The function “scMappR_and_pathway_analysis” reranks DEGs to generate cell-type 

specificity scores called cell-weighted fold-changes (Figure 1, Supplementary Figure 1). Users 

input a list of DEGs, normalized counts, and a signature matrix into this function. scMappR then 

re-weights bulk DEGs by cell-type specific expression from the signature matrix, cell-type 

proportions from RNA-seq deconvolution (15) and the ratio of cell-type proportions between the 

two conditions to account for changes in cell-type proportion (Figure 1) (See Methods for 

details).  

RNA-seq deconvolution also relies on cell-type specific expression (11, 12, 15, 47). Cell-

type specific expression is used to estimate cell-type proportion, making cell-type expression and 

cell-type proportions dependent values. For each gene, scMappR makes cell-type specific 

expression and cell-type specific proportion independent values by iteratively removing each 

gene from the count matrix and the signature matrix before re-calculating cell-type proportions. 

With cell-type specificity scores computed, scMappR completes pathway analysis by reordering 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.24.265298doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.24.265298
http://creativecommons.org/licenses/by/4.0/


 

12 

DEGs by their cwFold-changes. Genes that are differentially expressed in the same cell-types 

move closer in rank, which increases significance in gene set enrichment analysis (32, 41, 48).  

With cwFold-changes calculated, scMappR uses two approaches to utilize cwFold-

changes to complete cell-type specific pathway analysis. Both approaches are completed by 

having scMappR rerank DEGs based on their cwFold-changes. Firstly, scMappR reranks DEGs 

by their cell-weighted fold-change for every cell-type before completing an ordered pathway 

enrichment. Here, genes are re-ordered by their cell-type specificity scores, but a highly 

differential ubiquitously expressed DEG may still have a very high rank. Pathway enrichment of 

the first approach represents biological pathways associated with the rank-change in expression 

of each cell-type. Secondly, scMappR reranks genes by their increase in cell-type specificity 

before completing an ordered pathway analysis. For example, if a gene is the 150th most 

differential DEG in bulk RNAseq and the second most differential cwFold-change for a cell-

type, it would have a score of 148 for that cell-type. Pathway enrichment of the second approach 

represents biological pathways associated with genes most influenced by scMappR. 

The “process_dgTMatrix_lists” function in the scMappR package contains an automated 

scRNA-seq processing pipeline where users input scRNA-seq count data, which is made 

compatible for scMappR and other R packages that analyze scRNA-seq data (39) (see Methods 

for details). We leveraged this pipeline to convert over 1,000 scRNA-seq count matrices 

processed by the PanglaoDB dataset (17) into 245 signature matrices in mouse and human 

(Supplementary Figure 1).  

The functions “tissue_by_celltype_enrichment”, “tissue_scMappR_internal”, and 

“tissue_scMappR_custom” combine these consistently processed scRNAseq count data with 

gene-set enrichment tools to allow for cell-type marker enrichment of a generic gene list (e.g. 
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GWAS hits) (see Methods for details). The “tissue_by_celltype_enrichment” function allows for 

gene set enrichment of all cell-type markers across all cell-types and tissues in scMappR. This 

gene-set database has the advantage of every cell-type marker originating from a completely 

consistent bioinformatic analysis. Alternatively, “tissue_scMappR_internal” and 

“tissue_scMappR_custom” provide a more hypothesis driven approach where researchers can 

ask if their list of genes are more likely to be expressed in one cell-type compared to other cell-

types in the same tissue based on the over-representation of cell-type markers. 

DEG list re-ranked by scMappR reflects cell-type-specific differential expression 

scMappR provides the bioinformatic infrastructure to identify which cell-types are likely 

driving previously identified DEGs from bulk RNAseq. To benchmark scMappR, we chose 

Monaco et al., 2019 (23), a dataset that contained bulk RNA-seq in peripheral blood 

mononuclear cells (PBMC) (N=13) and RNA-seq of 29 cell-types after cell-sorting (N=4 each) 

(23). This dataset is ideal to test scMappR as it contains the same biological contrast in bulk 

RNA-seq data, and in cell-sorted RNA-seq data of the same cell-types. Using full-length RNA-

seq of these individual cell-types foregoes the current limitations of differential analysis in 

scRNA-seq (5, 6) due to issues with dropout and batch effects inherent to scRNA-seq and can 

thereby be used as an empirical benchmark. This study used males and females in the bulk RNA-

seq (N=9 male, 4 female) and in the cell-sorted RNA-seq analyses (N=2 male, 2 female). This 

allowed for the bulk and cell-type specific measurements of sex differences (Figure 2A, B). We 

further built a signature matrix using these cell-sorted RNA-seq data by calculating differential 

expression of each cell-type (sexes combined) vs. all the others. 
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Through bulk RNA-seq analysis, we identified 59 DEGs between sexes in PBMCs 

(Wald’s test; adjusted P-value < 0.05 and fold-change > 1.5) (Supplementary Figure 1A). RNA-

seq deconvolution tools including DeconRNA-seq function optimally when there are more 

samples than cell-types (15, 47). Therefore, we tested scMappR with the top 12 most variable 

cell-types (one fewer than the 13 bulk samples). We then tested if the fold-changes of these 59 

sex-biased DEGs were more highly correlated to the same 59 genes in these 12 cell-types using 

Spearman’s correlation (Figure 2C). We found that for every cell-type, scMappR’s cwFold-

changes either increased or made no change to cell-type specificity (average rho increase = 

0.0471, one-tailed Paired Student’s t-test, p = 2.00 x 10-4). Overall, scMappR significantly 

increased the cell-type specificity of a study that already contained a high correlation between 

cell-type specific DEGS and bulk cell-type specific differential expression (rho = 0.535-0.777). 

The high correlation between bulk DEGs and cell-type specific DEGs are explained in part by          

16 of these genes mapping to the Y chromosome (Supplementary Figure 1B). We then removed 

the Y chromosome genes due to their inherent sex-biased gene expression and repeated this 

analysis. We found the same improvement of cell-type specificity (average rho increase = 

0.0660, one-tailed Paired Student’s t-test, p = 0.0153), showing that ubiquitously expressed 

DEGs do not improperly influence scMappR’s cwFold-changes. Removing these DEGs did 

decrease the correlation between bulk DEGs and cell-type specific DEGs (0.708 with Y 

chromosome genes to 0.430 without). Together, we show that genes that are ubiquitously 

differentially expressed do not influence scMappR but do influence the baseline correlation 

between bulk DEGs and empirically measured cell-type specific DEGs. 

We next tested whether scMappR is robust to any combination of cell-types, and not just 

the 12 most variable cell-types. Monaco et al., 2019 contained 13 bulk RNA-seq (PBMC) 
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samples, allowing us to test scMappR using 12 cell-types at once (15, 47). We randomly sampled 

12/29 cell-types and re-calculated the p-value and change in correlation for 100 permutations to 

ensure that our results are not biased by the cell-types that we selected. This permutation-based 

analysis showed that regardless of the cell-types selected, there was always a statistically 

significant increase in cell-type specificity (mean P-value = 1.83 x 10-4, mean Rho increase = 

0.0545) (Supplementary Figure 2). scMappR’s cwFold-changes improved cell-type specificity of 

individual genes in two ways. Firstly, scMappR increased the rank of differentially expressed 

cell-type markers (Supplementary Figure 3). Secondly, scMappR decreased the rank of DEGs 

that were not expressed in a particular cell-type (Supplementary Figure 3). Together, this 

analysis showed that scMappR can significantly improve the correlation of bulk DEGs to cell-

type specific DEGs. 

scMappR reveals cell-type specific DEGs during mouse kidney regeneration. 

After benchmarking scMappR, we tested how scMappR can be used to assign cell-types 

contributing to DEGs generated from a representative, well-designed bulk RNA-seq study of a 

heterogeneous tissue. To do this, we reanalyzed data from Valle Duraes et al., 2020 (13) who 

interrogated gene expression changes involved in mouse kidney regeneration before and after 

injury (13). Kidney regeneration involves multiple cell-type specific processes (49–52), and 

importantly Valle Duraes et al., 2020  used bulk RNA-seq in conjunction with histopathology, 

cell sorting, and scRNA-seq to implicate T-Cell recruitment as a critical part of the regeneration 

process (13). We reasoned that this is an ideal model RNA-seq study to showcase scMappR as 

Valle Duraes et al., 2020  is well-powered, and includes detailed experimental follow-up of cell-

type specific responses (13).  
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Their bulk RNA-seq study design (13) has 50 total samples split into fibrosis (using wild-

type mice) and regeneration (using B6.Cg-Foxp3tm2(EGFP)Tch/J mice) models after injury 

(days 0, 3, 7, 14, 28 and 42) (N=3-4 per condition/timepoint) (Supplementary Figure 4). For 

simplicity, we focused on the comparison of the initial two timepoints as these contained the 

most dramatic changes (day 0 (‘naive’) vs day 3 (injury induced ‘regeneration’)). For every 

comparison, all samples were used in the RNA-seq deconvolution step of scMappR’s generation 

of cwFold-changes (all time periods in regeneration and fibrosis). In conjunction, a kidney 

scRNA-seq dataset from Tabula Muris, 2018 (53) was preprocessed and stored in scMappR. We 

then used scMappR to identify which cell-types are involved in kidney regeneration using both 

bulk and scRNA-seq datasets.  

After reprocessing data in Valle Duraes et al., 2020 (13), we identified 2855 DEGs 

between the ‘naive’ and ‘regeneration’ groups. We found that 394 of these DEGs were kidney 

cell-type markers in Tabula Muris, 2018 (53) (Figure 3A). Using scMappR, we then asked which 

cell-types had the highest cwFold-changes in DEG comparisons between naïve day 0 and 

regeneration day 3 groups in the whole kidney. We found clear signatures of fibroblasts, smooth 

muscle, and endothelial cells, all of which have well-documented roles in kidney regeneration 

(49–52) (Figure 3B). A subset of immune (“Macrophage, dendritic”) specific DEGs were also 

found (Figure 3B, Table 1). The immune-specific DEGs were less prevalent than other cell types 

(Figure 3B), likely due to a lower proportion of immune cells in the kidney (54).  

All cell-type labels were identified using the automated cell-type naming process in 

scMappR and the immune cluster was automatically given the cell-type label “Macrophage, 

dendritic”. This cell-type contains 430 cell-type markers that enrich for many immune related 

processes (immune system processes: precision = 0.537, one-tailed hypergeometric test adjusted 
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p-value = 3.65 x 10-87; innate immune response: precision = 0.223, one-tailed hypergeometric 

test adjusted p-value = 1.78 x 10-38; adaptive immune response: precision = 0.184, one-tailed 

hypergeometric test adjusted p-value = 7.95 x 10-36; T-cell activation: precision = 0.161, one-

tailed hypergeometric test adjusted p-value = 2.10 x 10-32). Furthermore, the original Tabula 

Muris, 2018 study labelled this cell-type population as “Macrophage and Natural Killer” (53). 

Interestingly, many cells within this population contain a high expression of naive T-cell markers 

like Ccr7 and Nkg7 (13, 53). These results are unsurprising as T-cells are present in the uninjured 

kidney (55). Therefore, although this cluster was given the “Macrophage, dendritic” label, it 

might be better interpreted as a cell-type representing the heterogeneous immune-cell population 

in the Tabula Muris, 2018 (53) kidney. 

Overall, the top five most significant pathways of these reranked DEGs showed a 

common regeneration phenotype across different cell-types at the pathway level (Supplementary 

Figure 5). For each cell-type, between 52-59% of the pathways were shared between the 

enriched pathways derived from bulk differential expression compared to pathways derived from 

genes reranked by cwFold-changes (Supplementary Table 2). Pathways that were only identified 

in the cell-type specific pathway analyses but not in bulk pathway enrichment were biologically 

relevant.  One such pathway is the “Immune System” gene ontology, which was not significantly 

enriched with the bulk DEG list but was highly enriched when reranking the same DEGs but by 

their “Macrophage, dendritic” cwFold-changes (adjusted p-value = 1.62 x 10-6). The top five 

most significant pathways identified by ordering genes based on their rank-change between bulk 

DEGs and cwFold-changes (Supplementary Figure 6) were related to their cell-type, including 

significant enrichment of immune related pathways in the “Macrophage, dendritic” cell-type 

(immune response: precision = 0.125, intersection of DEGs and pathway = 156 genes, one-tailed 
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hypergeometric test adjusted p-value = 6.67 x 10-19, cytokine-cytokine receptor interaction: 

precision = 0.0320, intersection of DEGs and pathway = 37 genes, one-tailed hypergeometric 

test adjusted p-value = 3.01 x 10-7, phagosome: precision = 0.0240,intersection of DEGs and 

pathway = 30 genes  one-tailed hypergeometric test adjusted p-value = 1.82 x 10-5, and 

phagocytosis: precision = 0.126 intersection of DEGs and pathway = 30 genes, one-tailed 

hypergeometric test adjusted p-value = 3.32 x 10-5 ) (Figure 3C). Taken together, scMappR 

increases the rank of cell-type specific DEGs, thus allowing for biologically relevant cell-type 

specific pathway analysis. 

In our bulk RNA-seq analysis, we identified three genes, Il1rl1, Rgs16, and Ccr7 as 

DEGs when naive day 0 and regeneration day 3 were compared. Valle Duraes et al., 2020 used 

three genes as T-cell markers in the CD4+ sorted scRNA-seq experiment of naive, regenerating, 

and damaged kidney (13, 56). We identified an increase in the rank-order of these three DEGs 

between bulk RNA-seq and “Macrophage, dendritic” cwFold-changes (P-value one-tailed 

Wilcoxon’s test = 0.047; Il1rl1: bulk rank 1545; “Macrophage, dendritic” cell rank 1029; 

Rgs16: bulk rank 354, “Macrophage, dendritic” = 235; Ccr7: bulk rank = 1926, “Macrophage, 

dendritic” rank 367). Notably, when scMappR was applied to the RNA-seq of bulk kidneys and 

the scRNA-seq of the entire kidney, we were still able to uncover a cell-type specific role of 

DEGs in a cell-type present in <5% of the bull kidney population (Supplementary Figure 2).  

To complete the deconvolution step of scMappR’s generation of cwFold-changes 

described above, we used 50 total samples across all experimental timepoints (days after injury: 

0, 3, 7, 12, 28, 42). However, many studies do not have this number of samples. To investigate 

whether we would reach similar conclusions using a sample number more representative of 

routine RNA-seq studies, we repeated our analysis exclusively with the ‘naive’ day 0 (N=4) 
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samples and ‘regeneration’ day 3 (N=3) samples, resulting in seven total biological samples 

instead of 50. Since scMappR’s generation of cwFold-changes relies on RNA-seq deconvolution, 

which assumes that there are more samples than cell-types (15, 47), we chose to analyze four 

cell-types, “proximal tubule, juxtaglomerular”, “endothelial”, “macrophage, dendritic”, and 

“fibroblast” as they showed variable cwFold-changes at the pathway level (Figure 3, 

Supplementary Figure 5).  

We generated cwFold-changes between ‘naive’ day 0 (N=4) samples and ‘regeneration’ 

day 3 (N=3) conditions on “proximal tubule, juxtaglomerular”, “endothelial”, “macrophage, 

dendritic”, and “fibroblast” cell-types using all 50 samples and again with seven samples. When 

we compared the cwFold-changes between the 50 and 7 sample analyses we found that the rank 

of cell-type specificity score did not change for any of the cell types (Supplementary Table 3) 

and that across cell-types, all DEGs maintained the same rank-order of cwFold-changes. The 

average cell-type proportions for each cell-type was not significantly different between the 50 

sample and 7 sample datasets (Supplementary Table 3). Thus, we used a study design with many 

biological samples to show that scMappR functions appropriately with a sample number 

representative of routine RNA-seq studies.  

scMappR: projection of a generic gene list onto scRNA-seq data. 

In addition to disentangling the cell-type specific role of bulk DEGs, scMappR can 

facilitate the understanding of cell-type specific expression in any list of genes. We tested the 

cell-type enrichment for the 2855 DEGs measured between naïve day 0 and regeneration day 3 

in the kidney across all of the cell-types and cell-type markers stored in scMappR (See Methods). 

The top ten most significantly enriched cell-types were “proliferating cells and gamma delta T 
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cells” (Supplementary Table 4). To characterize the CD4+ scRNA-seq dataset, Valle Duraes et 

al., 2020 (13) utilized a curated set of 34 T-cell marker genes (56). We asked if scMappR in 

combination with our uniformly processed scRNA-seq data would also consider these as T-cell 

marker genes. Reassuringly, of the top ten most enriched cell-types, all ten were immune cell-

types and four out of ten were from cell-types labelled as T-cells (Table 1).  

In addition to testing lists of genes across compendiums of scRNA-seq data, scMappR is 

useful for interrogating a specific, biologically relevant tissue. This approach is valuable when 

users have a list of genes from a particular tissue but cell-type proportions cannot be integrated 

with scRNA-seq expression (e.g. genes mapping to ChIP-seq peaks) (57, 58). As an example, we 

compared the 2855 DEGs between naive kidney and kidney regeneration (3 hours post injury) 

against the Tabula Muris, 2018 (53) kidney scRNA-seq study. We found an over-representation 

of the immune (“Macrophage Dendritic”) cell-type in the upregulated (regeneration biased) 

DEGs (FDR adjusted p-value = 1.43 x 10-5, odds-ratio = 1.86) and an underrepresentation of the 

same cell-type in the downregulated (naive baised) DEGs (FDR adjusted p-value = 4.23 x 10-5, 

odds-ratio = 0.33) (Supplementary Table 5). Since the 34 T-cell markers exclusively enriched for 

the immune (“Macrophage, dendritic”) cell-type (FDR adjusted p-value = 0.00115, odds-ratio = 

20.9) (Table 2), we suggest that scMappR did detect evidence of T-cell infiltration which Valle 

Duraes et al., 2020 experimentally validated in their study.  

Overall, our results show that scMappR can calibrate genes from a representative RNA-

seq study design and detect biologically relevant cell-type specific enrichments from gene lists 

using compendiums of scRNA-seq data. To facilitate further testing on addition RNA-seq data 

sets and gene lists we made scMappR freely available as an R package on CRAN.   
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Discussion 

scMappR is an R package designed for the primary purpose of estimating which cell-

types contribute to a list of DEGs from bulk RNA-seq. scMappR integrates both cell-type 

expression and cell-type proportion to generate cell-type specificity scores (cwFold-changes). 

scMappR’s cwFold-changes applied to bulk DEGs were correlated to empirically measured 

DEGs compared to bulk DEGs alone (Figure 2). Computing cwFold-changes on DEGs across 

kidney regeneration allowed for the measurement of which cell-types are responsible for which 

DEGs and for cell-type specific pathway analysis (Figure 3). scMappR should provide valuable 

cell-type specificity to a list of DEGs, and scMappR can be performed in many experimental 

contexts. 

The general usability of scMappR with bulk RNA-seq analysis is facilitated in two ways. 

Firstly, scMappR stores consistently processed mouse and human signature matrices for 

researchers to choose from. Secondly, scMappR contains the bioinformatic pipelines that allow 

researchers to reprocess any scRNA-seq count dataset into a signature matrix. There are 

thousands of viable scRNA-seq processing pipelines (59), and to accommodate this, scMappR 

allows researchers to input their own signature matrix, scRNA-seq count data, or processed 

scRNA-seq dataset. From there, scMappR has functions to convert this date into a signature 

matrix compatible with scMappR’s cwFold-change generation.  

We tested the functionality of scMappR by comparing bulk DEGs to empirically 

measured cell-type specific DEGs before and after scMappR was applied. scMappR’s cwFold-

changes were more correlated to cell-type specific DEGs than bulk DEGs (Figure 2). This 
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benchmark suggests that scMappR’s cwFold-changes increase cell-type specificity and that our 

assumption that the cell-type of origin of a DEG is derived from the cell-type where the gene is 

most highly expressed is a reasonable assumption. However, it is important to note that scMappR 

is limited by the initial DEG list itself. For example, a gene that is upregulated in one cell-type 

and downregulated in another will not be differentially expressed and hence not be part of a 

scMappR analysis. Unlike scMappR, methods such as BSeq-sc (28) use estimated cell-type 

proportions as a covariate of differential analysis before applying csSAM, a least-squares 

regression and empirical FDR (4), to discover DEGs that were undetectable by traditional bulk 

RNA-seq differential analysis. Importantly, BSeq-sc, requires many biological samples (i.e. 82 

samples to discover novel DEGs in three cell-types (28)) which makes these approaches 

complementary to scMappR depending on the researchers dataset. 

scMappR relies on RNA-seq deconvolution to generate cwFold-changes and therefore 

follows the same assumptions and limitations of RNA-seq deconvolution. Important RNA-seq 

deconvolution assumptions related to scMappR’s cwFold-changes are that there should be more 

samples than cell-types (47) and that RNA-seq deconvolution assumes that that the cell-types 

within a signature matrix make up the entire bulk sample. Limitations of RNA-seq deconvolution 

related to scMappR are that RNA-seq deconvolution is sensitive to the number of samples, the 

number of cell-type markers, the processing of the bulk RNA-seq and normalization of the 

scRNA-seq data (60). While in principle any deconvolution method that relies on a signature 

matrix would work, we chose to use DeconRNA-seq (15) in the RNA-seq deconvolution step of 

scMappR’s cwFold-change generation because of its computational efficiency and the size of the 

input signature matrix. DeconRNA-seq allows for signature matrices upwards of 3,000 genes, 

and can identify cell-type proportions of ten cell-types in 50 samples in less than three seconds 
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(15). This computational efficiency is important to scMappR because, for example, if there are 

2,500 DEGs, the cell-type deconvolution is completed 2,501 times. Furthermore, scMappR’s 

cwFold-changes rely on the average relative cell-type proportions across conditions and thus it is 

reasonable to sacrifice a small amount of sensitivity in cell-type proportion estimation for 

computational efficiency (11, 12, 14, 47).  

scMappR leverages scRNA-seq data to characterize the cell-type specificity of a list of 

bulk DEGs while providing a cell-type marker database to test the over-representation of cell-

type markers in any gene list. Currently, single-cell genomic technologies are evolving and 

expanding to include new assays such as single cell open chromatin (single cell ATAC-seq) (61, 

62) and single cell DNA methylation (DNAm) (63, 64), scRNA-seq across many biological 

conditions with replicates, and single-cell genomics with fewer technical limitations. As these 

methodologies improve, tools like scMappR that aid in integrating bulk and single-cell 

differential genomics will become increasingly important.  

In summary, we have shown that scMappR can accurately estimate which cell-types 

contain DEGs. scMappR also has the potential to uncover biological signals that may have 

otherwise been masked in traditional bulk differential analysis. The scMappR method is stored in 

a user-friendly R package that provides supplementary pipelines to support researchers with 

diverse experimental designs and sample sizes. Overall, scMappR should be easy to incorporate 

into existing RNA-seq pipelines and serve as a facile way to incorporate scRNA-seq data into 

differential gene expression analyses. 
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Data availability:  

The scMappR R package is available at CRAN (stable release) https://cran.r-
project.org/web/packages/scMappR/index.html. The scMappR developmental version is available on 
github https://github.com/wilsonlabgroup/scMappR_Data. All code and files to generate figures and 
tables can be found on figShare (preprint link) https://figshare.com/s/3b5cfb597a0b3bc2801c. 
 

Supplementary Data: 
 
Supplementary figures and tables are available at NAR online. 
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Figures and Tables 

 
Figure 1. Schematic of the data required to run scMappR and the primary functionalities 

that scMappR provides. scMappR requires input RNA-seq count data, a list of differentially 

expressed genes, and a signature matrix (provided by the user or scMappR). For each gene, 

scMappR then makes cell-type expression independent of estimated cell-type proportions. 

scMappR then integrates cell-type expression, cell-type proportion, and the ratio of cell-type 

proportions between biological conditions to generate cell-weighted Fold-changes (cwFold-

changes). These cwFold-changes are then visualized (bottom left) and reranked before scMappR 

computes and plots cell-type specific pathway analyses (bottom right). 
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Figure 2. Benchmarking scMappR workflow and results. A) Overview of samples and cell-

types from Monaco et al., 2019. Sex differences within each cell-type are computed and the cell-

type specific fold-changes in the genes that are differentially expressed in the peripheral blood 

mononuclear cells (PBMC) dataset are used. Each column of the signature matrix is the fold-

change of expression from each cell-type against all of the other cell-types and each row is a 

cell-type marker. B) Overview of how scMappR was used to estimate cell-type specific sex 

differences from PBMCs. Principal component analysis shows linear separation of male and 

female PBMC samples. Differentially expressed genes derived from computing sex differences, 

the normalized count matrix, and signature matrix generated in (A) were inputted into scMappR. 

C) Improvement that cell-weighted fold-changes (cwFold-changes) have on cell-type specificity 

for every cell-type measured with a bar chart. Dark bars are the correlation cwFold-changes with 

cell-type specific fold-changes. Light = bars are the correlation between cell-types (left) and a 

boxplot of the correlations across cell-types (right). Improvement in correlation is measured with 

a one-tailed paired Student’s t-test. Bulk/PBMC = Peripheral Blood Mononuclear Cells, 

Neutrophils = Neutrophils, Progenitor = Progenitor, Basophils = Basophils, pDC =  

Plasmacytoid dendritic cells, Plasmablast = Plasmablast,  mDC = myeloid dendritic cells, 

B_naive = naive B cells, NC_mono = non-classical monocytes, C_mono = classical monocytes, 

MAIT = MAIT cells, B_SM = Switched memory B cells, VD2- = non-Vd2 gd T-cells. 
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Figure 3. Application of scMappR to identify which cell-types are responsible for 

differentially expressed genes in kidney regeneration. A) Valle Duraes et al., 2020 completed 

RNA-seq of C57BL/6J mice kidneys at naive (day 0) and multiple timepoints of kidney 

regeneration post-injury. Between naïve and regeneration day 3 comparisons (shown here), we 

identified 2855 significantly differentially expressed genes. We then used scMappR to compute 

cwFold-changes. The normalized count data, the list of differentially expressed genes, and a 

signature matrix were inputs for this analysis. We used normalized count data from all samples, 

differentially expressed genes from naïve vs kidney regeneration (naïve (day 0) vs day 3 

comparison shown here), and the signature matrix from scRNA-seq in the kidney completed by 

Tabula Muris, 2018. B) Heatmap of gene normalized cwFold-changes of all 2855 differentially 

expressed genes (left) and the 394 differentially expressed genes that are also identified as cell-

type markers in Tabula Muris, 2018 (right). The heatmaps on the left and right were produced in 

the same way except that in the heatmap on the right the genes are filtered for cell-type markers 

in Tabula Muris, 2018. C) A cell-type normalized matrix of the top four most enriched pathways 

from cell-type specific pathway analysis. For each cell-type, genes were reranked by their 

increase in cell-type specificity before pathway analysis was completed. Bulk = bulk kidney, MP 

= Macrophage, Dendritic, JG-S = Juxtaglomerular, Stem, Peri = Pericyte, FB = Fibroblast, 

DT2 = Distal Tubule 2, U1 = Unknown 1, FB-Endo = Fibroblast-Endothelial, DT1 = Distal 

Tubule 1, JG-PT = Juxtaglomerular, Proximal tubule, U2 = Unknown 2, Endo = Endothelial. 
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Table 1. Over-representation of cell-type markers of consistently processed scRNA-seq 

data in over 100 mouse tissues when inputting 34 T-cell markers. 

  

SRA ID Tissue Label from
CellMarker database

Label from 
Panglao database

Number of cell-type 
makers

Number of overlapping 
cell-type markers Odds ratio Adjusted 

p-value

SRA653146 Trachea Lymphocyte Nuocytes 122 15 83.1 2.47 x 10-18

SRA667466 Cortex 3 Lymphocyte Nuocytes 122 15 83.1 2.47 x 10-18

SRA653146 Muscle Myeloid cell Natural killer cells 88 13 90.6 1.08 x 10-16

SRA667466 Dorsal midbrain Myeloid cell Natural killer cells 88 13 90.6 1.08 x 10-16

SRA748166 Cardiac tissue T cell Natural killer cells 132 13 60.2 9.58 x 10-15

SRA801845 Cardiac progenitor 
cells T cell Natural killer cells 132 13 60.2 9.58 x 10-15

SRA638923 Small intestine Immune cell Natural killer cells 92 11 66.9 4.40 x 10-13

SRA711739 Embryonic 
fibroblasts Epithelial cell Natural killer T cells 60 10 89.5 4.40 x 10-13

SRA757237 Bone marrow Epithelial cell Natural killer T cells 60 10 89.5 4.40 x 10-13

SRA653146 Spleen T cell Thymocytes 68 10 78.9 1.03 x 10-12
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Table 2. Over- and under-representation of kidney cell-type markers from scRNA-seq data 

generated by Tabula Muris, 2018 when inputting 34 T-cell markers.  

  

Cell Type Total number of cell-type 
markers in Tabula Muris, 2018 Odds ratio Adjusted 

p-value
Number 
of genes T-cell marker genes

Macrophage, dendritic 430 20.9 0.00115 10 Klf2,Rgs2,Ccl4,Cd83,Nkg7,Ccl5,Ccr7,Sell,Ifng,Cd7
Endothelia 560 0.138 0.169 1 Klf2
Fibroblasts 548 0.317 0.793 2 Klf2,Gata3

Distal tubule 48 2.67 0.927 1 Gata3
Proximal tubule, juxtaglomerular 23 0.00 1.00 0

Distal tubule1 111 0.00 1.00 0
Unknown 49 0.00 1.00 0
Pericyte 49 0.00 1.00 0

Fibroblast, endothelia 43 0.00 1.00 0
Unknown1 3 0.00 1.00 0

Stem, juxtaglomerular 23 0.00 1.00 0
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