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ABSTRACT 

 

Effective data sharing is key to accelerating research that will improve the precision of 

diagnoses, efficacy of treatments and long-term survival of pediatric cancer and other childhood 

catastrophic diseases. We present St. Jude Cloud (https://www.stjude.cloud), a cloud-based 

data sharing ecosystem developed via collaboration between St. Jude Children’s Research 

Hospital, DNAnexus, and Microsoft, for accessing, analyzing and visualizing genomic data from 

>10,000 pediatric cancer patients, long-term survivors of pediatric cancer and >800 pediatric 

sickle cell patients. Harmonized genomic data totaling 1.25 petabyes on St. Jude Cloud include 

12,104 whole genomes, 7,697 whole exomes and 2,202 transcriptomes, which are freely 

available to researchers worldwide. The resource is expanding rapidly with regular data uploads 

from St. Jude’s prospective clinical genomics programs, providing public access as soon as 

possible rather than holding data back until publication. Three interconnected apps within the St. 

Jude Cloud ecosystem—Genomics Platform, Pediatric Cancer Knowledgebase (PeCan) and 

Visualization Community—provide a unique experience for simultaneously performing advanced 

data analysis in the cloud and enhancing the pediatric cancer knowledgebase. We demonstrate 

the value of the St. Jude Cloud ecosystem through use cases that classify 48 pediatric cancer 

subtypes by gene expression profiling and map mutational signatures across 35 subtypes of 

pediatric cancer. 
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INTRODUCTION 

 

Cancer is the number one cause of death by disease among children, with over 15,000 new 

diagnoses within the United States alone each year (1). The advent of high-throughput genomic 

profiling technology such as massively parallel sequencing has enabled mapping of the entire 3 

billion bases of genetic code for individual human genomes, including those of pediatric cancer. 

Major pediatric cancer genome research initiatives such as the St. Jude/Washington University 

Pediatric Cancer Genome Project (PCGP) (2) and NCI’s Therapeutically Applicable Research 

To Generate Effective Treatments (TARGET, https://ocg.cancer.gov/programs/target) have 

profiled thousands of pediatric cancer genomes. The resulting data, made accessible through 

public data repositories such as dbGaP or EGA, have been used to generate new insights into 

the mechanisms of cancer initiation and progression (3-7), to discover novel targets including 

those for immunotherapy (8-11), and to build comprehensive genomic landscape maps for 

developing precision therapy (12-17). 

 

Data sharing, a pre-requisite for genomic research for almost 30 years, is especially important 

for pediatric cancer, a rare disease with many subtypes driven by diverse and distinct genetic 

alterations. Based on the annual cancer diagnoses collected from NCI’s Surveillance, 

Epidemiology and End Results (SEER) program for the period 1990-2016 (18), more than 50% 

of the pediatric cancer subtypes are rare cancers with an annual incidence of <200 cases in the 

US (19). Therefore, samples acquired by a single institute, a single research initiative, or, in 

some instances, even a single nation may lack sufficient power for genomic discovery and 

clinical correlative analysis. Additionally, the discovery of structural variations and non-coding 

variants which are important classes of driver variants in pediatric cancer (16,20-22), requires 

the use of whole-genome sequencing (WGS) to interrogate noncoding regions, which constitute 

over 98% of the human genome. This imposes another challenge in sharing pediatric cancer 

genome data as the size of WGS data is ~10 times larger than that of whole-exome sequencing 

(WES) data which profiles only the coding regions.  

  

To share pediatric cancer genome data using the established public repository model requires 

major investment in time, professional support and computing resources from users and data 

providers alike. Under this model (Fig. 1A, left), genomic data becomes available for download 

after submission to a public repository by a computational professional. To use the data, a 

researcher needs to 1) prepare and submit a request for data access and wait for approval; 2) 
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download data from the public repository to a local computing infrastructure; 3) re-process for 

data harmonization and annotation using the current reference knowledgebase; 4) perform new 

analysis or integrative analysis by incorporating custom data; and often 5) submit the new data 

or the results back to the public repository. With continued expansion of the public data 

repository and user data, integrating public and local data is an iterative process requiring 

continued upscaling of local computational resources. Cloud-based technology can establish a 

shared computing infrastructure for data access and computing for all users, which can improve 

the efficiency of data analysis by removing the barriers on computational infrastructure required 

for data transfer and hosting so that computing resources can be dedicated to innovative data 

analysis and novel methods development (Fig. 1A, right).  

 

To accelerate research on pediatric cancer and other childhood catastrophic diseases, we 

developed St. Jude Cloud (https://www.stjude.cloud), a data-sharing ecosystem with open and 

controlled access to genomic data of >10,000 pediatric cancers generated from both 

retrospective research projects and prospective clinical genomics programs (Fig. 1B) at St. 

Jude Children’s Research Hospital (St. Jude). St. Jude Cloud was built by St. Jude in 

partnership with DNAnexus and Microsoft to leverage our combined expertise in pediatric 

cancer genomic research (2,5,23,24), secure genomic data hosting on the cloud, and Azure 

cloud computing. St. Jude Cloud is comprised of three interconnected applications: 1) A 

Genomics Platform that enables controlled access to harmonized raw genomic data as well as 

end-to-end analysis workflows powered by the innovative algorithms that we developed, tested 

and validated on data generated from pediatric patient samples; 2) Open access to a 

knowledgebase portal, PeCan (Pediatric Cancer), that enables exploration of curated somatic 

variants of >5,000 pediatric cancer genomes from published literature contributed by St. Jude 

and other institutions; and 3) A Visualization Community that enables the scientific community to 

explore published pediatric cancer landscape maps and integrative views of genomic data, 

epigenetic data and clinical information of pediatric cancers (Fig. 1B, bottom). We demonstrate 

the power of the St. Jude Cloud ecosystem in unveiling important genomic features of pediatric 

cancer through two use cases: 1) classification of 48 subtypes of pediatric cancer using 1,567 

RNA-Seq samples; and 2) characterization of mutational burden and mutation signatures using 

WGS data generated from 35 subtypes of pediatric cancer.  
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RESULTS 

 

Pediatric Cancer Data Resource on St. Jude Cloud 

St. Jude Cloud hosts 12,104 WGS samples, 7,697 WES samples and 2,202 RNA-Seq samples 

generated from pediatric cancer patients or long-term survivors of pediatric cancer, making it the 

largest publicly available genomic data resource for pediatric cancer (Fig. 2A). Current data 

sets were acquired from research initiatives such as the St. Jude/Washington University 

Pediatric Cancer Genome Project (PCGP, (2)), St. Jude Lifetime Cohort Study (SJLIFE, (25)) 

and Childhood Cancer Survivor Study (CCSS, (26)), as well as from prospective clinical 

programs such as the Genomes for Kids (G4K) clinical research study of pediatric cancer 

patients (27) and Real-time Clinical Genomics (RTCG) initiative at St. Jude. Both G4K and 

RTCG employ a three-platform clinical whole genome, whole exome and transcriptome 

sequencing of every eligible patient at St. Jude (24). Raw sequence data from all studies were 

mapped to the latest (hg38) human genome assembly using the same analytical process to 

ensure data harmonization (Methods). In total, 1.25 petabytes (PB) of genomics data are readily 

available for access in St. Jude Cloud with over 90% (1.15PB) of this data being WGS data. 

 

When considering only WGS, the collective dataset comprises 3,551 paired tumor-normal 

pediatric cancer samples and 7,746 germline-only samples of long-term survivors enrolled in 

SJLIFE or CCSS studies. Major diagnostic categories of the cancer and survivorship genomes, 

which include pediatric leukemia, lymphoma, CNS tumors and >12 types of non-CNS solid 

tumors (Fig. 2B), are similar except for Hodgkin lymphoma and Non-Hodgkin lymphoma. The 

lymphoma samples constitute 18% of the cases in the survivorship cohort but are under-

represented in the cancer genomes as lymphoma was not selected for pediatric genomic 

landscape mapping initiatives (e.g. PCGP).  

 

Deposition of Real-time Clinical Genomics (RTCG) Data 

As genome-wide sequencing has become an integral part of clinical testing for pediatric cancer, 

sharing data generated by our CLIA-certified, CAP-accredited clinical laboratory has become an 

important avenue for expanding the genomic data content on St. Jude Cloud. This allows the 

data to be made immediately available to investigators at other institutions, rather than held 

back for months or years until publication. Presently, comprehensive clinical genomic 

sequencing, including WGS, WES, and RNA-Seq, is offered to all eligible oncology patients at 

St. Jude as part of their treatment protocols. Many of these patients, or their guardians, consent 
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to sharing their genomic data for research purposes so that it may be utilized to better 

understand and treat pediatric cancer in the future.  

 

Aiming to share prospective clinical genomic data from appropriately consented patients as 

quickly as possible, we developed a robust pipeline for the monthly deposition of clinical 

genomics data generated from the Real-time Clinical Genomics (RTCG) initiative to St. Jude 

Cloud. As depicted in Fig. 3A (details in Methods), the process involves verification of patient 

consent protocols (and active monitoring for revocation of a previous consent), sample de-

identification, remapping to the latest genome build and manual quality checking, all in 

accordance with legal and ethical guidelines. Basic clinical annotation is retrieved by querying 

databases of electronic medical records (EMR) and data are harmonized prior to uploading to 

St. Jude Cloud for public release.  

 

From March 2019 through July 2020, 1,996 WGS, 2,684 WES and 1,220 RNA-Seq data from 

prospective pediatric cancer samples were uploaded to St. Jude Cloud (Fig. 3B). Importantly, 

these prospective samples include 51 pediatric cancer samples comprising 27 rare subtypes 

(Fig. 3C) not represented in the retrospective cancer samples on St. Jude Cloud. We anticipate 

a continued expansion of genomic data on St. Jude Cloud at this pace in the future from 

prospective samples via RTCG. 

 

End-to-End Genomic Analysis Workflows 

To enable researchers with little to no formal computational training to perform sophisticated 

genomic analysis, we have deployed end-to-end analysis workflows designed with a point-and-

click interface for uploading input files and graphically visualizing the results for scientific 

interpretation. Advanced computational users can access a command line interface for batch-

job submission and run-time parameter optimization. Currently, eight production-grade 

workflows, tested and used by researchers from St. Jude as well as external institutions, have 

been deployed on St. Jude Cloud. Comprehensive documentation has been developed and is 

updated based on user feedback.  

 

Five of these eight workflows have integrated cancer genomic analysis algorithms developed 

using pediatric cancer data sets such as PCGP; and their performance has been iteratively 

improved by the growing knowledgebase of pediatric cancer. They include: 1) Rapid RNA-Seq, 

which predicts gene fusions using the CICERO algorithm (28) that has discovered targetable 
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fusions in high-risk pediatric leukemia (8), high-grade glioma (5) and melanoma (29); 2) 

PeCanPIE (30), which classifies germline variant pathogenicity using the Medal Ceremony 

algorithm that was developed to assess germline susceptibility of pediatric cancer (5) and 

genetic risk for subsequent neoplasms among survivors of childhood cancer (31); 3) 

NeoeptiopePred, which predicts the immunogenicity of somatic mutations and gene fusions, has 

characterized the neoepitope landscape of 23 subtypes of pediatric cancer (11); 4) cis-X, which 

detects non-coding driver variants, and has discovered non-coding drivers in pediatric T-lineage 

leukemia (32); and 5) SequencErr, which measures and suppresses next-generation 

sequencing errors (33).  

 

Additionally, we optimized several workflows commonly used by basic research laboratories. 

These include the 1) ChIP-Seq peak calling pipeline, which detects narrow peaks using MACS2 

(34) or broad peaks using SICER (35); 2) WARDEN pipeline, which performs RNA-Seq 

differential expression using R packages VOOM for normalization and LIMMA for analysis (36); 

and the 3) Mutational Signature pipeline, which finds COSMIC mutational signatures using a 

VCF file of somatic SNVs by performing linear modeling using the MutationalPatterns (37) 

algorithm.  

 

Pediatric Cancer Knowledgebase (PeCan) 

To integrate pediatric cancer genomic data generated by the global research community, we 

developed PeCan, which assembles somatic variants present at diagnosis or relapse, germline 

pathogenic variants, and gene expression from the published literature. All data, which is re-

annotated and curated to ensure quality and consistency, can be explored dynamically using 

our visualization tool ProteinPaint (38). Currently, PeCan presents data published by PCGP, 

TARGET, The German Cancer Research Center, Shanghai Children’s Medical Center, and 

University of Texas Southwestern Medical Center (Supp. Table S1). Variant distribution and 

expression pattern for a gene of interest can be queried and visualized for 5,161 cancer 

samples of 23 pediatric cancer subtypes. Curated pathogenic or likely pathogenic variants can 

also be queried directly and visualized on PeCanPIE’s variant page (30)  which presents variant 

allele frequencies from public databases, results from in-silico prediction and pathogenicity 

prediction algorithms, related literature, and pathogenicity classification determined by the St. 

Jude Clinical Genomics tumor board. 

 

Data Visualization 
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Data visualization is critical for integrating multi-dimensional cancer genomics data so that 

researchers can gain insight into the molecular mechanisms that initiate and cause the 

progression of cancer. We developed generalized tools such as ProteinPaint (38) and 

GenomePaint (39) that enable dynamic visualization and custom data upload of genomic 

variants, gene expression, and sample information using either protein or genome as the 

primary data axis; the user-curated genomic landscape maps for cancer subtypes or pan-cancer 

studies can also be exported into image files to create figures for multiple scientific publications. 

Additionally, we developed specialized visualizations to present: a) genome view of chromatin 

state and gene expression using ChIP-seq and RNA-Seq data generated from mouse/human 

retina (40) or patient-derived xenografts of pediatric solid tumors (41); b) subgroup clustering 

using methylation data in medulloblastoma (15) or gene expression data in B-ALL (42); and c) 

genotype/phenotype correlation for pediatric sickle cell patients and long-term survivors and 

pediatric cancer (31,43). These expert-curated genomic and epigenomic landscape maps are 

not only valuable for presenting discoveries in published literature, they can also serve as an 

important resource for dynamic data exploration by the broad research community. 

 

St. Jude Cloud Ecosystem 

Raw and curated genomic data, analysis and visualization tools are structured into the following 

three independent and inter-connected applications on St. Jude Cloud to provide a secure, web-

based ecosystem for integrative analysis of pediatric cancer genome data: 1) Genomics 

Platform for accessing data and analysis workflows, 2) PeCan for exploring a curated 

knowledgebase of pediatric cancer, and 3) Visualization Community for exploring published 

pediatric cancer genomic or epigenomic landscape maps and for visualizing user data using 

ProteinPaint or GenomePaint.  

 

A user may work with the St. Jude Cloud ecosystem via open, registered, or controlled access. 

While PeCan and Visualization Community are accessible in an open and anonymous manner. 

A user needs to set up a St. Jude Cloud account (register) to run the analysis workflows on the 

Genomics Platform. In accordance with the community practice for human genomic data 

protection, access to raw genomic data (e.g. WGS, WES or RNA-Seq) generated from patient 

samples follows a controlled access model, i.e. requiring the submission of a signed data 

access agreement that will be subsequently reviewed by a data access committee for approval. 

Since its debut in 2018, there are a total of 1,951 registered users of St. Jude Cloud Genomics 

Platform. 211 requests for access to raw genomic data have been granted to researchers at 80 
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institutes across 18 countries (Supp. Figure S1), and the median turn-around time for data 

access approval is 7 days. Today, there are ~2,500 unique users per week on average 

accessing the St. Jude Cloud ecosystem. 

 

While Genomics Platform, PeCan and Visualization Community apps are each valuable 

resources for pediatric cancer research, working across all three within the St. Jude Cloud 

ecosystem provides a unique user experience that can simultaneously enhance data analysis 

and enrich the knowledgebase for pediatric cancer.  As illustrated in Fig. 4, access to raw 

genomic data is equivalent to building a virtual research cohort on the St. Jude Cloud 

ecosystem, which can be accomplished by querying sample features using the data browser of 

Genomics Platform—a classical approach; or by selecting samples with specific molecular 

features (e.g. mutations or gene expression level) using PeCan. Upon approval, requested data 

is made available immediately within a private cloud-based project folder. User data can also be 

uploaded quickly and securely to the project folder through our data transfer tools, and projects 

can be shared with collaborators using the underlying DNAnexus Platform. The user may then 

analyze the data using the workflows on the Genomic Platforms, tools provided by the 

DNAnexus Platform or their own containerized workflows. Alternatively, data can be 

downloaded to a user’s local computing environment for analysis. Results produced by both 

local infrastructure or the Genomics Platform can be explored alongside data presented in the 

curated pediatric cancer knowledgebase (PeCan) using visualization tools such as ProteinPaint 

or GenomePaint within the Visualization Community. The resulting data, post publication, can 

be integrated to PeCan to enrich the pediatric cancer knowledgebase, while the landscape 

maps as well as graphs of sample subgroups prepared by researchers using ProteinPaint or 

other visualization tools can be shared on the Visualization Community for dynamic exploration. 

We present two use cases below to demonstrate this process.   

 

Use case 1: Expression landscape of pediatric cancers 

Defining cancer subtypes by gene expression has provided important insight into the 

classification of pediatric (44-46) and adult cancers (47). To accomplish this on St. Jude Cloud, 

we analyzed gene expression profiles of pediatric blood (n=816), solid (n=303) and brain 

(n=448) tumors using RNA-Seq data from fresh frozen samples which were generated by either 

retrospective research projects (e.g. PCGP and Clinical Pilot) or prospective clinical genomics 

programs (e.g. G4K and RTCG). Gene expression values (Methods) were imported from the 

Genomics Platform and separated into the three categories of blood, solid and brain tumors for 
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subtype classification using t-distributed stochastic neighbor embedding (t-SNE) analysis (Fig. 

5, https://pecan.stjude.cloud/permalink/stjudecloud-paper.).  

 

As shown in Fig. 5A, blood cancer expression data reveal a clear distinction between B-cell 

acute lymphoblastic leukemia (B-ALL, n=521), T-cell acute lymphoblastic leukemia (T-ALL, 

n=41), acute myeloid leukemia (AML, n=80) and acute megakaryocyte leukemia (AMKL, 

n=101). The B-ALL subtype clusters here closely recapitulate the subgroups defined by 

cytogenetic features or gene fusions/somatic mutations reported previously by an analysis of 

1,988 childhood or adult B-ALL RNA-Seq (42). The anaplastic large cell lymphoma (ALCL) 

patient samples, despite their small sample size (n=4 in our cohort), also form a distinct cluster. 

Interestingly, KMT2A (MLL) rearranged leukemias (a subset of which are known to be mixed 

phenotype acute leukemias) cluster by their cellular lineage (i.e. B-cell, T-cell, or myeloid, Fig. 

5B), indicating their primary lineage has a greater influence than the KMT2A-fusion on global 

gene expression profile. 

 

Solid tumors show tight clusters representing known subtypes (Fig. 5C). Interestingly, 

osteosarcomas cluster into two groups denoted OS group 1 and OS group 2 in Fig. 5C, the 

latter composed of predominantly metastatic tumors. Using the WARDEN pipeline on the 

Genomic Platform, differential gene expression between the two groups reveals that lung-

specific genes are significantly over-represented amongst genes upregulated in OS group 2, 

with pulmonary-associated surfactant proteins (SFTPA1, SFTAP2, SFTPC, SFTB) the most 

upregulated (Fig. 5D, Supp. Table S2A). As the OS group2 is comprised of metastatic tumor 

samples, contamination of the tumor biopsy with lung tissue at the site of metastasis likely 

contributed to this expression difference. Notably, Wilms tumors also cluster into two distinct 

groups, one of which is comprised entirely of samples from bilateral cases. This may reflect that 

divergence in gene transcription caused by different genetic causes of Wilms bilateral versus 

unilateral cases, likely owing to germline mutations present in the bilateral cases (48). 

 

Brain tumors also form distinct clusters representing major cancer types such as 

medulloblastoma, choroid plexus carcinoma, ependymoma, craniopharyngioma, high-grade 

glioma and low-grade glioma (Fig. 5E). Consistent with previous reports, medulloblastoma WNT 

and SHH subtypes are distinct from the larger set of group 3 and 4 subtypes (49) and 

ependymomas are split into posterior fossa and supratentorial regions (9). Interestingly, 

adamantinomatous craniopharyngiomas (ACPG), a rare brain cancer derived from pituitary 
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gland embryonic tissue, forms two distinct groups denoted ACPG group 1 and 2 in Fig. 5E.  

WARDEN differential gene expression analysis (Fig. 5F) reveals that genes upregulated in 

ACPG group 1 are significantly over-represented by a wide variety of non-geographically 

localized neural gene sets including prefrontal cortex, spinal cord, fetal brain and 

oligodendrocyte (Supp. Table S2B, C). By contrast, ACPG group 2 show over-expression of 

matrix metallopeptidase (MMP) genes (e.g. MMP13 and PAPPA, Supp. Table S2D), reported 

to be associated with cancer progression, migration and metastasis formation (9,50). 

Examination of genetic and clinical phenotypic data of ACPG group 1 and 2 samples reveals 

comparable age, gender, frequency of CTNNB1 mutations (51), and comparable tumor purity 

ascertained by CTNNB1 variant allele frequencies (Supp. Figure 2A, p-value=0.33), which are 

correlated with tumor purity (51). Further, both groups displayed high levels of keratin gene 

expression previously found differentially expressed in ACPG as compared to fetal brain tissue 

(51) (Supp. Figure 2B, C). These observations suggest that the differential gene expression of 

the two ACPG groups cannot entirely be attributed to differences in tumor purity and possibly 

indicate a difference in tumor biology. Examination of tumor section slides (Supp. Figure 2D) 

reveals ACPG group 1 tumors display brain invasion and are clearly associated with reactive 

gliosis while group 2 tumors associate with meninges and cyst walls. This suggests stromal 

elements are at least partially driving the difference in the transcriptional signature between 

these two groups of ACPG. Further studies, which may require the use of spatial 

transcriptomics, are needed to investigate the transcriptional heterogeneity observed in these 

two groups.  

 

Use Case 2: Mutation rates and signatures across pediatric blood, solid and brain 

cancers 

Investigation of mutational burden and signatures can unveil the mutational processes shaping 

the genomic landscape of pediatric cancer (16,17,52) at diagnosis or relapse. To examine 

mutational burden, we analyzed validated or curated coding and non-coding somatic variants 

from paired tumor and normal WGS data available for 958 pediatric cancer patient samples 

comprising over 35 major subtypes of blood, solid, or brain cancers profiled by PCGP, Clinical 

Pilot or G4K studies (Fig. 6, left panel). Among blood cancers, the median number of genome-

wide somatic mutation rate was 0.22, 0.31 and 0.37 per million bases (Mb) in AML (including 

AMKL), B-ALL and T-ALL, respectively.  The mutation rate of solid tumors was highly variable 

by subtype: retinoblastoma had the lowest mutation rate with 0.07 per Mb, while osteosarcoma 

and melanoma had the highest rates with 1.04 and 8.35 per Mb respectively. Amongst the brain 
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tumors, craniopharyngioma exhibited the lowest mutation rate with 0.02 per Mb in contrast to 

high-grade gliomas (HGGs) with 0.95 per Mb. Two hypermutators with extremely high mutation 

burdens were observed among the HGGs owing to mutations in MSH2 or POLE. 

 

First, we performed a preliminary analysis on mutational signatures using the Mutational 

Signature pipeline on Genomics Platform (Supp. Figure 3A) and were able to detect APOBEC 

mutation signatures (COSMIC signatures 2 and 13) in an acute megakaryoblastic leukemia 

(AMKL) sample (SJAMLM7006_D in Supp. Figure 3B), representing the first implication of this 

mutagenesis process in AML (52,53). However, spurious signatures may emerge due to 

potential overfitting. To ensure a more robust analysis, we downloaded somatic VCF files of 

SNVs detected from the abovementioned paired tumor-normal WGS data set and queried 

mutational signature abundance using the SigProfilerSingleSample software (23,54), which 

requires greater stringency to detect signatures. The APOBEC signature in the AMKL sample 

was reproduced using this approach (Supp. Figure 3C). 

 

We detected 25 of the 60 published COSMIC mutation signatures (52) in addition to two 

recently identified therapy-induced signatures (23) in relapsed B-ALL samples (Fig. 6, right). As 

expected, age-related signatures (i.e. COSMIC signature 1 and 5) were present in nearly all 

pediatric cancers. APOBEC signatures (i.e. COSMIC signature 2 and 13) were identified in 

ETV6-RUNX1 B-ALL, osteosarcoma, adrenocortical carcinoma, and thyroid cancer, as 

previously reported (7,53,55,56) and in addition to AMKL as mentioned above. As expected, 

UV-light induced signature 7 was detected in melanoma and a subset of aneuploid B-ALLs, and, 

interestingly, in a single case of anaplastic large cell lymphoma (a rare subtype of non-Hodgkin 

lymphoma). This sample was also positive for signature 15, which is associated with defective 

DNA mismatch repair. Further, the reactive oxygen species associated signature 18 was found 

in multiple cancer types including neuroblastoma, rhabdomyosarcoma, T-ALL, Ewing sarcoma, 

and several subtypes of B-ALL.  

 

Therapy-related signatures were detected in several samples collected post-treatment. The first 

was signature 22, found in a single hepatoblastoma tumor of an Asian patient that had a 

mutation rate >10 times higher than the other hepatoblastoma tumors (Supp. Figure 4). 

Interestingly, signature 22 is associated with exposure to aristolochic acid, found in a Chinese 

medicinal herb (Aristolochia fangchi) that is known to be carcinogenic (57). Notably, the 

relapsed tumor from this patient had increased mutational burden accompanied by acquisition 
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of COSMIC signature 35, which is known to be associated with exposure to cisplatin (Supp. 

Figure 4B), a chemotherapy drug used as part of the standard of care for hepatoblastoma (58). 

Signature 35 and signature 31, also associated with cisplatin, were found in osteoblastomas 

and ependymomas as previously reported (59), as well as in retinoblastoma and Ewing’s 

sarcoma, all of which employ cisplatin for treatment. It is notable that two signatures (currently 

designated as COSMIC signature 86 and 87) proposed to be induced by ALL treatment were 

also detected exclusively in relapsed B-ALL samples (Supp. Figure 5).   
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DISCUSSION 

Pediatric cancer is a disease comprised of many rare subtypes. Effective sharing of genomic 

data and a community effort to elucidate etiology are therefore critical to developing effective 

therapeutic strategies. St. Jude Cloud is designed to provide a data analysis ecosystem that 

supports multi-disciplinary research on pediatric cancer by empowering laboratory scientists, 

clinical researchers, clinicians and bioinformatics scientists. The PeCan portal enables 

navigation of a pediatric cancer knowledgebase assembled from published literature while the 

Visualization Community enables dynamic exploration of harmonized and curated data in the 

forms of landscape maps, cancer subgroups, and integrated views of the genome, 

transcriptome and epigenome from the same cancer sample. Both apps are designed to be 

accessible openly by researchers without any formal computational training. Common use 

cases, such as assessing recurrence of a rare genomic variant or expression status of a gene of 

interest, are directly enabled by these two St. Jude Cloud apps without the need to download 

data and perform a custom analysis. If a subset of samples identified through the initial data 

exploration warrants in-depth investigation, a comprehensive re-analysis can be performed on 

the Genomics Platform app or a user’s local computing infrastructure. The complementarity 

amongst the three apps within the St. Jude Cloud ecosystem enables the optimal use of 

computational resources so that researchers can focus on innovative analysis that will lead to 

new insight.  

User feedback has been critical to informing the trajectory of St. Jude Cloud development. To 

improve data query, we developed a data browser within the Genomics Platform, which allows a 

user to select data sets by study, disease subtype, disease stage (e.g. diagnosis, relapse or 

metastasis), sequencing type, and data type. Most recently, RNA-seq feature count data has 

been made available on the Genomics Platform as these are commonly used for many 

downstream analyses. We envision an evolving expansion of our current data offerings to 

include epigenetic and 3D genome data, new facets of our pediatric cancer knowledgebase, 

non-genomics data, and a variety of additional visualization tools. A new app has been 

designed for better integration of orthotopic patient-derived xenograft models that are available 

on the Childhood Solid Tumor Network (CSTN, (41) raw genomic data accessible on the 

Genomics Platform) and Pediatric Brain Tumor Portal (PBTP, (60), He et al, under review). 

Moving forward, the rich data resources on St. Jude Cloud may attract external methods 

developers to use pediatric cancer data—genomic or other data types—as the primary source 

for development, further expanding the analytical capability of St. Jude Cloud ecosystem and 

broadening the user base to researchers specializing in other diseases.   
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A key consideration of our data sharing strategy is to enable access to the pediatric cancer 

research community as soon as possible, rather than holding data back for publication (which 

may take months or years). This is accomplished through the development of the Real-Time 

Clinical Genomics (RTCG) deposition pipeline, a complex workflow involving verification of 

patient consent, de-identification, data harmonization, and quality checking. To our knowledge, 

this is the first instance of an institution deposition of prospective clinical genomics data—whole-

genome, whole-exome and RNA-Seq—to the scientific research community. The RTCG 

workflow may serve as a model for other institutions envisioning similar initiatives on sharing 

data generated from clinical genomics programs with the external community. Currently, the two 

prospective sequencing projects, RTCG and G4K, have contributed >50% of the raw cancer 

WGS data on St. Jude Cloud, all of which have been made accessible to 78 investigators from 

53 institutions who applied for data access prior to publications of RTCG and G4K.  RTCG data 

has expanded substantially from March to July 2020, at the height of the COVID-19 pandemic in 

the US (Fig. 3B). We anticipate adding approximately 500 additional cases profiled by 

prospective clinical genomics per year at regular intervals. Data generated from RTCG and G4K 

are particularly enriched for rare pediatric cancer subtypes (Fig. 3C) enabling future research on 

new therapies that may be incorporated into patient care.  

 

While St. Jude Cloud currently hosts genomic data generated by St. Jude studies, we envision it 

will serve as a collaborative research platform for the broader pediatric cancer community in the 

future. User-uploaded data can be analyzed and explored alongside the wealth of curated and 

raw pediatric genomic data on St. Jude Cloud; because deposition of user data to St. Jude 

Cloud requires minimal effort. In this regard St. Jude Cloud represents a community resource, 

framework, and significant contribution to the pediatric genomic sequencing data sharing 

landscape. We also recognize that contemporary data sharing models are shifting from 

centralized to distributed resources that serve specific communities. Such distributed 

repositories are currently not well connected and require considerable effort to move data or 

tools from one platform to another. The ultimate solution is likely to consist of a federated 

system for data aggregation, which has also been identified as a priority by participants in the 

first symposium of The Childhood Cancer Data Initiative (61). This is particularly important for 

rare subtypes of pediatric cancer as illustrated in our use cases that analyzed 

craniopharyngioma subgroup classification and hepatoblastoma mutational signature and. An 

important aspect of future work will be the development of a coordinated effort for data 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.24.264614doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.24.264614
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

federation across other pediatric genomic resources to enable proper study of these rare 

tumors. 

 

 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.24.264614doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.24.264614
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

METHODS 

St. Jude Cloud Genomics Platform 

St. Jude Cloud Genomics Platform is a web application for querying, selecting, and accessing 

raw and curated genomic data sets through a custom-built Data Browser. Genomic data storage 

is provided by Microsoft Azure which is accredited to comply with major global security and 

privacy standards, such as ISO 27001, and has the security and provenance standards required 

for HIPAA-compliant operation. By leveraging Microsoft Azure, DNAnexus provides an open, 

flexible and secure cloud platform for St. Jude Cloud to support operational requirements such 

as the storage and vending of pediatric genomics data to users, along with an environment 

supportive of genomics analysis tools. DNAnexus supports a security and compliant framework 

with all of the major data privacy standards (HIPAA, CLIA, CGP, 21 CFR Parts 22, 58, 493, and 

European data privacy laws and regulations) and interfaces with St. Jude Cloud Genomics 

Platform. Application for data access can be made using our streamlined electronic process via 

Docusign (only for requests made within the United States) or a manual process which requires 

downloading, filling out, signing, and uploading the data access agreement. Upon approval of a 

data access request by the relevant data access committee(s), St. Jude Cloud Genomics 

Platform coordinates the provision of a free copy of the requested data to the user via the 

DNAnexus API into a secure, private workspace within the DNAnexus platform which can also 

be used for custom data upload. 

 

The Tools section of St. Jude Cloud Genomics Platform provides access to 8 end-to-end St. 

Jude Cloud workflows optimized for the DNAnexus environment. When a user wishes to run a 

St. Jude Cloud workflow, St. Jude Cloud Genomics Platform creates a new project folder and 

vends a copy of the tool to this folder where a user may import St. Jude Cloud genomics data or 

even upload their own datasets. DNAnexus provides both a command line option for batch 

execution of operations, and a graphical user-interface for job submission and execution.  

 

Genomic Sequencing Data 

Raw genomic data can be requested and accessed on St. Jude as mapped NGS reads in the 

BAM (62) file format. The data were generated from paired tumor-normal samples of pediatric 

cancer patients, germline-only samples of long-term survivors of pediatric cancer, and germline-

only samples of pediatric sickle cell patients as summarized in Figure 2A. Paired tumor-normal 

datasets include retrospective data of 1,610 patients from the St. Jude - Washington University 
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Pediatric Cancer Genome Project (PCGP) (2), 78 patients from a ‘Clinical Pilot’ study (24), and 

prospective data of 309 patients from ‘Genomes for Kids’ (G4K) study (27) in addition to 1,038 

from our real-time clinical genomics (RTCG) initiative. The germline-only dataset of pediatric 

cancer survivors include 4,833 participants of St. Jude Lifetime Cohort Study (SJLIFE, (25)), a 

study that brings long-term survivors back to St. Jude Children’s Research Hospital for 

extensive clinical assessments, and 2,912 participants of the Childhood Cancer Survivor Study 

(CCSS, (26)), a 31-institution cohort study of long-term survivors. Primary diagnosis of cancer 

subtypes for both the pediatric cancer and survivorship cohorts is provided both as (i) the value 

provided at data submission time from the lab or principal investigator (generally unaltered but 

updated as we receive new information) and as (ii) the harmonized diagnosis value matching 

the closest classification present in Oncotree (www.oncotree.mskcc.org). Germline-only data of 

pediatric sickle cell patients include 807 patients from the Sickle Cell Genome Project (SGP), an 

initiative that is part of the Sickle Cell Clinical Research and Intervention Program (SCCRIP) 

(63).  

 

Each of these studies represent an individual data access unit within St. Jude Cloud, and was 

approved for data sharing by the St. Jude Children’s Research Hospital Institutional Review 

Board (IRB). Further, data is only shared where patient families have consented to research 

data sharing. For each cohort (i.e. pediatric cancer, survivor, or sickle cell), a data access 

committee has been formed that assess and subsequently approves or rejects data access 

requests. 

 

Genomic data harmonization and QC check 

WGS and WES data were mapped to hg38 (GRCh38_no_alt) using bwa-mem (64) followed by 

variant calling using GATK 4.0 HaplotypeCaller (65), both reimplemented by Microsoft 

Genomics Service (66) on Microsoft Azure, to generate BAM and genomic VCF files for each 

sample. Each type of genomic sequencing data (WGS, WES) is evaluated separately post-

sequencing and mapping. Quality check involves a confirmation of sequence file integrity using 

Samtools (62) quickcheck and Picard ValidateSamFile (67) and evaluation of the quality, 

coverage distribution and mapping statistics using Samtools flagstat, FASTQC (68), Qualimap 2 

(69) bamqc. The details of the process are described in the respective request for comment 

(RFC) (70). 
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RNA-Seq data were mapped to hg38 (GRCh38_no_alt) using a customized workflow (71). In 

brief, RNA-seq reads were aligned using the STAR aligner in two-pass mode (72) to the human 

hg38 genome build using gene annotations provided by Gencode v31 gene models 

(73). Subsequently, Picard (67) SortSam was used to coordinate sort the BAM file, and Picard 

ValidateSamFile checks that the aligned BAM was valid relative to the format specification. Last, 

gene-level counts are generated using HTSeq-count (74) using Gencode v31 gene models. For 

QC check, we used Qualimap 2 RNA-Seq and an in-house “NGSderive strandedness” script 

(75) that infers strandedness using GENCODE v31 gene annotations. 

 

Real-Time Clinical Genomics (RTCG) Protocol 

Our Institutional Review Board-approved RTCG protocol (St. Jude IRB #19-0099) comprises a 

series of semi-automated steps that enable the transfer of prospective clinical genomics and 

selected patient clinical data to St. Jude Cloud. Transfer of this data to St. Jude Cloud is only 

permitted when patient consent is obtained for clinical genomic testing, research use, and St. 

Jude Cloud data sharing. This process, depicted in Fig. 3A, begins with patient registration and 

the assignment of PHI/MRN and entry to our electronic medical records database (EMR DB) 

after which an initial clinical diagnosis is made by the attending physician. Every St. Jude patient 

has the option of undergoing clinical genomics sequencing as part of our St. Jude clinical 

genomics service.  If patient consent is obtained, the attending physician places an order with 

the Clinical Genomics team to perform the three-platform sequencing of whole-genome, whole-

exome and transcriptome sequencing in CLIA-certified, CAP-accredited laboratory (24). The 

resulting sequence data is transferred to an isolated clinical computing environment for 

automated analysis, manual curation, case presentation to our molecular tumor board (MTB) to 

generate a final case report. Updates to the diagnosis of the patient throughout this process are 

routine, and we regularly update records based on the most up to date information. 

 

Following the initial MTB sign out of a case report, an embargo period of 30 days is maintained 

to enable updates or corrections of files prior to the transfer of deidentified genomic data to the 

research computing environment. Further, clinical information is retrieved from the EMR DB and 

collated within the research computing environment. After an additional embargo period of 90 

days, patient genomic data is transferred to St. Jude Cloud upon verification of consent for 

cloud data sharing. Once within St. Jude Cloud, data harmonization and QC check are 

performed as described above prior to public release. Samples are tagged with a rolling 

publication embargo date which must pass before the data can be used in any external 
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publication. Importantly, patient consent is periodically checked as updates may require the 

removal of patient data from the research computing and St. Jude Cloud. 

 

Identification of rare pediatric cancer samples among prospective clinical genomics 

cohorts. 

The annual incidence (number of patients per million) of cancer diagnoses (ICCC - International 

Classification of Childhood Cancer) between the ages of 0-17 years in the USA were calculated 

using data from the NCI Surveillance, Epidemiology and End Results (SEER) program (19) for 

the period 1990-2016. Of these, only ICD-O-3 (International Classification of Disease for 

Oncology, third edition) histology subgroupings with an estimated number of 200 or fewer new 

patients per million per year were considered rare pediatric cancer subtypes. These estimates 

were calculated by multiplying the annual incidence per million by 74.2 million, the 2010 census 

estimate of the number of people in the USA 0-17 years of age. This data was used to 

determine which of the subtypes unique to the prospective clinical genomics (G4K, RTCG) 

datasets represented rare cancer subtypes for the St. Jude Cloud platform.  

 

Pediatric cancer patient sample diagnosis subtype curation 

The diagnosis subtype for pediatric cancer patient samples were normalized to a consistent 

nomenclature across each of the PCGP, Clinical Pilot, G4K, and RTCG sample collections. For 

PCGP samples, previous associated publications were consulted to ensure accuracy of 

diagnosis subtype assignment within St. Jude Cloud. For patient samples from Clinical Pilot, 

G4K and RTCG, clinical genomics pathology reports were used to assign or verify diagnosis 

subtype annotations. Upon arriving at a concise set of diagnosis subtype annotations across all 

patient samples on St. Jude Cloud, diagnosis subtype abbreviations were assigned (Supp. 

Table S3) along with the closest matching Oncotree (www.oncotree.mskcc.org) Identifier.  

 

Expression analysis of pediatric cancer 

St. Jude Cloud tumor RNA-Seq expression count data were generated using HTSeq version 

0.11.2 (80) in conjunction with GENCODE (release 31) gene annotations based on the August 

2019 release. Of these, only diagnostic, relapse and metastatic samples from fresh frozen 

tissue (i.e. excluding FFPE samples) were included. We removed samples where the 

associated RNA-seq data involved multiple read lengths or the computationally derived 

strandedness (InferExperiment (87)) was unclear (samples sequenced using a stranded 

protocol having less than 80% reverse-oriented stranded read pairs were deemed ‘unclear 
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strandedness’). When patient sample RNA-Seq data was available in both PCGP and Clinical 

Pilot studies, we only considered the Clinical Pilot data. The analysis only included RNA-seq 

generated from Illumina GAIIX, HiSeq2000, HiSeq2500, HiSeq4000, NextSeq, or NovaSeq6000 

sequencing platforms. These QC steps resulted in a total of qualified 1576 RNA-seq samples 

which could be queried using the data browser on the St. Jude Cloud Genomics Platform. Once 

selected, HTSeq feature count files for each of these samples were imported into the St. Jude 

Cloud ‘RNA-Seq Expression Classification’ tool for analysis. In brief, this tool first reads gene 

features from a GENCODE gene model (release 31). It then aggregates the feature counts from 

the HTSeq files into a single matrix for all samples under consideration. Covariate information is 

then retrieved from sample metadata and added to the matrix. Filters are then applied to 

remove non-protein coding genes and genes exhibiting low expression (<10 read count). This 

tool also enables subgrouping of samples into ‘blood’, ‘solid’ and ‘brain’ tumor categories (Supp. 

Table S3) of which there were a total of 816, 303, and 448 respective samples (note the sum 

difference with abovementioned 1576 is from nine germ cell tumors not considered in this 

analysis). Gene expression analysis was performed with R (3.5.2) using the DESeq2, Rtsne, 

sva, and plotly packages. Gene expression within each of the blood, solid, and brain, were 

normalized using DESeq2’s (88) variance stabilizing transformation and batch effects (read 

length (bp), library strandedness (stranded forward, stranded reverse, and unstranded), RNA 

selection method (PolyA versus Total RNA), and read pairing (single- versus paired-end)) were 

removed using ComBat (sva package) (89). The top 1000 most variably expressed genes 

based on median absolute deviation were then selected from each of the three major cancer 

types after which two-dimensional t-Distributed Stochastic Neighbor Embedding (t-SNE) was 

performed according to (42) using a perplexity parameter of 20. Two-dimensional plots for each 

cancer type were generated using Plotly package.  

 

Differential gene expression analysis for comparison of both osteosarcoma and 

craniopharyngioma subgroups was performed using the WARDEN pipeline on St. Jude Cloud. 

Here aligned BAM files were first converted to FASTQ files using bedtools bamtofastq (90). 

Fastq files were submitted to WARDEN using default parameters. ENRICHR (91,92) was used 

to perform gene set enrichment analysis using BioGPS Human Gene Atlas, WikiPathways 

2019, and GO Molecular Function 2018 gene categories. Volcano plots were generated using 

STATA/MP 15.1. Adamantinomatous Craniopharyngioma sample tissue section slides were 

stained with hematoxylin and eosin (H&E stain) and reviewed by a board-certified 

neuropathologist (BAO). 
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Somatic variant data, mutation rate, and mutational signature analysis 

Somatic SNVs and indels were analyzed using paired tumor-normal WGS or WES analysis as 

described previously (24,76). Somatic CNVs were computed using the CONSERTING algorithm 

(77) followed by manual review of coverage and B-allele fraction. The somatic SNVs/indels and 

CNVs were lifted over to HG38 and uploaded to St. Jude Cloud as VCF and CNV files.  

 

Mutation rate and signature analysis was performed using all patient tumor sample VCF files 

from PCGP, Clinical Pilot and G4K studies. When a patient tumor sample VCF file was available 

in both PCGP and Clinical Pilot studies, we only considered the Clinical Pilot data. The mutation 

rate was calculated for each subgroup and defined as the number of somatic SNVs per MB.  

For this purpose, we included only WGS samples and used somatic SNVs in exonic as well as 

non-exonic, non-repetitive regions (i.e regions not covered by RepeatMasker tracks, sum of 

these two regions totaling 1,445 Mb).  

 

To identify mutational signatures in these WGS samples, we first determined the trinucleotide 

context of each somatic SNV using an in-house script, and each sample was summarized 

based on the number of mutations in each of the 96 possible mutation types (mutation plus 

trinucleotide context) (53). The presence and strength of 65 COSMIC signatures (52,78) and 

two therapy-induced mutational signatures which we discovered previously (23) was then 

analyzed using SigProfilerSingleSample (54) version 1.3 using the default parameters. We 

selected SigProfilerSingleSample, as it requires greater stringency to prevent overfitting which 

can lead to spurious signatures. This is accomplished by requiring a cosine increase of 0.05 or 

above to include a signature, and to include ubiquitous signatures 1 and 5 preferentially prior to 

detecting additional signatures. Samples explained by the signatures with cosine similarity less 

than 0.85 were excluded. The proportion of samples (range 0-1) within each cancer subtype 

category was then displayed in a heatmap to patterns in different cancer subtypes. Mutational 

signatures within a subtype were only displayed where prevalence exceeds 1%. For the 

detection of signature 22 in SJST030137, we clustered mutations into diagnosis-specific 

(present in SJST030137_D1 sample), relapse-specific (present in SJST030137_R1 sample), 

and shared (present in both samples) clusters, followed by signature analysis with 

SigProfilerSingleSample on each mutation cluster. The final diagnosis signature spectrum was 

achieved by summing the signatures in the diagnosis-specific and shared mutation clusters, 

while the relapse spectrum was the sum of the relapse-specific and shared clusters. This 
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increased sensitivity of detection of signature 22, which was otherwise obscured in the relapse 

sample due to an increased mutation burden associated with the cisplatin signature. 
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DATA AVAILABILITY 

 

All data is available on St. Jude Cloud (www.stjude.cloud). Interactive t-SNE RNA-Seq 

expression maps are available as a collection within the St. Jude Cloud Visualization 

Community here: https://viz.stjude.cloud/stjudecloud/collection/stjudecloud-paper . RNA-Seq 

derived HTSeq count data for samples considered in Use Case 1: Expression landscape of 

pediatric cancers, and somatic VCF files used for mutation burden and mutation signatures 

analysis in Use Case 2:Mutation rates and signatures across pediatric blood, solid and brain 

cancers, can be accessed through the St. Jude Cloud platform data browser here: 

https://pecan.stjude.cloud/permalink/stjudecloud-paper  

 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.24.264614doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.24.264614
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

AUTHOR CONTRIBUTIONS 

 

J.Z., J.R.D., and K.P. conceived the project; J.Z., Clay McLeod, M.R., S.N., and K.B. designed 

St. Jude Cloud ecosystem; X.Z. developed the visualization tools and A.M.G. led the data 

analysis along with A.T., D.F., S.N., S.W.B., under the supervision of J.Z., and B.A.O. analyzed 

clinical data for adamantinomatous craniopharyngioma. K.B., M.T. and D.F. provided user 

support. Clay McLeod, D.R., M.M., J.S., R.M., B.D., T. A., A.S., S.W., S.F., J.W., E.S., S.W., 

J.R.M., M.R.W., A.F., S. L., Christopher Meyer, N.T., P.T., V.K., S.M., T.N., O.S., I.M., N.R., 

D.G., G.W., E.S., L.T., J.M., S.L., A.M.G., and C.B. developed software and/or performed data 

harmonization under the supervision of J.Z., K.P., Clay McLeod, M.R., C.B., G.M and R.D. Clay 

McLeod, S.N., M.M., J.S., A.F., Y.L., X.T., L.P., Y.C., T.-C.C., X.M., A.P., M.N.E., L.T., A.T., and 

A.M.G. developed the analysis workflows. A.M.G. led the cancer subtype diagnosis 

harmonization along with S.N., Clay McLeod, S.F., D.R., D.F. and R.M. J.R.D., C.G.M, S.J.B. 

and M.D. contributed the PCGP data; J.R.D., K.E.M., C.G.M, M.L., and D.W.E. contributed the 

G4K and RTCG data; Z.W., C.W., L.L.R., Y.Y. contributed St. Jude Life data; G.T.A. contributed 

the CCSS data; and M.W. contributed the sickle cell genomic data. J.Z., A.M.G., and Clay 

McLeod wrote the manuscript with critical feedback from M.N.E., Y.L., L.L.R., and S.W.B. 

 
 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.24.264614doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.24.264614
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

ACKNOWLEDGEMENTS 

 

We wish to thank all St. Jude patients and their families. We would like to thank the generous 

support from Microsoft AI for Good program for providing Microsoft Azure as the cloud storage 

for St. Jude Cloud and for supplying Microsoft Genomics Service for WGS and WES 

harmonization. We would like to thank Mr. Kevin Rodell and Mr. Judson Althoff of Microsoft for 

initiating the St. Jude/Microsoft Collaboration. We would also like to thank the generous support 

of DNAnexus. We would like to acknowledge the contribution by members of the St. Jude 

Biorepository and Clinical Genomics teams for their assistance in developing the RTCG 

pipeline. We would like to thank: Katherine Steuer for her assistance in verifying patient consent 

on research data sharing; Dr. Alberto Pappo for consultation on treatment protocols for pediatric 

hepatoblastoma patients; Drs. David Wheeler, Jennifer Neary, and Antonina Silkov for their help 

in curating the sample information of RTCG and the analysis of adamantinomatous 

craniopharyngioma (ACPG) samples; Dr. Diane Flasch for critical review of the manuscript and 

Drs. Tanja Gruber and Anna Hagstrom for assistance with the clarification of the lineages of 

MLL-rearranged infant ALL. We like to thank all the users who have provided critical feedback, 

in particular Drs. Jackie Norrie, Lawryn Kasper, and Laura Hover. This work is funded as a St. 

Jude Blue Sky initiative. 

 

 

 

 

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.24.264614doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.24.264614
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

REFERENCES 

1. Cunningham RM, Walton MA, Carter PM. The Major Causes of Death in Children and 

Adolescents in the United States. N Engl J Med 2018;379(25):2468-75 doi 

10.1056/NEJMsr1804754. 

2. Downing JR, Wilson RK, Zhang J, Mardis ER, Pui CH, Ding L, et al. The Pediatric Cancer Genome 

Project. Nat Genet 2012;44(6):619-22 doi 10.1038/ng.2287. 

3. Zhang J, Benavente CA, McEvoy J, Flores-Otero J, Ding L, Chen X, et al. A novel retinoblastoma 

therapy from genomic and epigenetic analyses. Nature 2012;481(7381):329-34 doi 

10.1038/nature10733. 

4. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, et al. Somatic histone H3 

alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat 

Genet 2012;44(3):251-3 doi 10.1038/ng.1102. 

5. Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J, et al. Germline Mutations in 

Predisposition Genes in Pediatric Cancer. N Engl J Med 2015;373(24):2336-46 doi 

10.1056/NEJMoa1508054. 

6. Ma X, Edmonson M, Yergeau D, Muzny DM, Hampton OA, Rusch M, et al. Rise and fall of 

subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia. Nat Commun 

2015;6:6604 doi 10.1038/ncomms7604. 

7. Brady SW, Ma X, Bahrami A, Satas G, Wu G, Newman S, et al. The Clonal Evolution of Metastatic 

Osteosarcoma as Shaped by Cisplatin Treatment. Mol Cancer Res 2019;17(4):895-906 doi 

10.1158/1541-7786.MCR-18-0620. 

8. Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL, Pei D, et al. Targetable kinase-activating 

lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 2014;371(11):1005-15 doi 

10.1056/NEJMoa1403088. 

9. Parker M, Mohankumar KM, Punchihewa C, Weinlich R, Dalton JD, Li Y, et al. C11orf95-RELA 

fusions drive oncogenic NF-kappaB signalling in ependymoma. Nature 2014;506(7489):451-5 doi 

10.1038/nature13109. 

10. Zhang J, Wu G, Miller CP, Tatevossian RG, Dalton JD, Tang B, et al. Whole-genome sequencing 

identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 2013;45(6):602-12 doi 

10.1038/ng.2611. 

11. Chang TC, Carter RA, Li Y, Li Y, Wang H, Edmonson MN, et al. The neoepitope landscape in 

pediatric cancers. Genome Med 2017;9(1):78 doi 10.1186/s13073-017-0468-3. 

12. Wu G, Diaz AK, Paugh BS, Rankin SL, Ju B, Li Y, et al. The genomic landscape of diffuse intrinsic 

pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 2014;46(5):444-50 

doi 10.1038/ng.2938. 

13. Tirode F, Surdez D, Ma X, Parker M, Le Deley MC, Bahrami A, et al. Genomic landscape of Ewing 

sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. 

Cancer Discov 2014;4(11):1342-53 doi 10.1158/2159-8290.CD-14-0622. 

14. Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, et al. The genomic landscape of 

pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet 2017;49(8):1211-8 

doi 10.1038/ng.3909. 

15. Northcott PA, Buchhalter I, Morrissy AS, Hovestadt V, Weischenfeldt J, Ehrenberger T, et al. The 

whole-genome landscape of medulloblastoma subtypes. Nature 2017;547(7663):311-7 doi 

10.1038/nature22973. 

16. Ma X, Liu Y, Liu Y, Alexandrov LB, Edmonson MN, Gawad C, et al. Pan-cancer genome and 

transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature 

2018;555(7696):371-6 doi 10.1038/nature25795. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.24.264614doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.24.264614
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

17. Grobner SN, Worst BC, Weischenfeldt J, Buchhalter I, Kleinheinz K, Rudneva VA, et al. The 

landscape of genomic alterations across childhood cancers. Nature 2018;555(7696):321-7 doi 

10.1038/nature25480. 

18. Surveillance, Epidemiology, and End Results Program.  NCI <https://seer.cancer.gov/statistics/>. 

Accessed 2018. 

19. Howlader N, A. M. Noone, M. Krapcho, D. Miller, A. Brest, M. Yu, J. Ruhl, Z. Tatalovich, A. 

Mariotto, D. R. Lewis, H. S. Chen, E. J. Feuer, and K. A. Cronin. 2019 SEER Cancer Statistics 

Review, 1975-2016. In Based on November 2018 SEER data submission, posted to the SEER web 

site.  National Cancer Institute <https://seer.cancer.gov/csr/1975_2016/ >. Accessed 2020. 

20. Mansour MR, Abraham BJ, Anders L, Berezovskaya A, Gutierrez A, Durbin AD, et al. Oncogene 

regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding 

intergenic element. Science 2014;346(6215):1373-7 doi 10.1126/science.1259037. 

21. Northcott PA, Lee C, Zichner T, Stutz AM, Erkek S, Kawauchi D, et al. Enhancer hijacking activates 

GFI1 family oncogenes in medulloblastoma. Nature 2014;511(7510):428-34 doi 

10.1038/nature13379. 

22. Zimmerman MW, Liu Y, He S, Durbin AD, Abraham BJ, Easton J, et al. MYC Drives a Subset of 

High-Risk Pediatric Neuroblastomas and Is Activated through Mechanisms Including Enhancer 

Hijacking and Focal Enhancer Amplification. Cancer Discov 2018;8(3):320-35 doi 10.1158/2159-

8290.CD-17-0993. 

23. Li B, Brady SW, Ma X, Shen S, Zhang Y, Li Y, et al. Therapy-induced mutations drive the genomic 

landscape of relapsed acute lymphoblastic leukemia. Blood 2020;135(1):41-55 doi 

10.1182/blood.2019002220. 

24. Rusch M, Nakitandwe J, Shurtleff S, Newman S, Zhang Z, Edmonson MN, et al. Clinical cancer 

genomic profiling by three-platform sequencing of whole genome, whole exome and 

transcriptome. Nat Commun 2018;9(1):3962 doi 10.1038/s41467-018-06485-7. 

25. Hudson MM, Ehrhardt MJ, Bhakta N, Baassiri M, Eissa H, Chemaitilly W, et al. Approach for 

Classification and Severity Grading of Long-term and Late-Onset Health Events among Childhood 

Cancer Survivors in the St. Jude Lifetime Cohort. Cancer Epidemiol Biomarkers Prev 

2017;26(5):666-74 doi 10.1158/1055-9965.EPI-16-0812. 

26. Robison LL, Armstrong GT, Boice JD, Chow EJ, Davies SM, Donaldson SS, et al. The Childhood 

Cancer Survivor Study: a National Cancer Institute-supported resource for outcome and 

intervention research. J Clin Oncol 2009;27(14):2308-18 doi 10.1200/JCO.2009.22.3339. 

27. Genome4Kids.   <https://clinicaltrials.gov/ct2/show/NCT02530658>. 

28. Tian L, Li Y, Edmonson MN, Zhou X, Newman S, McLeod C, et al. CICERO: a versatile method for 

detecting complex and diverse driver fusions using cancer RNA sequencing data. Genome Biol 

2020;21(1):126 doi 10.1186/s13059-020-02043-x. 

29. Newman S, Fan L, Pribnow A, Silkov A, Rice SV, Lee S, et al. Clinical genome sequencing uncovers 

potentially targetable truncations and fusions of MAP3K8 in spitzoid and other melanomas. Nat 

Med 2019;25(4):597-602 doi 10.1038/s41591-019-0373-y. 

30. Edmonson MN, Patel AN, Hedges DJ, Wang Z, Rampersaud E, Kesserwan CA, et al. Pediatric 

Cancer Variant Pathogenicity Information Exchange (PeCanPIE): a cloud-based platform for 

curating and classifying germline variants. Genome Res 2019;29(9):1555-65 doi 

10.1101/gr.250357.119. 

31. Wang Z, Wilson CL, Easton J, Thrasher A, Mulder H, Liu Q, et al. Genetic Risk for Subsequent 

Neoplasms Among Long-Term Survivors of Childhood Cancer. J Clin Oncol 2018;36(20):2078-87 

doi 10.1200/JCO.2018.77.8589. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.24.264614doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.24.264614
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

32. Liu Y, Li C, Shen S, Chen X, Szlachta K, Edmonson MN, et al. Discovery of regulatory noncoding 

variants in individual cancer genomes by using cis-X. Nat Genet 2020 doi 10.1038/s41588-020-

0659-5. 

33. Ma X, Shao Y, Tian L, Flasch DA, Mulder HL, Edmonson MN, et al. Analysis of error profiles in 

deep next-generation sequencing data. Genome Biol 2019;20(1):50 doi 10.1186/s13059-019-

1659-6. 

34. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of 

ChIP-Seq (MACS). Genome Biol 2008;9(9):R137 doi 10.1186/gb-2008-9-9-r137. 

35. Xu S, Grullon S, Ge K, Peng W. Spatial clustering for identification of ChIP-enriched regions 

(SICER) to map regions of histone methylation patterns in embryonic stem cells. Methods Mol 

Biol 2014;1150:97-111 doi 10.1007/978-1-4939-0512-6_5. 

36. Law CW, Chen Y, Shi W, Smyth GK. voom: Precision weights unlock linear model analysis tools 

for RNA-seq read counts. Genome Biol 2014;15(2):R29 doi 10.1186/gb-2014-15-2-r29. 

37. Blokzijl F, Janssen R, van Boxtel R, Cuppen E. MutationalPatterns: comprehensive genome-wide 

analysis of mutational processes. Genome Med 2018;10(1):33 doi 10.1186/s13073-018-0539-0. 

38. Zhou X, Edmonson MN, Wilkinson MR, Patel A, Wu G, Liu Y, et al. Exploring genomic alteration in 

pediatric cancer using ProteinPaint. Nat Genet 2016;48(1):4-6 doi 10.1038/ng.3466. 

39. Zhuo X. 2020   <https://genomepaint.stjude.cloud/>. 

40. Wang L, Hiler D, Xu B, AlDiri I, Chen X, Zhou X, et al. Retinal Cell Type DNA Methylation and 

Histone Modifications Predict Reprogramming Efficiency and Retinogenesis in 3D Organoid 

Cultures. Cell Rep 2018;22(10):2601-14 doi 10.1016/j.celrep.2018.01.075. 

41. Stewart E, Federico SM, Chen X, Shelat AA, Bradley C, Gordon B, et al. Orthotopic patient-

derived xenografts of paediatric solid tumours. Nature 2017;549(7670):96-100 doi 

10.1038/nature23647. 

42. Gu Z, Churchman ML, Roberts KG, Moore I, Zhou X, Nakitandwe J, et al. PAX5-driven subtypes of 

B-progenitor acute lymphoblastic leukemia. Nat Genet 2019;51(2):296-307 doi 10.1038/s41588-

018-0315-5. 

43. Lance E. Palmer XZ, Clay McLeod, Evadnie Rampersaud, Jeremie H. Estepp, Xing Tang, Jian 

Wang, Edgar Siosan, J. Robert Michael, Kirby Birch, Jason R Hodges, Martha Villavicencio, 

Michael Rusch, Scott Newman, Heather Mulder, John Easton, Keith Perry, James R. Downing, 

MD, Jane S. Hankins,  Gang Wu, Jinghui Zhang, Mitchell J. Weiss. Data Access and Interactive 

Visualization of Whole Genome Sequence of Sickle Cell Patients within the St. Jude Cloud. 

. ASH Annual Meeting. Volume 32 San Diego: Blood; 2018. p 723. 

44. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, et al. Molecular 

classification of cancer: class discovery and class prediction by gene expression monitoring. 

Science 1999;286(5439):531-7 doi 10.1126/science.286.5439.531. 

45. Downing JR. Acute leukemia: subtype discovery and prediction of outcome by gene expression 

profiling. Verh Dtsch Ges Pathol 2003;87:66-71. 

46. Kohlmann A, Bullinger L, Thiede C, Schaich M, Schnittger S, Dohner K, et al. Gene expression 

profiling in AML with normal karyotype can predict mutations for molecular markers and allows 

novel insights into perturbed biological pathways. Leukemia 2010;24(6):1216-20 doi 

10.1038/leu.2010.73. 

47. Bullinger L, Dohner K, Bair E, Frohling S, Schlenk RF, Tibshirani R, et al. Use of gene-expression 

profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 

2004;350(16):1605-16 doi 10.1056/NEJMoa031046. 

48. Charlton J, Irtan S, Bergeron C, Pritchard-Jones K. Bilateral Wilms tumour: a review of clinical 

and molecular features. Expert Rev Mol Med 2017;19:e8 doi 10.1017/erm.2017.8. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.24.264614doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.24.264614
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

49. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC, et al. Molecular subgroups 

of medulloblastoma: the current consensus. Acta Neuropathol 2012;123(4):465-72 doi 

10.1007/s00401-011-0922-z. 

50. Prithviraj P, Anaka M, McKeown SJ, Permezel M, Walkiewicz M, Cebon J, et al. Pregnancy 

associated plasma protein-A links pregnancy and melanoma progression by promoting cellular 

migration and invasion. Oncotarget 2015;6(18):15953-65 doi 10.18632/oncotarget.3643. 

51. Apps JR, Carreno G, Gonzalez-Meljem JM, Haston S, Guiho R, Cooper JE, et al. Tumour 

compartment transcriptomics demonstrates the activation of inflammatory and odontogenic 

programmes in human adamantinomatous craniopharyngioma and identifies the MAPK/ERK 

pathway as a novel therapeutic target. Acta Neuropathol 2018;135(5):757-77 doi 

10.1007/s00401-018-1830-2. 

52. Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, Wu Y, et al. The repertoire of 

mutational signatures in human cancer. Nature 2020;578(7793):94-101 doi 10.1038/s41586-

020-1943-3. 

53. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of 

mutational processes in human cancer. Nature 2013;500(7463):415-21 doi 

10.1038/nature12477. 

54. Petljak M, Alexandrov LB, Brammeld JS, Price S, Wedge DC, Grossmann S, et al. Characterizing 

Mutational Signatures in Human Cancer Cell Lines Reveals Episodic APOBEC Mutagenesis. Cell 

2019;176(6):1282-94 e20 doi 10.1016/j.cell.2019.02.012. 

55. Papaemmanuil E, Rapado I, Li Y, Potter NE, Wedge DC, Tubio J, et al. RAG-mediated 

recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute 

lymphoblastic leukemia. Nat Genet 2014;46(2):116-25 doi 10.1038/ng.2874. 

56. Zheng S, Cherniack AD, Dewal N, Moffitt RA, Danilova L, Murray BA, et al. Comprehensive Pan-

Genomic Characterization of Adrenocortical Carcinoma. Cancer Cell 2016;29(5):723-36 doi 

10.1016/j.ccell.2016.04.002. 

57. Hoang ML, Chen CH, Sidorenko VS, He J, Dickman KG, Yun BH, et al. Mutational signature of 

aristolochic acid exposure as revealed by whole-exome sequencing. Sci Transl Med 

2013;5(197):197ra02 doi 10.1126/scitranslmed.3006200. 

58. Katzenstein HM, Langham MR, Malogolowkin MH, Krailo MD, Towbin AJ, McCarville MB, et al. 

Minimal adjuvant chemotherapy for children with hepatoblastoma resected at diagnosis 

(AHEP0731): a Children's Oncology Group, multicentre, phase 3 trial. Lancet Oncol 

2019;20(5):719-27 doi 10.1016/S1470-2045(18)30895-7. 

59. Ruggiero A, Trombatore G, Triarico S, Arena R, Ferrara P, Scalzone M, et al. Platinum compounds 

in children with cancer: toxicity and clinical management. Anticancer Drugs 2013;24(10):1007-19 

doi 10.1097/CAD.0b013e3283650bda. 

60. Smith KS, Xu K, Mercer KS, Boop F, Klimo P, DeCupyere M, et al. Patient-derived orthotopic 

xenografts of pediatric brain tumors: a St. Jude resource. Acta Neuropathol 2020;140(2):209-25 

doi 10.1007/s00401-020-02171-5. 

61. CCDI Symposium Childhood Cancer.   <https://www.cancer.gov/news-events/cancer-currents-

blog/2019/lowy-ccdi-symposium-childhood-cancer>. 

62. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map 

format and SAMtools. Bioinformatics 2009;25(16):2078-9 doi 10.1093/bioinformatics/btp352. 

63. Hankins JS, Estepp JH, Hodges JR, Villavicencio MA, Robison LL, Weiss MJ, et al. Sickle Cell 

Clinical Research and Intervention Program (SCCRIP): A lifespan cohort study for sickle cell 

disease progression from the pediatric stage into adulthood. Pediatr Blood Cancer 

2018;65(9):e27228 doi 10.1002/pbc.27228. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.24.264614doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.24.264614
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

64. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv: 

2013;1303.3997v1  

65. Ryan Poplin VR-R, Mark A. DePristo, Tim J. Fennell, Mauricio O. Carneiro, Geraldine A. Van der 

Auwera, David E. Kling, Laura D. Gauthier, Ami Levy-Moonshine, David Roazen, Khalid Shakir, 

Joel Thibault, Sheila Chandran, Chris Whelan, Monkol Lek, Stacey Gabriel, Mark J. Daly, 

Benjamin Neale, Daniel G. MacArthur, and Eric Banks. Scaling accurate genetic variant discovery 

to tens of thousands of samples. bioRxv 2017. 

66. Microsoft.   <https://azure.microsoft.com/mediahandler/files/resourcefiles/accelerate-

precision-medicine-with-microsoft-

genomics/Accelerate_precision_medicine_with_Microsoft_Genomics.pdf>. 

67. Picard.   <http://broadinstitute.github.io/picard/>. 

68. FASTQC.   <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>. 

69. Okonechnikov K, Conesa A, Garcia-Alcalde F. Qualimap 2: advanced multi-sample quality control 

for high-throughput sequencing data. Bioinformatics 2016;32(2):292-4 doi 

10.1093/bioinformatics/btv566. 

70. QC workflow.   < https://github.com/stjudecloud/rfcs/blob/rfcs/qc-workflow/text/0002-quality-

check-workflow.md>. 

71. Rnaseq workflow v2.0.0.   <https://stjudecloud.github.io/rfcs/0001-rnaseq-workflow-

v2.0.0.html>. 

72. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-

seq aligner. Bioinformatics 2013;29(1):15-21 doi 10.1093/bioinformatics/bts635. 

73. Gencode v31.   <https://www.gencodegenes.org/human/release_31.html >. 

74. Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput 

sequencing data. Bioinformatics 2015;31(2):166-9 doi 10.1093/bioinformatics/btu638. 

75. Ngsderive.   <https://github.com/stjudecloud/ngsderive>. 

76. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, et al. The genetic basis of early 

T-cell precursor acute lymphoblastic leukaemia. Nature 2012;481(7380):157-63 doi 

10.1038/nature10725. 

77. Chen X, Gupta P, Wang J, Nakitandwe J, Roberts K, Dalton JD, et al. CONSERTING: integrating 

copy-number analysis with structural-variation detection. Nat Methods 2015;12(6):527-30 doi 

10.1038/nmeth.3394. 

78. Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton MR. Deciphering signatures of 

mutational processes operative in human cancer. Cell Rep 2013;3(1):246-59 doi 

10.1016/j.celrep.2012.12.008. 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.24.264614doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.24.264614
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

FIGURE LEGENDS 

 

Figure 1. Overview of St. Jude Cloud.  (A) Comparison of data sharing via the established 

centralized data repository model versus St. Jude Cloud. The established model requires 

replication of data and local computing infrastructure while cloud-based data sharing enables a 

user to perform custom analysis by uploading tools/analysis code onto the shared cloud-

computing infrastructure without replication. (B) Overview of ingress, harmonization, and 

deposition of high-throughput sequencing datasets into the St. Jude Cloud ecosystem. Raw 

genomic data, collected from both retrospective research and prospective clinical studies, were 

harmonized and curated for access by the broad research community via the three apps on the 

St. Jude Cloud: Genomics Platform, PeCan Knowledgebase and Visualization Community.  

 
Figure 2. Pediatric cancer genomics data on St. Jude Cloud. (A) Summary of high-

throughput sequencing data sets on St. Jude Cloud. (B) Frequency of pediatric cancer types in 

WGS data generated from paired tumor-normal samples (left) or germline-only pediatric cancer 

survivors (right).  

 

Figure 3. Prospective clinical genomics data on St. Jude Cloud. (A) Workflow for monthly 

deposition of Real-time Clinical Genomics (RTCG) Data. For WGS, WES and RNA-seq data 

generated from our CLIA/CAP-accredited laboratory, a check for informed consent for research 

use of patient data is performed following an embargo period (30 days) prior to transfer to the 

research computing environment. Following a further embargo period (90 days) the genomic 

data will be uploaded to the St. Jude Cloud with data harmonization performed and data quality 

assessed prior to release on the Genomics Platform of St. Jude Cloud. (B) Cumulative plot of 

WGS, WES and RNA-seq released on St. Jude Cloud as part of the RTCG deposition process 

since May 2019. (C) Rare pediatric blood (n=13, 5 subtypes), solid (n=31, 16 subtypes) and 

germ cell (n=7, 6 subtypes) tumor samples uniquely represented in clinical genomics samples. 

 

Figure 4. Working across the St. Jude Cloud ecosystem.  A virtual cohort can be assembled 

by querying the data browser on the Genomics Platform (top left) or exploring the Pediatric 

Cancer Knowledgebase (PeCan) portal (top right).  Following approval by the data access 

committee, the requested data is “vended” onto a private cloud workspace in Genomics 

Platform (middle center) for analysis using the workflows on St. Jude Cloud (‘Genomics 

Platform Analysis Tools’), tools available within the DNAnexus Tool Ecosystem, or custom 
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workflows. Alternatively, a user may download the vended genomic data to their local computing 

infrastructure for further in-depth analysis. Following each of these analyses, a user may share 

custom visualizations (e.g. landscape maps or cancer subgroup analyses) with the research 

community via the Visualization Community (bottom right) and published results can be 

incorporated to the PeCan Knowledgebase. 

 
Figure 5. Transcriptome landscape of pediatric cancers. RNA-Seq of 816 blood cancers, 

303 solid tumors, and 448 brain tumors were analyzed by a t-distributed stochastic neighbor 

embedding (t-SNE) algorithm to generate a two-dimensional t-distributed stochastic neighbor 

embedding (t-SNE) plot highlighting major subtypes in distinct colors. Each dot represents a 

sample. (A) Plot for blood cancers depicting major subtypes comprising B-cell acute 

lymphoblastic leukemias (B-ALL): ETV6-RUNX1, KMT2A-rearranged (KMT2A), TCF3-

PBX1, DUX4-rearranged (DUX4), ZNF384-rearranged (ZNF384), MEF2D-rearranged 

(MEF2D), BCR-ABL1 (Ph), Ph-like, Hyperdiploid, Hypodiploid, intrachromosomal amplification 

of chromosome 21 (iAMP21), NUTM1-rearranged (NUTM1), PAX5 p.Pro80Arg mutation (PAX5 

P80R), PAX5 alterations (PAX5 alt)); T-cell acute lymphoblastic leukemia (T-ALL); acute 

myeloid leukemia (AML); acute megakaryoblastic leukemia (AMKL), and Anaplastic Large Cell 

Lymphoma (ALCL). Mixed lineage leukemias harboring KMT2A(MLL)-rearrangements are 

highlighted in (B). (C) Plot for solid tumors displaying major subtypes: osteosarcoma, 

melanoma, adrenocorticial carcinoma, hepatocellular carcinoma, hepatoblastoma, thyroid 

papillary tumor (thyroid), kidney cancer, rhabdoid tumor, Ewing sarcoma, Wilms tumor (note 

bilateral cases form a distinct group), embryononal/alveolar/botryoid rhabdomyosarcoma 

(RMS), neuroblastoma and retinoblastoma. Two distinct groups of osteosarcoma, denoted OS 

group 1 and OS group 2 are circled, where the latter are comprised predominantly of 

metastatic/relapse tumors. (D) Volcano plot depicting differential gene expression (DGE) 

analysis between these two osteosarcoma groups showing an over-representation of Human 

Gene Atlas ‘Lung’ genes expression (blue) in OS group 2. (E) Plot for brain tumors displaying 

major subtypes: Medulloblastoma (including SHH and WNT subtypes), choroid plexus 

carcinoma, atypical teratoid/rhabdoid tumor (ATRT), brain germ cell tumor (GCT), meningioma, 

high-grade neuroepithelial tumor (HGNET), adamantinomatous craniopharyngioma (ACPG), 

ependymoma (distinguishing posterior fossa versus supratentorial), low-grade glioma, and high-

grade glioma. Two observed ACPG groups (1 and 2) are labelled and a (F) volcano plot 

displaying DGE analysis shows an over-representation of oligodendrocytic (blue), prefrontal 
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cortex (yellow), and fetal brain (red) genes in ACPG group 1, while overrepresentation of matrix 

metallopeptidase (MMP) genes (green) is seen in ACPG group 2.  

 

Figure 6. Somatic mutation rate and COSMIC mutation signatures in pediatric cancer 

subtypes. Both were calculated from coding and non-coding somatic mutations from paired 

tumor-normal WGS data of blood (samples=456), solid (samples=273) and brain tumor 

(samples = 229). Mutation burden (left) is shown at a log-scale of number of mutations per Mb. 

Red lines represent median mutation rate values per subtype. Black, orange, and red indicate 

samples with mutation rates within two standard deviations (SD), between two and three SD, 

and greater than three SD within the subtype respectively. Note the outlier osteosarcoma 

samples with low mutation burden (marked orange and red) have <20% and <10% tumor purity 

respectively. The orange and red outlier High Grade Glioma samples are hypermutators with bi-

allelic loss of either MSH2 or POLE, respectively. Heatmap of COSMIC mutation signatures with 

therapy-related signatures indicated with an asterisk (*). The scale represents the proportion of 

somatic mutations contributing to each signature in each sample averaged by subtype. 

Abbreviations: Acute Myeloid Leukemia (AML), Acute Megakaryocyte Leukemia (AMKL); B-cell 

acute lymphoblastic leukemia (B-ALL), T-cell Acute Lymphoblastic Leukemia (T-ALL), Non-

Rhabdomyosarcoma Soft Tissue Sarcoma (Non-Rhab. STS), Choroid Plexus Carcinoma 

(CPC), Atypical Teraroid/Rhabdoid Tumor (ATRT). For each subtype the number of samples 

examined is indicated in parentheses. 
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