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Abstract  

Morphologic examination of tissue biopsies is essential for histopathological diagnosis. However, 

accurate and scalable cellular quantification in human samples remains challenging. Here, we present a 

deep learning-based approach for antigen-specific cellular morphometrics in human kidney biopsies, 

which combines indirect immunofluorescence imaging with U-Net-based architectures for image-to-

image translation and dual segmentation tasks, achieving human-level accuracy. In the kidney, podocyte 

loss represents a hallmark of glomerular injury and can be estimated in diagnostic biopsies. Thus, we 

profiled over 27,000 podocytes from 110 human samples, including patients with anti-neutrophil 

cytoplasmic antibody-associated glomerulonephritis (ANCA-GN), an immune-mediated disease with 

aggressive glomerular damage and irreversible loss of kidney function. Previously unknown 

morphometric signatures of podocyte depletion were identified in patients with ANCA-GN, which 

allowed patient classification and showed potential for risk stratification in combination with routine 

clinical tools. Together, our approach enables robust and scalable molecular morphometric analysis of 

human tissues, yielding deeper biological insights into the human kidney pathophysiology. 

 

Introduction 
 

The kidney continuously filters blood and maintains overall body homeostasis relying on a delicate 

balance between a complex vascular network and multiple specialized cell types1. Podocytes are kidney 

epithelial cells with limited capacity for regeneration that function as master regulators of glomerular 

health2. Experimental models show that severe podocyte loss leads to an irreversible process of 

progressive scarring rendering the affected glomeruli non-functional3-5. Furthermore, human podocyte 

loss has been identified in association with all major diseases contributing to chronic kidney disease6-13. 
 

Anti-neutrophil cytoplasmic antibody associated glomerulonephritis (ANCA-GN) is primarily a systemic 

vasculitis with a strong immune-mediated epithelial reaction in the kidney, which leads to the formation 

of destructive glomerular lesions and a rapid loss of kidney function14. While ANCA-GN has well-

defined cellular changes15 that include podocyte injury16, podocyte loss is yet to be characterized in 

ANCA-GN patients. Using indirect immunofluorescence imaging, it is now possible to visualize different 

podocyte structures, facilitating the unambiguous identification of podocytes and thereby quantification of 

podocyte depletion5,6. However, reliable image segmentation for routine clinical analysis remains 

challenging, mostly due to time-constraints for detailed quantitative analysis with cellular resolution and 

lack of accuracy in available automated methods. 
 

Time-constraints, precision and reproducibility are known hurdles in histopathology. For this reason, 

automation of classification and quantification processes has the potential to lessen the diagnostic burden 

and improve the quality of acquired data. Deep learning is increasingly gaining attention in multiple 

biomedical areas due to its potential clinical applications17, including natural language processing (i.e. 

analysis of electronic health records), and computer vision (i.e. histopathology and radiology). U-Net-

based frameworks18,19 are particularly interesting for histopathology as they can be used for image 

segmentation and specific tasks such as image-to-image translation20,21. To date, multiple reports have 

shown the high-performance of deep learning networks for tissue-based classification of human 

disease22,23, but their role in detailed cellular morphometric profiling of clinical tissues remains unclear.  
 

In this study, we present a deep learning-based workflow to perform cell-specific morphometric profiling 

of human kidney biopsies, including numbers, sizes, densities and distributions of podocytes within their 

respective glomerulus, which allowed a comprehensive characterization of endpoint variability within and 

between patients. We analyzed a total of 1095 glomeruli from 110 patients to profile 27,696 podocytes 

based on tissue expression of two complementary antigens in order to identify, segment and quantify 

podocyte depletion. A previously unrecognized morphometric signature of podocyte depletion was 

detected in patients with ANCA-GN, allowing patient classification with close to human accuracy and 

showing potential for risk stratification in combination with established clinical tools. Unexpectedly, we 
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identified focal podocyte loss as a transitional state before the onset of overt lesion formation in patients 

with ANCA-GN, suggesting that podocyte injury may play a direct role in the pathophysiology of 

ANCA-GN. Together, these findings highlight the potential for deep learning-based architectures to 

enable robust and scalable molecular morphometric analysis of human tissues. 

 

Results  
 

Morphometric profiling of human samples using a dual segmentation U-Net 
Human kidney biopsies from patients with available clinical data (i.e. age, sex, and eGFR), pathological 

endpoints (i.e. interstitial fibrosis) and integrative scores (i.e. ANCA-GN score) were immunolabeled 

using antibodies against podocyte-specific transcription factors, including nuclear expression of 

Dachshund Family Transcription Factor 1 (DACH1) and cytoplasmic expression of Wilms’ Tumor 1 

(WT1),  in order to unambiguously identify glomerular podocytes (Fig. 1a) and carefully profile a total of 

27,696 podocytes. 1095 immunolabeled images were used for training, validation and testing during the 

development of the deep learning architectures (Table S1), including 722 images from 48 controls and 

373 images from 62 patients with ANCA-GN. General patient demographics are outlined in Fig. S1.  

We developed a dual output segmentation U-Net that has an encoder/decoder structure with three 

convolutional layers, each containing between 32 (first/last layers) and 256 filters (bottom layer), which 

can simultaneously extract glomerular and podocyte nuclear areas from a composite fluorescent image 

(Fig. 1b). Segmented areas are integrated into model-based stereology formulas that estimate podocyte 

morphometrics (podometrics), including glomerular dimensions, numbers of podocytes, and podocyte 

dimensions and distributions (i.e. minimal distances between neighboring podocytes) within each 

glomerulus (Fig. 1c).  

In order to secure optimal performance of the U-Net, hyperparameters were determined in a cross 

validation, where we confirmed that the number of training images was sufficient to achieve Dice scores 

over 0.90 (Fig. S2a). Network training was controlled via a balanced 2-layer binary cross-entropy loss 

that adaptively accounts for the performance of each segmentation task (Fig. S2b-d). Our dual output 

segmentation U-Net was compared to two single output U-Nets (for glomerular and podocyte nuclear 

areas separately), showing similar results (Fig. S3a-b). Furthermore, our dual output U-Net outperformed 

a customized ImageJ-based segmentation script at pixel and object levels, with a strong reduction on false 

positive rates (Fig. S4a-b).  
 

U-Net cycleGAN for annotation-free bias minimization 

A lack of generalization is a well-known vulnerability of deep learning architectures17. To this end, we 

first compared podometrics obtained from the same patients that were systematically imaged in two 

different locations with different microscopes and by different operators with different levels of 

microscopy experience. Podocyte density was not affected by these different conditions (Fig. S5a), 

neither at a patient-level nor at a glomerular level (Fig. S5b), when the segmentation U-Net was trained 

jointly on these datasets. However, using the variance in DACH1 or WT1 expression per image (pixel 

level), significant differences were observed (Fig. S5c), suggesting that batch effects and image bias 

should be addressed in order to increase the reproducibility and scalability of the method. 

Multiple operators and microscopes lead to differences in image quality, differing from the reference 

dataset (Fig. 2a). One solution is to continuously re-train the segmentation U-Net (Fig. 2b), which 

progressively leads to a more robust network, but requires manual annotations. An alternative approach 

can be found in the use of deep learning-based annotation-free bias minimization (Fig. 2c). Thus, we 

implemented a U-Net cycleGAN (cycle-consistent generative adversarial network with a U-Net like 

generator) to transform images obtained under different conditions (i.e. microscope and operator) into 

images resembling the reference dataset used for training the segmentation network (Fig. 2d). 

Representative images show the resulting segmentation optimization (Fig. 2e) and improvements in Dice 

scores at both pixel and object levels (Fig. 2f). Training curves of the U-Net cycleGAN, as well as ROC 

and precision-recall curves for the different combinations of data and segmentation networks, are 

provided in Fig. S6a-b. While these results provide evidence that unannotated datasets can be efficiently 
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segmented using a network trained on the reference dataset when they are bias transferred using the U-

Net cycleGAN (e.g. improvement of the mean podocyte pixel-based Dice score from 0.65 to 0.81, see 

center and right panel of Fig. S6c), we obtained slightly better segmentation results using a segmentation 

U-Net trained on all manually segmented data, including the two control and the ANCA-GN datasets 

(mean podocyte pixel-based Dice score: 0.84, left panel of Fig. S6c). All further results are therefore 

based on the U-Net trained jointly on the two control and the ANCA-GN datasets.  
 

Molecular podometrics reveal podocyte loss in ANCA-GN 
Representative images show high accuracy and precision of the U-Net for podocyte segmentation in 

samples from both controls and ANCA-GN patients (Fig. 3a), which was illustrated by receiver operating 

characteristic (ROC) and precision-recall curves (Fig. 3b). Strong agreement between ground truth and 

U-Net outputs was determined by pixel- and object-based Dice scores (mean podocyte Dice scores for 

controls 0.86 and 0.95 respectively) (Fig. 3c). While image segmentation in ANCA-GN patients was 

comparable to controls, detection levels were not identical (mean podocyte Dice scores for ANCA-GN 

patients 0.87 and 0.91 respectively). For this reason, we compared segmented areas obtained as ground 

truth and from the U-Net, which showed identical differences between controls and ANCA-GN patients 

(Fig. S7a-b), which supports biological differences rather than technical artefacts. Furthermore, we also 

determined direct correlations between ground truth and U-Net segmentation outputs from both controls 

and ANCA-GN patients (Fig. S7c). 

Reductions in median podocyte numbers and densities with consequent increases in median podocyte 

sizes and distances between closest neighbors were found in patients with ANCA-GN compared to 

controls (Fig. 4a). Median glomerular size was directly associated with median podocyte number 

(R=0.48, P<0.0001 in controls and R=0.57, P<0.0001 in ANCA-GN) with significant differences in the 

intercept (P<0.0001), which suggests podocyte loss across the entire spectrum of glomerular size (Fig. 

4b). Similarly, median podocyte density was inversely associated with median minimal distances between 

neighboring podocytes (R= -0.88, P<0.0001 in controls and R=0.68, P<0.0001 in ANCA-GN) with 

statistical differences in the slope (P<0.01), suggesting that compensatory podocyte hypertrophy is 

exacerbated in ANCA-GN patients (Fig. 4c). 

In our cohort, the main clinical discriminator between controls and ANCA-GN patients was kidney 

function, assessed by estimated glomerular filtration rate (eGFR) at the time of biopsy. In particular, 

eGFR was associated with podocyte number (R=0.39, P<0.0001), density (R=0.35, P<0.001) and size (R= 

-0.20, P<0.05) (Fig. 4d). Using a leave-one-out cross-validation approach, we generated a combined 

podometric score, including podocyte number, density and size, which also partially discriminated 

between controls and ANCA-GN patients with an AUC of 0.76 (Fig. 4e). Together, these findings 

suggest a potential overlap in the levels of podocyte depletion between controls and ANCA-GN patients. 
 

Morphometric signature of podocyte depletion identifies patients with ANCA-GN 
Lesion development in ANCA-GN is focal, meaning that within the same patient some glomeruli are 

affected, and others are not (Fig. S8a). This is directly reflected in the changes in the variances per 

subject of all podometric parameters (Fig. S8b), which decreased in podocyte numbers and densities, but 

increased in sizes and distances between closest neighbors.  

Analyses of single glomeruli showed that podocyte depletion was present in ANCA-GN patients, even in 

glomeruli that were not defined as glomerular lesions and was associated with compensatory podocyte 

hypertrophy (Fig. 5a). Principal component analysis also revealed that normal glomeruli in ANCA-GN 

patients represent a transitional state from normal glomeruli in controls to overt glomerular lesions in 

ANCA-GN (Fig. 5b), suggesting that analyses of individual glomeruli within one patient may provide 

additional clues that may be applied to differentiate controls and ANCA-GN patients. Using a leave-one-

out cross-validation approach, we generated a morphometric signature of podocyte depletion, which is 

generated per subject based on all available morphometric data, including both central tendencies and 

measures of variability. Importantly, this integrative parameter discriminated between controls and 

ANCA-GN patients as shown in both ROC (Fig. 5c) and precision-recall curves (AUC: 0.88) with an 
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accuracy of 82% (Fig. 5d), which was almost identical to the discrimination power of eGFR (AUC: 0.92 

and accuracy: 86%).  

In this cohort, 3 ANCA-GN patients were classified as controls and 6 controls were classified as ANCA-

GN. First, we hypothesized that this could be due to segmentation artefacts as DACH1 expression is 

upregulated in other cell types (i.e. erythrocytes and proximal tubular cells). We carefully screened all 

images from these 9 misclassified subjects and confirmed appropriate segmentation – representative 

images are shown in Fig. S9a. In patients with ANCA-GN, misclassified subjects were younger and had 

higher eGFR than median values for controls. In controls, misclassified cases were older and had lower 

eGFR than median values for ANCA-GN patients (Fig. S9b-c). Together, these findings suggest that 

misclassifications may be associated with early stages of disease in ANCA-GN and age-related podocyte 

loss in controls. Furthermore, this morphometric signature of podocyte depletion marks the degree of 

disease progression in close relation to physiological readouts.  
 

Potential of podometrics for risk stratification in patients with ANCA-GN 

A recent study proposed an integrative predictive score of 5-year kidney survival in ANCA-GN24, based 

on eGFR, percentage of interstitial fibrosis and number of “normal” glomeruli. We adapted this ANCA 

score to include a baseline comparison to control patients and model associations to podometrics, 

showing that median podocyte number, density and size are significantly correlated with the modified 

ANCA-GN score (Fig. 6a). From a total of 62 patients with ANCA-GN, 58 had at least 3 identified 

glomeruli in the diagnostic biopsy, which allowed us to perform analysis of intra-subject variability. From 

these subjects, 8 showed a poor outcome, defined as mortality, relapse or loss of at least 10% of eGFR 

within their respective follow-up period (Fig. 6b). For a balanced comparison, we carefully age and sex 

matched these 8 subjects within remaining available patients from our cohort (n=8 matched ANCA-GN 

patients). While our matching strategy was successful for age and sex, we were not able to obtain matches 

by eGFR (Fig. 6c). Variances (Fig. 6d) and ranges (Fig. 6e) in podocyte size were significantly increased 

in ANCA-GN patients with poor outcomes. Neither the conventional ANCA-GN score nor our adapted 

version were different between the outcome groups (Fig. 6f), but a ratio between the adapted ANCA-GN 

score and range in podocyte size showed significant differences by outcome group (Fig. 6g). In summary, 

these findings highlight a potential for risk stratification among ANCA-GN patients using a combination 

of podometrics and clinical tools.   

 

Discussion  
 

In this study, we present a deep learning-based approach that automatically identifies morphometric 

signatures of podocyte depletion in human kidney biopsies, achieving human-level accuracy while saving 

time and resources. Our method provides robust and scalable molecular morphometric endpoints for 

patients with ANCA-GN, revealing novel pathophysiological insights of kidney epithelial biology and 

serving as an example for successful integration of deep-learning-based technologies into clinical settings. 
 

Previous deep learning studies focused on the end-to-end evaluation of biopsies through classification 

into several categories based on classical histology22,23,25-27. To our knowledge, this is the first report to 

integrate deep learning for object segmentation in clinical samples that can be used for cell-specific 

morphometrics, which not only allows disease classification and risk stratification, but also provides 

objective endpoints for the analysis of kidney biopsies. Furthermore, antigen-based cellular identification 

reduces subjectivity in annotation strategies, as extensive specialized training is not needed in order to 

identify protein expression with fluorescence microscopy, accelerating annotations and homogenizing 

ground truth definition, all of which are well-defined obstacles for clinical translation of deep learning-

based methodologies17. However, reproducibility remains a valid drawback for new clinical tools, 

especially those dependent on microscopy. 
 

Bias minimization through a U-Net cycleGAN allows a wider use of the pipeline given that data obtained 

by various users and on different microscopes can be adapted in order to efficiently homogenize image 

quality. Generative networks have been used in the past for histopathological analysis, but mostly have 
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been limited to classical histological stainings28,29. While this strategy is certainly effective and is 

comparable to multi-dataset training, manual annotations and re-training of the segmentation architecture 

is the safest approach to maximize accuracy. In this manuscript, we provide both options, allowing users 

to decide based on their experimental and clinical needs. 
  

The limited sample size for training, optimization, validation and testing of multiple deep learning 

architectures may be perceived as a shortcoming of the present study. However, this is a very common 

problem in biomedical sciences. The number of patients with follow-up data and negative outcomes 

prevented us to provide predictive analyses at this stage. For this reason, our observations should be 

carefully validated in larger cohorts with longer follow-up periods. Furthermore, the successful 

integration of artificial intelligence-based morphometrics into clinical practice will not only depend on 

larger datasets but also on standardization and automation of tissue processing and imaging. While our 

efforts for batch effect minimization are promising, we only tested variations in image quality based on 

two parameters: microscopy operators and confocal systems. The compatibility of our approach with 

other high-throughput imaging methodologies, such as spinning disk and epi-fluorescence-based systems, 

still needs to be validated.   
   

The devastating nature of ANCA-GN requires continuous efforts to identify diagnostic and prognostic 

tools that may guide clinical management15. In the pathophysiology of lesion formation during ANCA-

GN development and progression, it is known that immune cells and parietal epithelial cells play key 

roles1,14,16. Importantly, our data highlight a previously unrecognized role of podocyte loss in ANCA-GN 

that could only be revealed by analyzing single glomeruli and their variability within and between 

subjects. The unexpected value of podometric endpoints in diagnostic ANCA-GN biopsies can only 

strengthen the position of podocyte depletion as a hallmark of glomerular disease30,31. Future studies will 

assess whether podocyte depletion signatures may serve as objective endpoints for the management of 

glomerular diseases, and their potential applicability to patient diagnosis, management and prognosis. It is 

our hope that this study may pave the way into the development and implementation of advanced tissue 

morphometrics in routine clinical pathology. 
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Figure 1. Segmentation U-Net for molecular morphometrics in kidney samples. (a) Biopsies from patients with immune-mediated kidney diseases, which
are diagnosed, treated and monitored based on clinical, pathological, and integrative data, are used to perform molecular labeling of kidney podocytes, based on
indirect immunofluorescence. (b) Glomerular area, and podocyte nuclei are virtually dissected from high-resolution confocal images with a segmentation U-Net
for two simultaneous outputs that was trained using a balanced 2-layer binary cross-entropy loss. (c) 3D podocyte morphometrics (podometrics) were generated
by model-based stereology, which extrapolates 3D from 2D data; in this case, glomerular and podocyte areas, and podocyte spatial location were used to
estimate 3D glomerular dimensions, and numbers, sizes and distributions of podocytes. ANCA-GN: Anti-neutrophil cytoplasmic antibody associated
glomerulonephritis; DACH1: Dachshund Family Transcription Factor 1; WT1: Wilms’ Tumor 1; BCE: binary cross-entropy; and Conv: convolution.
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Figure 2. U-Net cycleGAN for bias minimization between different dataset domains. (a) Scalable frameworks require adaptability to external conditions.
While indirect immunofluorescence protocols can be standardised, operator training, microscopy set-up and eventually image quality are hard to control,
especially if segmentation tasks have been defined based on tightly controlled internal conditions. (b) We propose using a U-Net cycleGAN (without annotations)
in order to transform images before applying the segmentation U-Net. (c) Alternatively, manual annotations can be performed in order to re-train the
segmentation U-Net before it is applied to a new dataset. (d) While the generator in the U-Net cycleGAN transforms images from one dataset domain to the
other, the discriminator tries to distinguish between ‘real’ and ‘fake’ images. This adversarial game is reflected in the cycleGAN objective, which is made up of
the adversarial loss Ladv, the cycle-consistency loss Lcyc and an identity loss Lid. (e) Representative images showing segmentation agreement with ground truth
and reductions in false negatives. (f) Dice score at both pixel and object-level significantly improved after cycleGAN for podocytes. In dot plots, every blue dot
represents one image and red error bars represent medians and interquartile ranges. TP: true positives, FP: false positives, FN: false negatives. ****P<0.0001,
**P<0.01, *P<0.05, and NS: not statistically significant. Scale bars 150μm.
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Figure 3. Application of segmentation U-Net to human kidney biopsies. (a) Visual representation of the segmentation process, from original images, to
segmentation outputs for glomeruli and podocytes, and their respective correlation with manually-segmented ground truths, highlighting true positives, false
positives and false negatives. (b) Receiver operating characteristic (ROC) and precision-recall curves in samples from controls and ANCA-GN patients –
arrowheads show selected thresholds for both conditions. (c) Dice scores at pixel and object levels for glomeruli and podocytes, showing comparable
segmentation performance in health and disease. In dot plots, each blue dot represents one image, red error bars represent medians and interquartile
ranges. TPR: true positive rate, FPR: false positive rate, AUC: area under the curve, TP: true positives, FP: false positives, FN: false negatives. ***P<0.001
and NS: not statistically significant. Scale bars in all panels represent 100μm.
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Figure 4. Molecular podometrics reveal podocyte loss in patients with ANCA-GN. (a) Podocyte morphometric analysis (podometrics; median
per patient) showing reductions in podocyte numbers and densities, and increases in podocyte sizes and closest neighbour distances in ANCA-GN
patients compared to controls. (b) Correlation analyses confirm a pattern of podocyte loss across the entire range of glomerular volume. (c) Increases
in podocyte closest neighbour distances are associated with reductions in podocyte density. (d) ANCA-GN patients have lower estimated glomerular
filtration rate (eGFR) at the time of biopsy compared to controls – features of podocyte depletion are associated with eGFR at biopsy. (e) Receiver
operating characteristic (ROC) and precision-recall curves showing discrimination power of combined podometrics (podocyte number, density and
size), including confusion matrix. In violin plots, each grey dot represents the median value per subject, red lines represent medians and blue lines
interquartile ranges. Regression lines represent lines of best fit and 95% confidence intervals. TPR: true positive rate, FPR: false positive rate, AUC:
area under the curve. ****P<0.0001, **P<0.01, and *P<0.05.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263392doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.23.263392
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5. Podocyte morphometric signature identifies ANCA-GN patients. (a) Podocyte morphometric analysis (podometrics; per glomerulus) showing
a pattern of podocyte loss and hypertrophy in glomeruli classified as “normal” in ANCA-GN patients. (b) Principal component (PC) analysis using Pareto
scaling to rows. Probabilistic PCA was used to calculate principal components, confirming that normal glomeruli in ANCA-GN patients represent a
transitional state between normal glomeruli in controls and lesions in ANCA-GN patients. (c) Receiver operating characteristic (ROC), precision-recall
curves and confusion matrices of patient classification based on eGFR and on a morphometric signature of podocyte depletion (PD), which combines
morphometric data from every available glomerulus per biopsy per patient. (d) ROC, precision-recall curves and confusion matrices for eGFR and PD as
classifiers. In violin plots, each grey dot represents one glomerulus, red lines represent medians and blue lines interquartile ranges. . TPR: true positive
rate, FPR: false positive rate, AUC: area under the curve. ****P<0.0001, ***P<0.001, and *P<0.05.
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Figure 6. Potential role of podometrics for ANCA-GN risk evaluation. (a) Features of podocyte depletion correlate with an adapted ANCA-GN score that
predicts poor clinical outcomes within 5 years. (b) Among all 62 ANCA-GN patients, clinical follow-up data identified a total of 8 patients with poor clinical
outcomes, including mortality, relapse and loss of estimated glomerular filtration rate (eGFR) of at least 15% from baseline, which were carefully age and sex-
matched to patients without negative outcomes. (c) Successful age-match with random selection of variable eGFR. (d) Variance in podocyte size per biopsy
was significantly elevated in patients with poor outcomes. (e) The ratio between maximal and minimal podocytes sizes (range) per biopsy was also increased
in patients with poor outcome. (f) Neither the classical ANCA-GN score nor an adapted ANCA-GN score are different between patients with poor outcome and
matched controls. (g) A modified ANCA-GN score based on a ratio between the adapted ANCA-GN score and the range of podocyte size per biopsy was
significantly reduced in patients with poor outcome. Regression lines represent lines of best fit and 95% confidence intervals. Each blue dot represents one
subject. In (f) red lines represent medians and interquartile ranges. ****P<0.0001, ***P<0.001, **P<0.01, *P<0.05 and NS: not statistically significant.
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Materials and Methods 
 

Human tissue 

Tissue collection from nephrectomy samples due to renal cell carcinoma was performed at Eschweiler 

Medical Center (Germany). Ethics approval was obtained from the Institutional Review Board of the 

RWTH Aachen University Medical Center, Germany (EK-016/17). After fixation with 4% 

paraformaldehyde (PFA), representative kidney blocks from the pole opposite to the tumor were 

extracted – a strategy that aimed to collect non-pathological tissue. Kidney biopsies from patients with 

ANCA-associated glomerulonephritis were obtained from the Hamburger Glomerulonephritis Registry 

(ethics approval: PV4806). 
 

Immunofluorescence and confocal microscopy 

Previously reported protocols were applied5,6. To identify podocytes, we used a combination of WT1 

(Agilent Technologies; IS05530-2) and DACH1 (Sigma-Aldrich; HPA012672)32 as primary antibodies, 

Alexa-Fluor 488, 555 and/or 647 as secondary antibodies (Invitrogen; A21202, A31572, A31571, and 

A31573) depending on the experiment, and a DNA marker to identify single nuclei, either DAPI 
(Sigma-Aldrich; D9542) or DRAQ5 (Abcam; ab108410). Optical images were obtained using inverted 

laser confocal microscopes (Nikon and LSM800, Zeiss), stored in 1024x1024-pixel frames. Each image 

contained one glomerulus. 
 

Manual image annotation for ground truth generation 
Ground truth datasets were generated based on podocyte nuclei and glomerular areas in manual 

segmentation performed by three expert scientists trained under equal conditions within our team, 

blinded from the patient data. Quality control was performed by a senior scientist within our team. 

During training, the segmentation U-Net then learned from the annotated images (training and 

validation sets) to segment the structures of interest and the final results were validated on another set 

of annotated images (test set). 

Glomeruli were classified as normal or lesion based on anatomical criteria. Normal glomeruli had a 

monolayer of parietal epithelial cells and glomerular tufts with homogenous and robust podocyte labels, 

namely cytoplasmic WT1 and nuclear DACH1. Glomerular lesions showed at least a double layer of 

parietal epithelial cells and/or capillary collapse and/or segmental or global absence of podocyte 

labeling. 
 

ImageJ baseline script for glomerulus and podocyte nuclei segmentation 

In order to segment the glomerulus using ImageJ, the following sequence was used: (1) channel 

splitting, (2) thresholding and then dilation applied to each channel separately, (3) channel merging, (4) 

filling holes, eroding, and particle analysis, and (5) selection of the biggest region of interest. In order 

to segment podocyte nuclei using ImageJ, the following sequence was used: (1) channel splitting and 

thresholding, (2) dilation of WT1 channel followed by combination of all channels using the logical 

operator “AND”, (3) thresholding of DNA label, (4) dilation, filling holes and eroding, and (5) distance 

transformation using watershed (MorphoLibJ plugin). 
 

Dual output segmentation U-Net 

Inspired by Ronneberger et al.¹ a U-Net architecture was implemented in Python 3 using Tensorflow 

1.13. The segmentation U-Net consists of an encoder with three layers, where the convolutions in the 

first layer have 32 filters. The number of filters is doubled in the following layers. After the bottom 

layer with 256 filters, in each of the three layers of the decoder the number of filters is halved again. 

We pad the images in order to receive segmentations of the same size as the input images.  

The U-Net was modified to simultaneously return a dual segmentation output: glomerular areas and 

podocyte nuclear areas. An annotated subset of images (n=317) was split into training (192 images), 

validation (60 images) and test (65 images) subsets with the relation of approximately 60/20/20, 

maintaining that all images from one subject should belong to one subset. For training, the use of 

extensive on-the-fly data augmentation (horizontal and vertical flips, horizontal and vertical shifts, 

rotations up to 45°) is important for the generalizability of the network. The network was trained for 

2000 epochs with a batch size of 2 images on an Nvidia Tesla V100 graphics card. We used RMSprop 

as an optimizer and introduced a custom balanced two-layer binary cross-entropy loss that adaptively 
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takes into account the current performance of each segmentation task. The binary cross-entropy for 

each task: 

 

𝐵𝐶𝐸(𝑦, 𝑦) = −𝑦𝑙𝑜𝑔𝑦 − (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑦), 

for mask 𝑦 and prediction 𝑦 (the prediction 𝑦 is clipped to lie between 𝜀 and 1 − 𝜀, with 𝜀 = 1e-07, in 

order to avoid logarithms of 1 and thus later divisions by 0) is adapted to consider both segmentation 

tasks simultaneously and to weight each term so that the currently poorer performing task receives more 

importance: 
 

𝑏2𝑙𝐵𝐶𝐸(𝑦, 𝑦) =
𝐵𝐶𝐸𝑝𝑜𝑑𝑜(𝑦, 𝑦)

𝐵𝐶𝐸𝑔𝑙𝑜𝑚(𝑦, 𝑦)
𝐵𝐶𝐸𝑝𝑜𝑑𝑜(𝑦, 𝑦) −

𝐵𝐶𝐸𝑔𝑙𝑜𝑚(𝑦, 𝑦)

𝐵𝐶𝐸𝑝𝑜𝑑𝑜(𝑦, 𝑦)
𝐵𝐶𝐸𝑔𝑙𝑜𝑚(𝑦, 𝑦), 

 

where 𝐵𝐶𝐸𝑝𝑜𝑑𝑜 and 𝐵𝐶𝐸𝑔𝑙𝑜𝑚 are the binary cross-entropies for the podocyte and glomerulus 

segmentation tasks respectively. Additionally, we weighted foreground objects and the background in 
the training loss in order to enforce a better segmentation of narrowly spaced podocytes. This was done 

using weight maps for each image similar to those proposed by Falk et al.19: 

 

𝑤(x) = 𝑤𝑐(x) + 𝑤0 × exp(
−(𝑑1(x) + 𝑑2(x))

2

2𝜎2
), 

where 𝑤𝑐 is the class probability map for the mask, 𝑑1 is the distance to the border of the nearest cell 

and 𝑑2 is the distance to the border of the second nearest cell. 

Our evaluation metric is the commonly used Dice score, evaluated for each task separately at pixel level 

and additionally at object level for the podocytes. Incomplete nuclear parts or glomeruli were filtered 

out using post-processing, removing all objects smaller than 800μm for glomeruli and 3μm for podocyte 

nuclei. Given that this architecture provided excellent results, and some tests with a more complex 

architecture (i.e. Mask R-CNN) yielded similar results, we decided to work with our more compact and 

faster dual U-Net. 
 

Hyperparameter optimization      

In order to find the optimal architecture and hyperparameters, an extensive grid search across various 

options was performed using Ray Tune (https://ray.readthedocs.io/en/ray-0.3.1/tune) and Sacred 

(https://sacred.readthedocs.io/en/stable/) – chosen values in brackets: single vs. dual segmentation 

(dual), number of layers (3), number of filters in first layer (32), dropout in encoder and decoder (no), 

dropout in the bottom layer (yes), skip connections between encoder and decoder (yes), dropout in the 

skip connections (no), batch normalization (yes), optimizer (RMSprop), learning rate (1e-05), learning 

rate decay (no), loss (balanced two-layer binary cross-entropy), weighting (yes), histogram equalization 

(no), contrast stretching (no), data augmentation (yes), oversampling of crescents (no). To evaluate 

these, iteratively, a few (related) hyperparameters were varied. Then, using 4-fold cross validation on 

the combined training and validation subsets of the Controls 1 dataset, networks were trained and the 

optimal configuration was chosen based on the average Dice scores as well as their standard deviation 

between the different folds of the cross validation (or for similar performance, the least 

data/computationally intensive). This process was repeated with the next set of hyperparameters. In a 

similar fashion, using a 10-fold cross-validation, we evaluated the number of images used for training 

to ensure that approximately 60-70 images per dataset yielded satisfactory results with Dice scores 

above 0.90. 
 

U-Net cycleGAN configuration 
The U-Net cycleGAN was implemented in Python 3 with Tensorflow 2.0. The generator is made up of 

an encoder, a transformer, and a decoder. Based on Zhu et al20 the encoder consists of three 

convolutional layers with 64, 128 and 256 filters, kernel sizes 7, 3 and 3, and strides 1, 2, and 2. All 

layers use instance normalization as well as ReLU activation. The transformer consists of 9 ResNet 

blocks33, which are made up of two convolutional layers with instance normalization and ReLU 

activation for the first layer. The decoder is made up of three transpose convolution layers. Before each, 
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the input is concatenated with the output of the corresponding layer in the encoder. The transpose 

convolution layers have 128, 64 and 3 filters, kernel sizes 3, 3 and 7, and strides 2, 2, and 1. All use 

instance normalization, but the first two are ReLU activated unlike the last one, which has a Tanh 

activation since the output of the last layer is the generated image which should have pixel values 

between -1 and 1. The discriminator consists of 6 convolutional layers, with 64, 128, 256, 512, 512 and 

1 filters, kernel size 4, and strides 2, 2, 2, 2, 1 and 1. Except for the first and last layer all are instance 

normalized. And, except for the last layer, all use a leaky ReLU activation with an alpha slope of 0.2. 
 

CycleGAN training 

The model has been trained on 285 images from Controls 2 and 180 images from Controls 1. For the 

validation, 46 images from Controls 2 and 44 from Controls 1 have been used. The images are resized 

to 256x256 pixels with three channels (RGB) using Gaussian pyramids. After transformation, the 

images are upsampled to the original size of 1024x1024 pixels using Laplacian pyramids, as has been 

done in Engin et al34, consisting of layers calculated based on the original input. The network was 

trained for up to 200 epochs with a steady learning rate of 2e-04 for the first 100 epochs and a linearly 

decaying learning rate that ends at 0 after 200 epochs. The losses have been weighted with 𝜆𝑐𝑦𝑐 = 10, 

and 𝜆𝑖𝑑 = 5. The batch size was 1. The epoch with the lowest validation loss has been selected for 

translating the images (epoch 83). The network was trained on an NVIDIA Quadro RTX 8000 48GB 

with TeslaLink. 

Since bias between different datasets is not a new problem, a comparison between generative models 

and traditional approaches was necessary. Since the (initial) effort for generative models is higher, it 

should be proven that they lead to better results. As baseline methods, histogram equalization, color 

transfer and an adaptation of the mean colors to the reference have been tested. However, none of these 

methods showed a substantial improvement. 
 

Molecular podometrics 

Model-based stereology was applied to confocal images35 and allowed the estimation of podocyte 

number and podocyte density per glomerulus. Fiji imaging software (Max Planck Institute of Molecular 

Cell Biology and Genetics, Dresden, Germany) was used to navigate the raw files. Podocytes were 

defined as DAPI+WT-1+DACH1+ cells. Glomerular cross-sectional area was measured in order to 

estimate glomerular volume, and thereby define podocyte density. 

The morphometric signature combines the podometrics per glomerulus within each patient by 

calculating the minimum, maximum, mean, median and variance of podocyte number, podocyte 

density, podocyte distance, podocyte nuclear area and glomerular area across all glomeruli per subject.  
 

 

Statistics 
All statistical analyses were performed using GraphPad Prism (v8.0.2) and Stata 13.1. Results are 

reported as median and IQR. Significance was evaluated using the unpaired Mann Whitney’s test when 

comparing two continuous variables. For comparison of 3 groups, Kruskal-Wallis test with Dunn’s 

multiple comparisons test was used. Correlation analyses were performed using spearman rank 

coefficients. A p-value below 0.05 was considered to be statistically significant.  

Classification of subjects into controls and ANCA-GN patients was performed in scikit-learn36 using a 

logistic regression and leave-one-out cross validation, where iteratively one subject was excluded from 

the training of the model and then used as test set. The final results are a combination of all subjects’ 

results, each thus tested on a different model. Due to the nature of leave-one-out cross validation without 

a completely unseen test set, no further optimization of parameters was possible. Each of the features 

in the morphometric signature was normalized by removing its mean and dividing by its standard 

deviation before using it to train the logistic regression (excluding the test subject). To evaluate 

podometrics at the level of single glomeruli, individual glomeruli were clustered based on podometrics 

via Principal Component Analysis (PCA) using Pareto scaling to rows. Probabilistic PCA was used to 

calculate principal components. 
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Table S1. Overview of all image datasets. This table
summarises all used subjects and images, divided by
training, validation, test and unannotated sets in both controls
and ANCA-GN patients. $denotes controls 1 and 2 shared 16
subjects for a total of 48 analysed controls.

Dataset Subset # subjects # images / glomeruli

Controls 1 Training 6 68
Controls 1 Validation 2 21
Controls 1 Test 2 20
Controls 1 Unannotated 16 168

Controls 1 All 26$ 277

Controls 2 Training 5 64
Controls 2 Validation 2 20
Controls 2 Test 2 24
Controls 2 Unannotated 29 337

Controls 2 All 38$ 445

ANCA-GN Training 10 60
ANCA-GN Validation 4 19
ANCA-GN Test 3 21
ANCA-GN Unannotated 45 273

ANCA-GN All 62 373

# subjects # images / glomeruli
TOTAL 110 1095
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Figure S1. Patient demographics. (a) Similar rates of males and females between controls
and ANCA-GN patients. (b) No age differences between controls and ANCA-GN patients. (c)
Significant differences in estimated glomerular filtration rate (eGFR) between controls and
ANCA-GN patients. In violin plots, each grey dot represents one image, red lines represent
medians and blue lines interquartile ranges. ****P<0.0001 and NS: not statistically significant.
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Figure S2. Training of segmentation U-
Net. (a) In a 10-fold cross validation, the
number of training images was varied. In
order to achieve Dice scores >0.90 on a
dataset, approximately 65 images were
required. The training process was
optimised using (b) the balanced 2-layer
binary cross entropy (BCE) loss,
weighting the individual BCE losses for
the glomerulus and podocyte
segmentation tasks. The performance
was monitored using Dice losses for the
(c) glomerulus and (d) podocyte
segmentation.

a b

c d
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Figure S3. Comparison of single vs. dual output U-Nets. (a) Single and
dual segmentation U-Nets provided comparable Dice scores, all over 0.90 for
all segmentation tasks. (b) Visual representation of single and dual
segmentation U-Nets’ performance. GT: ground truth. Each blue dot
represents a single image, red error bars represent medians and interquartile
ranges. ****P<0.0001 and NS: not statistically significant.
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Figure S4. Segmentation U-Net with dual outputs outperforms classical segmentation method.
(a) Glomerular segmentation was similar between U-Net and an optimised ImageJ script. However, (b)
U-Net significantly outperformed the ImageJ script in podocyte segmentation both at a pixel and object
level, reducing the presence of false positives. GT: ground truth. Each blue dot represents a single
image, red error bars represent medians and interquartile ranges. ****P<0.0001 and NS: not
statistically significant.
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Figure S5. Potential batch effects in external datasets. (a) Direct comparisons of podocyte density within the same
subjects. Images were acquired in different sites by different operators using different microscopy systems and consist
of 10 randomly sampled glomeruli (out of hundreds available per tissue). None of the comparisons showed statistical
significance. (b) Group comparisons using medians per patient or every available glomerulus also showed no
statistical differences. (c) Pixel-based analysis did show significant differences for variances in Wilms’ Tumor 1 (WT1)
and Dachshund Family Transcription Factor 1 (DACH1). In dot plots, every blue dot represents one glomerulus in (a)
and (b-right) and one patient in (b-left), and red error bars represent medians and interquartile ranges. In violin plots,
each grey dot represents one image, red lines represent medians and blue lines interquartile ranges. ****P<0.0001
and NS: not statistically significant.
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Figure S6. U-Net cycleGAN provides significant
improvements in podocyte identification at both
pixel and object-level. (a) Training curves for U-Net
cycleGAN (the star indicates the best validation loss of
the generator, which is the model chosen for
evaluation), (b) ROC and precision-recall curves show
the performance of segmentation before and after
cycleGAN and in relation to the reference dataset. (c)
The best results are achieved with manual annotations
and re-training of the segmentation U-Net. Using a U-
Net cycleGAN leads to comparable Dice scores without
the need to re-train the segmentation U-Net. In dot
plots, every blue dot represents one image and red
error bars represent medians and interquartile ranges.
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Figure S7. Biological validation of quantitative
outputs from segmentation U-Net. (a) 2D
quantitative data from manual segmentation (ground
truth), including glomerular area, and podocyte count,
showing morphometric changes in ANCA-GN
patients. (b) 2D quantitative data from segmentation
U-Net, including glomerular area and podocyte count,
showing identical results to ground truth. (c)
Correlation analysis of podocyte count corrected for
glomerular area, confirming strong agreement
between ground truth and segmentation U-Net for
both controls and ANCA-GN datasets. In dot plots,
every blue dot represents one image and red error
bars represent medians and interquartile ranges.
****P<0.0001, ***P<0.001, and **P<0.01.
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Figure S8. Variation within each biopsy. (a) Representative images of a normal glomerulus (left) and a pathological lesion (crescent, right). (b)
Variance of podocyte number, density, size and distances to closest neighbours per subject, highlighting great variability within subjects that is
directly affected by the development of kidney disease. Scale bars represent 150μm. ****P<0.0001, ***P<0.001, and *P<0.05.
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Figure S9. Potential causes of subject misclassification. (a) Representative images of glomerulus from a misclassified
subject, showing high prediction accuracy despite of unspecific signal of Dachshund Family Transcription Factor 1 (DACH1). (b)
Identification of misclassified subjects (red) in the context of age distributions for ANCA-GN and controls. (c) Identification of
misclassified subjects (red) in the context of estimated glomerular filtration rate (eGFR) distributions for ANCA-GN and controls.
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