
1

Title Page:

MQF and buffered MQF: Quotient filters for efficient storage of k-mers with their counts and

metadata

 Moustafa Shokrof

 Department of Computer Science, University of California, Davis, CA, USA

 C. Titus Brown:

 Department of Population Health and Reproduction, School of Veterinary

Medicine, University of California, Davis, CA, USA

 Tamer A. Mansour (corresponding author)

 Department of Clinical Pathology, School of Medicine, University of Mansoura,

Mansoura, Egypt

 Department of Population Health and Reproduction, School of Veterinary

Medicine, University of California, Davis, CA, USA

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18
19
20
21
22
23
24

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

2

Abstract

Background

Specialized data structures are required for online algorithms to efficiently handle large

sequencing datasets. The counting quotient filter (CQF), a compact hashtable, can efficiently

store k-mers with a skewed distribution.

Result

Here, we present the mixed-counters quotient filter (MQF) as a new variant of the CQF with

novel counting and labeling systems. The new counting system adapts to a wider range of data

distributions for increased space efficiency and is faster than the CQF for insertions and queries

in most of the tested scenarios. A buffered version of the MQF can offload storage to disk,

trading speed of insertions and queries for a significant memory reduction. The labeling system

provides a flexible framework for assigning labels to member items while maintaining good data

locality and a concise memory representation. These labels serve as a minimal perfect hash

function but are ~10 fold faster than BBhash, with no need to re-analyze the original data for

further insertions or deletions.

Conclusion

 The MQF is a flexible and efficient data structure that extends our ability to work with high

throughput sequencing data.

Keywords
Compact hash tables, k-mers, debruijn graphs, NGS, inexact data structures.

2

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
45
46

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

3

Background

Online algorithms effectively support streaming analysis of large data sets, which is

important for analyzing data sets with large volume and high velocity(1). Approximate data

structures are commonly used in online algorithms to provide better average space and time

efficiency (2). For example, the Bloom filter supports approximate set membership queries with

a predefined false positive rate (FPR) (3). The count-min sketch (CMS) is similar to Bloom filters

and can be used to count items with a tunable rate of overestimation. However, there are a

number of problems with Bloom filters and the CMS - in particular, they do not support data

locality.

The Counting Quotient Filter (CQF) is a more efficient data structure that serves similar

purposes with better efficiency for skewed distributions and much better data locality(4). The

CQF is a recent variant of quotient filters that tracks the count of its items using a variable size

counter. As a compact hashtable, CQF can perform in either probabilistic or exact modes and

supports deletes, merges, and resizing.

Analysis of k-mers in biological sequencing data sets is an ongoing challenge(5). K-mers

in raw sequencing data often have a high Zipfian distribution, and the CQF was built to minimize

memory requirements for counting such items. However, this advantage deteriorates in

applications that require frequent random access to the data structure, and where the k-mer

count distribution may change in response to different sampling approaches, library preparation

and/or sequencing technologies. For example, k-mer frequency across 1000s of RNAseq

experiments shows different patterns of abundant k-mers (6).

Data structures like CMS (7) and CQF (4) also do not natively support associating k-

mers with multiple values, which can be useful for coloring in De Bruijn graphs as well as other

features (8). Classical hash tables are designed to associate their keys with a generic data type

but they are expensive memory-wise (9). Minimal Perfect Hash Functions (MPHFs) can provide

3

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://paperpile.com/c/EYjqg9/UpaG
https://paperpile.com/c/EYjqg9/2iNxb
https://paperpile.com/c/EYjqg9/hKPG
https://paperpile.com/c/EYjqg9/QHKKG
https://paperpile.com/c/EYjqg9/Ebguo
https://paperpile.com/c/EYjqg9/bZjSy
https://paperpile.com/c/EYjqg9/RAHG
https://paperpile.com/c/EYjqg9/QHKKG
https://paperpile.com/c/EYjqg9/IjvK0
https://paperpile.com/c/EYjqg9/BFdCE
https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

4

a more compact solution by mapping each k-mer into a unique integer. These integers can then

be used as indices for the k-mers to label them in other data structures (10). An implementation

capable of handling large scale datasets with fast performance requires ~3 bits per element

(11). However, such a concise representation comes with a high false-positive rate on queries

for non-existent items. Moreover, unlike hashtables, MPHF does not support insertions or

deletions thus any change in the k-mer set would require rehashing of the original dataset.

In this paper, we introduce the mixed-counters quotient filter (MQF), a modified version

of the CQF with a new encoding scheme and labeling system supporting high data locality. We

further show how Buffered MQF can be used to scale MQF to solid-state disks. We compare

between MQF and the CQF, CMS, and MPHF data structures regarding memory efficiency,

speed performance, and applicability to specific data analysis challenges. We further do a direct

comparison of the CMS to MQF in the khmer software package for sequencing data analysis, to

showcase the benefits of MQF is in real world applications.

Results

MQF has a lower load factor than CQF

4

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://paperpile.com/c/EYjqg9/jx9wZ
https://paperpile.com/c/EYjqg9/ZDCiB
https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

5

The load factor is defined as the actual space utilized divided by the total space

assigned for the data structure, and is an important measure of data structure performance. To

compare load factors between the CQF and MQF data structures, instances of both structures

were created using the same number of slots (227). Chunks of items from five datasets with

different distributions of item frequencies were inserted iteratively to both data-structures while

recording the load factor after the insertion of each chunk. The experiments stopped when

MQF’s load factor reached 90%. MQF had lower loading factors for all tested datasets but the

difference was minimal for the dataset with the highest Zipfian distribution (Z=5). The lower the

tested Zipfian distribution the lower the loading factor of MQF (Figure 1). A lower loading factor

enabled MQF to accommodate > 30% of the CQF capacity from a dataset of real k-mers and to

exceed the double CQF capacity with uniform distribution (Figure 1 and supplementary table 1).

Figure 1: MQF has a lower load factor compared to CQF. Chunks of items, from different

distributions of item’s frequencies, were inserted iteratively to matching CQF and MQF

5

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

6

structures. MQF had lower loading factors for all tested datasets with better performance with

more uniform distributions (The further from the 45° line the better the MQF).

MQF is usually more memory efficient than CQF

Progressively increasing numbers of items were sampled from the real and Zipfian-

simulated datasets. The smallest CQF and MQF to store the same number of items from each

dataset were created. To do that, the q parameter of CQF versus the q and Fsize parameters of

MQF were calculated empirically. MQF was more memory efficient for real k-mers and Zipfian-

simulated distributions with low coefficients in 75% of the cases (Figure 2). The tuning of the

Fsize enabled MQF to grow in size gradually compared to CQF which has to double in size to fit

the minimal increase in items beyond the capacity of a given q value (Supplementary Figure 1).

Figure 2: Memory consumption comparison between CQF and MQF. The graph compares

the memory consumption of the smallest CQF and MQF that fits different datasets. The bigger

the value on the y-axes, the more memory the MQF saved.

6

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

7

MQF is faster than CQF and low-FPR CMS The in-memory and buffered MQFs were

evaluated for speed of insertion and query in comparison to three in-memory counting

structures: CQF, the original CMS (12), and khmer's CMS (13). To test the effect of FPR on the

performance, the experiment was repeated for 4 different FPRs (0.1, 0.01, 0.001, 0.0001). All

tested structures were constructed to have approximately the same memory space except for

buffered MQF which used only one-third of this memory for buffering while the full-size filter is

on the disk. MQF is guaranteed to hold the same number of items as a CQF having the same

number of slots. The number of slots in CQF was chosen so that the load factor was more than

85% and the MQFs were created with an equal number of slots. Items were sampled for

insertion from the real and Zipfian-simulated datasets. After finishing the insertion, to assess the

query rate, 5M items from the same distribution as the insertion datasets were queried. Half of

the query items didn’t exist in the insertion datasets.

MQF has a faster insertion and query rates compared to CQF with minimal, if any, effect

of the FPR on either structure. The performance of CMS is better with higher FPR and Khmer's

implementation of CMS doubles the query rate of the original one. However, MQF is always

faster than both CMS unless the FPR is more than 0.01 (Figure 3).

Figure 3: Performance comparison of four data-structures: MQF, CQF, buffered MQF,

7

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://paperpile.com/c/EYjqg9/3EZLy
https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

8

Khmer implementation of CMS, and Original implementation of CMS: Insertions rate (left panel)

and query rate (right panel).

MQF outperforms CMS in real-world problems

Khmer is a software package deploying a new implementation of CMS for k-mer

counting, error trimming and digital normalization (13). To test MQF in real-life applications, we

assessed the performance of the Khmer software package using CMS (13) versus our new

implementation using MQF (https://github.com/dib-lab/khmer/tree/MQFIntegration2). A real RNA

seq dataset with 51 million reads from the Genome in a Bottle project (14) was used for error

trimming and digital normalization; two real-world applications that involve both k-mer insertions

and queries. An exact MQF was used to create a benchmark for the approximate data

structures. It took 5Gb RAM to create the data structure and 45 and 43 minutes to perform

trimming and digital normalization respectively. The optimal memory for MQF and the optimal

number of hash functions for CMS were calculated to achieve the specified false-positive rates.

The CMS was constructed with the same size as the corresponding MQFs. The CMS and MQF

versions of Khmer were compared regarding the speed and accuracy (Table 1).

8

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://paperpile.com/c/EYjqg9/CWNF2
https://paperpile.com/c/EYjqg9/iuTy3
https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

9

FPR Memor
y

in GB

Error Trimming Digital normalization
Error

Bound
in CMS

Hash
func. In
CMS

Time
in Min.

Missed reads
with Errors

Time
in Min.

 Reads kept
by Error

MQF CMS MQF CMS MQF CMS MQF CMS

10-1 1.8 42 39 11011 445817* 39 37 3253 31143* 13,11 3

10-2 2.6 43 48 1304 404354 41 45 416 24987 14 5

10-3 3.4 44 61 130 311464 42 54 58 21000 15 7

10-4 4.5 44 75 3 292746 42 68 4 18449 16 10

Exact 5 45 - 0 - 43 - 0 - - -
Table 1: Khmer performance in error trimming and digital normalization using MQF and

CMS. *Percentages of wrong decisions made by CMS at FPR = 0.1 in error trimming and digital

normalization are 0.8% and 0.13% of the total number of decisions versus 0.02% and 0.01%

made by MQF.

MQF is faster than MPHF

MPHF is constructed by default to fit the input k-mers while MQF would have different

load factor that might affect its performance. To address this question, four growing subsets of

real k-mers were inserted into MQFs of size 255 MB to achieve 60%, 70%, 80%, and 90% load

factors. MPHFs were constructed with sizes ranging from 15 to 22 MB to fit the four datasets. All

data structures were queried with 35M existing k-mers and the query times were reported. The

MQFs were ~10 folds faster than the MPHFs. The query time of the MQF was invariable over

the different load factors (Supplementary Figure 2).

Discussion

MQF is a new variant of counting quotient filters with novel counting and labeling

systems. The new counting system increases memory efficiency as well as the speed of

insertions and queries for a wide range of data distributions. The labeling system provides a

9

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

10

flexible framework for labeling the member items while maintaining good data locality and a

concise memory representation.

MQF is built on the foundation of CQF. MQF has the same ability to behave as an exact

or approximate membership query data structure while tracking the count of its members. The

insertion/query algorithm developed for CQF enables this family of compact hashtables to

perform fast under high load factor (up to 95%) (4). CQFs are designed to work best for data

from high Zipfian distributions. However, previous k-mer spectral analysis of RNAseq datasets

showed substantial deviations from a Zipfian distribution in thousands of samples(6). Such

variations in distribution are expected given the variety of biosamples, the broad spectrum of

sequencing techniques, and different approaches to data preprocessing.

MQF implements a new counting system that allows the data structure to work efficiently

with a broader range of data distributions. The counting system adopts a simple encoding

scheme that uses a fixed small space alone or with a variable number of the filter’s slots to

record the count of member items (Figure 4). Items with small counts utilize the small fixed-size

counters. Therefore, slots, used to be consumed by CQF as counters for these items, are freed

to accommodate more items in the filter. The MQF’s load factor grows slower than CQF with all

distributions except the extreme Zipfian case (Z=5) where the load factor is almost the same

(Figure 1). This is why the memory requirement for MQFs is usually smaller compared to CQFs

under most distributions despite the extra space taken by the fixed counters (Figure 2). The size

of the fixed-size counter is constant independent from the slot size, therefore the memory

requirement for this counter will be trivial with big slots for smaller FPRs and almost negligible in

the exact mode. However, this fixed-size counter comes with an additional advantage for MQF.

Tuning the size of the fixed-size counter enables the filter to accommodate more items with a

slightly larger slot size. This allows the memory requirement for MQF to grow gradually instead

of the obligatory size doubling seen in CQF (Figure 2 and Supplementary Figure 1).

10

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://paperpile.com/c/EYjqg9/bZjSy
https://paperpile.com/c/EYjqg9/QHKKG
https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

11

Moreover, the new counting scheme in MQF is simplified compared to that of the CQF.

MQF defines the required memory for any item based solely on its count. Therefore, an

accurate estimation of the required memory for any dataset can be done extremely quickly by

an approximate estimation of data distribution(15)(16). This is unlike CQF which needs to add a

safety margin to account for the special slots used by the counter encoding technique since it is

impossible to estimate the number of these slots.

Regarding the speed of insertions and queries, MQF is slightly faster than CQF (Figure

3). This could be explained partially by the lower load factor of MQF and partially by the

simplicity of the coding/decoding scheme of its counting system. Both MQF and CQF are faster

than CMS unless the target FPR is really high (e.g. FPR > 0.1) (Figure 3). CMS controls its FPR

by increasing the number of its hash tables requiring more time for insertions and queries to

happen. In comparison, quotient filters use always one function but with more hash-bits to

control the FPR, with a minimal effect on the insertion/query performance (Figure 3). With high

FPR (e.g. FPR = 0.1), CMS uses fewer hash functions and is better performing than MQF. A

quotient filter or CMS with a FPR = δ should have the same probability of item collisions.

However, the quotient filter will be more accurate because CMS has another type of error with a

probability (1-δ), which incorrectly increases the count of its items. This error is a “bounded

error” with a threshold that inversely correlates with the width of the CMS(12). In another sense,

some applications might deploy CMS with a smaller table’s width to be more memory efficient

than MQF if the application can tolerate a high bounded error.

Buffered MQF can trade some of the speed of insertions and queries for significant

memory reduction by storing data on disk. The buffered structure was developed to make use of

the optimized sequential read and write on SSD. The buffered structure processes most of the

insertion operations using the bufferMQF that resides on memory, thereby limiting the number

of access requests to the MQF stored on the SSD hard drive. Sequential disk access happens

11

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://paperpile.com/c/EYjqg9/3EZLy
https://paperpile.com/c/EYjqg9/NQ6Si
https://paperpile.com/c/EYjqg9/EeQsX
https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

12

when the bufferMQF needs to be merged to the disk. This approach is very efficient for

insertions but not for random queries which require more frequent SSD data access. In k-mer

analysis of huge raw datasets, buffered MQF can be used initially to filter out the low abundant

k-mers (i.e. likely erroneous k-mers), then an in-memory MQF holding the filtered list of k-mers

could be used for subsequent application requiring frequent random queries. This allows

multistage analyses where a first pass eliminates likely errors (17–20).

CMS is commonly used for online or streaming applications as long as their high error

rate can be tolerated (21). MQF has a better memory footprint in the approximate mode for

lower error rates and thus can compute with CMS for online applications. A major advantage of

quotient filters compared to CMS is the dynamic resizing ability in response to the growing input

dataset (4). The buffered version of MQF can be very useful when the required memory is still

bigger than the available RAM. We should, however, notice that online applications on MQF

cannot make use of the memory optimization that could be achieved with an initial estimation of

the filter parameters. A new version of the Khmer software that replaces CMS with MQF proves

the new data structure more efficient in real-life applications. The MQF version is faster than the

one with CMS unless the target FPR is high. Also, MQF is always more accurate than CMS

although both structures have the same FPR. This behavior of CMS is due to the high error

bound of its counts.

MQF comes with a novel labeling system that supports associating each k-mer with

multiple values. There are two types of labels: Internal labels adjacent to each item to achieve

the best cache locality but has a fixed size and thus practically useful when a small size label is

needed. The second labeling system is to label the k-mers with one or more labels stored in

external arrays while using the k-mer order in the MQF as an index. External labeling is very

memory efficient mimicking the idea of the minimal perfect hash function (MPHF) (10,11).

12

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://paperpile.com/c/EYjqg9/iyNRm
https://paperpile.com/c/EYjqg9/jx9wZ+ZDCiB
https://paperpile.com/c/EYjqg9/QHKKG
https://paperpile.com/c/EYjqg9/qAgf+rop6+JkEL+R0JF
https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

13

MPHF undoubtedly has the least memory requirement of all the associative data structures (11).

However, MQF has better performance in both the construction and query phases. For

construction, both structures require initial k-mer counting. MQF needs just an extra O(N)

operation to update the block labels where N is the number of its unique k-mers. MPHF has to

read then rehash the list of unique k-mers possibly more than once which makes it slower than

MQF. For query operations, MQF is 10x faster regardless of the load factor of MQF

(supplementary figure 2).

Furthermore, MQF offers more functionality and has fewer limitations than MPHF. MQF

is capable of labeling a subset of its items which saves significant space for many applications.

For example, k-mer analysis applications may want to only label the frequent k-mers, as an

intermediate solution between pruning all the infrequent k-mers and labeling all the k-mers.

Moreover, MQF allows online insertions and deletions of items as well as merging of multiple

labeled MQFs (See the methods) while MPHF - which doesn’t store the items - needs to be

rebuilt over the whole dataset, which requires reading and rehashing the datasets. Furthermore,

MQF can be exact, while MPHF has false positives when queried with novel items that don’t

belong to the indexed dataset.

Conclusions

 MQF is a new counting quotient filter with a simplified encoding scheme and an efficient

labeling system. MQF adapts well to a wide range of k-mer datasets to be more memory and

time-efficient than its predecessor in many situations. A buffered version of MQF has a fast

insertion algorithm while storing most of the structure on external memory. MQF combines a

fast access labeling system with MPHF-like associative functionality. MQF performance,

features, and extensibility make it a good fit for many online algorithms of sequence analysis.

13

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://paperpile.com/c/EYjqg9/jx9wZ
https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

14

Methods

MQF Data structure: MQF has a similar structure to CQF with a different scheme of metadata

that enables different counting and labeling systems (Figure 4). Like the CQF, the MQF requires

2 parameters, r and q, and creates an array of 2qslots; each slot has r-bits. In Q MQF, Qi is the

slot at position i where i = 1 … 2q. The MQF maintains the block design of CQF where each

block has 64 slots with their metadata and one extra byte of metadata called Offset to enhance

the query of items(4). Both MQF and CQF have two metadata bits to accompany each slot:

isRunEnd i and isOccupied i. In the MQF, each slot i has extra metadata, a fixed-size counter

with a value (Fi) and a configurable size (Fsize). There are also two optional fixed-size parts of

metadata allocated to allow different styles of labeling. Every slot has specific labeling (STi) with

a configurable size (STsize>=0), and every block (j) has an optional space of a configurable size

designed to store the number of items in the previous blocks.

The MQF uses the same insertion/query algorithm of CQF (4). In brief, suppose item I,

repeated c times, is to be inserted into Q. A hash function H is applied to I to generate a p-bit

fingerprint (H(I)). H(I) value is split into two parts, a quotient and remainder. The quotient (q i) is

the most significant q bits while the remainder (r i) is the remaining least significant r bits. The

filters store r i in a slot Q j where j≥ qi. One or more slots can be used to store the count of the

same item. If the required slots for the item or its count are not free, all the consecutive

occupied slots starting from this position will be shifted to free the required space. All items

having the same q are stored into consecutive slots and are called a run. Items in the run are

sorted by r i, and isRunEnd of the last slot in the run is set to one. isOccupied (q i) is set to one if

14

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://paperpile.com/c/EYjqg9/QHKKG
https://paperpile.com/c/EYjqg9/QHKKG
https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

15

and only if there is a run for q i. Therefore, there is one bit set to one in each isOccupied and

isRunEnd for each run. To query item I, a Rank and Select method is applied on the metadata

arrays to get the run start and end for q i. Then all the items in the run are searched linearly for

the slot containing r i. The subsequent one or more slots can be decoded to get the count of

item I. CQF uses a special encoding scheme to recognize these counting slots but MQF utilizes

the fixed-counter metadata element (see below).

Figure 4: MQF block structure. Each MQF block contains 64 slots with their metadata, a one-

byte block offset, and configurable size space to hold the number of items inserted in the filter

before the current block. The metadata of each slot consumes r bits, one bit for each

isOccupied and isRunEnd metadata, and configurable f-bits and t-bits for the fixed counter and

the slot-specific label respectively.

15

313

314

315

316

317

318

319

320

321

322

323

324

325

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

16

Counting scheme: MQF uses two types of counters for storing the values of the count (c): A

small fixed-size space (Fi) is slot specific and used to store the count of the item in its own slot

if this count is smaller than Fmax, where Fmax is the maximum possible value for the fixed space.

A variable size space (V i) is composed of one or more slots next to the item’s slot and is used

to store larger values. For an item with high count c, the number of required slots for V i is

calculated as
log2 (c−Fmax)−F sizes

r
 slots. The Fi spaces of this item’s slot and its V islots are

used to mark the last slot for the item where all of them will be saturated to Fmax except the last

one (Figure 5). This counting scheme can be summarized into 2 rules:

Rule 1: MQF requires Fi<Fmax if and only if i is the index of the item’s last slot.

Rule 2: If c<Fmax, c is stored in Fi only. Otherwise, c - Fmax is stored in V i

In comparison to the CQF, the MQF does not use special slots to resolve ambiguities, which is

more memory efficient. The counter encoding algorithm is described in Supplementary Figure 3.

16

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

17

Figure 5: MQF counters encoding scheme. Items and their counts are stored in n slots and n

fixed counter as shown in the general rule. Each example stores the same item but different

count (count = 3, 365, or 4864).

Parameter Estimation

For offline counting applications, the MQF parameters (q, r, Fsize) can be even more

optimized for each dataset to create the most memory-efficient filter that has enough slots to fit

all unique items and their counts. The q parameter defines the number of slots (N) in MQF

where q=log2 (N). The required numbers of slots for items and their count can be estimated from

the cardinality of the target dataset, as with CQF. The r parameter is calculated from the

equation r = p-q where p is the total number of hash-bits used to represent each item. In the

exact mode, p equals the exact output of a reversible hash function. In the inexact mode, p is

17

341

342

343

344

345

346

347

348

349

350

351

352

353

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

18

controlled by the target FPR (δ) according to the equation p=log2
N
δ

 described before (4). The

Fsize parameter defines the size of the fixed-size counter. This is critical because if a given MQF

has too few slots for items in a dataset, the bigger MQF would have to double the number of

slots causing a big jump in the memory requirement. To avoid that jump, MQF can use larger

fixed size counters to decrease the number of slots required in counting on the expense of a

slight increase in the slot size.

Labeling System:

MQF can map each item to its count as well as other values, which we call “labels”.

Labels in MQF have two different systems. An internal labeling system stores the associated

value for every key in the data structure, like a hash table. This label has a fixed size defined at

the initialization of the MQF and is practically useful when a small size label is needed (e.g. one

or two bits). The second labeling system labels the block. We use this label to store the number

of items inserted in the MQF before each block. This enables labeling the items of the filter by

separate arrays matching the order of the items in the filter, a behavior that can act as a minimal

perfect hash function (11). The naive way to compute the items’ order is to find the item in the

MQF and iterate backward until the beginning of the filter to count the number of the preceding

items, which is an O(N) operation. The MQF stores the number of items that exist before each

block; therefore, the MQF iterates only to the beginning of each block, which is an O(1)

operation. The number of previous items for each block is computed after the MQF is

constructed. Any additional insertions or deletions of items would only require re-calculation of

the block label values with no need to re-analyze the original data. Moreover, labeled MQFs can

be updated by merging multiple labeled MQFs and their external labeling arrays. External label

arrays need to be merged after merging the labeled MQFs. To do so, the new items’ order is

18

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://paperpile.com/c/EYjqg9/jx9wZ
https://paperpile.com/c/EYjqg9/QHKKG
https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

19

recomputed in the final MQF. Then, labels in the input external arrays can be copied into a new

external array according to the new item order. Such a function has to consider resolving the

conflicts of items happening in multiple-input MQF and labeled by different external labels

(Figure 6).

Figure 6: Merging MQFs with external labels. Ri is the remaining part of item i, and Ti is the

external label of the item. Merging the input MQF produces a final MQF with a new order of its

member items. All labels in the input external arrays are copied into a new external array

according to this new order of the items. However, the implementation of the merge function has

to resolve the conflict of R3 labels which exist in both input structures with two labels.

19

378

379

380

381

382

383

384

385

386

387

388

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

20

Buffered MQF

The Buffered MQF is composed of two MQF structures: a big structure stored on SSD

called onDiskMQF, and an insertion buffer stored in the main memory called bufferMQF.

OnDiskMQF uses stxxl vectors(22) because of the performance of their asynchronous IO. The

bufferMQF is used to limit the number of accesses on the OnDiskMQF and change the access

pattern to the on-disk structure from random to sequential. As shown in the insertion algorithm

in Figure 7, all the insertions are done first on bufferMQF; when it is full, the items are copied

from bufferMQF to OnDiskMQF, and bufferMQF is cleared. The copy operation edits the

onDiskMQF in a serial pattern which is preferred while working on SSD because many edits will

be grouped together in one read/write operation. Figure 8 shows the query algorithm. The

queried items are inserted first to temporary MQF and sequential access is done to query the

items from the OnDiskMQF. The final count is the sum of the bufferMQF and the ondiskMQF.

Figure 7: Buffered MQF insertion algorithm. Insertion Algorithm for inserting items in the

Buffered MQF. It inserts the item in the in-memory data structure. The on-memory structure is

merged into the on-disk structure when it is filled.

20

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://paperpile.com/c/EYjqg9/eXSv1
https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

21

Figure 8: Buffered MQF query algorithm. Query algorithm for retrieving counts for a list of

items in the Buffered MQF. First, insert all the items in the list into a temporary MQF. Second,

iterate over the list of items in the temporary MQF and query both the in-memory and on-disk

structures.

Experimental Setup of Benchmarking

Five datasets were used in the experiments to cover most of the bioinformatics

applications. Three datasets called z2, z3, and z5 were simulated to follow Zipfian distribution

using three different coefficients: 2, 3, and 5 respectively. The bigger the coefficient the more

singletons in the dataset (23). A fourth dataset was simulated from a uniform distribution with a

frequency equal to 10. One more dataset, named k-mers, represented real k-mers generated in

the ERR1050075 RNA-seq experiment from humans(24). Experiments were conducted to

compare the performance, memory, and accuracy of MQF with the state-of-the-art counting

structures CQF, CMS, and MPHF. Unless stated otherwise, CQF and MQF used the same

number of slots, and the same slot size while the fixed counter of MQF was set to two. The slot

size was calculated to achieve the target FPR as described in the parameter estimation section

(see Methods). To create comparable CMS, the number of the tables in the sketches was

21

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://paperpile.com/c/EYjqg9/3TmB
https://paperpile.com/c/EYjqg9/VysFl
https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

22

calculated using ln
1
δ

 as described before (12). The table width was calculated by dividing the

MQF size by the number of tables. The MPHF was created using the default options in the

BBhash repo (https://github.com/rizkg/BBHash). An Amazon AWS t3.large machine with Ubuntu

Server 18.04 was used to run all the experiments. The instance had 2 VCPUS and 8GB RAM

with a 100GB provisioned IOPS SSD attached for storage. All codes used in the experiments

can be accessed through the MQF GitHub repository (https://github.com/dib-lab/2020-paper-

mqf-benchmarks).

List of abbreviations

 MQF: mixed-counters quotient filter.

 CQF: counting quotient filter.

 FPR: false positive rate.

 CMS: count-min sketch.

 MPHF: Minimal Perfect Hash Functions

Declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

22

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://github.com/rizkg/BBHash
https://github.com/dib-lab/2020-paper-mqf-benchmarks
https://github.com/dib-lab/2020-paper-mqf-benchmarks
https://paperpile.com/c/EYjqg9/3EZLy
https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

23

Availability of data and materials

The datasets used in Benchmarking are available in the “2020-paper-mqf-benchmarks”
repository.
https://github.com/dib-lab/2020-paper-mqf-benchmarks

Competing interests

The authors declare that they have no competing interests

Funding

Not applicable

Authors' contributions

TAM and MS developed theoretical formalism. MS carried out the implementation and
benchmarking. TAM conceived the original idea and supervised this work. All authors
contributed to the writing of the manuscript.

Acknowledgements

Not applicable

References

1. Kolajo T, Daramola O, Adebiyi A. Big data stream analysis: a systematic literature review.
Journal of Big Data. 2019 Jun 6;6(1):1–30.

2. Matias Y, Vitter JS, Young NE. Approximate data structures with applications. In:
Proceedings of the fifth annual ACM-SIAM symposium on Discrete algorithms. Society for
Industrial and Applied Mathematics; 1994. p. 187–94.

3. Bloom BH. Space/time trade-offs in hash coding with allowable errors. Commun ACM.
1970 Jul 1;13(7):422–6.

4. Pandey P, Bender MA, Johnson R, Patro R. A General-Purpose Counting Filter. In:
Proceedings of the 2017 ACM International Conference on Management of Data - SIGMOD
’17 [Internet]. 2017. Available from: http://dx.doi.org/10.1145/3035918.3035963

5. Manekar SC, Sathe SR. A benchmark study of k-mer counting methods for high-throughput
sequencing. Gigascience [Internet]. 2018 Dec 1;7(12). Available from:
http://dx.doi.org/10.1093/gigascience/giy125

23

445

446
447
448

449

450

451

452

453

454
455
456

457

458

459

460

461
462

463
464
465

466
467

468
469
470

471
472
473

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

http://paperpile.com/b/EYjqg9/UpaG
http://paperpile.com/b/EYjqg9/UpaG
http://dx.doi.org/10.1093/gigascience/giy125
http://paperpile.com/b/EYjqg9/RAHG
http://paperpile.com/b/EYjqg9/RAHG
http://paperpile.com/b/EYjqg9/RAHG
http://dx.doi.org/10.1145/3035918.3035963
http://paperpile.com/b/EYjqg9/QHKKG
http://paperpile.com/b/EYjqg9/QHKKG
http://paperpile.com/b/EYjqg9/QHKKG
http://paperpile.com/b/EYjqg9/IjvK0
http://paperpile.com/b/EYjqg9/IjvK0
http://paperpile.com/b/EYjqg9/BFdCE
http://paperpile.com/b/EYjqg9/BFdCE
http://paperpile.com/b/EYjqg9/BFdCE
https://github.com/dib-lab/2020-paper-mqf-benchmarks
https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

24

6. Yu Y, Liu J, Liu X, Zhang Y, Magner E, Lehnert E, et al. SeqOthello: querying RNA-seq
experiments at scale. Genome Biol. 2018 Oct 19;19(1):167.

7. Cormode G, Muthukrishnan S. An Improved Data Stream Summary: The Count-Min Sketch
and Its Applications. In: Farach-Colton M, editor. LATIN 2004: Theoretical Informatics.
Berlin, Heidelberg: Springer Berlin Heidelberg; 2004. p. 29–38. (Goos G, Hartmanis J, van
Leeuwen J, editors. Lecture Notes in Computer Science; vol. 2976).

8. Muggli MD, Bowe A, Noyes NR, Morley PS, Belk KE, Raymond R, et al. Succinct colored
de Bruijn graphs. Bioinformatics. 2017 Oct 15;33(20):3181–7.

9. Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to Algorithms. MIT Press; 2009.
1292 p.

10. Belazzougui D, Botelho FC, Dietzfelbinger M. Hash, Displace, and Compress. In: Fiat A,
Sanders P, editors. Algorithms - ESA 2009. Berlin, Heidelberg: Springer Berlin Heidelberg;
2009. p. 682–93. (Lecture Notes in Computer Science; vol. 5757).

11. Limasset A, Rizk G, Chikhi R, Peterlongo P. Fast and scalable minimal perfect hashing for
massive key sets [Internet]. arXiv [cs.DS]. 2017. Available from:
http://arxiv.org/abs/1702.03154

12. Cormode G, Muthukrishnan S. An improved data stream summary: the count-min sketch
and its applications. J Algorithm Comput Technol. 2005;55(1):58–75.

13. Crusoe MR, Alameldin HF, Awad S, Boucher E, Caldwell A, Cartwright R, et al. The khmer
software package: enabling efficient nucleotide sequence analysis. F1000Res [Internet].
2015 Sep 25 [cited 2019 Jun 3];4. Available from: https://f1000research.com/articles/4-900/
v1/pdf

14. Zook JM, Salit M. Genomes in a bottle: creating standard reference materials for genomic
variation - why, what and how? Genome Biol. 2011 Sep 19;12(1):P31.

15. Flajolet P, Fusy É, Gandouet O, Meunier F. Hyperloglog: The analysis of a near-optimal
cardinality estimation algorithm. In: IN AOFA ’07: PROCEEDINGS OF THE 2007
INTERNATIONAL CONFERENCE ON ANALYSIS OF ALGORITHMS [Internet]. 2007 [cited
2018 Nov 19]. Available from: http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.76.4286

16. Mohamadi H, Khan H, Birol I. ntCard: a streaming algorithm for cardinality estimation in
genomics data. Bioinformatics. 2017 May 1;33(9):1324–30.

17. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast
genome and metagenome distance estimation using MinHash. Genome Biol. 2016 Jun
20;17(1):132.

18. Chikhi R, Limasset A, Medvedev P. Compacting de Bruijn graphs from sequencing data
quickly and in low memory. Bioinformatics. 2016 Jun 15;32(12):i201–8.

19. Zhang Q, Awad S, Titus Brown C. Crossing the streams: a framework for streaming
analysis of short DNA sequencing reads [Internet]. PeerJ PrePrints; 2015 Mar [cited 2020
Jul 23]. Report No.: e1100. Available from: https://peerj.com/preprints/890/

24

474
475

476
477
478
479

480
481

482
483

484
485
486

487
488
489

490
491

492
493
494
495

496
497

498
499
500
501
502

503
504

505
506
507

508
509

510
511
512

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://peerj.com/preprints/890/
http://paperpile.com/b/EYjqg9/JkEL
http://paperpile.com/b/EYjqg9/JkEL
http://paperpile.com/b/EYjqg9/JkEL
http://paperpile.com/b/EYjqg9/rop6
http://paperpile.com/b/EYjqg9/rop6
http://paperpile.com/b/EYjqg9/qAgf
http://paperpile.com/b/EYjqg9/qAgf
http://paperpile.com/b/EYjqg9/qAgf
http://paperpile.com/b/EYjqg9/NQ6Si
http://paperpile.com/b/EYjqg9/NQ6Si
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.76.4286
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.76.4286
http://paperpile.com/b/EYjqg9/EeQsX
http://paperpile.com/b/EYjqg9/EeQsX
http://paperpile.com/b/EYjqg9/EeQsX
http://paperpile.com/b/EYjqg9/CWNF2
http://paperpile.com/b/EYjqg9/CWNF2
https://f1000research.com/articles/4-900/v1/pdf
https://f1000research.com/articles/4-900/v1/pdf
http://paperpile.com/b/EYjqg9/iuTy3
http://paperpile.com/b/EYjqg9/iuTy3
http://paperpile.com/b/EYjqg9/iuTy3
http://paperpile.com/b/EYjqg9/3EZLy
http://paperpile.com/b/EYjqg9/3EZLy
http://arxiv.org/abs/1702.03154
http://paperpile.com/b/EYjqg9/jx9wZ
http://paperpile.com/b/EYjqg9/jx9wZ
http://paperpile.com/b/EYjqg9/jx9wZ
http://paperpile.com/b/EYjqg9/ZDCiB
http://paperpile.com/b/EYjqg9/ZDCiB
http://paperpile.com/b/EYjqg9/ZDCiB
http://paperpile.com/b/EYjqg9/2iNxb
http://paperpile.com/b/EYjqg9/2iNxb
http://paperpile.com/b/EYjqg9/hKPG
http://paperpile.com/b/EYjqg9/hKPG
http://paperpile.com/b/EYjqg9/Ebguo
http://paperpile.com/b/EYjqg9/Ebguo
http://paperpile.com/b/EYjqg9/Ebguo
http://paperpile.com/b/EYjqg9/bZjSy
http://paperpile.com/b/EYjqg9/bZjSy
https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

25

20. Titus Brown C, Howe A, Zhang Q, Pyrkosz AB, Brom TH. A Reference-Free Algorithm for
Computational Normalization of Shotgun Sequencing Data [Internet]. arXiv [q-bio.GN].
2012. Available from: http://arxiv.org/abs/1203.4802

21. Muthukrishnan S. Data Streams: Algorithms and Applications. TCS. 2005 Sep 27;1(2):117–
236.

22. Dementiev R, Kettner L, Sanders P. Stxxl: Standard Template Library for XXL Data Sets.
In: Algorithms – ESA 2005. Springer, Berlin, Heidelberg; 2005. p. 640–51. (Lecture Notes in
Computer Science).

23. Powers DMW. Applications and explanations of Zipf’s law. In: Proceedings of the Joint
Conferences on New Methods in Language Processing and Computational Natural
Language Learning. Association for Computational Linguistics; 1998. p. 151–60.

24. Clarke L, Zheng-Bradley X, Smith R, Kulesha E, Xiao C, Toneva I, et al. The 1000
Genomes Project: data management and community access. Nat Methods. 2012 Apr
27;9(5):459–62.

25

513
514
515

516
517

518
519
520

521
522
523

524
525
526

527

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

http://paperpile.com/b/EYjqg9/3TmB
http://paperpile.com/b/EYjqg9/3TmB
http://paperpile.com/b/EYjqg9/3TmB
http://paperpile.com/b/EYjqg9/VysFl
http://paperpile.com/b/EYjqg9/VysFl
http://paperpile.com/b/EYjqg9/VysFl
http://paperpile.com/b/EYjqg9/eXSv1
http://paperpile.com/b/EYjqg9/eXSv1
http://paperpile.com/b/EYjqg9/eXSv1
http://paperpile.com/b/EYjqg9/iyNRm
http://paperpile.com/b/EYjqg9/iyNRm
http://arxiv.org/abs/1203.4802
http://paperpile.com/b/EYjqg9/R0JF
http://paperpile.com/b/EYjqg9/R0JF
http://paperpile.com/b/EYjqg9/R0JF
https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.23.263061doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.23.263061
http://creativecommons.org/licenses/by/4.0/

