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Abstract

Measurements of human activity are useful for studying the neural computations underlying
human behavior. Dynamic models of human behavior also support clinical efforts to analyze,
rehabilitate, and predict movements. They are used in biomechanics to understand and diagnose
motor pathologies, find new motor strategies that decrease the risk of injury, and predict
potential problems from a particular procedure. This paper describes a physics-based movement
analysis technique for analyzing and simulating bipedal humanoid movements. A 48 degree of
freedom dynamic model of humans uses physical simulation software as a tool for synthesizing
humanoid movement with sufficient speed and accuracy to allow the analysis and synthesis
of real-time interactive applications such as psychophysics experiments using virtual reality
or human-in-the-loop teleoperation of a simulated robotic system. The dynamic model is fast
and robust while still providing results sufficiently accurate to be used to believably animate a
humanoid character, control a simulated system, or estimate internal joint forces used during a
movement for creating effort-contingent experimental stimuli. A virtual reality environment
developed as part of this research supports controlled experiments for systematically recording
human behaviors.

Introduction 1

The complexity of human motion was first dramatically captured via the Muybridge high-speed 2

photographs [1] which spawned a number of separate analysis techniques in different disiciplines. 3

Visualization first usd keyframing techniques but later sophisticated models used in advanced 4

rendering for computer graphics e.g. [2]. The early cognitive analyses of human behavior [3] 5

focused on human motion in problem solving, using an essentially logical approach. In robotics, 6

sights have been obtained by building physical systems directly [4] that straddle the boundary 7

between humans and robotics that have shed light on the human design. However these efforts 8

are characteristically specialized. In another development, machine learning techniques have 9

been introduced for use in analyzing animal-like motion [5]. 10

Most recent advances in the speed of computing and novel formulations of the dynamic 11

equations of motion have engendered a new approach to understanding human movement 12

fundamentals. Large scale human movement models can be built with the objective of under- 13

standing how the human generates goal-oriented behaviors in real time. However the modeling 14

all the complexity of the human musculoskeletal system can be daunting, with over 600 muscles 15
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controlling a complex skeletal system with over 300 degrees of freedom. Moreover to control this 16

complexity, in addition to its vast cortical memory system, the forebrain coordinates specialized 17

subsystems such as the Basal Ganglia and Thalamus in realizing human real-time movement 18

coordination. The upshot is that progress tends to be specialized [6] and there are many open 19

problems [7]. 20

In the face of these complexity challenges, a major alternate modeling route is to forego the 21

level of detail that includes muscles and model more abstract versions of the human system 22

that still use multiple degrees of freedom but summarize muscle effects through joint torques. 23

The computation of the dynamics of such multi-jointed systems recently has also experienced 24

significant advances. The foremost of these, use a kinematic plan to directly integrate the 25

dynamic equations. Several different systems exist, such as MuJoCo, Bullet, Havok, ODE and 26

PhysX, but an evaluation by [8] found them roughly comparable in capability, and only MuJoCo1 27

has been applied to human modeling. 28

Thus there is a need for a exclusively human movement based model that could be used to 29

inform laboratory experiments [9], clinical studies e.g [10] also verify experiments that have only 30

qualitative results [11,12]. Our human dynamic model (HDM) has a singular focus on human 31

movement modeling and uses a unique approach to integrating the dynamic equations. We have 32

developed a direct dynamics integration method to extract torques from human subjects in real 33

time [13–15] based on a unifying spring constraint formalism. 34

The system2 is built on top of the differential equation solver ODE 3, but has significant 35

innovations added in order to handle the closed loop kinematic chains of bipedal movements. 36

Such chains and the contact constraints they introduce have proven difficult to model. Our 37

methodology integrates two key innovations. The first is to allow the kinematic makers of a 38

motion capture system to be modeled as very large point masses.The result is to stabilize the 39

integration of the underlying dynamic equations. The second is to allow the reduction of contact 40

constraints into stiff springs, which has the result of allowing the incorporation of external forces 41

and points of contact. 42

The lion’s share of the computations go towards computing the joint torques from a remem- 43

bered plan, but there is a balance issue to be dealt with. Human motions for familiar tasks 44

such as balancing while putting on socks rely on remembered protocols, but still need feedback 45

systems such as the vestibular balance system. In the same way simulations with the system 46

show that replaying a set of remembered torques in an open loop manner is delicate as slight 47

kinematic-dynamic mismatches tend to lead to instabilities. We regard this observation as 48

fundamental, biasing our focus towards having motor cortex remembering kinematics of posture 49

changes that can be interpreted by the spinal cord in a closed loop fashion. 50

The focus of the paper is to describe the HDM simulator as a useful laboratory instrument as 51

well as describe demonstrations that lend support to the kinematic plan approach to movement 52

memory. These goals are illustrated and evaluated in several different demonstrations. 53

1MuJoCo http://www.mujoco.org/
2Our humanoid mode: https://github.com/EmbodiedCognition/QtVR
3OpenDE: http://www.ode.org/
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Model Overview 54

The HDM model is built on top of the ODE physics engine and is publicly available4. The 55

HDM interface, shown in allows the construction of human models using the physics engine via 56

a multi-purpose graphical interface for analyzing movement data captured through interaction 57

with the virtual environment (Fig. 1). With this tool, it is possible to interactively fit a model to 58

marker data, dynamically adjust parameters to test different effects, and visualize the results of 59

kinematic and dynamic analysis, such as the example in Fig 2, which shows a jumping sequence 60

made originally by a human subject and recreated by applying the inverse dynamics method 61

using this tool. 62

In understanding the model, it helps to appreciate the dynamics engine, which as an innovation 63

in the dynamics integration of formalizing contacts as springs that allow some freedom during 64

the integration. This mathematics is presented here separately in a supplementary information 65

section. The human model takes this integration level for grated. Its separate innovation is 66

recovering the kinematic trajectories of the model joints by mating model points to corresponding 67

motion capture data modeled as large mass idealized points and using springs to force the 68

correspondence. 69

Any inverse dynamic method h to deal with residual forces [21] owing to unavoidable error 70

sources in the integration process, and our system is no exception. It is instructive to note 71

that the human system has these issues also. Joints have flexible seating, and the dynamic 72

system has to deal with varying loads and terrain. The focus of the human system is balance, 73

given the central importance of its bipedalism. The solution adopted by the HDM is to have a 74

faux auxiliary sensor system that senses deviations of uprightness and generates appropriate 75

correcting forces. Our experiments demonstrate that the resulting residual forces are usually 76

small, on the order of 5%. 77

Given this introduction, our remaining focus will be to take all of this structure for granted 78

and describe the model’s capabilities through a series of examples in different settings. 79

Test 1: Model validation 80

Given that the torque recovery technique will be the basis for our experiments, it is essential to 81

establish its accuracy in absolute terms. A straightforward to do this is to use a particular model 82

to generate joint torque data and then verify that these generating torques can be recovered with 83

sufficient accuracy. To simulate possible sensor errors in the PhaseSpace system, we introduce 84

noise into the simulated marker positions and study the accuracy of recovery with increasing 85

noise levels. 86

Synthesized treadmill walking Inverse dynamics computations rely on first finding the 87

model’s pose. We tested both steps by studying eight steps of marker data captured from 88

treadmill walking. For this computation, we used data sampled at 60 hz. The movement lasts a 89

little longer than 4 seconds, giving us 260 frames of data. The aim of this study was to assess 90

the effect of sensor noise on the results and compare the joint angles and torques found with 91

our method to those used to generate marker data. We used an experimental process similar to 92

that employed in [23]. 93

4Open ODE: http://www.ode.org/
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Fig 1. Our analysis tools use the physics engine to compute inverse kinematics and inverse
dynamics. They also support various visualizations of relevant data and control for analyzing
and producing physically-based movements. The programmed parameters of the model consist
of its joints and its 3D marker positions

We used a preliminary pass through the data to generate synthesized “ground truth” marker, 94

pose, and torque data. After using the physics-based inverse kinematics to compute joint angles, 95

we constrained the body to use forward dynamics to reproduce the joint angles with internal 96

torques (and residual forces at the waist segment). As the model performed the movement, we 97

recorded the global position of the marker attachment points. We also recorded the forces used 98

and the resulting joint angles. Thus we had synthetic “ground truth” data directly from the 99

model. 100

Using the synthetic marker data, we then analyzed the process by perturbing all marker 101

positions at each frame in time along all three axes with mean-centered Gaussian noise of a 102

controlled standard deviation. Applying physics-based pose-fitting followed by inverse dynamics 103

produced a new set of virtual marker positions, joint angles, and torques. The results are shown 104

in Fig 3. 105

Gaussian perturbations render the marker data dynamically inconsistent. This dynamic 106

inconsistency also pushes a constrained system toward singularity, making it more challenging to 107

solve numerically. We tested with very high levels of noise to see if they would slow the system 108

down, or prevent it from finding any solution. In all cases, the system analyzed the perturbed 109

data in real-time, finding pose data and dynamics data to fit the marker data. 110

After running through an inverse kinematics pass, an inverse dynamics pass, and a forward 111

dynamics pass for each trial run; we compared the marker attachment points, joint angles, and 112
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Fig 2. Model capability illustration. A jump sequence reproduced with
physics-engine-based inverse dynamics using recorded motion capture data from a human
subject. The recreated jump height is achieved completely from ground forces, with small
residual torques (≤ 100Nm) keeping the model from tipping over.

joint torques from the forward dynamics pass to the synthetic ground truth data. Fig. 3 shows 113

the mean error for across all degrees of freedom and frames of time for each quantity measured. 114

Although the perturbations make the marker data dynamically inconsistent, our results show 115

that small amounts of noise have minimal effect on the computed measurements. 116

Fig 3 shows that functional recovery is possible with up to 8mm standard error deviations. 117

A ±1mm PhaseSpace marker position accuracy translates in our model into an average joint 118

angle error of 0.02 radians and average force errors of 3 Newtons. 119

There is a systematic error in both the marker positions and joint angles caused by the fact 120

that the constraints behave like springs. The spring-like behavior causes the marker positions and 121

joint angles to lag behind their targets by a small amount and dampens the overall movement. 122

This lag and damping are apparent in Fig. 4 comparing individual trajectories for selected 123

dimensions of the joint angles and torques. As shown in Fig 4, the data follow ground truth 124

very well under low noise conditions. 125

Test 2: Residual forces 126

The Inverse dynamics uses measured kinematics and any external forces to calculate net joint 127

torques in a rigid body linked segment model. [21] However, discrepancies between the dynamic 128

forces of the model and the kinematic of the reality make it so that the dynamic model falls 129

over unless action is taken to stabilize it. Adjustments to internal joint torques can be used to 130

stabilize the body, but cause the body’s pose to deviate from its intended pose. A common way 131

to compensate this problem is by introducing ‘residual forces and torques’ which do not exist in 132

reality. In this work, we used non-realistic external forces to model the effects that would be 133

used by the human vestibular system. We attached a joint to the model’s waist to constrain it 134

to reproduce the global orientations found during the pose-fitting pass. To minimize the effect 135

of these external forces, we used torque limits on the amount of stabilizing torque available. 136

To test how much residual force torque is necessarily relative to the internal joint torques, 137

we obtained movement data together with ground force data from a pair of balance boards. 138

For a simple movement such as transitioning from standing on one foot or the other, residual 139

angular torques of 30Nm were sufficient to keep the dynamic model quite close to its target 140

trajectory. Fig 5 shows the calibration of the ground force computed from our method compared 141

to those taken from WiiTM force plates. A subject standing on two force plates, varied their 142

stance from one being supported exclusively by leg standing on one plate and then shifted their 143

weight to the other leg to be supported by the other plate. During the stance phase, the two 144

measures are in excellent agreement. It compares the sensor-measured ground forces for the right 145
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A

B

Fig 3. Model noise sensitivity. A.
Error of joint angles, and internal torques resulting from physics-based inverse kinematics and inverse dynamics
used to analyze perturbed marker data. We repeated the process twenty times for each noise-level at nine different
standard-deviations. Standard-deviations, in mm, were (0.1, 0.5, 1, 2, 4, 8, 16, 32, 64). Error bars show standard
error of the mean.(a) The accuracy of the PhaseSpace motion capture device is approximately 5mm over its 3
x 6 meter workspace, resulting an average angular error of 1 degree. (b) The same estimates for torque error
are between 5 and 10 Nm, typically approximately 1%. These small errors are well within the requirements for
our experiments.B. Poses generated by forward dynamics using forces obtained from three inverse dynamics
simulations based on Gaussian perturbed walking data (0.1mm, 8mm, and 64mm noise levels). Although at very
high levels of noise, the model follows the reference motion poorly, the movement still looks, qualitatively, like
walking.

and left feet (red and green lines) to the computed ground forces found through physics-based 146

inverse dynamics (blue and pink lines). Even during bipedal stance, the forces come surprisingly 147

close. The largest discrepancies come during the transition from one foot to the other. These 148

discrepancies can be blamed largely on poor collision detection resulting from an abstract model 149

of the foot. 150

The figure also shows that the external stabilizing torques are very modest, being within 151

±5% of the maximum excursion. The correspondence is actually a little better as the faux 152

vestibular balance forces are not factored into the comparison. Note also that we cannot expect 153

the correspondence to be exact during the phase between the two stances as there is no attempt 154

in the model in this test to make the dynamics of the changing stance match that of the force 155

plates. 156

To generate independent movements, such as grasping might need additional accuracy [22], 157

but for estimating a subject’s energetic cost, the accuracy is well within range. 158
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Fig 4. Trajectory reconstruction. Trajectories of selected degrees of freedom from the
perturbation study. Solid lines show ground truth. Dashed lines show computed data.
Simulated spring forces make the computed data lag behind and smooth the ground truth.

Test3: Whole body reaching 159

The previous demonstrations report on tests of the accuracy of the system in completely artificial 160

situations. Herein we describe three tests of the whole body model’s ability to fit data obtained 161

from human subjects. The first test focuses on ground force and shows the result of estimates 162

from the model compared to an independent ground force measure. The first test uses from a 163

subject carrying out successively more difficult reaches in a virtual reality environment to test 164

whether the models estimate of movement costs correlate with increasing task difficulty. The 165

second test simulates data from an issue facing movements in an aging population. Do aging 166

subjects’ reduced use of arm swing while walking incur a movement cost, and does the HDM’s 167

estimate correspond to laboratory treadmill data? The final test demonstrates an important 168

property of the model with respect to its degrees of freedom. The critical observation is that 169

the degres of freedom of the model are constrained by virtues of their interconnections; thus, 170

the control of a posture can be achieved with a very reduced set of key marker positions. This 171

has implications for movement control programs. 172

173

The movement accuracy test are encouraging, but the importance of the method depends on 174

its usefulness to capture the energetic cost of whole-body movements in a complex experimental 175

setting. One such venue is a three-dimensional Virtual Reality (VR) environment. The advantage 176

of the VR environment for studying human movements is that the dimensions and the dynamic 177

variations of the parametric quantities describing setting can be varied with full experimental 178

control. 179

In this particular experiment, we studied where human subjects needed to use whole-body 180

movements cost choosing actions. From a particular start, a human subject touched targets 181

suspended in 3D space. The experimental setup is demonstrated in Fig. 6. The subject is 182

wearing the PhaseSpace suit and the nVisor head-mounted stereo display. From a fixed starting 183

position, a subject is instructed to touch one of the targets and return to the starting position. 184

Tests were able to establish that, just focusing on integrated net torque and avoiding stiffness, 185

the total cost of a movement recorded by our system reliably discriminates the energetic costs 186

of the movement in the way hypothesized. The hypothesized cost of reaching for and touching 187
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Fig 5. Comparing ground forces between the model and the Wii force plate. (Top)
Two Wii force plates serve as accurate calibration reference. A subject stood on the two plates
and then changed stances, balancing first on the left foot and next on the right. (Bottom) The
comparison between the measurement systems is surprisingly good, during the stance phases,
showing only a 10% difference between the measured ground forces and the computed forces.

each of the the targets was ranked on the basis of distance and height relative to the subject. 188

Note that target #2 is the least expensive as the subject does not have to crouch or extend 189

significantly to touch it. Targets 5 through 8 are more costly that targets 1 through 4 as they 190

require that the subject take a step to touch them. These results were expected, but the point 191

was to show that the overall setting and model could produce reliable torque estimates. 192

This demonstration shows that the model can be used in any setting where the cost of a 193

movement is hypothesized to be a constituent factor. We develop this technique further in the 194

next demonstration. 195

Test4: Comparing the HDM with a prior experimental result 196

Once the stiffness parameters were adjusted appropriately, can it reproduce the results of a 197

stiffness modulating experiment? The experiment we tried was to replicate is that of Ortega 198

el al. [63]. They showed that arresting the arm swing during treadmill walking incurred an 199

increased metabolic cost of 6%. Our hypothesis was that to reproduce this result we could 200

modify our walking data for the model so that the arms were clamped by the sides with stiff 201

stationary markers. 202

To test this feasibility, we used one of our HDM walking data sets in a test situation. The 203

cost of walking was computed and with a modification designed to model the data in [63]. To 204

simulate their experiment, we modified the model data so the arms could swing with the walking 205

gait for the standard case, but for the restricted case, the arms were constrained by markers 206

that move with the stride but are not allowed to swing. Since the arms were not allowed to 207
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Fig 6. Reaching in Virtual Reality A) A subject reaches to touch virtual targets seen in a
HMD. The Ss’ reach is unconstrained. B) The subject reaches to the different numbered targets
on separate trials. C) The average integrated torque over 10 trials per reach shows that the
method reliably discriminates between movement costs for the further and higher locations.

balance the leg movements, we expected the energetic cost to be higher. As shown in Figure 7, 208

the result was that the constrained walk was about 6 % more expensive than the standard walk, 209

which was essentially the value obtained by the Farley lab. The use of the HDM in imitating 210

this experiment shows off the utility of the model; no elaborate tuning was necessary to obtain 211

the preliminary result other than restraining the arms. 212

test 5: Controlling poses with reduced degrees of freedom 213

Tests of movement accuracy revealed that the dynamics engine was able to tolerate significant 214

noise levels added to the marker positions and still produce reasonable walking gaits. However, 215

another possibility is to do away with many of the markers altogether and use a subset to 216

constrain the dynamics. This property could have been expected from studies of muscle synergies, 217

which show that muscle contractions coordinate in movement generation [25,26]. 218

Tests show that for many movements, with suitable internal stiffness, it is only necessary 219

to control the location of a reduced set consisting of the head, hands, and feet markers. Fig. 8 220

shows a qualitative comparison between a pose found using the whole marker set (on the left) 221

and one found using only head, hands, and feet(on the right). To achieve the reduced marker 222

pose, we started the model in an upright stance with the arms by the side, and then the reduced 223

set markers are moved slowly along trajectories that leave them in the final posture. The 224

straight arms take advantage of the elbow joint angle limitation. Joint limits on the knees and 225

elbows and general joint stiffness naturally bias the physics engine to find a pose that is very 226

close to the fully constrained pose. Body inertia and joint stiffness naturally clean up minor 227

noise and occlusions in the captured marker data. The resulting joint angles in transit allow the 228

specification of the complete set of dynamic torques. 229

This result has important general implications. First off, the finding suggests that the 230

kinematic plan for movements can be compressed into a subset of formative trajectories, leaving 231

the remaining degrees of freedom interpolated using the body’s dynamic constraint. 232

Another aspect of this observation is that the reduced set can be used to adjust movements 233

to individual circumstances, again leaving the detailed interpolation to the dynamics. 234
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(a) walking with arm swing (left) and stiff arm (right).

(b) energy cost

Fig 7. In a preliminary test of our design, the energetic cost of normal walking is compared to
the case where the arms are constrained from swinging. Our hypothesis is that if subjects are
instructed to walk without moving their arms, they will accomplish this by using co-contraction,
and that this effect can be realized in the HDM with stationary markers that keep the arms
vertical. The markers use joint stiffness values that are large enough to prohibit significant
motion. As shown by the figure, the increased cost measured by the HDM is 6.1 %, extremely
close to the the 6 % result obtained by Ortega.

Discussion 235

The paper has aimed to publicize the availability of a system for quantitatively modeling 236

whole-body movements. Its 48 degrees of freedom allow models of scale that are robust to 237

disturbances. In addition to being an analytical tool, it can also generate movements from a 238

kinematic plan. 239

A central feature of the system is the production of the movements’ energetic cost to provide 240

the capability to compare different movement scenarios. Achieving this aim is notoriously tricky, 241

owing to the lack of systems that can provide independent cost measures. One possibility is the 242

use of force plates, as shown in our experiment, to measure the change in the stance. Another 243

option is to use the system to produce correlations with similar tests with human subjects. Our 244

research with stiff-arm warm, which reproduced the energetic difference of 6 % is one such 245

example. A basic question concerned with the system is whether it can recover the cost of a 246
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Fig 8. Movement control using dynamic synergies (a)Body configuration using all
marker constraints.Note the similarity to the sparsely constrained pose. (b) Body configuration
using constraints on only the head, hands, and feet. In many cases, the pose found using a full
set of marker constraints is quite close to that found by a sparse set of constraints. These two
images show almost no differences between using a full or a sparse set of marker constraints.

known physical system’s complex motion, and this has been done, showing very high levels of 247

accuracy. Once we have vetted the system in many such areas, it can be used as a predictive 248

tool, as in the experiment showing the different costs of reaching to targets. 249

In addition, pf its use of a mechanism for interpreting experiments, the system can also 250

serve as a useful base of theorizing about the human system’s organization concerning its 251

space-time performance since many of these issues are open. While an enormous amount of 252

research in human motor control has produced ever more refined elucidations of subsystem 253

components, a comprehensive theory at the level of large scale dynamics is still unsettled. One 254

main obstacle is a description of how the motor cortex can communicate control information 255

to drive the high temporal bandwidths of the spinal cord circuitry. Several possibilities were 256

debated at the Neural Control of Movement conference in 2013 without definitive result, but the 257

prospect that we have emphasized is that the motor cortex communicates a coded kinematic plan 258

together with stiffness settings. A study with kinematics coded with temporal basis functions 259

has shown that a kinematic plan can be coded to reduce the bandwidth needed by a factor of 260

approximately 103 [27–29]. The HDM shows that such a model can play a useful role in studying 261

the kinematic-plan model’s consequences. In particular, the reduced degree of freedom control 262

demonstration supports the uncontrolled manifold view wherein a subset of crucial degrees of 263

freedom can direct a movement with the uncontrolled degrees of freedom interpolating the 264

movement using the system’s dynamics [30,31] 265

The human dynamic model is relatively large, having 48 degrees of freedom. Additionally, 266

its multiple DOF joints were designed to approximate human motion. The most important 267

insight was the use of reduced degrees of freedom constraints in computing the dynamics. If 268

the limitations are near the number of DOFs of the system, then the torque recovery can 269

quickly become numerically unstable. However, up to 41 markers in the HDM provide sufficient 270

constraints to integrate the dynamic equations reliably by allowing the natural dynamics of 271

the system to interpolate the motion appropriately. One way of illustrating the robustness of 272

the method is to combine a kinematic data set from the source with another set of dynamic 273
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parameters. In tests, the data gathered with a different motion capture device is combined 274

with the inertial data from another model to make a composite. This test used the Carnegie 275

Mellon University’s graphics laboratory’s motion capture database. This beneficial and extensive 276

database contains whole-body motion datasets for different human subjects performing a variety 277

of natural motions. The database was created by motion capture and the positions of markers 278

on the bodies are one of the primary sources of motion data. We did not know the individual 279

dynamic parameters, but by adopting the database’s marker conventions, we were able to use our 280

dynamics calculation to compute joint torques for the composite system. Although the estimate 281

is thus done for a synthetic pairing of kinematic data and dynamic parameters, the point is to 282

show that, even with this combination, the integration is stable and leads to identifiable torques. 283

There are a number of ways to improve the system, but three are the most important. One 284

limitation of our method for computing torque is that it is insensitive to muscle stiffness, which is 285

both passive and can be actively modulated [32,33]. Increasing stiffness will increase the overall 286

net movement energetic cost and needs to be taken into account. The observation somewhat 287

ameliorates this issue that in most natural tasks, subjects will try to minimize energetic costs and 288

thus exploit natural dynamics whenever they can [34–36], reducing high levels of co-contraction. 289

However, the ubiquitous use of spring as constraints means opening up the possibility that 290

one can add springs to the joint degrees of freedom to model stiffness. These could also have 291

parametric programmable spring constants to model muscle co-contraction. The second feature 292

that could be added is a system to keep the human model upright. Any of the three human 293

sources of this needed information - visual, vestibular, and proprioception - would be candidates 294

for this practical constraint. The HDM at present uses a faux system of rotational torques at 295

the center of gravity, but these could easily be replaced with more appropriate ankle torques. 296

The third feature to be added is the separation of gravitational torques from control torques as 297

only the latter effect metabolic cost directly. This improvement is a matter of modifying ODE’s 298

low-level code, and the plan is that this will be tackled in the near future. 299

The method has several advantages over alternate methods. First, it can be easily implemented 300

in a single robust framework of the physics engine. Using the physics engine for multiple tasks 301

allows a unique human model to be used from start to finish, rather than being forced to use the 302

conventions built into a commercial package. Second, the method is fast. The simulation engine 303

is designed for performance, making it possible to analyze movement in real-time and create 304

interactive experiments with stimuli dependent on the feedback results. Third, the software 305

is free. Freely accessible code, such as ODE, is useful because it facilitates comparison and 306

collaboration in research. 307

In summary, the system’s capability is a very stable set of integration equations that readily 308

handle the inclusion of multiple points of surface contact. The HDM uses a closed loop step at 309

each time step, so that the computed torques are appropriate for the new posture. In contrast, 310

when the computed torques are saved and replayed, small errors in the kinematics build up, 311

so that each set of torques is no longer appropriate for the computed posture and the overall 312

system rapidly becomes unstable. The significance of these results extends beyond the simulation 313

stability issue, and provides a strong argument for the suitability of the kinematic plan’s close 314

loop control as a biological model. 315
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Materials and methods 316

The core of our simulations exploits the observation that realizations of constraints behave like 317

implicit springs. The parameters that soften constraints into springs exhibit many advantageous 318

properties. They stabilize the simulation, pushing a constrained system away from singularities, 319

and reducing constraint error. Using the constraint solver as a joint controller makes it extremely 320

easy to integrate inverse kinematics and inverse dynamics analysis into real-time applications 321

that need physics computations for forward simulation. The solution is robust, fast, free, and 322

allows one to work with a single general-purpose human movement model. 323

The integration requires an initial input of marker-based motion capture of the position of 324

the markers over time. A PhaseSpace system creates these points from locations of optical 325

markers attached to clothing or skin. Given this data, the human’s pose, the relative position, 326

and orientation of their body parts in space is determined by fitting a model to the optical 327

marker data. 328

The central dynamics integration step combines the physics engine with a gradient-based 329

learning approach to determine where captured markers sit on the different body parts of a 330

character and where body parts attach to each other. This information allows the calculation of 331

the model pose (or joint angles) over time by constraining a physically simulated model to satisfy 332

marker constraints, joint constraints, and other relevant constraints such as non-penetration 333

with the ground. Once provided with a sequence of poses, it is straightforward to constrain the 334

model to transition through the pose sequence using internal joint torques. 335

Inverse Dynamics 336

The pose interface with markers provides the necessary initialization to calculate how much 337

effort is required to accomplish a particular movement. For the human model, this amounts 338

to knowing the torques to apply at each joint. The formulation can correctly compute the 339

desired force measurements given the constraints, such as the angular velocity of each joint, with 340

minimal effort. The process is straightforward. Given the current joint angle and the desired 341

joint angle for the next frame, the relative angular velocity of the body parts is constrained 342

as to achieve the target orientation on the next frame. Contact constraints are necessary to 343

prevent ground surface penetration. The ODE physics library handles the constraints and solves 344

the torques and forces that are used to satisfy each constraint in the process. 345

For computing inverse dynamics, the first step is to initialize the model to a starting dynamic 346

state. The initial state can be found from two consecutive frames of kinematic pose data. The 347

model pose is set by using the second frame of data, and the initial linear and angular velocity 348

of each joint is computed by taking the finite difference between the two frames (and dividing 349

by the timestep). Computing velocity through finite differences is appropriate for a physics 350

engine using first-order semi-implicit Euler integration. 351

The next step is to find the torques between the second and third frames of pose data by using 352

the finite difference between poses to compute angular velocities that will move the model from 353

the second to third pose. Differentiating again, this time between the current and future velocity 354

gives a target acceleration that becomes a constraint on the model. The primary difference 355

between this step and the previously discussed method for finding pose from marker data is that 356

there are no marker constraints dragging the body into place, and the internal muscle stiffness 357

drives the model toward a target pose on each frame instead of toward a ‘default’ pose. Because 358

there are fewer constraints in play, stiffer muscle forces are used, but the absolute forces the 359
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muscles can apply are limited to prevent muscle forces from being unreasonably large. 360

The overall idea behind the method for calculating joint torques is straightforward and 361

has been implemented in Open Dynamic Engine. The mathematics underlying the rigid body 362

simulation software used in our work is explained in the Appendix section. 363

Human Model 364

Our techniques use a simulated model of the human whose movement is analyzed. The first order 365

of business is to build a physical model capable of representing human movements. The accuracy 366

of the model influences the outcome of the analysis. The humanoid model is a collection of rigid 367

bodies connected by joint constraints. We present here a method for using marker data to help 368

determine the dimensions of the model segments and where markers attach to the model to a 369

human subject. 370

The technique for fitting a model to data begins with a character model that serves as a 371

template, Fig. 9, providing the number of body segments and topology of the model. We further 372

require that labeled markers used in motion capture be assigned to specific model segments. It 373

may be straightforward to derive these using a technique such as in [16, 17]. However, it is also 374

not difficult to do by hand. It would become tedious if one had to go through the process for 375

many different models. Fortunately, the motion capture suit typically puts the markers on the 376

same body segments, even if they are in slightly different places, and the body segments have 377

different dimensions. 378

The model consists of nb rigid bodies connected by nj joints. In this case, each joint consists 379

of three to five constraints. Each joint connects two rigid bodies with anchor points (center of 380

rotation) defined in the reference frame of both bodies. The joint constraints keep the anchor 381

points relative to the two bodies together in the global frame. If bodies bj and bk are connected, 382

a joint constrains them together at a common point. The joint anchor relative to body bj is c̃jk. 383

The anchor for body bk is c̃kj . The joint constraint drives these points together in the global 384

frame, creating three constraint rows: 385

φjk = Rj c̃jk + xj −Rkc̃kj + xk

The locations of these anchor points determine the segment dimensions (bone lengths) of the 386

character model. 387

Markers, each assigned to a specific rigid segment, represent a point on the human body. 388

We seek anchor points that allow markers to remain approximately stationary relative to their 389

assigned body segment. It is generally impossible to precisely find such a configuration (without 390

creating an unreasonable number of body segments) because of soft-tissue artifacts (STAs). Skin 391

and joints are not rigid. They stretch and give as muscles pull the bones. Modeling the body in 392

maximal coordinates provides a way to model STAs explicitly. 393

Given a pre-defined model topology and markers assigned to specific model segments, we 394

seek to find the joint anchor points between segments and the marker attachment points relative 395

to the model segments. If the ith marker is assigned to the jth rigid body (pi → bj) at relative 396

point s̃ij , we model the marker’s attachment as a three dof constraint: 397

φij = pi −Rj s̃ij − xj

The process models markers from an arbitrary point in time as infinite point masses. As bodies 398

of infinite mass, constraint forces do not affect the markers’ trajectories but only the bodies 399
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they are anchored to. Initially, markers are anchored at s̃ij =

0
0
0

. This mapping attaches the 400

marker to body bj ’s center of mass. 401

This mapping is a very rough estimate of the marker attachment points on the model 402

segments, but it is sufficient because of the flexible nature of constraints in the simulation 403

software. Setting the CFM parameter of the marker constraints to β = 10−3 and setting the 404

model joint constraint CFM to β = 10−5 makes the body segments hold together tightly, while 405

still allowing the markers to pull the body into shape. Several timesteps of simulation allow the 406

model to relax to a fixed pose. We then take the markers in their current configuration and 407

reattach them to their respective segments. Relaxing the marker attachments this way improves 408

the fit for this particular frame of marker data. Iteratively repeating this process with multiple 409

frames of marker data, we therafter update the marker attachment points by some learning rate, 410

ηm: s̃′ij = (1− ηm)s̃ij + ηmR
T
j (pi − xj). Gradually updating attachment points, using different 411

frames of data, effectively descends the error gradient of the marker positions relative to the 412

body: 413

min
s̃

T∑
t=1

nm∑
i=1

‖pi −Rj s̃ij − xj‖

The decrease in marker error affected by model dimension error. Conveniently, joint anchor 414

constraints behave the same as the marker attachment constraints. With an arbitrary frame 415

of marker data and using a marker CFM of β = 10−4, if the markers constraints cannot be 416

satisfied, they will pull the joint anchors apart slightly. For each joint we find a new common 417

anchor point in the global frame by taking the average between the two unsatisfied anchor points 418

that the joint constraint is trying to pull together. We then move the anchor points toward that 419

point according to learning rate ηl: 420

c̃′jk = (1− ηl)c̃jk + ηlR
T
j (Rk c̃kj + xk − xj)

For any frame, errors will cause the markers to stretch from their attachment points and joint 421

anchor points to stretch apart from each other. Both marker attachment points and the joint 422

anchors can be updated simultaneously to decrease the error for that frame. However, the local 423

solution that perfectly satisfies one frame may make another frame worse. This step presents 424

an evident gradient descent approach to finding the joint anchors and marker attachments: 425

using several frames, compute an average adjustment to the marker attachments, and joint 426

anchors that reduce the error. Make the adjustment to both anchors and attachments and then 427

iterate. It may be advisable to employ the standard machine learning practice of a validation 428

set to ensure that the error continues to decrease and avoid overfitting. This technique relies on 429

spring-like constraints made possible in maximal coordinates. 430

Although this method could easily be automated, in practice, the research did not rely on very 431

many different models and so the system uses a mechanism for relaxing the marker attachment 432

points and joint anchors with the click of a button in the graphical user interface (Fig. 1). With 433

a new data set, a handful of iterations proved sufficient to produce a reasonable model with 434

marker attachments that fit the data well enough for further analysis. This algorithm does not 435

address joint limits on a range of motion. These can also be learned [48], but in our case, the 436

range of motion for each joint is set a priori. After determining segment lengths, we set other 437

segment dimensions as appropriate to fit against the markers. Mass properties for each segment 438

assume uniform density by volume. 439
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Model Segments 440

Having addressed the issues in attaching the model to motion capture data, we turn to the 441

construction of the physical model capable of representing human movements. Fig. 9 shows the 442

number of body segments and topology of the model. The humanoid model is a collection of 443

rigid bodies connected by joint. Each joint connects two rigid bodies with anchor points (center 444

of rotation) defined in the reference frame of both bodies. The locations of these anchor points 445

determine the segment dimensions (bone lengths) of the character model. 446

B

Joint Part 1 Part 2 DOF/joint Total DOF
Cervical Head Neck 3 3
Thoracic Neck Upper Torso 3 3
Lumbar Upper Torso Lower Torso 3 3
Sacral Lower Torso Pelvis 3 3
c.Clavicle Upper Torso c.Collar 3 6
c.Shoulder c.Collar c.Upper Arm 3 6
c.Elbow c.Upper Arm c.Lower Arm 2 4
c.Wrist c.Lower Arm c.Hand 2 4
c.Hip c.Pelvis c.Upper.Leg 3 6
c.Knee c.Upper Leg c.Lower Leg 2 4
c.Ankle c.Lower Leg c.Heel 2 4
c.Tarsal c.Heel c.Sesamoid 1 2

Fig 9. The 48 internal DOFModel A. Four ball-and-socket joints connect five
body-segments along the spine from the head to the waist. Ball-and-socket joints are also used
at the collar-bone, shoulder, and hip. B. A summary of the joints used in the model. c. =
chiral: there are two of each of these joints (left and right). Universal joints are used at the
elbows, wrists, knees, and ankles. Hinge joints connect the toes to the heels. All joints limit the
range of motion to angles plausible for human movement. Our model assumes that joint DOFs
summarize the effects of component muscles.

Labeled markers are assigned to specific model segments. It may be straightforward to derive 447

these using a technique such as in [16, 17]. However, it is also not difficult to do by hand, as 448

shown in Fig 10. The motion capture suit typically puts the markers on the same body segments, 449

even if they are in slightly different places and the body segments have different dimensions. 450

Given this pre-defined model topology and markers assigned to specific model segments, the 451

next step is to find the joint anchor points between segments and the marker attachment points 452

relative to the model segments. Markers, each assigned to a specific rigid segment, represent 453

a point on the human’s body. Anchor points should allow markers to remain approximately 454

stationary relative to their assigned body segment. It is generally impossible to find such a 455

configuration exactly (without creating an unreasonable number of body segments) because of 456

soft-tissue artifacts (STAs), that are present because skin and joints are not actually rigid; they 457

stretch and give as muscles pull the bones. Modeling the body in maximal coordinates provides 458

a way to model STAs explicitly, as discussed. 459

Model degree of freedom details The model structure consists of 21 separate rigid bodies 460

connected by 20 joints (Fig 9). The relative orientation of some bodies is constrained by using 461

universal joints for the elbows, wrists, knees, and ankles and hinge joints to connect the toes to 462
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Fig 10. Marker arrangement on the motion capture suit. The suit contains 51
markers as shown by the LEDs in total but only 41 are used in the model e.g. Markers that are
used are present on the fingers. Markers can easily assigned to specific model segments. For
example, the markers of RBHD, RFHD, LFHD and LBHD are assigned to Head segment while
the markers of RBWT, RFWT, LFWT and LBWT belong to Pelvis segment.

the heels. Universal joints restrict one angular degree of freedom; e.g., when the arm is bent 463

at the elbow, the forearm cannot rotate around the principal axis of the upper arm unless the 464

upper arm itself rotates. However, the forearm can rotate at the elbow around its own principal 465

axis (modeling the twisting movement of the radius and ulnar bones). All other joints are left 466

as ball-and-socket joints with three angular degrees of freedom: hips, shoulders, collar-bones, 467

upper-neck, lower-neck, upper spine, and lower spine. This arrangement of joints leaves a total 468

of 48 unconstrained internal degrees of freedom. An advantage of building humanoid model in 469

this way is that joint connections are not treated as holonomic (perfectly rigid) constraints, but 470

rather as very stiff springs that hold body parts together like tendons and muscles. 471

Given motion capture data of a subject, the model is fit to the subject’s dimensions and 472

joint-range-of-motion is constrained to approximate the subject’s flexibility. Additionally, the 473

model segments have inertial matrix properties. The initial mass assignment to each segment 474

assumes a uniform density of water (1000 kg
m3 ) for the volume associated with each rigid body. 475

The mass assignment should be modified to roughly match that of a specific subject. The 476

increased fidelity, required for individual subjects in clinical biomechanics research would employ 477

more sophisticated techniques for a better approximation of mass distribution in the model. 478

Interestingly, however, the experimental results below show that even this low fidelity model 479

is sufficient to produce high-quality data that compares favorably with data gathered from 480

independent sensors. 481

Pose Fitting 482

Various commercial packages provide different methods for converting marker trajectories into 483

sequences of body poses, but they can be time-consuming, expensive, or difficult to use. This 484

section describes an approach related to [18] and [19] that is free, fast, uses intuitive parameters, 485
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and allows the user to fit markers to whatever model they wish. 486

The method uses the physics engine to constrain a character model to fit marker data and 487

other constraints. Markers are modelled as infinitely massed points attached to the character 488

model. Given a frame of marker data, the position and orientation of all body segments can be 489

found by balancing internal joint targets and external marker data. From the global position 490

and orientation of the different body segments, it becomes a simple matter to compute relative 491

orientations (joint angles). 492

The internal degrees of freedom are limited by range of motion constraints, e.g. the elbows 493

and knees cannot bend backwards. All other joints have similar range-of-motion limitations 494

based on the subject’s flexibility. Furthermore, each joint is set to have a “target state”, a 495

preferred relative orientation between its connected bodies. These preferences can be thought of 496

as “muscle stiffnesses” and are modeled as weak constraints with limited force. Joint limits and 497

stiffness serve as a prior over possible poses so that in the absence of any marker data at all, the 498

model still takes on a pose. Consequently, every internal degree of freedom is constrained to 499

some degree. 500

These constraints hold the model together and give it a default pose. Marker data pull the 501

model from the default pose into a new pose, e.g. Fig 11. For a given frame of motion capture 502

data, each marker is connected to its associated body segment with a ball-and-socket joint 503

constraint. A total of 41 markers, which do not contribute any degrees of freedom because of 504

their infinite mass, attach to the character model, adding an additional 3× 41 = 123 constraint 505

dimensions. 506

Fig 11. Pose fitting. Initially the motion capture data points are in a very different
configuration than the initial stance of the model. To find the appropriate correspondences,
simulated markers attach to the humanoid model through ball-and-socket joints and pull the
body parts into place, subject to model joint constraints. The left to right sequence in the
figure shows the body targets being gradually reconciled with the external markers.

Inverse dynamics 507

Vestibular system balance capability The torque calculation by the HDM is ideal in the 508

sense of solving the dynamic equations, but in the actual situation there needs to be a corrective 509

system for incidental errors. In the human system there are multiple corrective system based on 510

vision, proprioception and the vestibular system. Such corrective systems have been extensively 511

studied e.g. [20–22]. 512
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For the HDM, discrepancies between the model and human that created the data necessitate 513

artificial “residual” forces to keep the model from falling over when dynamically reproducing 514

most movements. A 6 degree of freedom joint between the waist segment and the global frame 515

generate the external forces. A weak, limited spring constrains the waist segment to achieve its 516

recorded pose relative to the global frame. The experiments show that attaching the external 517

constraint to the head or the feet has little noticeable difference. The non-realistic external 518

forces (residuals) account for noise as well as discrepancies between the model and the human 519

generating the data. In particular, differences in how the feet interact with the ground cause 520

errors in our analysis. In most cases it is only necessary to constrain two of the 6 angular degrees 521

of freedom (pitch and roll), leaving the other four external degrees of freedom disabled. The 522

two angular constraints keep the body from falling over but allow it to move about through 523

simulated ground interactions. 524

The stabilization system completes the model. It can be implemented in parallel, with the 525

control used to stabilize the residual necessary to balance. With this included, the simulation 526

can reproduce highly dynamic motions, e.g. see Fig 2, which shows a jumping sequence made 527

originally by a human subject and recreated using the torques used by the inverse dynamics 528

model. 529

Finally, collisions between the ground and the feet also influence the model pose. Each foot 530

can form up to three contact points with the ground. Inequality constraints at these points 531

prevent penetration with the ground. When both feet are firmly on the ground, all markers are 532

actively pulling the body into a pose, all joints are holding the body together, and joint limits 533

and stiffness are biasing the relative orientation of the bodies. The experiments in next section 534

show that the model can simulated the ground force correctly. 535

Supporting information 536

S1 Appendix. For each human subject we construct a dynamic model and force that model 537

to follow the subject’s motion capture data, which leads directly to the recovery of joint angles. 538

Our algorithm constrains the dynamic model to track these angles and consequently can estimate 539

the correct joint torques. This concept was originally demonstrated in two dimensions for human 540

walking by [37]. We have extended the method to the significantly more demanding case of of 48 541

DOFs in three dimensions and arbitrary posture changes. Fig. 9 lists the body segments. The 542

dimensions of each segment are matched those of an individual subject. The principal difficulty 543

is that the constraints in the high DOF 3D model present many delicate numerical issues for 544

the ODE solver that need to be addressed [14]. Currently the dynamic model does not attempt 545

to model stiffness components, with the consequence that it can only directly recover the net 546

torques at each DOF. 547

For data capture a subject wears the motion capture system developed by PhaseSpace. Each 548

PhaseSpace LED marker is mapped to a corresponding point on the model. The markers are 549

then introduced into the physics simulation as kinematic bodies without collision geometry. As a 550

heuristic, each marker kinematic body is effectively treated as having infinite mass so that when 551

another dynamic body is attached through a joint constraint to a marker, only the dynamic 552

body’s trajectory can be changed by the constraint. 553

The body segments are used by the simulation for both collision detection and the calculation 554

of mass properties. Mass and inertial properties are computed from the volume of the body 555

parts using a constant density of 1000Kg
m3 . The dimensions and articulation are designed to 556
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allow the model to reproduce most movements the human can make. For example, joints at the 557

elbows have two DOFs to reproduce the hinge movement of the elbow as well as the twisting 558

movement of the radius and ulna bones in the arm. Joint DOFs are also limited to prevent 559

impossible movements such as reverse bending of the elbows or knees. 560

The PhaseSpace motion capture system records 41 3D positions of specific human body 561

locations over time and maps these markers to appropriate locations on the model. When the 562

simulation is stepped forward, a constraint solver attempts to find a body state that satisfies 563

the internal joint constraints, the external marker constraints, and other constraints such as 564

ground forces, joint stiffnesses, and conservation of momentum. Knowing the kinematics allows 565

the recovery of the dynamics, since the joint velocities allow the equations of motion to be 566

inverted. The retrieved forces can be used to generate feed-forward torque profiles for actuating 567

the character. 568

When modeling human movements, however, we assume that the human body does not 569

collide significantly with itself and so typically only process collisions between the model and 570

the ground. Collisions between the model and the ground, however, play an important role in 571

analyzing and synthesizing movement data such as walking. Collision handling involves creating 572

a constraint between the colliding bodies and is the primary contribution of the model. We will 573

describe this methodology after first introducing the physical simulation details. 574

Physical simulation involves a large number of different variables to represent constraints and 575

relevant physical quantities. Table 1 presents specific symbols and their meanings for reference. 576

Scalars are represented with lower-case, un-bolded symbols: x. Bold lower-case symbols 577

represent column vectors, 578

x =

[
x1
x2

]
Bold, upper-case symbols to represent matrices: 579

X =
[
x1 x2

]
=

[
x11 x12
x21 x22

]
Dot-notation to indicates time derivative: ẋ = dx

dt . The circumflex accent indicates a 3d vector 580

being used as a skew-symmetric matrix representing a cross-product operation: 581

x̂y =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

y1y2
y3

 = x× y

Coordinates are typically relative to a global reference frame. However, a tilde, x̃, indicates 582

a quantity that uses a local reference frame, e.g., a body-relative frame, rather than the global 583

frame. We use subscripts to indicate that a quantity refers to a specific dimension, a particular 584

rigid body, a point in time, but clarify the subscript’s meaning when necessary to remove 585

ambiguity. Table 1 introduces the primary symbols within the text. 586

For conciseness in notation, we typically combine angular and linear quantities as a single 587

symbol. This representation is used both for position and orientation even though orientation 588

does not conveniently fit into a 3×1 vector. Fortunately, angular velocity and angular acceleration, 589

ωand ω̇, do combine well with linear velocity and acceleration ẋand ẍ, and it is these quantities 590

that feature primarily when dealing with a constrained system. We will also represent the state 591

of multiple bodies using a single symbol when convenient. For example, for a system with two 592
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Symbol Meaning

x position or state of one or more rigid bodies
ẋ velocity (usu. linear and angular)
ẍ acceleration (usu. linear and angular)
R rotation matrix representing orientation of a body
ω angular velocity
q quaternion representation of an orientation or rotation
m mass of a single rigid body
M mass matrix
I identity matrix
I moment of inertia tensor

nb, nc number of bodies, number of constraints
α,β stabilizing parameters added to the equations of motion
φ() error or energy function for a single constraint
J matrix of partial derivatives of constraint error functions
h timestep
f forces (and torques)
τ torques
λ constraint forces

Table 1. Meanings of specific symbols used to discuss dynamic simulation

bodies, we will represent the combined linear and angular accelerations (a 12d vector) as ẍt. 593

For this same 2-body system, Newton’s law relating force, mass, and acceleration is as follows: 594
f1t

τ 1t

f2t

τ 2t

 =


m1I 0 0 0
0 I1t 0 0
0 0 m2I 0
0 0 0 I2t



ẍ1t

ω̇1t

ẍ2t

ω̇2t

⇒ f t = M tẍt

where I and I it are 3× 3 block matrices. 595

Dynamic State Coordinates in the simulation world are defined relative to an arbitrary 596

origin and basis set of directions. We refer to this inertial frame as the “global frame”. Each 597

rigid body also has its own point of reference and set of directions. Any point in the global 598

frame can also be described relative to a body’s frame of reference. It is convenient to define the 599

point of reference of a body as its center of mass and use its principal inertial axes of symmetry 600

as directions. 601

The position of the center of mass and orientation of a body within the global frame are here 602

defined as x and R respectively. In 3d space, x is a 3× 1 vector: 603

x =

xy
z


where x, y, and z are the distance from the origin along each of the three directions that establish 604

the global frame of reference. For consistency, we deal with these distances in meters and assign 605
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“up” to the positive z axis. The orientation R of a body is a 3× 3 orthonormal matrix whose 606

columns give the body’s local direction frame relative to the global frame: 607

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33


Conservation of momentum makes it necessary to keep track of the time derivative of these 608

quantities: ẋ and Ṙ. Instead of explicitly representing Ṙ, it is convenient to keep track of the 609

angular velocity: 610

ω =

ωxωy
ωz


The relationship between these quantities is

Ṙ = ω̂R

Representing orientation as a 3 × 3 matrix can be unwieldy. To properly represent an 611

orientation (or pure rotation) it must be an orthonormal matrix. An orthonormal matrix uses 612

nine elements to represent a property with only three degrees of freedom. Unfortunately, any 613

three-element representation of orientation suffers from singularities [38]. We make use of 614

unit-length quaternions to represent orientations and changes in orientation. Quaternions are 615

convenient because of their close relationship to angular velocities. Quaternions are similar to 616

an axis-angle representation of a rotation. A quaternion q represents a rotation by θ around 617

unit vector v with four elements: 618

q =


qw
qx
qy
qz

 =


cos θ2
vx sin θ

2

vy sin θ
2

vz sin θ
2


From an arbitrary angular velocity ω, we can make a quaternion that represents the change 619

in rotation that would occur during a timestep of h. After finding the amount of rotation 620

θt = h‖ωt‖, one might naively find a “rotation quaternion” by normalizing ωt and then re-scaling 621

by sin θt
2 for a final quaternion: qt =

[
cos θt2

ωt
θt

sin θt
2

]
. However, the normalization step becomes 622

unstable as θt approaches zero. To avoid that instability, we use the “sinc” function where 623

sinc θ = sin θ
θ . The sinc function allows us to remove the discontinuity that would result from 624

division by zero and adds numerical stability. When θ is small, sinc (θ) can be approximated to 625

within machine precision using the first two non-zero terms of its Taylor expansion (see [38]). 626

The result is a discrete-time “rotation quaternion”: 627

qt =

[
cos θt2

h
2 sinc θt

2 ωt

]
(1)

Given nb bodies, the dynamic state of the ith body at time t is its position, orientation, linear 628

velocity, and angular velocity:
{
xit Rit ẋit ωit

}
. We will assume that all of these values 629

are framed in the global coordinate system unless specified otherwise. The body dynamics are 630
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also affected by the body’s constant mass mi and inertia tensor I it. The moment of inertia 631

tensor, I, is indexed by time because the body’s orientation changes how the the mass is 632

distributed relative to the world frame: I it = RitĨ iRT
it. We assume that the inertia tensor is 633

constant relative to the body-local frame of reference (i.e., bodies are rigid). 634

In simulation, the forces f applied to the rigid bodies come from three general sources. These 635

are constraint forces (fc), gravitational and gyroscopic forces (fg), and user/control forces (fu): 636

f = fc + fg + fu. 637

Integration Step When a force is applied to a body, it translates into acceleration that 638

is inversely proportional to the mass. Velocity is the time integral of acceleration, ẋt = 639

ẋi0 +
∫ t
0 M

−1
i f tdt, and position is the time integral of velocity, xit = xi0 +

∫ t
0 ẋitdt. Because 640

f t may depend on xt and ẋt as well as on discontinuous collisions and control inputs, analytic 641

descriptions of body state are not usually possible. Instead we discretize the equations of motion 642

and use a small, discrete timestep, h, to numerically approximate system dynamics. The most 643

obvious thing to do is to linearize the force function, f t, and then take all the quantities from 644

time t and use them to find the state at time t+ h: 645

ẋt+h = ẋt + hM−1f t (2)

xt+h = xt + hẋt+h (3)

This “semi-implicit Euler” integration uses using the future velocity for computing position and 646

is more stable than the standard formulation. 647

Although we lump orientation and position together as a single symbol, in practice there are a 648

few distinctions that need mentioning. For example, gravity only applies to the linear state, while 649

gyroscopic torques only apply to angular state. Gravitational forces are very straightforward, 650

fgrav = Mg, where g indicates the direction and magnitude of gravitational acceleration and is 651

often very simple; e.g., for a single rigid body g =
[
0 0 −9.8 0 0 0

]T
. 652

Rotation is a non-linear phenomenon. However, we can approximate the motion of a rotating 653

body by adding torques that imitate gyroscopic effects, see [39]. Gyroscopic torques are applied 654

to maintain conservation of angular momentum. Explicitly applying gyroscopic torques to bodies 655

allows us to treat the rest of the system as though it conserved angular velocity rather than 656

angular momentum. Thereafter, we can deal with the combined linear and angular quantities as 657

a linear system. 658

The gyroscopic torques for each body are linearly approximated by 659

fgyro =

[
0 0
0 ω̂t

] [
0 0
0 It

] [
0
ωt

]
These forces are zero if the three principal moments of the inertia tensor are equal. Otherwise, 660

they represent the forces necessary for conservation of angular momentum. Unfortunately, this 661

approximation tends to introduce energy into the system. We have reduced this problem in 662

ODE by adding in additional terms as described in [39]. 663

The constrained system is solved using mostly accelerations and velocities. At the end, 664

however, it is necessary to integrate the velocities into new positions and orientations. Position 665

and orientation are updated differently. For position, it is sufficient to multiply the linear velocity 666

by the timestep and add it to the current position. Adding angular velocity to orientation is not 667
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as straightforward. We integrate angular velocity into orientation by converting ωi(t+h) into 668

a quaternion and then use the quaternion to rotate the current orientation forward in time 669

following [38]. 670

Constraint Equation When a rigid body is moving or spinning freely through space, the 671

integration equations are sufficient to simulate dynamics. Adding constraints modifies the 672

bodies’ movements. Maintaining a relationship between two bodies requires forming a constraint 673

on the state of the bodies. The integration equations tell us how to go from force to velocity 674

and from there to position and orientation. To simulate an articulated model using maximal 675

coordinates, we need to know what forces constraints apply to the bodies in the system. 676

To find the constraint forces, one must be able to mathematically describe the constraint. 677

We define a multi-dimensional function over the combined position and orientation of all bodies 678

in the system, φ(xt), that produces a vector of size nc specifying how much each constraint 679

is violated, where nc is the number of constraints acting on the system. For example, if the 680

ith constraint keeps body b2 a distance d above body b1 in the z direction, we would have 681

φi(x) = x2z − x1z − d. If b2 is not separated from b1 by a distance of d in the z direction, φi(x) 682

reports the signed magnitude of that constraint error. For additional information on forming 683

constraint equations, see [40,41]. 684

In general, the error for a constraint is non-zero. Given a measure of the error for a given 685

state, we seek to find constraint forces, fc, that reduce the error over subsequent time steps [42]. 686

Specifically, over the timestep h, we seek a force to reduce the magnitude of the constraint error 687

by a fraction α. That is 688

φ(xt+h) = (I −α)φ(xt) (4)

where α is a k × k diagonal matrix with each αi ∈ [0, 1] representing the fraction of error 689

reduction over a time step. In ODE, the α value is controlled through the error reduction 690

parameter (ERP) which can be set independently for each constrained degree of freedom. In 691

practice, it is not possible to remove constraint error completely (α = 1) when using maximal 692

coordinates because of error introduced by the various approximations employed to make the 693

simulation linear and fast. Values of α typically fall within [0.2, 0.8]. Manipulating this value 694

results in useful elastic and damping effects discussed later. 695

We use the symbol J t to represent the nc × 6nb matrix of partial derivatives of φ(xt). This 696

matrix is a linear approximation of how the constraint error for each of the nc constraints 697

changes when the positions and orientations of the bodies change: 698

J t = ∇φ(xt) =


∂φ1
∂x1t

· · · ∂φ1
∂x(6nb)t

...
. . .

...
∂φk
∂x1t

· · · ∂φk
∂x(6nb)t


Finding the constraint forces that satisfy Eq. 4 involves removing all references to unknown 699

future quantities. The Taylor expansion of φ(xt+h) at xt, truncated after the first order term, 700

approximates the future constraint error: 701

(I −α)φ(xt) = φ(xt+h) ≈ φ(xt) + J t(xt+h − xt) (5)

This truncation has the effect of treating all constraints as linear. Many constraints used to 702

simulate various joints are linear; others, however, contain higher-order terms and this truncation 703

is one potential source of error in simulation. 704
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Combining the two integrator equations, Eqs. 2 and 3, gives the future position/orientation 705

in terms of the present position, velocity, and forces: 706

xt+h = xt + hẋt + h2M−1
t

(
f ct + fgt + fut

)
(6)

Equations 4, 5, and 6 combine to eliminate all references to future quantities: 707

(I −α)φ(xt) = φ(xt) + J t
(
xt + hẋt + h2M−1

t

(
f ct + fgt + fut

)
− xt

)
(7)

This leaves one unknown vector at time t: the constraint forces f ct. Rearranging and simplifying, 708

we get 709

J tM
−1
t f ct = − 1

h2
αφ(xt)−

1

h
J tẋt − J tM−1

t

(
fgt + fut

)
(8)

Note that in rearranging the terms this way, we divided both sides by the squared timestep, h2, 710

effectively changing the problem from one dealing with positions to one dealing with accelerations. 711

This conversion is possible because of the relationship established between acceleration and 712

position by the semi-implicit Euler integrator. 713

Equation 8 is almost the equation that ODE solves when simulating physics. The right 714

hand side is a desired acceleration. The first term on the right is the acceleration that would 715

result in a velocity that would remove a fraction (α) of the constraint error. The second and 716

third terms account for the effects of momentum (current velocity), gravity, and other forces 717

(e.g., user control forces) applied to the bodies. Each constraint becomes its own dimension 718

in a “constraint space”. The Jacobian matrix J projects accelerations from global forces into 719

constraint space. 720

In general, the matrix on the left hand side of Eq. 8 is not square, making the problem under- 721

constrained (or in some cases, potentially over-constrained). However, we can use d’Alembert’s 722

principle [43] to restrict the constraint forces to lie in the constraint space. 723

Another method for arriving at the constraint equation is through the use of Lagrange 724

multipliers. Consequently, the constraint-space forces are typically denoted with λ. The 725

Jacobian transpose gives the relationship between a force applied in constraint space and 726

force/torque applied in the full coordinate space: f ct = JT
t λt. 727

The vector, λt, holds the generalized forces applied by each constraint on all the bodies 728

involved in that constraint, whereas f ct holds the sum of the constraint forces applied to each 729

individual degree of freedom of each rigid body. The LHS of Eq. 8 can then be rewritten as 730

J tM
−1
t J

T
t λt, where J tM

−1
t J

T
t is now a nc × nc positive semi-definite matrix. 731

Returning to maximal coordinates, we will compress Eq. 8 down to 732

JM−1JTλ = w (9)

In general, the matrix JM−1JT may be singular. It is very easy to end up with redundant 733

or conflicting constraints. For example, a box resting on the ground may get a contact constraint 734

at each corner. If each contact prevents interpenetration and sliding (i.e., applies friction) then 735

the contacts constrain a total of 12 degrees of freedom on a single rigid body with only 6 degrees 736

of freedom to be constrained. Conflicting or redundant constraints can break the solver if not 737

dealt with beforehand. The means for dealing with the conflict is clever. The physics engine 738

softens the constraint, allowing it to “slip” proportional to the amount of force necessary to 739

maintain it. 740
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Because mass is always positive, the force, λ, applied to a particular constraint and the 741

resulting constraint-space acceleration will have the same sign. Softening the constraint is 742

therefore a matter of subtracting a scaled copy of λ from the desired acceleration (the right 743

hand side): JM−1JTλ = w − βλ, where β is an nc × nc diagonal matrix of (typically small) 744

non-negative values. This subtraction, of course, is equivalent to adding β to the LHS. Adding 745

these small values to the diagonal of the effective inverse-mass-matrix makes the constraints 746

seem lighter to the solver and moves the matrix away from singularity: 747(
J tM

−1
t J

T
t + β

)
λt = − 1

h2
αφ(xt)−

1

h
J tẋt + J tM

−1
t

(
fgt + fut

)
(10)

The original programmers built soft constraints into the ODE simulation code. The variable, 748

β, tunable for each constraint, is known in ODE as the constraint force mixing parameter 749

(CFM). At first glance, the addition of these parameters may seem loose and unprincipled. 750

However, correctly setting the parameters, α and β, changes a hard constraint into a simulated 751

implicit spring with first order integration (see [44]). 752

It is well-known that the formula for ideal damped spring force is identical to the formula 753

for PD control. However, connecting these two facts, namely that (1) ODE’s constraints are 754

mathematically equivalent to implicit damped springs and (2) damped springs are equivalent to 755

PD controllers, has not been exploited. This insight is key to the success of the methods presented 756

here. Our derivation shows that ODE’s constraints are, in fact, stable PD controllers along with 757

examples of how to take advantage of this fact. We proceed by discussing proportional-derivative 758

control and the mass-spring-damper equation. 759

Implicit Simulated Springs Proportional-derivative (PD) control is a common method used 760

to compute forces that drive a system toward a target state. The PD control equation is the 761

same as a mass-spring-damper system. There are two parameters, kp and kd, that determine 762

what force should be applied to a degree of freedom at any point in time. The stiffness, also 763

called proportional gain (kp), specifies a force driving a degree of freedom toward its setpoint, 764

x̄ with strength proportional to the distance from the setpoint. The damping, also known 765

as derivative gain (kd), counteracts the current velocity, slowing the system down to avoid 766

overshooting. When a system uses PD control to encourage a degree of freedom to move toward 767

a target state, the control force fut at any instant in time is a function of the current position 768

and velocity of the effective mass being controlled relative to its target: 769

fut = −kpxt − kdẋt (11)

In a continuous time system, this controller is guaranteed to be stable as long as kd and kp 770

are non-negative. With zero damping (kd = 0) the system oscillates in a sinusoidal wave pattern 771

whose frequency is determined by the stiffness and mass and whose magnitude is determined 772

by the initial conditions. With zero stiffness and positive damping, the velocity of the system 773

decays exponentially with higher damping converging to zero more steeply. Discrete sampling of 774

these forces, however, ruins the stability conditions. The potential for instability is apparent 775

if we consider a mass m that only experiences damping forces. Using the semi-implicit Euler 776

integrator, Eq. 2, we plug in the damping forces from Eq. 11 to get 777

ẋt+h = ẋt −
hkd
m

ẋt =

(
1− hkd

m

)
ẋt (12)
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Time (t), mass (m), and damping (kd) should all be non-negative values. It is clear, then, from 778

this equation, that if hkd
m > 2, the velocity will oscillate between positive and negative values and 779

grow in magnitude. This oscillation rapidly causes the simulation to “explode” and is annoyingly 780

common when using PD control. Overly stiff springs hit a similar limit with explicit discrete 781

integration that causes them to gain energy and explode. Consequently, explicit PD control 782

gains are tricky to tune. They must fall within certain limits that depend on the timestep and 783

the effective mass experienced by the system. 784

Fig 12. Explicit integration of damping forces is similar to the forward-method for
approximating the area under a curve as a sum of rectangles. In this case it severely
overestimates, leading to instability.

The cause for this instability lies in the discrete integration which is similar to approximating 785

the area under a curve as the sum of multiple rectangles computed forward from the present 786

(Fig. 12). One solution is to solve for the forces implicitly. Implicit integration is similar to 787

approximating the area under a curve with fixed-width rectangles that end rather than begin 788

on the curve. Rather than overestimate, this method tends to underestimate the area under an 789

exponential curve. The resulting system does not explode, although it tends to dissipate rather 790

than conserve energy. The implicit form of the damped-spring-law depends on the integrator 791

it is applied to. Being ‘implicit’, in this case, specifies that spring forces are computed from 792

the future state of the system. Consequently, Eq. 11 becomes the following, (note the changed 793

temporal indices): 794

fut = −kpxt+h − kdẋt+h (13)

We do not know the future position or velocity, but using the integrator equations, Eqs. 3 and 2, 795

we reframe Eq. 13 in terms of the current quantities and then solve for fut to get 796

fut = − kdẋt + kpxt + hkpẋt
1 +m−1hkd +m−1h2kp

(14)

If we analyze a pure damped system as before but using Eq. 14, we end up with

ẋt+h = ẋt −
hkdẋt
m+ hkd

=
m

m+ hkd
ẋt

With kd now in the denominator, even an infinite damping gain is stable, corresponding to the 797

damping force that completely eliminates the current velocity in a single timestep. This stability 798

allows us to make PD controllers with extremely stiff gains. 799

Stability is a nice property for a controller or simulator to have. We now show that the α 800

and β terms added to the constraint equation change them into implicit springs. To see the 801
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correspondence between Eq. 10 and Eq. 14, we consider a constraint that keeps a point mass 802

at the origin along a single dimension: φ(xt) = xt. The displacement function for this system 803

has a trivial Jacobian: J = 1, meaning that λ = fc. Assuming that external forces are zero, 804

fg = fu = 0, Eq. 10 simplifies to 805

(m−1 + β)fct = − α

h2
xt −

1

h
ẋt (15)

Assigning the α and β parameters5 to be, α =
hkp

hkp+kd
and β = 1

h2kp+hkd
, and isolating fct,

Eq. 15 reduces to the implicit spring equation Eq: 14:

fct = −

(
hkp

hkp+kd

)
xt + hẋt

h2m−1 + h2
(

1
h2kp+hkd

) = − kdẋt + kpxt + hkpẋt
1 +m−1hkd +m−1h2kp

The consequence of this relationship is that every constraint in ODE can be thought of as 806

an implicit spring. An important feature of this formulation is that the equations are solved 807

simultaneously. When the implicit springs are solved simultaneously in the physics framework, 808

the forces account for each other; without this change the system would be very fragile. Softening 809

the constraints to springs makes it so that we can solve a system that would otherwise be over 810

constrained. We can add more constraints than there are degrees of freedom. 811

Solving with Complementarity Conditions For simplicity, we compress Eq. 10 down to 812

Aλ = w. When A is non-singular, we can solve for λ by inverting, or preferentially, using a fast, 813

numerically-stable solver such as a Cholesky decomposition. Some constraints, however, come 814

with additional conditions that need to be solved with extra machinery. In simulation literature, 815

these are known as inequality constraints. For example, a contact constraint keeps two bodies 816

from moving towards each other by defining an error function that is the separation of the 817

contacting surfaces in the direction of one of the surface normals. If the surfaces are overlapping, 818

then the error function has a negative value and a positive constraint force will accelerate the 819

surfaces apart. This acceleration is as it should be. However, the linear system also applies 820

forces to correct positive error; so the same constraint would also prevent the surfaces from 821

separating. 822

The solution to this problem is to limit the amount of force available for satisfying the 823

constraint. A contact constraint, in particular, limits the force to be non-negative. Contact 824

friction constraints are limited on both sides to be proportional to the contact normal force. 825

This limitation places upper and lower bounds on the constraint force variable: λlo ≤ λ ≤ λhi, 826

allowing constrained bodies to accelerate without bounds if the force necessary to hit the 827

acceleration target falls outside of the limits. In ODE, the result is three possible conditions to 828

satisfy a constraint: 829

1. aiλ = wi with λi ∈ [λilo, λihi], 830

2. aiλ > wi with λi = λilo, or 831

3. aiλ < wi with λi = λihi 832

5These values are presented without derivation in the ODE user-manual: http://ode-wiki.org/wiki/index.
php?title=Manual:_All#How_To_Use_ERP_and_CFM. Note that our formulation of β has an extra h in the
denominator which is added automatically by ODE.
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where −∞ ≤ λilo ≤ 0 ≤ λihi ≤ ∞. 833

A linear solver cannot handle these extra conditions on the constraint forces. To solve this 834

type of system, physics engines employ a mixed Linear Complementarity Problem (mLCP) 835

solver. ODE offers two different solving methods for satisfying constraints under limited-force 836

conditions. One method, known as Projected-Gauss-Seidel, solves constraints iteratively and 837

accumulates the effects [45]. Iterative methods tend to be faster, but also tend to be inaccurate 838

when the system is near-singular or ill-conditioned. Simulated humanoid systems, particularly 839

with two feet on the ground, tend to behave badly with this faster solver. The slower, pivot-based 840

method, follows the algorithm presented by Baraff [46]. Baraff’s method is still easily fast 841

enough for our purposes. 842

Each row in matrix A represents a constraint. The corresponding values of w and λ represent 843

a “target” acceleration along the degree of freedom constrained by that row and the generalized 844

force used to achieve it. For the ith row of A, the diagonal element, aii, behaves like the 845

inverse mass of the constraint. A force, λi, imposes an acceleration of aiiλi = wi within the 846

constraint error-space. The rest of the elements in a row of A encode the force’s effects on other 847

constraint dimensions. A change in the ith constraint force λi affects the jth constraint space by 848

accelerating it according to δwj = aijδλi. The order of the constraints is arbitrary and they 849

can be rearranged as long as every row-swap is accompanied by the corresponding column-swap 850

that maintains the proper symmetry. 851

Baraff’s solving algorithm (based on Dantzig’s simplex method) takes advantage of this 852

arbitrary ordering by dividing constraints into different sets: a satisfied set S, a limited set N , 853

and an unaddressed set U . All constraints fit into one of these categories. The first step in 854

finding a solution is to reorder and satisfy all the unlimited constraints, without considering the 855

rest, using a basic linear solver. The resulting system looks like 856[
A11 A12

AT
12 A22

] [
λ1

0

]
=

[
w1

AT
12λ1

]
(16)

Set S holds the rows of A1i. Set U holds the rest. At this point it helps to look at some 857

figures to see what is going on. Each constraint’s target conditions can be represented as a 858

piecewise line through force-acceleration space (Fig 13). We will call this multi-segmented line 859

the target manifold for each constraint. Viewing constraints this way is another contribution of 860

this work. The diagonal element of A associated with the constraint gives the slope of a line 861

through the origin that represents the relationship between force (λ) and actual acceleration 862

(Aii is the effective inverse-mass of the ith constraint). The solver seeks to find a joint solution 863

so that, for all rows of A, the pairs of (λi, wi) fall on the acceptable manifold. Forces from other 864

constraints move the entire manifold up or down relative to the origin. 865

The β parameter takes the horizontal portion of the target manifold and tilts it so that when 866

bigger forces are used, there is a lower target acceleration. Hence the constraint is spring-like. 867

The vertical portions of the constraint represent places where the constraint has hit its force 868

limits. No additional force can be applied by that constraint; so the acceleration must be allowed 869

to increase freely. Otherwise, the constraint would be “obligated” to apply more force to try to 870

get closer to its target acceleration. 871

Constraints are addressed one-at-a-time. When dealing with ground contact force without 872

softened constraints, once the solver found a sufficient force to keep a body from penetrating 873

the ground, any remaining ground contact constraints would have nothing to do, resulting 874

in inappropriate distribution of ground forces. With spring-like constraints, if one contact 875
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Fig 13. Each constraint on a single degree of freedom can be thought of as a monotonically
decreasing, piece-wise linear target manifold through acceleration-force space.

constraint supporting a body reaches its target force/acceleration, a second, redundant contact 876

constraint will see whatever distance remains between the current acceleration and the target. 877

Forces applied by the second constraint attempting to reach its target push the target manifold 878

of the first constraint toward the origin. The force required to achieve the first constraint’s 879

target decreases until the forces balance appropriately. The balancing forces make it possible to 880

more accurately compute inverse dynamics forces. 881

The algorithm for solving the mLCP progresses through each unaddressed constraint, one 882

at a time, and finds the change in forces that will satisfy the new constraint without moving 883

any of the current constraints off their piecewise target. Each iteration of the algorithm draws 884

a new constraint from the unaddressed set U and addresses the change in force, λ, that will 885

satisfy the new row without pushing any previously addressed rows off their manifold, until the 886

new row can be added to S or N . In the process other rows may change between sets S and N , 887

but each row remains on its target manifold in acceleration/force space. 888

Consider this partitioned matrix: 889A11 A12 a13
AT

12 A22 a23
aT13 a23 a33

λ1

λ2

0

 =

w1

v2
v3

 (17)
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Fig 14. Adding a small value to the diagonal elements of the projected inverse mass matrix
turns the constraint into a spring. Viewing constraints as piecewise linear targets provides
insights into how to make more complicated constraints consisting of additional piecewise
segments.

Adding a new force, λ3, will change the accelerations of the other constraints. Accelerations 890

of constraints at their limit are allowed to change, but those in set S must remain at their 891

target. So we find the δλ3 that moves v3 toward w3 and find the simultaneous δλ1 that keeps 892

constraints in S satisfied. The constraint force takes the largest step that will not push any 893

row out of its set. This step will either satisfy the constraint or move another constraint to an 894

intersection point on its manifold. We then pivot the sets around and continue until all of our 895

rows are in S or N . For additional detail, see [46]. 896

Recognizing that the solver deals with each constraint target as a piecewise linear manifold 897

provides useful insight into how the simulation mechanism can be improved. One obvious 898

extension is to increase the number of linear segments in the target manifold beyond three 899

(Fig. 14). This innovation becomes obvious when constraints are considered as target manifolds 900

rather than Lagrange multipliers. With a multi-segment target manifold, it is possible to create 901

a spring-like constraint that is loose near its setpoint, but then becomes stiffer. 902

We can make spring constraints that get more or less stiff as additional force is required. We 903

can also introduce constraints with “deadzones” in their PD control (Fig. 14). This type of 904
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constraint is particularly interesting because it allows us to introduce controllers that only come 905

into play when a dimension of interest drifts out of an acceptable range. This type of controller 906

takes inspiration from the idea of “uncontrolled manifolds” in human motor control theory [47]. 907

With this constraint acting as a controller, if a perturbation will not hurt performance, the 908

controller does nothing. 909

From deadzone controllers, we can introduce novel constraints with secondary targets. A 910

constraint whose forces and accelerations fall within acceptable tolerances has flexibility to “help” 911

another constraint that has reached its limit. For example, we can specify a target range for 912

the knee, hip, and ankle joints of a simulated character. When these leg joints fall within their 913

stated ranges, they can be allowed to pursue a secondary goal such as keeping the torso upright 914

or at a given height. This type of constraint can serve as a method for reducing the need for 915

unrealistic residual forces. Removing residual forces implies deviating from original kinematic 916

data. Constraints with secondary targets make it intuitive and clear how this deviation will 917

occur can be extremely beneficial when using the simulation engine for analyzing or synthesizing 918

movement data. We have created and submitted code for allowing controller constraints with a 919

deadzone in acceleration space. 6
920
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