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Abstract 11	

													De	novo	transcriptome	construction	from	short-read	RNA-seq	is	a	common	method	12	

for	reconstructing	mRNA	transcripts	within	a	given	sample.	However,	the	precision	of	this	13	

process	is	unclear	as	it	is	difficult	to	obtain	a	ground-truth	measure	of	transcript	14	

expression.	With	advances	in	third	generation	sequencing,	full	length	transcripts	of	whole	15	

transcriptomes	can	be	accurately	sequenced	to	generate	a	ground-truth	transcriptome.	We	16	

generated	long-read	PacBio	and	short-read	Illumina	RNA-seq	data	from	a	human	induced	17	

pluripotent	stem	cell-	derived	retinal	pigmented	epithelium	(iPSC-RPE)	cell	line.	We	use	18	

long-read	data	to	identify	simple	metrics	for	assessing	de	novo	transcriptome	construction	19	

and	optimize	a	short-read	based	de	novo	transcriptome	construction	pipeline.	We	apply	20	

this	this	pipeline	to	construct	transcriptomes	for	340	short-read	RNA-seq	samples	21	

originating	from	healthy	adult	and	fetal	human	retina,	cornea,	and	RPE.	We	identify	22	

hundreds	of	novel	gene	isoforms	and	examine	their	significance	in	the	context	of	ocular	23	

development	and	disease.	24	
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Introduction 25	

													The	transcriptome	is	defined	as	the	set	of	unique	RNA	transcripts	expressed	in	a	26	

biological	system.	A	single	gene	can	have	multiple	distinct	transcripts,	or	isoforms,	and	27	

there	are	multiple	biological	processes	that	drive	the	formation	of	these	isoforms	including	28	

alternative	promoter	usage,	alternative	splicing,	and	alternative	polyadenylation.	Gene	29	

isoforms	can	have	distinct	and	critical	functions	in	biological	processes	like	development,	30	

cell	differentiation,	and	cell	migration	(Dykes	et	al.,	2018),	(Trapnell	et	al.,	2010),	(Mitra	et	31	

al.,	2020).	Alternative	usage	of	isoforms	has	also	been	implicated	in	multiple	diseases	32	

including	cancer,	cardiovascular	disease,	Alzheimer’s	disease	and	diabetic	retinopathy	33	

(Vitting-Seerup	and	Sandelin,	2017),	(Neagoe	Ciprian	et	al.,	2002),	(Mills	et	al.,	2013),	34	

(Perrin	et	al.,	2005).	35	

													Accurate	annotation	of	gene	isoforms	is	fundamental	for	understanding	their	36	

biological	impact.	For	example,	while	the	Gencode	human	comprehensive	transcript	37	

annotation	(release	28)	contains	82335	protein	coding	and	121500	noncoding	transcripts	38	

across	19901	genes	and	38480	pseudogenes,	but	this	annotation	is	incomplete	(Frankish	et	39	

al.,	2019),	(Zhang	et	al.,	2020).	Some	of	the	first	high	throughput	methods	to	find	novel	40	

gene	isoforms	used	short-read	(~100bp)	RNA-seq	to	identify	novel	exon-exon	junctions	41	

and	novel	exon	boundaries	based	soley	on	RNA-seq	coverage	(Nagalakshmi	et	al.,	2008).	42	

More	recently,	several	groups	have	developed	specialized	tools	to	use	RNA-seq	to	43	

reconstruct	the	whole	transcriptome	of	a	biological	sample,	dubbed	de	novo	transcriptome	44	

construction	(Haas	et	al.,	2013),(Trapnell	et	al.,	2010),	(Pertea	et	al.,	2015).	45	

													De	novo	transcriptome	construction	uses	short-read	RNA-seq	to	reconstruct	full-46	

length	mRNA	transcripts.	However,	a	large	number	of	samples	are	necessary	to	overcome	47	

the	noise	and	short-read	lengths	of	this	type	of	data.	Because	of	increasingly	inexpensive	48	

sequencing	cost,	datasets	of	the	necessary	size	are	now	available.	For	example,	one	of	the	49	

most	comprehensive	de	novo	transcriptome	projects	to	date	is	CHESS,	which	uses	the	GTEx	50	

data	set	to	construct	de	novo	transcriptomes	in	over	9000	RNA-seq	samples	from	44	51	

distinct	body	locations	to	create	a	comprehensive	annotation	of	mRNA	transcripts	across	52	

the	human	body	(GTEx	Consortium	et	al.,	2017),	(Pertea	et	al.,	2018).	However,	since	the	53	
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GTEx	dataset	does	not	include	samples	from	any	ocular	tissues,	the	CHESS	database	54	

remains	an	incomplete	annotation	of	the	human	transcriptome.	55	

													Despite	the	increasing	number	of	tools	developed,	there	is	no	gold	standard	to	56	

evaluate	the	precision	and	sensitivity	of	de	novo	transcriptome	construction	on	real	(not	57	

simulated)	biological	data.	Long-read	sequencing	technologies	provide	a	potential	solution	58	

to	this	problem	as	long-read	sequencing	can	capture	full	length	transcripts	and	thus,	can	be	59	

used	to	identify	a	more	comprehensive	range	of	gene	isoforms.	While	previous	iterations	of	60	

long-read	sequencing	technologies	typically	had	higher	error	rates,	the	new	PacBio	Sequel	61	

II	system	sequences	long-reads	as	accurately	as	short-read	based	sequencing	(Wenger	et	62	

al.,	2019).	63	

													We	propose	that	long-read	based	transcriptomes	can	serve	as	a	ground	truth	for	64	

evaluating	short-read	based	transcriptomes.	In	this	study,	we	used	PacBio	long-read	RNA	65	

sequencing	to	inform	the	construction	of	short-read	transcriptomes.	We	generated	PacBio	66	

long-read	RNA-seq	along	with	matched	Illumina	short-read	RNA-seq	data	from	a	human	67	

induced	pluripotent	stem	cell	(iPSC)-differentiated	retinal	pigmented	epithelium	(RPE)	cell	68	

line.	We	then	designed	a	rigorous	StringTie-based	pipeline	that	maximizes	the	concordance	69	

between	short	and	long-read	de	novo	transcriptomes.	70	

													Finally,	we	applied	this	optimized	pipeline	to	a	data	set	containing	340	human	71	

ocular	tissue	samples	compiled	from	mining	previously	published,	publicly	available	short-72	

read	RNA-seq	data	(Swamy	and	McGaughey,	2019).	We	built	transcriptomes	for	three	73	

major	ocular	tissues:	cornea,	retina,	and	RPE,	using	RNA-seq	data	from	both	adult	and	fetal	74	

tissues	to	create	a	high-quality	pan-eye	transcriptome.	In	addition	to	ocular	samples,	we	75	

used	a	subset	of	the	GTEx	data	set	to	construct	transcriptomes	for	tissues	in	44	other	76	

locations	across	the	body.	77	

													We	used	our	gold-standard	informed	pan-eye	de	novo	transcriptome	to	reveal	78	

hundreds	of	novel	gene	isoforms	in	the	eye	and	analyze	their	potential	impact	on	ocular	79	

biology	and	disease.	We	provide	transcript	annotation	derived	from	our	de	novo	80	

transcriptomes	as	a	resource	to	other	researchers	through	an	R	package.	81	
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Results 82	

	83	

Figure	 1.	 Workflow	 for	 long-read	 informed	 de	 novo	 transcriptome	84	
construction	and	analysis	85	
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Long-read PacBio RNA sequencing guides short-read de novo transcriptome 86	
construction 87	

													To	evaluate	the	accuracy	of	short-read	transcriptome	construction,	we	first	88	

generated	PacBio	long-read	RNA-seq	data	and	Illumina	short-read	RNA-seq	data	from	iPSC-89	

RPE	(Fig	1).	These	cells	were	differentiated	using	an	optimized	protocol,	and	thus	minimal	90	

biological	variation	is	expected	(Blenkinsop	et	al.,	2015),	(Maruotti	et	al.,	2015).	We	used	91	

these	sequencing	data	to	construct	a	long-read	transcriptome	and	a	short-read	92	

transcriptome.	In	our	long-read	transcriptome	we	found	1163239	distinct	transcripts,	and	93	

in	our	short-read	transcriptome	366888	distinct	transcripts	94	

	95	
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Figure	 2.	 Transcript	 length	 and	 expression	 dictate	 transcriptome	96	
construction	 accuracy.	 A,B)	 Distributions	 of	 novel(A)	 and	 previously	97	
annotated(B)	 transcript	 lengths	 between	PacBio	 (long-read)	 and	 Stringtie	98	
(short-read)	 transcriptomes.	 Each	 distribution	 is	 labeled	 with	 the	 total	99	
number	 of	 transcripts	 in	 the	 distribution	 C)	 short-read	 construction	100	
accuracy	stratified	by	transcript	length	at	different	Transcripts	Per	Million	101	
(TPM)-based	transcript	exclusion	thresholds.	The	“merge”	method	follows	102	
the	 protocol	 for	 constructing	 transcriptomes	 outlined	 by	 the	 StringTie	103	
authors	 and	 keeps	 any	 transcripts	 expressed	 above	 a	 specific	 TPM	104	
threshold	in	at	least	one	samples.	The	“mean”	method	used	by	our	pipeline	105	
keeps	 transcripts	whose	average	expression	across	all	 samples	 is	 above	a	106	
specific	TPM	threshold.	107	

													In	our	initial	comparison	between	short	and	long-read	transcriptomes,	we	noticed	a	108	

low	transcriptome	construction	accuracy	(see	Methods)	of	0.208.	When	we	examined	the	109	

transcript	lengths	of	each	build	we	saw	that	the	two	methods	show	very	different	110	

transcript	length	distributions	for	both	novel	and	previously	annotated	transcripts,	with	111	

the	short-read	build	was	comprised	mostly	of	smaller	transcripts	(Fig	2A).	As	the	PacBio	112	

data	was	generated	using	two	different	libraries	for	2000	bp	and	>3000	bp	transcripts,	we	113	

expected	an	enrichment	for	longer	transcripts	in	the	PacBio	data	set	(Supplemental	Figure	114	

2).	To	assess	accuracy	relative	to	transcript	length,	we	grouped	transcripts	by	length	in	115	

1000	bp	intervals,	and	compared	accuracy	between	each	group.	We	found	that	accuracy	116	

significantly	improves	for	transcripts	longer	than	2000	bp.	The	construction	accuracy	is	117	

0.426	and	0.137	for	transcripts	above	and	below	2000	bp,	respectively.	118	

													We	experimented	with	various	methods	to	remove	spurious	transcripts	and	119	

improve	construction	accuracy.	We	first	removed	transcripts	that	were	expressed	<1	TPM	120	

in	at	least	one	sample	as	outlined	in	StringTie’s	recommended	protocol	(Pertea	et	al.,	121	

2016).	This	improved	construction	accuracy	to	0.475	for	transcripts	longer	than	2000bp	122	

and	0.212	for	transcripts	shorter	than	2000bp.	As	this	accuracy	was	still	fairly	low,	we	tried	123	

different	filtering	schemes,	including	experimenting	with	machine	learning-based	124	

strategies	to	identify	transcripts	that	were	computational	artifacts	(data	not	shown),	but	125	

we	found	that	the	simplest	approach	with	high	performance	was	to	retain	transcripts	that	126	

had	an	average	TPM	above	a	specific	threshold(Fig	2C).	In	our	downstream	pipeline	we	127	

keep	transcripts	that	have	at	least	an	average	of	1	TPM	across	all	samples	of	the	same	128	

subtissue	type	as	this	threshold	achieved	a	build	accuracy	of	0.772	for	transcripts	longer	129	

than	2000Bp	and	retained	48470	transcripts	within	this	short-read	RPE	dataset.	130	
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Thousands of novel gene isoforms are detected in human subtissue-specific 131	
transcriptomes 132	

Tissue	 Source	 Samples	 Studies	 Transcriptome Count	
RPE	 Adult	 48	 4	 32012	
RPE	 Fetal	 49	 7	 49967	
Retina	 Adult	 105	 8	 49714	
Retina	 Fetal	 89	 6	 66255	
Cornea	 Adult	 43	 6	 51469	
Cornea	 Fetal	 6	 2	 59408	

Table	 1.	 Ocular	 sample	 dataset	 overview	 and	 transcriptome	 count.	133	
Transcriptome	 count	 is	 defined	 as	 the	 number	 of	 unique	 transcripts	134	
expressed	in	a	given	tissue	type	135	

													We	built	transcriptomes	from	340	publicly	available	ocular	tissue	RNA-seq	samples	136	

curated	in	EiaD	using	an	efficient	Snakemake	pipeline	(Köster	and	Rahmann,	2012).	We	137	

included	both	publicly	collated	non-disease,	non-perturbed	adult	and	fetal	samples	from	138	

cornea,	retina,	and	RPE	tissues,	mined	from	29	different	studies	(Table	1).	Our	fetal	tissues	139	

consist	of	both	human	fetal	tissues	and	human	iPSC-derived	tissue,	as	stem	cell-derived	140	

tissue	has	been	showed	to	closely	resemble	fetal	tissue.	We	inlcude	our	iPSC-RPE	samples	141	

originally	used	to	develop	our	pipeline	within	this	larger	set	of	fetal	RPE	samples.	142	

(Klimanskaya	et	al.,	2004).	To	more	accurately	determine	the	tissue	specificity	of	novel	143	

ocular	transcripts,	we	supplemented	our	ocular	data	set	with	877	samples	from	44	body	144	

locations	across	22	major	tissues	from	the	GTEx	project	and	constructed	transcriptomes	145	

for	each	of	these	body	locations	(GTEx	Consortium	et	al.,	2017).	We	refer	to	each	distinct	146	

body	location	as	a	subtissue	here	after.	147	

													After	initial	construction	of	transcriptomes,	we	found	183442	previously	annotated	148	

transcripts	and	6241675	novel	transcripts	detected	in	at	least	one	of	our	1217	samples.	We	149	

define	a	novel	transcripts	as	all	transcripts	whose	set	of	exons	and	introns	do	not	exactly	150	

match	that	of	an	annotated	transcript	within	the	Gencode,	Ensembl,	UCSC,	and	Refseq	151	

annotation	databases	(Frankish	et	al.,	2019),	(Zerbino	et	al.,	2018),	(O’Leary	et	al.,	2016).	152	

After	using	the	filtering	methods	described	above,	we	merged	all	subtissue	specific	153	

transcriptomes	into	a	single	final	transcriptome	which	contains	252983	distinct	transcripts	154	

with	87592	previously	annotated	and	165391	novel	transcripts,	and	includes	114.9	155	
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megabases	of	previously	unannotated	genomic	sequence	(Table	1).	We	refer	to	the	final	156	

pan-body	transcriptome	as	the	DNTX	annotation	hereafter.	157	

													We	split	novel	transcripts	into	two	categories:	novel	isoforms,	which	are	novel	158	

variations	of	known	genes,	and	novel	loci,	which	are	previously	unreported,	entirely	novel	159	

regions	of	transcribed	sequence	(Fig	3B).	Novel	isoforms	are	further	classified	by	the	160	

novelty	of	their	encoded	protein:	isoforms	with	novel	open	reading	frame,	novel	isoforms	161	

with	a	known	ORF,	and	isoforms	with	no	ORF	as	noncoding	isoforms	(Fig	3A).	The	number	162	

of	distinct	ORFs	was	significantly	less	than	the	number	of	transcripts,	with	43279	163	

previously	annotated	ORFs	and	46226	novel	ORFs	across	all	subtissues.	Furthermore,	164	

across	all	subtissues	there	was	an	average	of	10393	novel	isoforms	and	3716	novel	ORFs.	165	
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	166	

Figure	 3.	Overview	of	 novel	 isoforms.	A)	Number	 of	 novel	 gene	 isoforms,	167	
grouped	by	transcript	type.	Brain	and	body	represent	an	average	of	13	and	168	
34	distinct	subtissues,	respectively.	B)	Novel	protein	coding	and	noncoding	169	
loci.	 Novel	 exon	 composition	 of	 novel	 isoforms,	 by	 isoform	 type.	 Labels	170	
indicate	 number	 of	 transcripts.	 C)	 Classification	 of	 novel	 exon	 types,	171	
stratified	by	novel	isoform	type.	172	
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													Novel	isoforms	can	occur	due	to	an	omission	of	a	previously	annotated	exon,	173	

commonly	referred	as	exon	skipping	or	the	addition	of	an	unannotated	exon	which	we	174	

refer	to	as	a	novel	exon.	We	further	classified	novel	exons	by	the	biological	process	that	175	

may	be	driving	their	formation:	alternative	promoter	usage	driving	the	addition	of	novel	176	

first	exons	(FE),	alternative	polyadenylation	driving	the	addition	of	novel	terminal	exons	177	

(TE),	and	alternative	splicing	driving	the	formation	of	all	novel	exons	that	are	not	the	first	178	

or	last	exon	(Landry	et	al.,	2003),	(Tian	and	Manley,	2017),	(Wang	et	al.,	2015).	We	then	179	

split	alternatively	spliced	exons	into	their	commonly	seen	patterns,	alternative	5’	splice	site	180	

(A5SS),	alternative	3’	splice	site	(A3SS),	and	retained	introns	(RI).	Exons	whose	entire	181	

sequence	was	unannotated	and	is	not	a	retained	intron	are	fully	novel	exons.	We	note	that	182	

all	three	of	these	mechanisms	can	lead	to	exon	skipping,	so	for	simplicity	we	grouped	all	183	

novel	isoforms	resulting	from	exon	skipping	together.	We	found	that	the	majority	of	novel	184	

exons	within	our	dataset	are	novel	FEs.	We	noticed	that	the	majority	of	RI	exons	lead	to	185	

novel	ORFs,	whereas	novel	isoforms	with	omitted	exons	more	often	lead	to	noncoding	186	

isoforms.	(Fig	3C)	187	

De novo transcriptomes match previously published experimental data better 188	
than existing annotation 189	

													We	validated	de	novo	transcriptomes	using	three	independent	approaches.	We	first	190	

looked	for	evolutionary	conservation	since	it	is	commonly	accepted	as	a	proxy	for	191	

functional	significance.	We	used	the	PhyloP	20	way	species	alignment,	a	measure	of	192	

conservation	between	species,	to	calculate	the	average	conservation	score	for	each	exon	in	193	

the	DNTX	annotation	and	compared	that	to	the	average	conservations	score	for	each	exon	194	

in	the	Gencode	annotation	(Pollard	et	al.,	2010).	We	found	that,	on	average,	exons	in	the	195	

DNTX	annotation	are	more	conserved	than	exons	in	the	Gencode	annotation	(pvalue	<2.2e-196	

16)	(Supplemental	Figure	2A).	197	

													Next,	since	we	observed	an	enrichment	in	novel	first	and	last	exons	within	our	data	198	

set,	we	decided	to	compare	the	TSS	and	TES	within	the	DNTX	annotation	to	two	well-199	

established	annotation	databases	from	FANTOM	and	the	polyA	Atlas	(Noguchi	et	al.,	2017),	200	

(Herrmann	et	al.,	2020).	We	compared	DNTX	and	Gencode	TSS’s	to	CAGE-seq	data	from	the	201	

FANTOM	consortium;	as	CAGE-seq	is	optimized	to	detect	the	5’	end	of	transcripts,	we	202	
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reasoned	that	it	can	serve	as	a	valid	ground	truth	set	to	evaluate	TSS	detection	(Takahashi	203	

et	al.,	2012).	We	calculated	the	absolute	distance	of	DNTX	TSS’s	to	CAGE	peaks,	and	204	

compared	them	to	the	absolute	distance	of	Gencode	TSS’s	to	CAGE	peaks.	We	found	that,	on	205	

average,	DNTX	TSS’s	were	closer	to	CAGE	peaks	than	Gencode	TSS’s	(pvalue	<2.2e-206	

16)(Supplemental	Figure	2B).	207	

													Finally,	we	evaluated	TES’s	using	the	polyA	Atlas,	which	is	comprised	of	208	

polyadenylation	signal	annotation	generated	from	aggregating	3’	seq	data	from	multiple	209	

studies.	As	3’-seq	data	is	designed	to	accurately	capture	the	3’	ends	of	transcripts,	it	can	210	

similarly	serve	as	a	ground	truth	set	to	evaluate	the	accuracy	of	TES’s	(Beck	et	al.,	2010).	211	

We	calculated	the	absolute	distance	of	DNTX	TES’s	to	annotated	polyA	signals	and	212	

compared	them	to	the	absolute	distance	of	Gencode	TES’s	to	polyA	signals.	We	found	that	213	

on	average	DNTX	TES’s	are	closer	to	annotated	polyadenylation	signals	than	gencode	TSS’s	214	

(pvalue	<2.2e-16)	(Supplemental	Figure	2C)	215	

De novo transcriptomes reduce overall transcriptome sizes 216	

													De	novo	transcriptomes	removed	on	average	76.141	%	of	a	subtissue’s	base	217	

transcriptome.	We	defined	base	transcriptome	for	a	subtissue	as	any	transcript	in	the	218	

Gencode	annotation	with	non-zero	TPM	in	at	least	one	sample	of	a	given	subtissue.	This	219	

was	a	large	reduction	in	transcriptome	size	and	we	wanted	to	ensure	that	we	were	not	220	

unduly	discarding	data.	We	quantified	transcript	expression	of	each	sample	using	Salmon	221	

with	two	methods:	once	using	the	full	gencode	v28	human	transcript	annotation,	and	once	222	

using	its	associated	subtissue	specific	transcriptome.	We	found	that	despite	the	76.141	%	223	

reduction	in	number	of	transcripts	between	the	base	gencode	and	de	novo	transcriptomes	224	

(Supplemental	Figure	3A),	the	per-sample	Salmon	mapping	rate	increased	on	average	by	225	

2.041	%	indicating	that	the	vast	majority	of	gene	expression	data	is	retained	within	our	226	

transcriptome	(Supplemental	Figure	3B).	227	
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Novel Isoforms are identified in ocular tissues 228	

	229	

Figure	4.	Overview	of	novel	gene	isoforms	in	the	eye.	A)	Set	intersection	of	230	
novel	 isoforms	 in	 ocular	 transcriptomes.	 B)	 Boxplots	 of	 fraction	 isoform	231	
usage	 (FIU)	 overlaid	 over	 FIU	 data	 points	 with	 estimated	 distribution	 of	232	
data	set	above	each	boxplot.	233	

													Using	the	pan-eye	transcriptome,	we	compared	the	overlap	in	constructed	novel	234	

isoforms	across	ocular	subtissues	and	found	that	77.968	%	of	novel	isoforms	are	specific	to	235	

a	singular	ocular	subtissue	(Fig	4A).	Additionally,	fetal-like	tissues	had	more	novel	isoforms	236	

that	their	adult	counterpart.	For	each	novel	isoform	we	then	calculated	fraction	isoform	237	

usage	(FIU),	or	the	fraction	of	total	gene	expression	a	transcript	contributes	to	its	parent	238	

gene.	We	found	that,	on	average,	novel	isoforms	contributed	to	20.584	%	of	their	parent	239	

gene’s	expression	but	in	each	subtissue	we	found	multiple	novel	isoforms	that	contribute	240	

to	the	majority	of	their	parent	genes	expression	(Fig	4B)	241	

Differential usage of gene isoforms occurs during retinal development 242	

													Multiple	studies	have	shown	that	gene	isoforms	play	a	significant	role	in	eye	243	

development	(Bharti	et	al.,	2008),	(Mellough	et	al.,	2019).	We	hypothesized	that	the	DNTX	244	

annotation	provides	additional	insight	into	alternative	isoform	usage	and	identifies	novel	245	

gene	isoforms	potentially	involved	in	eye	development.	We	used	RNA-seq	data	of	the	246	

developing	retina	from	Mellough	et	al,	an	independent	data	set	that	we	did	not	include	for	247	
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transcriptome	construction,	and	used	a	subset	of	the	DNTX	annotation	corresponding	to	248	

fetal	retina	to	quantify	transcript	expression	and	identify	transcripts	with	significant	249	

changes	in	expression	across	retinal	development.	Transcripts	that	are	differentially	250	

expressed	(qvalue	<.01)	and	have	a	mean	FIU	difference	of	.25	in	at	least	one	comparison	of	251	

time	points	are	indicative	of	differential	transcript	usage	(DTU).	252	
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	253	

Figure	 5	 Differential	 Transcript	 usage	 during	 retinal	 development.	 A)	254	
Volcano	 plot	 of	 tested	 transcripts	 B)	 Dot	 plot	 for	 gene	 set	 enrichment	255	
analysis	 C)	 Heatmap	 of	 hiearchical	 clustering	 of	 transcripts	 with	 DTU	256	
associated	with	eye	development	D)	Transcript	models	 for	MYO9A,	a	gene	257	
undergoing	 DTU	 E)	 FIU	 change	 in	 MYO9A	 FIU	 across	 development	 F)	258	
average	 log-transformed	 TPM	 expression	 of	 MYO9A	 across	 retinal	259	
development	260	
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													We	analyzed	24	samples	across	14	developmental	days	post	fertilization	and	found	261	

1717	transcripts	across	812	genes	displaying	DTU	(Fig	5A).	We	found	that	genes	involved	262	

in	DTU	are	enriched(qvalue	<.05)	for	genes	related	to	eye	and	neurological	development	263	

(Fig	5B),	and	that	hierarchical	clustering	of	DTU	transcripts	generates	an	early	stage	and	264	

late	stage	cluster	(Fig	5C).	One	of	these	genes,	MYO9A,	is	a	classical	example	of	DTU.	MYO9A	265	

is	associated	with	the	visual	perception	GO	term,	plays	a	role	in	ocular	development,	and	266	

has	been	associated	with	ocular	disease	(Gorman	et	al.,	1999).	While	expression	of	MYO9A	267	

remains	relatively	unchanged	across	development,	expression	of	two	of	its	associated	268	

isoforms	in	fetal	retina	(Fig	5D)	changes	dramatically	during	development:	a	novel	isoform	269	

is	highly	expressed	early	during	development,	but	switched	to	the	canonical	isoform	later	270	

in	development	(Fig	5E,F).	This	novel	isoform	contains	a	novel	exon	within	the	protein	271	

coding	region	of	the	isoform	as	well	as	novel	last	exon	extending	the	3’	UTR	(Fig	5d).	A	full	272	

list	of	genes	and	transcripts	displaying	DTU	is	available	in	Supplemental	Data	273	

(Supplemental	Data	4).	274	

De novo transcriptomes allow for a more precise variant prioritization. 275	

													The	identification	of	a	disease-causing	variant	through	genome	sequencing	is	a	276	

common	step	in	diagnosing	genetic	disease,	when	disease	causing	variants	cannot	be	277	

determined	from	exonic	sequencing.	Prediction	of	a	variant’s	biological	impact	and	278	

subsequent	variant	prioritization	is	a	fundamental	step	in	this	process.	Many	methods	for	279	

predicting	variant	effects	on	protein	function	or	gene	expression	are	based	on	location	280	

within	the	body	of	a	transcript;	for	example	variants	that	disrupt	splice	sites	and	start/stop	281	

codons	are	considered	to	be	the	most	damaging,	while	variants	within	intronic	and	282	

intergenic	regions	have	unknown	impact	or	are	not	classified,	and,	thus,	are	not	included	283	

for	further	consideration.	However,	multiple	studies	have	identified	pathogenic	deep	284	

intronic	variants	for	retinal	dystrophies	(Braun	et	al.,	2013),	(Bauwens	et	al.,	2019),	285	

(Zernant	et	al.,	2014),	(Sangermano	et	al.,	2019),	(Jamshidi	et	al.,	2019),	(Mayer	et	al.,	286	

2016),	(Geoffroy	et	al.,	2018).	Pathogenic	intronic	variants	are	thought	to	function	by	287	

introducing	a	novel	splice	site,	disrupting	regulatory	motifs,	or	altering	a	tissue-specific	288	

transcript.	To	explore	this	third	possibility,	we	mapped	known	pathogenic	intronic	variants	289	

onto	novel	isoforms	within	the	de	novo	transcriptomes.	290	
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Gene 
Name	

Associated 
Disease	

Location 
(hg19)	

Canonical 
Variant 
HGVS	

Gencode 
Predicted 

Consequence	
DNTX Predicted 

Consequence	
Published 

Study	

ABCA4	

ABCA4-
associated 

maculopathy	

Chr1:94481967 
C>T	

c.5197–557G>T, 
NM_000350.2	

intron variant, 
downstream gene variant	 5 prime UTR variant	

Bauwens et al.	
Chr1:94546814 

G>C	
c.859–540C>G, 

NM_000350.2	 intron variant	 non coding transcript 
exon variant	

Stargardt 
disease	

Chr1:94484001 
C>T	

c.5196+1137G>
A, NM_000350.2	

intron variant, 
downstream gene variant	 5 prime UTR variant	

Braun et al. 
Zernant et al.	Chr1:94484082 

T>G	
c.5196+1056A>

G, NM_000350.2	
intron variant, 

downstream gene variant	 5 prime UTR variant	

Chr1:94526934 
T>G	

c.1938-619A>G, 
NM_000350.2	

intron variant, 
splice region variant, 
non coding transcript 

variant	
non coding transcript 

exon variant	 Zernant et al.	

Chr1:94527698 
G>C	

c.1937+435C>G, 
NM_000350.2	

intron variant, 
upstream gene variant	

non coding transcript 
exon variant	

Sangermano et al.	
Chr1:94546780 

C>G	
c.859-506G>C, 
NM_000350.2	 intron variant	 non coding transcript 

exon variant	

IFT140	 Ciliopathy	 Chr16:1576595 
C>A	

c.2577+25G>A, 
NM_014714.3	

upstream gene variant, 
intron variant, 

NMD transcript variant, 
non coding transcript 

exon variant, 
non coding transcript 

variant	

missense variant	 Geoffroy et al.	

PROM1	 Cone–rod 
dystrophy	

Chr4:15989860 
T>G	

c.2077-521A>G, 
NM_006017.2	

intron variant, 
upstream gene variant	 5 prime UTR variant	 Mayer et al.	

RPGRIP1	
RPGRIP1-

mediated 
inherited retinal 

degeneration	
Chr14:21789588 

G>A	
c.1611+27G>A, 

NM_020366.3	

intron variant, 
non coding transcript 

variant, 
upstream gene variant, 

synonymous variant, 
NMD transcript variant, 

downstream gene variant	

5 prime UTR variant	 Jamshidi et al.	

Table	 2.	 Pathogenic	 variants	 previously	 considered	 intronic	 that	 are	 on	291	
expressed	transcripts	in	the	retina	de	novo	transcriptome.	Canonical	human	292	
genome	 variation	 society	 (HGVS)	 annotation	 is	 based	 on	 transcripts	 from	293	
the	 RefSeq	 annnotation.	 Predicted	 consequences	were	 generaed	with	 the	294	
Variant	Effect	Predictor(VEP)	295	

													We	used	a	list	of	129	intronic	and	noncoding	variants	previously	identified	as	296	

pathogenic	for	a	retinal	dystrophy	and	predicted	the	effect	of	these	variants	with	Ensembl’s	297	

Variant	Effect	Predictor	using	a	subset	of	the	DNTX	annotation	corresponding	to	fetal	and	298	

adult	retina	as	the	input	transcript	annotation.	We	identified	ten	variants	whose	predicted	299	

effect	increased	in	severity	due	the	presence	of	a	novel	gene	isoform	in	a	previously	300	

intronic	region	(Table	2).	Seven	of	these	variants	were	in	deep	intronic	hotpsots	known	for	301	

pathogenic	variation	within	the	gene	ABCA4.	302	
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	303	

Figure	 6.	 Transcript	 models	 for	 selected	 Isoforms	 of	 ABCA4	 along	 with	304	
location	 of	 pathogenic	 intronic	 variants.	 Location	 is	 on	 the	 hg19	 human	305	
genome	build.	Thick	lines	indicate	protein	coding	regions.	Arrow	indicates	306	
direction	of	transcription.	Introns	not	drawn	to	scale	307	

													These	variants	were	spanned	by	three	distinct	novel	isoforms	with	two	containing	308	

open	reading	frames	(ORFs)	encoding	only	the	carboxy-terminus	of	the	canonical	protein	309	

isoform,	and	one	noncoding	spanning	the	proximal	half	of	the	canonical	isoform	(Fig	6).	310	

ABCA4	expression	and	function	has	also	been	observed	in	RPE	(Lenis	et	al.,	2018).	311	

However,	we	did	not	observe	these	transcripts	in	RPE,	suggesting	that	these	pathogenic	312	

variants	are	primarily	affecting	retinal-specific	ABCA4	transcripts.	We	note	that	these	313	

transcripts	have	not	been	experimentally	validated.	314	

													To	further	highlight	the	potential	importance	of	de	novo	transcriptomes	for	future	315	

genetic	tests	we	determined	how	many	genes	associated	with	retinal	disease	from	RetNet	316	

have	novel	isoforms	(sph.uth.edu/retnet/).	We	found	that	within	the	set	of	genes	with	317	

novel	isoforms,	there	is	significant	enrichment	of	retinal	disease	genes	(hypergeometric	318	

pvalue	=	3.4e-04),	with	220	out	of	379	RetNet	genes	having	a	novel	isoform.	A	full	list	of	319	

these	genes	is	available	in	the	Supplementary	data(supplemental	data	5).	320	
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A companion visualization tool enables easy use of de novo transcriptomes 321	

	322	

Figure	 7.	 Screenshots	 from	 dynamic	 de	 novo	 transcriptome	 visualization	323	
tool.	A).	FIU	bar	plot	for	selected	gene	and	subtissue.	B).	Exon	level	diagram	324	
of	 transcript	 body	 Thicklines	 represent	 coding	 region	 of	 transcript.	 novel	325	
exons	colored	in	red.	Tooltip	contains	genomic	location	and	phylop	score	C)	326	
Bargraph	 of	 fraction	 of	 samples	 within	 dataset	 each	 transcript	 was	327	
consructed	in	by	tissue.	328	

													To	make	our	results	easily	accessible	we	designed	a	R-Shiny	app	for	visualizing	and	329	

accessing	our	de	novo	transcriptomes.	For	each	subtissue	we	show	the	FIU	for	each	330	

transcript	associated	with	a	gene	(Fig	7A).	We	show	the	exon-intron	structure	of	each	331	

transcript	and	mousing	over	exons	show	genomic	location	overlapping	SNPs,	and	332	
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phylogenetic	conservation	score	(Fig	7B).	We	additionally	show	a	barplot	of	the	fraction	of	333	

samples	each	transcript	was	constructed	in	(Fig	7C).	Users	can	also	download	the	de	novo	334	

transcriptomes	for	selected	subtissues	in	GTF	and	fasta	format.	Instructions	to	download	335	

and	run	the	app	are	available	at	https://github.com/vinay-336	

swamy/ocular_transcriptomes_shiny.	While	visualization	of	direct	transcript	expresion	is	337	

not	a	part	of	this	app,	it	can	be	viewed	in	the	eyeIntegration	app	(Swamy	and	McGaughey,	338	

2019)	by	selected	‘DNTX’	as	the	transcript	annotation.	Finally,	we	provide	all	code	as	a	339	

Snakemake	workflow	and	provide	a	Docker	container	with	all	software	required	for	the	340	

pipeline	available	at	https://github.com/vinay-swamy/ocular_transcriptomes_pipeline	341	

Discussion 342	

													Motivated	by	the	lack	of	a	comprehensive	transcriptome	for	the	eye,	we	constructed	343	

transcriptomes	for	adult	and	fetal	retina,	RPE	and	cornea.	By	using	long-read	RNA-seq	data	344	

to	calibrate	our	short-read	construction	pipeline,	we	were	able	to	identify	biologically	345	

relevant	transcriptomes.	We	found	that	concordance	between	long	and	short-read-based	346	

transcriptomes	is	directly	related	to	transcript	length	and	transcript	expression.	We	saw	a	347	

clear	inability	within	the	PacBio	data	set	to	accurately	detect	transcripts	shorter	than	348	

2000bp	for	both	previously	annotated	and	novel	transcripts.	As	many	of	the	transcripts	349	

constructed	using	short-reads	are	below	this	threshold,	long-read	sequencing	data	350	

enriched	for	smaller	transcript	sizes	would	provide	greater	insight	in	future	studies.	351	

													We	used	a	large	dataset	compiled	from	published	RNA-seq	data	to	build	the	pan-eye	352	

transcriptomes,	an	approach	that	has	several	key	advantages.	First,	the	large	sample	size	353	

overcomes	the	noisy	nature	of	RNA-seq	data.	Second,	as	the	cohort	is	constructed	from	354	

many	independent	studies,	we	are	more	confident	that	the	transcriptomes	accurately	355	

reflect	the	biology	of	their	originating	subtissue	and	are	not	a	technical	artifact	due	to	356	

preparation	of	the	samples.	As	another	line	of	evidence,	the	de	novo	transcriptomes	match	357	

existing	large	scale	data	sets	and	are	more	conserved	than	existing	annotations	358	

(Supplemental	Figure	2).	359	

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.08.21.261644doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.21.261644


	 20	

													In	each	ocular	subtissue	we	examined,	we	found	hundreds	of	novel	gene	isoforms,	360	

many	of	which	were	novel	due	to	novel	exons.	Within	ocular	subtissues,	these	novel	361	

isoforms	are	most	commonly	specific	to	single	subtissue.	This	makes	sense	as	a	majority	of	362	

the	exons	in	our	de	novo	transcriptomes	are	first	and	last	exons,	which	have	been	363	

previously	shown	to	significantly	contribute	to	the	tissue	specificity	of	gene	isoforms	364	

(Reyes	and	Huber,	2018).	We	also	found	that	on	average	novel	isoforms	represent	about	365	

20.584	%	of	their	parent	gene’s	expression.	Future	studies	are	needed	to	identify	the	366	

function	of	these	isoforms.	One	possibility	is	that	some	of	these	isoforms	are	only	367	

expressed	in	rare	cell	types,	as	transcript	annotation	was	previously	shown	to	be	368	

incomplete	in	rare	cell	types	(Zhang	et	al.,	2020).	This	especially	makes	sense	in	the	retina	369	

which	contain	over	a	dozen	distinct	cell	types,	several	of	which	contribute	to	5%	or	less	of	370	

the	total	cell	population	(Yan	et	al.,	2020).	As	we	imposed	a	strict	expression	filter	as	part	371	

of	our	transcriptome	pipeline,	we	may	have	removed	transcripts	specific	to	rare	cell	types.	372	

													In	conclusion,	we	created	the	first	pan-eye	transcriptome	annotation	and	showed	373	

that	it	is	useful	in	understanding	the	role	of	gene	isoforms	in	ocular	biology	and	improving	374	

the	ability	to	diagnose	inherited	eye	diseases.	We	hope	this	work	is	useful	as	a	starting	375	

point	for	other	researchers;	[delete]	to	make	the	transcriptomes	easily	accessible	to	other	376	

researchers	we	designed	a	webapp	both	for	visualization	and	to	quickly	access	tissue-377	

specific	annotation	files.	We	believe	this	project	will	enable	other	researchers	to	explore	378	

new	research	directions	and	answer	long	pending	questions.	379	

Methods 380	

Generation of PacBio long-read RNA sequencing data and Illumina short-read 381	
RNA sequencing data 382	

													Human	iPSCs	were	differentiated	into	RPE	using	previously	described	protocols	in	383	

(Bryan	et	al.,	2018)	and	(May-Simera	et	al.,	2018).	iPSC-derived	RPE	(iPSC-RPE)	cells	at	42	384	

days	post	differentiation	were	lysed	with	TRIzol	reagent	(Thermo	Fisher	Scientific;	cat	#	385	

15596026)	and	total	RNA	was	isolated	using	the	Direct-zol	RNA	MiniPrep	Kit	(Zymo	386	

Research,	Irvine,	CA).	5-6	µg	total	RNA	that	passed	quality	control	metric	(RIN	>.9)	were	387	

used	for	PacBio	library	preparation.	For	PacBio	HiFi	circular	consensus	sequencing(CCS),	388	
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libraries	were	prepared	following	the	“Procedure-Checklist-Iso-Seq-Express-Template-389	

Preparation-for-Sequel-and-Sequel-II-Systems”	protocol.	Two	libraries	were	generated:	390	

one	to	capture	transcripts	2	kilobases(kb)	or	smaller,	and	one	to	capture	transcripts	391	

between	2-5kb.	Sequencing	was	done	on	the	PacBio	Sequel	II	system	for	a	movie	time	of	24	392	

hours.	393	

													For	Illumina	sequencing,	Poly-A	selected	stranded	mRNA	libraries	were	constructed	394	

from	0.5-1	µg	total	RNA	using	the	Illumina	TruSeq	Stranded	mRNA	Sample	Prep	Kits	395	

according	to	manufacturer’s	instructions.	Amplification	was	performed	using	10-12	cycles	396	

to	minimize	the	risk	of	over-amplification.	Unique	dual-indexed	barcode	adapters	were	397	

applied	to	each	library.	Libraries	were	pooled	in	equimolar	ratio	and	sequenced	together	398	

on	a	HiSeq	4000.	At	least	57	million	75-base	read	pairs	were	generated	for	each	individual	399	

library.	Data	was	processed	using	illumina	Real	Time	Analysis	(RTA)	version	2.7.7.	All	400	

library	preparation	and	sequencing	was	performed	at	the	National	Institutes	of	Health	401	

Intramural	Sequencing	Center	(NISC).	402	

Code availability and software versions. 403	

													To	improve	reproducibility,	all	code	used	for	both	the	analyzing	the	data	and	404	

generating	the	figures	for	this	paper	was	written	as	multiple	Snakemake	pipelines.	Each	405	

Snakefile	contains	the	exact	parameters	for	all	tools	and	scripts	used	in	each	analysis.	406	

(Köster	and	Rahmann,	2012)	All	code	(and	versions)	used	for	this	project	is	publicly	407	

available	in	the	following	github	repositories:	https://github.com/vinay-408	

swamy/ocular_transcriptomes_pipeline	(main	pipeline),	https://github.com/vinay-409	

swamy/ocular_transcriptomes_longread_analysis	(long-read	analysis	pipeline),	410	

https://github.com/vinay-swamy/ocular_transcriptomes_paper	(figures	and	tables	for	this	411	

paper),	https://github.com/vinay-swamy/ocular_transcriptomes_shiny	(webapp).	412	

Additionally,	all	Snakefiles	are	included	as	supplementary	data.(supplementary	data	files	1-413	

3)	414	

Analysis of long-read data 415	

													PacBio	sequencing	movies	were	processed	into	full	length,	non-chimeric	(FLNC)	416	

reads	using	the	IsoSeq3	3.1.2	pipeline	in	the	PacBio	SMRT	link	v7.0	software.	The	existing	417	
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ENCODE	long-read	RNA-seq	pipeline	(https://github.com/ENCODE-DCC/long-read-rna-418	

pipeline)	was	rewritten	as	a	Snakemake	workflow	as	follows.	Transcripts	were	aligned	to	419	

the	human	genome	using	minimap2(18),	using	an	alignment	index	built	on	the	gencode	420	

v28	primary	human	genome.	Sequencing	errors	in	aligned	long-reads	were	corrected	using	421	

TranscriptClean	(19)	with	default	parameters.	Splice	junctions	for	TranscriptClean	were	422	

obtained	using	the	TranscriptClean	accessory	script	“get_SJs_from_gtf.py”	using	the	423	

gencode	v28	comprehensive	transcript	annotation	as	the	input.	A	list	of	common	variants	424	

to	avoid	correcting	were	obtained	from	the	ENCODE	portal	425	

(https://www.encodeproject.org/files/ENCFF911UGW/).	The	long-read	transcriptome	426	

annotation	was	generated	with	TALON	(20).	A	TALON	database	was	generated	using	the	427	

talon_initialize_database	command,	with	all	default	parameters,	except	for	the	“–5P”	and	“–428	

3p”	parameters.	These	parameters	represent	the	maximum	distance	between	close	5’	start	429	

and	3’	ends	of	similar	transcript	to	merge	and	were	both	set	to	100	to	match	parameters	430	

used	in	later	tools.	Annotation	in	GTF	format	was	generated	using	the	talon_create_GTF	431	

command,	and	transcript	abundance	values	were	generated	using	the	talon_abundance	432	

command.	433	

Analysis of short-read RPE data 434	

													Each	sample	was	aligned	to	the	Gencode	release	28	hg38	human	genome	assembly	435	

using	the	genomic	aligner	STAR	and	the	resulting	BAM	files	were	sorted	using	samtools	436	

sort	(Frankish	et	al.,	2019),(Dobin	et	al.,	2013),(Li	et	al.,	2009).	For	each	sorted	BAM	file,	a	437	

per-sample	base	transcriptome	was	constructed	using	StringTie	with	the	Gencode	v28	438	

comprehensive	annotation	as	a	guiding	annotation	(Frankish	et	al.,	2019),(Pertea	et	al.,	439	

2015).	All	sample	transcriptomes	were	merged	with	the	long-read	transcriptome	using	440	

gffcompare(Pertea	and	Pertea,	2020)	with	default	parameters.	We	note	that	the	default	441	

values	for	the	distance	to	merge	similar	5’	starts	and	3	ends	of	transcripts	in	gffcompare	is	442	

the	same	to	what	we	chose	for	TALON.	We	defined	the	metric	construction	accuracy,	used	443	

to	evaluate	short-read	transcriptome	construction	as	the	following:	444	

𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑠ℎ𝑜𝑟𝑡	𝑟𝑒𝑎𝑑	𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑚𝑒	 ∩ 	𝑙𝑜𝑛𝑔	𝑟𝑒𝑎𝑑	𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑚𝑒

𝑠ℎ𝑜𝑟𝑡	𝑟𝑒𝑎𝑑	𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑚𝑒 	445	
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Construction of subtissue-specific transcriptomes. 446	

												We	constructed	transcriptomes	for	1217	samples	in	the	Eye	in	a	Disk(EiaD),	a	447	

dataset	generated	from	aggregating	publically	available	healthy,	unperturbed	RNA-seq	448	

samples	from	50	distinct	locations	of	the	body	across	29	different	studies.	Specific	449	

information	on	how	this	dataset	was	generated	is	detailed	in	the	methods	from	our	450	

previous	work	(Swamy	and	McGaughey,	2019).	We	constructed	a	transcriptome	for	each	451	

sample,	and	merged	samples	together	to	create	50	subtissue-specific	transcriptomes.	We	452	

define	subtissue	as	a	unique	body	location	and	are	either	temporally	different	versions	of	453	

the	same	tissue(adult	vs	fetal	tissue),	or	different	regions	of	a	larger	tissue	(cortex	vs	454	

cerebellum	in	brain).	Tissue	refers	to	complete	whole	tissue	(retina,	brain,	liver).	For	each	455	

subtissue-specific	transcriptome,	we	removed	transcripts	that	had	an	average	expression	456	

less	than	1	Transcripts	Per	Million	(TPM)	across	all	samples	of	the	same	subtissue	type.	All	457	

subtissue-specific	transcriptomes	were	merged	to	form	a	single	unified	annotation	file	in	458	

general	transfer	format(GTF)	to	ensure	transcript	identifiers	were	the	same	across	459	

subtissues.	We	merged	all	ocular	subtissue	transcriptomes	to	generate	a	separate	pan-eye	460	

transcriptome.	461	

Subtissue specific transcriptome quantification 462	

													For	each	resulting	subtissue	specific	transcriptome,	we	extracted	transcript	463	

sequences	using	the	tool	gffread	and	used	these	sequences	to	build	a	subtissue-specific	464	

quantification	index	using	the	index	mode	of	the	alignment-free	quantification	tool	Salmon	465	

(Pertea	and	Pertea,	2020),	(Patro	et	al.,	2017).	For	each	sample,	we	quantified	transcript	466	

expression	using	the	quant	mode	of	Salmon,	using	a	sample’s	respective	subtissue	specific	467	

quantification	index.	We	similarly	quantified	all	ocular	samples	using	the	pan-eye	468	

transcriptome	and	the	Gencode	v28	reference	transcriptome.	469	

Annotation of novel exons 470	

													First,	a	comprehensive	set	of	distinct,	annotated	exons	was	generated	by	merging	471	

exon	annotation	from	gencode,	ensembl,	UCSC,	and	refseq.	We	then	defined	a	novel	exon	as	472	

any	exon	within	our	transcriptomes	that	does	not	exactly	match	the	chromosome,	start,	473	

end	and	strand	of	an	annotated	exon.	Novels	exons	were	classified	by	splitting	exons	into	3	474	
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categories:	first,	last,	and	middle	exons.	We	then	extracted	all	annotated	exon	start	and	stop	475	

sites	from	our	set	of	previously	annotated	exons.	Novel	middle	exons	that	have	an	476	

annotated	start	but	an	unannotated	end	were	categorized	as	a	novel	alternative	3’	end	477	

exons	and	similarly	novel	middle	exons	with	an	unannotated	start	but	annotated	end	were	478	

categorized	as	a	novel	alternative	5’	start	exons.	Novel	middle	exons	whose	start	and	end	479	

match	annotated	exon	start	and	ends	were	considered	retained	introns.	Novel	middle	480	

exons	whose	start	and	end	do	not	match	annotated	starts	and	ends	were	considered	fully	481	

novel	exons.	We	then	classified	novel	first	and	last	exons.	Novel	first	exons	were	first	exons	482	

whose	start	is	not	in	the	set	of	annotated	exon	starts,	and	novel	last	exons	were	terminal	483	

exons	whose	end	is	not	in	the	set	of	annotated	exon	ends.	This	analysis	of	novel	transcripts	484	

is	implemented	in	our	Rscript	“annotate_and_make_tissue_gtfs.R”.	485	

Validation of DNTX with phylop, CAGE data, and polyA signals 486	

													PhyloP	scores	for	the	phylop	20-way	multi	species	alignment	were	downloaded	487	

from	UCSC’s	FTP	server	on	October	16th,	2019	and	converted	from	bigWig	format	to	bed	488	

format	using	the	wig2bed	tool	in	BEDOPs	(Pollard	et	al.,	2010),	(Neph	et	al.,	2012).	The	489	

average	score	per	exon	in	both	the	gencode	and	DNTX	annotation	was	calculated	by	490	

intersecting	exon	locations	with	phylop	scores	and	then	averaging	the	per	base	score	for	491	

each	exon,	using	the	intersect	and	groupby	tools	from	the	bedtools	suite,	respectively.	492	

Significant	difference	in	mean	phylop	score	was	tested	with	a	Mann	Whitney	U	test.	493	

													CAGE	peaks	were	download	from	the	FANTOM	FTP	server	494	

(https://fantom.gsc.riken.jp/5/datafiles/reprocessed/hg38_latest/extra/CAGE_peaks/hg3495	

8_fair+new_CAGE_peaks_phase1and2.bed.gz)	on	June	15th	2020	(Noguchi	et	al.,	2017).	496	

Transcriptional	start	sites	(TSS)	were	extracted	from	gencode	and	DNTX	annotations;	TSS	497	

is	defined	as	the	start	of	the	first	exon	of	a	transcript.	Distance	to	CAGE	peaks	was	498	

calculated	using	the	closest	tool	in	the	bedtools	suite.	Significant	difference	in	mean	499	

distance	to	CAGE	peak	between	DNTX	and	gencode	annotation	was	tested	with	a	Mann	500	

Whitney	U	test.	501	

													Polyadenylation	signal	annotations	were	downloaded	from	the	polyA	site	atlas	502	

(https://polyasite.unibas.ch/download/atlas/2.0/GRCh38.96/atlas.clusters.2.0.GRCh38.96503	
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.bed.gz)	on	June	15th	2020	(Herrmann	et	al.,	2020).	Transcriptional	end	sites(TES)	were	504	

extracted	from	gencode	and	DNTX	annotations;	TES	is	defined	as	the	end	of	the	terminal	505	

exon	of	a	transcript.	Distance	to	polyA	signal	was	calculated	using	the	closest	tool	in	the	506	

bedtools	suite	(Quinlan	and	Hall,	2010).	Significant	difference	in	mean	distance	to	polyA	507	

signal	was	tested	with	a	Mann	Whitney	U	test.	508	

Identification of novel protein coding transcripts 509	

													Protein-coding	transcripts	in	the	unified	transcriptome	were	identified	using	the	510	

TransDecoder	suite	(Haas	et	al.,	2013).	Transcript	sequences	in	fasta	format	were	extracted	511	

from	the	final	pan-body	transcriptome	using	the	TransDecoder	util	script	512	

“gtf_genome_to_cdna_fasta.pl”.	Potential	open	reading	frames(ORFs)	were	generated	from	513	

transcript	sequences	using	the	LongestORF	module	within	TransDecoder,	and	the	single	514	

best	ORF	for	each	transcript	was	extracted	with	the	Predict	module	within	Transdecoder.	515	

The	resulting	ORFs	were	mapped	to	genomic	locations	with	the	TransDecoder	util	script	516	

“gtf_to_alignment_gff3.pl”.	For	each	ORF	start	and	stop	codons	were	extracted	with	the	517	

script	“agat_sp_add_start_stop.pl”	scripts	from	the	AGAT	toolkit	518	

(https://github.com/NBISweden/AGAT/).	Transcripts	with	no	detectable	ORF	or	missing	a	519	

start	or	stop	codon	were	labelled	as	noncoding.	520	

Analysis of novel isoforms in eye tissues 521	

													An	Upset	plot	was	generated	using	the	ComplexUpset	package	522	

(https://github.com/krassowski/complex-upset)	(Lex	et	al.,	2014).	Fraction	Isoform	Usage	523	

(FIU)	was	calculated	for	each	transcript	t	associated	with	a	parent	gene	g	using	the	524	

following	formula:	𝐹𝐼𝑈! =
"#$!
"#$"

	.	Raincloud	plots	of	FIU	were	generated	using	the	525	

“R_Rainclouds”	R	package	(Allen	et	al.,	2019).	526	

Analysis of fetal retina RNA-seq data. 527	

													RNA-seq	samples	from	Mellough	et	al.	were	obtained	from	EiaD,	and	were	not	528	

included	in	the	main	dataset	used	for	building	transcriptomes.	Outliers	within	the	dataset	529	

were	identified	by	first	performing	principal	component	analysis	of	transcript	level	530	

expression	data,	calculating	the	center	of	all	data	using	the	first	two	principal	components,	531	
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and	subsequently	removing	five	samples	furthest	away	from	the	center	of	all	data.	The	532	

remaining	samples	were	normalized	using	calcNormFactors	from	the	R	package	edgeR	and	533	

converted	to	weights	using	the	voom	function	from	the	R	package	limma	(Robinson	et	al.,	534	

2010),	(Ritchie	et	al.,	2015).	Differential	expression	was	modeled	using	the	lmFit	function	535	

using	developmental	time	point	as	the	model	design	and	tested	for	significant	change	in	536	

expression	using	the	Ebayes	function	from	limma.	Gene	Set	enrichment	was	tested	using	537	

the	R	package	clusterprofileR	(Yu	et	al.,	2012).	Heatmaps	were	generated	using	the	538	

ComplexHeatmap	package	(Gu	et	al.,	2016).	539	

Prediction of variant impact using de novo transcriptomes. 540	

													Noncoding	variants	previously	associated	with	retinal	disease	from	the	Blueprint	541	

Genetics	Retinal	dystrophy	panel	were	obtained	from	the	Blueprint	Genetics	website	542	

(https://blueprintgenetics.com/tests/panels/ophthalmology/retinal-dystrophy-panel/).	543	

The	variants	were	converted	from	HGVS	to	VCF	format	using	a	custom	python	script	544	

“HGVS_to_VCF.py”.	This	VCF	was	then	remapped	to	the	hg38	human	genome	build	using	545	

the	tool	crossmap	(Zhao	et	al.,	2014).	The	VCF	of	variants	was	used	as	the	input	variants	for	546	

the	Variant	Effect	Predictor(VEP)	tool	from	Ensembl,	with	each	subtissue	specific	547	

transcriptome	as	the	input	annotation	(McLaren	et	al.,	2016).	VEP	was	additionally	run	548	

using	the	gencode	v28	comprehensive	annotation	as	the	input	annotation	to	identify	549	

variants	whose	predicted	impact	increased	in	severity.	550	

Figures, Tables, and Computing Resources 551	

													All	statistical	analyses,	figures	and	tables	in	this	paper	were	generated	using	the	R	552	

programming	language.	(R	Core	Team,	2019)	A	full	list	of	packages	and	versions	can	be	553	

found	in	the	supplementary	file	session_info.txt.	All	computation	was	performed	on	the	554	

National	Institutes	of	Health	high	performance	computer	system	Biowulf	(hpc.nih.gov).	555	
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Supplemental Figures 558	

	559	

Supplemental	 Figure	 1.	 Distribution	 of	 PacBio	 long-read	 lengths	 for	 two	560	
library	sizes.	561	
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	562	

Supplemental	 Figure	 2.	 Comparison	 of	 DNTX	 annotation	 to	 Gencode	563	
annotation.	 A)	 Average	 per	 exon	 Phylop	 score	 for	 Gencode	 and	 DNTX	564	
transcripts.	 B)	 Average	 distance	 of	 DNTX	 transcriptional	 start	 sites	 (TSS)	565	
and	 Gencode	 TSS	 to	 CAGE-seq	 peaks	 from	 the	 FANTOM	 consortium.	 C)	566	
Average	distance	of	DNTX	transcriptional	end	sites	(TES)	and	Gencode	TES	567	
to	polyadenylation	signals	in	the	PolyA	site	atlas.	568	
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	569	

Supplemental	 Figure	 3.	 Comparison	 of	 Salmon	 mapping	 rate	 change	 vs	570	
transcriptome	size	decrease.	571	
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