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Resurrection studies are a useful tool to measure how phe-
notypic traits have changed in populations and they allow
testing whether these traits modifications are a response
to selection caused by an environmental change. Selfing,
through its reduction of effective size, could challenge the
ability of a population to adapt to environmental changes.
Here, we used a resurrection study to test for adaptation
in a selfing population of Medicago truncatula, by compar-
ing the genetic composition and flowering across 22 gen-
erations. We found evidence for evolution towards earlier
flowering times by about two days and a peculiar genetic
structure, typical for highly selfing population, where some
multilocus genotypes (MLGs) are persistent through time.
We used the change in frequency of the MLGs through time
as a multilocus fitness measure and built a selection gradi-
ent that suggests evolution towards earlier flowering times.
Yet, a simulation model revealed that the observed change
in flowering time could be explained by drift alone, pro-
vided the effective size of the population is small enough
(<150). These analyses suffer from the difficulty to estimate
the effective size in a highly selfing population, where ef-
fective recombination is severely reduced.
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Introduction

When facing changing environments, organisms can
persist by one of three strategies: fleeing (migration),
coping (plasticity) or adapting. If migration and plas-
ticity can lead to rapid and reversible changes in the av-
erage phenotype of a population, adaptation proceeds
through genetic changes and towards phenotypes with
the highest fitness in a given environment. The liter-
ature describing adaptation in natural populations is
vast (e.g. Bay et al. 2017; Côté and Reynolds 2012; Kre-
mer et al. 2012; Olson-Manning et al. 2012) and the re-
cent rise of next generation sequencing has enabled

tremendous progress in our knowledge about the ge-
netic architecture of adaptation at the species level (Bar-
rick and Lenski 2013; Brown 2012; Fournier-Level et al.
2011; Jones et al. 2012).
Long term temporal surveys (e.g. Visser 2008), resurrec-
tion studies, where ancestors and descendants are com-
pared under common conditions (see Box 1 in Franks
et al. 2014) or stratified propagule banks (Orsini et al.
2013) are powerful tools to reconstruct the evolutionary
dynamics of populations that have faced environmen-
tal changes. Yet, observing a genetic change through
time is not sufficient to claim that it is adaptation. Test-
ing for selection as opposed to drift is one of the es-
sential criteria for demonstrating adaptive responses,
but is often overlooked (e.g. overlooked in 34% of
the 44 reviewed studies based on phenotypic varia-
tion reviewed by Hansen et al. 2012). Demonstrating
the influence of selection on a phenotypic change can
be achieved by one of four methods (detailed in Ta-
ble 2 in Hansen et al. 2012; Merilä and Hendry 2014):
reciprocal transplants (Blanquart et al. 2013), QST–FST
comparisons (Le Corre and Kremer 2012; Rhoné et al.
2010), genotypic selection estimates (Morrissey et al.
2012; Wilson et al. 2010), or tests of neutrality (pattern
or rate tests, Lande 1977). In natural populations, un-
like in experimental populations, there are no replica-
tions, and pattern tests rely on time-series to examine
the number and ordering of positive and negative allele
frequency changes in a long sequence of observations
(Sheets and Mitchell 2001). Rate tests on the other hand
examine the rate of genetic change in a population and
compare it to the expectation under a neutral model
with a given effective population size (Lande 1976).
The effective population size (thereafter Ne) is defined
as the size of an ideal Wright-Fisher population expe-
riencing the same rate of genetic drift as the popula-
tion under consideration (Crow and Kimura 1970). Un-
like experimental populations, where Ne can be moni-
tored, an accurate estimate of Ne is required to perform
such neutrality tests in natural populations. Temporal
changes in allele frequency at neutral loci can be used
to infer the effective size of the population considered
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(Nei and Tajima 1981; Waples 1989).

The ability for a population to adapt to environmen-
tal changes depends on several factors such as genetic
variability, generation time, population size or mating
patterns, in particular self-fertilization rates. In plants,
a large fraction (40%) of species do, at least partially,
reproduce through selfing (Goodwillie et al. 2005; Igic
and Kohn 2006). The young age of selfing lineages is
often interpreted as evidence that selfing species lose
the ability to adapt to changing environments (Esco-
bar et al. 2010; Takebayashi and Morrell 2001) and have
therefore higher extinction rates than outcrossing lin-
eages (Goldberg et al. 2010). Selfing can indeed have
multiple and complex effects with heavy repercussions
on the process of adaptation. First, selfing directly de-
creases the effective population size Ne by reducing the
number of independent gametes sampled for reproduc-
tion (Pollak 1987). Selfing also increases homozygos-
ity and consequently reduces the efficacy of recombi-
nation (Nordborg 2000), which can further reduce Ne
through hitchhiking and background selection (Gordo
and Charlesworth 2001; Hedrick 1980). Finally, bottle-
necks are expected to be more frequent in selfing pop-
ulations (Ingvarsson 2002; Schoen and Brown 1991). It
is therefore expected that genetic variability is reduced
in selfing populations, and empirical measures of di-
versity from molecular markers strongly support this
prediction (Barrett and Husband 1990; Glémin et al.
2006; Hamrick and Godt 1996). Furthermore, several
theoretical models also predict that selfing limits the
amount of quantitative genetic variation within popu-
lations (Abu Awad and Roze 2018; Charlesworth and
Charlesworth 1995; Lande and Porcher 2015), which
has been recently confirmed by a meta-analysis of em-
pirical data (Clo et al. 2019).

We can expect that this depleted quantitative genetic
variation in predominantly selfing populations will
limit their ability to adapt to changing environmental
conditions and their long-term persistence and differ-
ent theoretical models support this prediction (Glémin
and Ronfort 2013; Hartfield and Glémin 2016; Kamran-
Disfani and Agrawal 2014). Yet, empirical data ex-
amining the response of predominantly selfing popu-
lations to environmental changes remain scarce (Qian
et al. 2020). Some experimental evidences suggest that
adaptation to new environments may be fostered by
outcrossing (e.g. Morran et al. 2009). On the other hand,
it has been argued that self-fertilization may have facil-
itated adaptations to agricultural practices (i.e. domes-
tication) (Glémin and Bataillon 2009; Zohary and Hopf
2000) and could promote the divergence of ecological
niches and speciation processes (Levin 2010). In a re-
cent review focussing on evolutionary and plastic re-
sponses to climate change in plants, Franks et al. (2014)
reported “at least some evidence for evolutionary re-
sponse to climate change [. . . ] in all of these studies”,
regardless of the mating system of the focal species.

This pleads for an absence of difference in the adaptive
potential to environmental change in selfing compared
to outcrossing populations, even though only 6 studies
focussed on selfing populations (in respect to 25 out-
crossing populations). Similarly, in a review focussing
on the effect of the mating system on local adaptation,
Hereford (2010) concluded that “despite limited genetic
variation in selfing species and greater potential for
gene flow in outcrossing species, mating system has lit-
tle influence on adaptation of populations.”

Because there is no consensus between theoretical pre-
dictions, empirical and experimental data, the ability of
selfing populations to adapt to environmental changes
remains an open question. This calls for further fine
scale population genetics analyses, with a focus on the
evolutionary mechanisms involved and on the dynam-
ics of adaptation. Here, we present a temporal sur-
vey in the barrel medic (Medicago truncatula) that en-
abled us to perform a resurrection study. M. truncatula
is annual, diploid, predominantly self-fertilizing (>95%
selfing, Bonnin et al. 2001; Siol et al. 2008) and has a
circum-Mediterranean distribution. Flowering time is
a major heritable trait (>0.5, Bonnin et al. 1997) that syn-
chronizes the initiation of reproduction with favourable
environmental conditions and could play a role in the
adaptation to climate change. In M. truncatula, flower-
ing time is highly variable along the distribution range
and within some populations (Bonnin et al. 1997). It
is mainly controlled by two environmental cues: pho-
toperiod and temperature (Hecht et al. 2005; Pierre et al.
2008). In the Mediterranean region, there has been a
significant increase in temperatures between the 80s
and nowadays accompanied by a decrease in mean pre-
cipitations (http://www.worldclim.org/). Most stud-
ies about adaptation in M. truncatula have so far re-
lied on large collections of individuals representing the
whole species with the aim of detecting selection foot-
prints in the genome linked with flowering time (Bur-
garella et al. 2016; De Mita et al. 2011) or climatic gra-
dients (Yoder et al. 2014). However, the complex popu-
lation structure observed at the species level can make
it difficult to understand the selective history of those
genes (De Mita et al. 2007). Indeed, natural populations
of M. truncatula are composed of a set of highly differ-
entiated genotypes that co-occur at variable frequencies
(Bonnin et al. 2001; Loridon et al. 2013; Siol et al. 2008),
a genetic structure typical for predominantly species.
How does this peculiar genetic composition constrain
adaptation to changing environments remains unclear,
but preliminary results in M. truncatula have shown
that surveying the multilocus genotypic composition
through time could reveal a large variance in the rel-
ative contributions of these genotypes to the next gen-
erations (Siol et al. 2007). Here, we examined the tem-
poral change of flowering time at the population level
across 22 generations characterised by changing envi-
ronmental conditions (temperature and rainfall). We
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describe the peculiar genetic structure of this highly
selfing species and investigate the genetic mechanisms
involved in adaptation. In particular, we test for the
role of selection as opposed to genetic drift, following
four steps. First, we consider the direction of the change
in trait value in relation to the environmental change.
Second, we estimate the extent of genotypic selection
(Morrissey et al. 2012; Wilson et al. 2010) using selection
gradients for flowering time based on several fitness es-
timates (taking into account the multilocus genotypic
composition of the population through time). Then we
estimate the effective population size, test the rate of
evolution for neutrality and explore the effect of the im-
precision in the estimation of effective size. Finally, we
examine the change in flowering time during the same
time period at the regional scale, using one individual
per population across the distribution range of M. trun-
catula in Corsica. A similar genetic change at the re-
gional scale would lend weight to the hypothesis that
the change in flowering time occurred in response to
selection.

Materials and Methods
Studied population and experimental design. The fo-
cus population (F20089 or CO3 according to Jullien
et al. 2019) is located in Cape Corsica (42°58.406’N -
9°22.015’E). In 1987 and 2009, around 100 pods were
collected along three transects running across the pop-
ulation, with at least one meter distance between each
pod collected, in order to avoid over-sampling the
progeny of a single individual. Seeds collected in 1987
were stored in a cold room. In 2011, all pods were
threshed and 100 seeds per sampling year were repli-
cated through selfing in standardized greenhouse con-
ditions to control for maternal effects and build families
of full-sibs produced by selfing. In 2012, 55 families for
each of the two sampling years were randomly chosen
from the 100 plants replicated. Seeds from the 110 fam-
ilies were scarified to ease germination and were trans-
ferred in Petri dishes with water at room temperature
for six hours. We then used two different vernaliza-
tion treatments (at 5°C during 7 or 14 days) to compare
the vernalization requirement between the two years.
Five replicates from each vernalization treatment were
transferred back to the greenhouse, according to a ran-
domized block design (five blocks and two treatments,
adding up to a total of ten replicates per family, 1100
plants in total). Data loggers were placed on each table
to monitor temperature and humidity. For each indi-
vidual, the number of days after germination to form
the first flower was recorded. In addition, the total
number of seeds produced by each plant throughout
its lifetime was measured as a proxy for fitness.

Temporal changes in flowering time. Individual flow-
ering times were converted to thermal times following
Bonhomme (2000). The thermal time was calculated

as the sum of the mean daily effective temperatures of
each day between sowing and the emergence of the first
flower, where the mean daily effective temperature is
the day’s mean temperature minus the base tempera-
ture (Tb). We used Tb = 5°C, as reported by Moreau
et al. (2007) for the Medicago truncatula reference line
A17. Plants noted as sick or failing to produce leaves
were removed from the data sets (22 individuals re-
moved). Collected measures were tested for normality
using quantile–quantile (Q-Q) plots (Nobre and Singer
2007). All analyses were conducted using R version
2.15.2. We used linear mixed models (lme4 package) to
test for a significant change in flowering time between
the sampling years. The model included two fixed ef-
fects: sampling year (1987 or 2009) and treatment (short
or long vernalization) as well as their interaction. Block
(nested in treatment), block × year and family were ran-
dom effects. The family effect was nested in years be-
cause we were interested in estimating the genetic vari-
ance within population each year of collection. The in-
teraction between family and treatment was included
in the family effect as a vectorial random effect. The
complete model is summarized in equation [1], where
Y denotes the flowering time, µ the average flowering
time over the whole sample and ε the residuals:

Yijkl = µ + yeari + treatmentj + yeari × treatmentj

+ blockk + yeari × blockk

+ f amilyl |
(
yeari × treatmentj

)
+ εijkl (1)

This maximal model was simplified, using likelihood
ratio tests (LRT) to compare the models. In addition, we
tested for a significant change in genetic variance be-
tween 1987 and 2009 using a LRT between the model [1]
and a model where family is not nested into year. Stan-
dard errors for variance components were estimated
using jackknife resampling. We used the variance com-
ponents estimated for the random effects to calculate
broad-sense heritability as H2 = VG

VP
, where VG is the ge-

netic variance as estimated by the family effect and VP
is the total phenotypic variance, including block, family
and residual variance. Standard errors for H2 were esti-
mated through jackknife resampling on families (Sokal
and Rohlf 1995).

Temporal changes in sensitivity to vernalization. Se-
lection on a trait in an environment can shift both the
mean and the plasticity of that trait. Here, we consid-
ered the sensitivity to vernalization cues, measured as
the slope of the regression line between individual val-
ues and the environmental value (estimated as the av-
erage phenotype, Ȳ) (Falconer and Mackay 1996), for
each individual i:

Ylong vernalization
i −Yshort vernalization

i
Ȳlong vernalization − Ȳshort vernalization
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This coefficient assumes that reaction norms are linear
(Gavrilets and Scheiner 1993; Scheiner 1993) and this
approximation is expected to work well (Chevin et al.
2013). We used a linear mixed model, with sampling
year (1987 or 2009) as a fixed effect, a random block ef-
fect and its interaction with year, and a family effect (ge-
netic effect) nested into year. As for flowering time, we
estimated the broad sense heritability of the vernaliza-
tion sensitivity.
A genetic correlation between flowering time and sen-
sitivity to vernalization would affect the response to se-
lection in the context of climate change. We therefore
used a bivariate model with the sensitivity to vernaliza-
tion and the flowering time measured in the short ver-
nalization treatment as two dependent variables to esti-
mate their genetic covariance with a random family ef-
fect, including block as a random effect, using AsReml
(Gilmore et al. 2009). We ran an independent model for
each sampling year. The significance of genetic covari-
ances was tested by comparing the residual deviance of
the final model with that of a model with a fixed covari-
ance of zero in a log-likelihood ratio test.

Selection gradient for flowering date: genetic covari-
ance analysis. In the absence of selection for the trait
considered, its observed variation is expected to be in-
dependent from fitness. We tested this by measuring
the selection gradient, i.e. the statistical relationship be-
tween a trait and the fitness. Selection gradients were
established for each year (and per treatment) follow-
ing the Robertson-Price identity that states that ∆Z, the
expected evolutionary change in the mean phenotypic
trait z per generation is equal to Θa(z,w), the additive
genetic covariance of the trait z and the relative fitness
w (Price 1970; Robertson 1966):

∆Z = Θa(z,w) (2)

Here, we estimated the broad sense genetic covariance
Θg. Assuming that the dominance variance is negligi-
ble due to the very high levels of homozygosity in self-
ing populations (Holland et al. 2010), genetic covariance
should be a good approximation of the additive genetic
covariance. As a preliminary step, we checked whether
our proxy for fitness, the relative seed production, had
significant genetic variance. The relative seed produc-
tion was measured as the individual seed production
standardized by the average seed production of indi-
viduals from the same year and treatment. A mixed
model was used to analyse the relative seed produc-
tion, including two random effects for block and fam-
ily. Then, provided there was significant genetic vari-
ance for relative seed production in the population each
year, we analysed it in a bivariate model with flower-
ing time to estimate the genetic covariance with a ran-
dom family effect, including block as a random effect,
using AsReml (Gilmore et al. 2009). Again, the signifi-
cance of genetic covariances was estimated by compar-

ing the residual deviance of the final model with that
of a model with a fixed covariance of zero in a log-
likelihood ratio test.

Genetic analyses. During the multiplication genera-
tion in the greenhouse (2011), 200 mg of leaves were
sampled from each plant for DNA extraction, using
DNeasy Plant Mini Kit (Qiagen). Twenty microsatellite
loci were used for genotyping (see the details of ampli-
fication reactions and analyses of amplified products in
Jullien et al. 2019; Siol et al. 2007). Briefly, samples were
prepared by adding 3 µl of diluted PCR products to
16.5 µl of ultrapure water and 0.5 µl of the size marker
AMM524. Amplified products were analyzed on an
ABI prism 3130 Genetic Analyzer and genotype read-
ing was performed using GeneMapper Software ver-
sion 5.

.1. Single-locus analyses assuming independence among
loci. As a preliminary step, the data was filtered to re-
duce the percentage of missing data (loci or individ-
uals with >10% missing data were removed), and to
discard monomorphic loci. After filtering, the dataset
comprised 145 individuals and 16 loci. We measured
the genetic diversity of the population each year us-
ing the allelic richness Na−rar (Hurlbert 1971) and the
expected heterozygosity He. In this predominantly
selfing population, we expect a strong deviation from
Hardy-Weinberg heterozygosity expectations. Thus,
for each sampling year, we estimated the inbreeding
fixation coefficient FIS and its confidence interval us-
ing 5,000 bootstraps over loci. Between year differ-
ences for Na−rar, He and FIS across loci were tested
using Wilcoxon signed-rank tests. Analyses were per-
formed in R using the packages adegenet and hierfstat
(Goudet 2005; Jombart 2008) and the program ADZE
for rarefaction analyses (Szpiech et al. 2008). The per-
centage of pairs of loci showing significant linkage dis-
equilibrium (LD) was calculated using Genepop (Rous-
set 2008) with a threshold of 0.05. Finally, we mea-
sured the temporal variance in allele frequencies using
the FST estimator by Weir and Cockerham (1984). To
estimate the effective population size (Ne, measured in
number of diploid individuals) from the temporal vari-
ance of allele frequencies, we used FST estimates to ac-
count for the correlation of alleles identity within indi-
viduals due to selfing (Navascués et al. 2020) and fol-
lowed the method outlined in Frachon et al. (2017). We
measured a confidence interval for Ne using an approx-
imate bootstrap method (DiCiccio and Efron 1996) over
loci.

.2. Analyses based on multilocus genotypes. We used the
program RMES to estimate selfing rates from the distri-
bution of multilocus heterozygosity (David et al. 2007).
We tested for a difference in selfing rates between years
using a likelihood ratio test between models where
the selfing rate was constrained to be constant or not.
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For each sample (1987 and 2009), we examined the
genetic structure by sorting out the number of multi-
locus genotypes (thereafter called MLG) and measur-
ing their frequency and redundancy through time us-
ing GENETHAPLO (available on GitHub at https://
github.com/laugay/GenetHaplo and described in
Supplementary Material S1). GENETHAPLO takes
into account the uncertainty of the assignment of a
genotype to a MLG group due to missing data: in case
of ambiguity, an individual is randomly assigned to one
of the candidate MLG group with a probability propor-
tional to the MLG group size. The approach also con-
siders a genotyping error rate: if two individuals differ
by less than the error rate, they are considered to belong
to the same MLG. After an initial run with an error rate
of zero, we checked the distribution of the distances be-
tween MLGs. We found an excess of small distances,
which could indicate errors in genotype assignation
(Arnaud-Haond and Belkhir 2007). We corrected this
by re-running the program with an error rate of 1/16
(= one mis-read locus). GENETHAPLO also searches
for residual heterozygosity (defined as the proportion
of heterozygous loci in the multilocus genotype) and
evidence for recombination (S1). To identify putative
recombination events between MLGs, it uses the ge-
netic distances: a MLG is a recombinant candidate if
the sum of its allele differences with two other MLGs
(“parental MLGs”) equals the number of allele differ-
ences between these two parental MLGs.

If a MLG has a high fitness in a given environment,
plants carrying this MLG will produce on average a
larger progeny and the frequency of the MLG will rise
in the following generations. We therefore propose to
use the absolute change in frequency of the fully ho-
mozygous MLGs through time as an indicator of their
“realised fitness”. As a preliminary step, we used a
linear model to verify whether the change in MLG fre-
quencies covaries positively with and can be predicted
by the seed production in the greenhouse. We then
measured the selection gradient for flowering time as
the slope of the regression of the change in frequency of
the MLGs between 1987 and 2009 with flowering time.
We compared this pattern with the predictions from the
Robertson-Price selection gradient. The MLGs found in
2009 but absent in 1987 may have been undetected in
1987 due to low frequency, or may be recent migrants.
Their change in frequency between 1987 and 2009 is
thus necessarily positive and may not accurately reflect
their realised fitness. We therefore reiterated these anal-
yses using a dataset restricted to the MLGs present in
1987 only.

In addition, we tested whether the change in frequen-
cies of the MLGs reflects a response to selection or can
be expected by drift alone. This was tested by simu-
lating the effect of 22 generations of drift, using an ex-
tension to multiallelic data of the approach described
in Frachon et al. (2017) and inspired by Goldringer

and Bataillon (2004). Again, only the fully homozy-
gous MLGs were kept for this analysis. We assumed
complete selfing during the time interval so the whole
genome behaves as a single super-locus. Details about
the procedure used to simulate individual MLG fre-
quency trajectories are provided in Supplementary Ma-
terial S2. We simulated each generation of drift by
drawing MLG counts from a multinomial distribution
parameterized with the effective population size Ne es-
timated from the temporal FST , and the MLG frequen-
cies in the previous generation. After 22 simulated
generations, we randomly sampled 75 individuals to
estimate the frequencies of each MLG and measured
the change in MLG frequencies across the 22 genera-
tions. This was repeated for 104 replicates in order to
draw the distribution of the change in MLG frequency
expected by drift alone. To account for the poten-
tially large estimation variance for the FST (as observed
in the simulations performed in Supplementary Mate-
rial S3), we examined the sensitivity of the analysis to
the effective population size using a range of values
(10 ≤ Ne ≤ 500). Finally, we examined the simulated
selection gradient as the relationship between the simu-
lated changes in MLG frequencies through time and the
genetic value of flowering time previously measured
for each MLG, using a linear model. This provided
us with a null distribution of the slopes of the regres-
sion between frequency change and flowering time, ex-
pected under drift alone. We then tested for the signif-
icance of the observed slope against the simulated dis-
tribution, by counting the proportion of the simulated
slopes that were greater than the observed value.

Regional analysis. Finally, we attempted to disentangle
selection and drift by considering other populations lo-
cated in the same geographical region as the focal pop-
ulation and therefore likely submitted to the same se-
lective pressure due to climatic constraints. For this
regional analysis, we used 17 populations of M. trun-
catula across Corsica that were sampled twice, once in
the 80’s and again in the early 2000s (listed in Table S1).
Samples consisted of around 100 pods collected along
transects running across the populations. Seeds col-
lected were stored in a cold room. In 2010, one pod ran-
domly selected from each sample (80’s and 2000’s) was
threshed and one plant per population per year was
replicated through selfing in standardized greenhouse
conditions. This greenhouse generation allowed sup-
pressing potential maternal effects and resulted in 34
families (17 populations × 2 years) of full-sibs produced
by selfing. In 2011, seeds from the 34 families were ger-
minated following the same protocol as described ear-
lier for the intra-population analysis, but with only one
vernalization treatment at 5°C during seven days. Five
plants for each family were then transferred to tables
in the greenhouse according to a randomized block de-
sign (five blocks). We monitored the temperature and
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humidity and the flowering time for each plant.
Individual flowering times were converted in thermal
time, in the same way as it was done for the intra-
population analysis. Again, we used linear mixed mod-
els (lme4 package) to test for the effect of sampling year
on flowering time. The model included a single fixed
effect for the sampling year (1980s or 2000s). The block
effect was included as a random effect, along with its
interaction with sampling year. A random population
effect was also included and replaced the “family” ef-
fect of Eq. 1 seen as there was only one family per year
in this regional sample. The resulting model was writ-
ten as:

Yijk = µ + yeari + block j + yeari × block j

+ populationk + εijk (3)

Again, this maximal model was simplified using likeli-
hood ratio tests.

Results
Changes in flowering time. Visual inspection of the
Q-Q plots indicated that the residuals from all the
linear models we used were normally distributed.
We found that flowering time differed significantly
between years: plants sampled in 2009 flowered on
average over two days earlier than plants sampled
in 1987 (Table 1, Fig. 1). Longer vernalization also
speeded flowering up (treatment effect, Table 1).
The block effect only explained a low proportion of
variance (micro-environment) and the largest variance
component was the family effect, for all combinations
of years and treatments. The comparison of a model
where family was nested in years only or in years ×
treatments showed that the family × treatment inter-
action was significant (χ2 = 66.1; df = 7; p = 9.10−12).
It means that the reaction norms for the different
genotypes were not parallel (Fig. 1), because the
genotypes responded differently when exposed for a
shorter period to cold temperatures. To account for this
genotype × environment interaction, the heritability
for flowering time was estimated in each vernalization
treatment separately (four components of variance,
Table 1). It varied between 0.53 and 0.77 (Table 2). The
genetic variance for flowering time in the population
remained the same in 1987 and 2009, as shown by
a LRT between the full model (Eq. 1) and a model
where family was not nested in year (χ2 = 6.65; df
= 7; p = 0.47). We found no significant year effect
on the sensitivity to vernalization (χ2 = 1.7; df = 1; p
= 0.185). There was no significant difference in the
family effect between years (interaction family × year
not significant; LRT: χ2 = 1.2; df = 2; p = 0.552) but
the family effect was highly significant (χ2 = 32.6;
df = 1; p = 1.10−8, Table S2) and the heritability of
the sensitivity to vernalization was 0.19 (+/- 0.04)
(Table 2). Finally, the multivariate analysis highlighted

Fig. 1. Average flowering time per family for the two sampling years and the
two vernalization treatments. Short vernalization is in grey and long vernalization
in black. The large dots and the horizontal lines stand for the average flowering date
for each vernalization treatment, for the years 1987 (dotted lines) or 2009 (dashed
lines). Black crossing lines indicate that the reaction norms differ between families,
as expected if genotype × environment interactions are significant.

a strong positive genetic correlation between flowering
time (measured in the short vernalization treatment)
and the sensitivity to vernalization (in 1987: 0.54 p =
0.008; in 2009: 0.60 p < 0.0001), which means that early
flowering plants are less sensitive to vernalization
cues. Using the flowering time measured in the long
vernalization treatment, we observed the same pattern
of correlation.

Table 1. Effect of sampling year and treatment on flowering time in the cape Cor-
sica population, taking into account the family effect (genetic effect). Effect values
on mean flowering time are given for fixed effects and variance components are
given for random effects (with standard errors in brackets). The family effect was
nested into year (1987 or 2009) and treatment (T1: short vernalization treatment;
T2: long vernalization treatment), leading to four variance components. For each
component, the degrees of freedom, likelihood ratio (χ2) and p-values are reported.
None of the interactions considered in the complete model [1] were significant: be-
tween year and treatment (LRT χ2 = 1.8; df = 1; p = 0.178); between block and year
(χ2= 0.0006; df = 1; p = 0.981).

Tested effect on
flowering time

Mean effect or variance
component (SE)

df χ2 p

year −28.76∗ 1 7.3 0.007
treatment -162.84 1 42.2 8.10−11

block 92.34 (9.61) 1 34.5 4.10−9

family | year ×
treatment

1987-T1: 2807.90 (872.97)

10 850.4 2.10−161987-T2: 1793.51 (500.25)
2009-T1: 5449.80 (1200.16)
2009-T2: 3557.01 (1408.88)

error 1500 (38.73) 1081
∗assuming an average daily temperature of 15°C over the time period considered, the difference of 28.76
degree.days corresponds to two days.
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Fig. 2. Selection gradients for flowering time. Established as the relationship
between the genetic value for flowering time (family average, in degree.days) and
the genetic value for relative fitness (family average of the relative number of seeds),
for each sampling year and vernalization treatment. Lines stand for the linear re-
gression.

Selection gradient for flowering date. The relative seed
production showed significant genetic variance (family
effect, Table S3, heritability of 0.34, Table 2), which
enabled us to build multivariate models to examine
selection gradients following Eq. 2. In 1987, we found
a significant genetic covariance between flowering
time and relative fitness: Θa(z,w) = -20.5; LRT com-
paring this model with a model where the genetic
covariance was constrained to be zero: χ2 = 60.2; df =
1; p = 8.10−15. The covariance remained significantly
different from zero in 2009: Θa(z,w) = -18.5; LRT: χ2 =
12.4; df = 1; p = 6.10−7. This covariance was negative
in both years, which means that the selection gradients
predict an evolution towards early flowering (Fig. 2).

Table 2. Heritabilities (H2) and coefficients of genetic variance (CVg) for flowering
time in each vernalization treatment (T1: short vernalization; T2: long vernaliza-
tion) and each sampling year, for sensitivity to vernalization and for relative seed
production.

H2 (SE) CVg
Trait 1987 2009 1987 2009

Flowering time T1: 0.64 (0.06) T1: 0.77 (0.04) 5.70 8.11
T2: 0.53 (0.07) T2: 0.69 (0.07) 5.49 8.03

Sensitivity to
vernalization 0.19 (0.04) 18.14

Relative seed
production 0.34 (0.03) 30.00

Changes in the genetic composition of the population.
The analysis of microsatellite data highlighted high lev-

els of genetic diversity for both sampling years, with
an increase between 1987 and 2009 only significant for
He (Table S4). This suggests that the increased diversity
between 1987 and 2009 reveals more balanced allele fre-
quencies rather than an increase in the average number
of alleles. The temporal differentiation measured using
the 16 loci was high (FST = 0.226; 95% confidence inter-
val: 0.182 – 0.269), which translates into a particularly
small effective size (Ne = 19 diploid individuals; 95%
confidence interval: 15-25). The observed heterozygos-
ity was particularly low, resulting in large FIS estimates,
as expected for a predominantly selfing species. The es-
timated selfing rate was about 94% in 1987 and rose to
98% in 2009 (statistically significant increase, Table S5).
This high selfing rate results in extensive linkage dis-
equilibrium between loci (nearly all pairs of loci are
in linkage disequilibrium, Table S4), which makes the
analysis of multilocus genotypes particularly relevant.

The analysis of MLG identified 60 different MLGs in
this sample of 145 individuals. Out of the 60 MLGs,
48 were fully homozygous at the 16 loci and 12 MLGs
displayed some level of heterozygosity (Fig. S1). We
found no evidence for a link in terms of recombination
or segregation between the heterozygous MLGs and
any of the fully homozygous MLGs. These heterozy-
gous MLGs were therefore excluded from the following
analyses, leaving us with 48 MLGs (58 individuals in
1987 and 75 in 2009). The two predominant MLGs rep-
resented more than 50% of the population in 1987 and
nearly 20% in 2009. These, as well as two other MLGs,
were persistent through time. The absolute changes in
homozygous MLGs frequencies through time tended to
covary positively with the total number of seeds pro-
duced by a plant in the greenhouse (Fig. 3A, regression
only significant with the sample restricted to the MLGs
present in 1987), which provides support to use it as
a proxy to estimate the realised fitness. We therefore
used the change in frequency of the 48 MLG (58 indi-
viduals in 1987 and 75 in 2009) to build selection gra-
dients for flowering time. Again, we found a gradient
with a negative slope (Fig. 3B), suggesting that the late
flowering MLGs have a reduced realised fitness com-
pared to earlier ones. This confirms the reduced fitness
of late flowering genotypes observed in our greenhouse
experiment (Fig. 2). Yet, the effect of flowering date
on the realised fitness was small and only significant
when the dataset was restricted to the MLGs present in
1987 (n = 12; Fig. 3B). In addition, the negative slope
was mostly supported by the decreasing frequency of
the two late flowering MLGs that were prevalent in
1987. The simulation of 22 years of drift with an ef-
fective population size of 19 showed that the slope of
the observed selection gradient did not deviate signifi-
cantly from the distribution expected by drift alone (p =
0.182). Yet, again, when we restricted the dataset to the
MLGs that were present in 1987, the observed selection
gradient deviated significantly from the distribution ex-
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Fig. 3. Analyses of the “realised fitness”, estimated as the absolute change
in frequency of the MLGs through time. MLGs with residual heterozygosity were
removed from this analysis. (A) Relationship with the average number of seeds
produced by plants of a given MLG in the greenhouse. (B) Selection gradient for
flowering time. Each point stands for the average flowering date for a given MLG.
The black regression lines are estimated using all points (n = 48; A: slope = 0.029
points of frequency per seed p = 0.395; B: slope = -0.0002 p = 0.179). This in-
cludes MLGs that were not observed in 1987 (black dots), for which the change in
frequency is necessarily always positive. The dotted lines are the regression lines
for the analysis restricted to the MLGs present in 1987 (white dots only; n = 12; A:
slope = 0.167 p = 0.035; B: slope = -0.0009 p = 0.038).

pected by drift alone (p = 0.047), which suggests that
the drift-alone hypothesis could be rejected.
Because selfing reduces the effective recombination, it
reduces the number of independent loci. Measuring
FST from linked loci therefore amounts to measuring
it from a lower number of markers, and it is known
that FST estimates based on a few loci suffer from a
large sampling variance (Weir and Hill 2002). Alter-
natively, we could have concatenated the genotypes
at the different loci to compute a diploid version of
the haplotype-based FST (Mehta et al. 2019). Using
the changes of frequencies for 48 homozygous MLGs,
we estimated a temporal FST of 0.075, which corre-
sponds to an estimated effective size of 136. However,
our simulations (Supplementary Material S3) show
that these haplotype-based FST estimates are strongly
downwards biased, due to the dependency of FST with
allelic diversity (Alcala and Rosenberg 2017; Edge and
Rosenberg 2014; Jakobsson et al. 2013) and could there-
fore overestimate the effective population size. Instead
of using this unreliable estimate of 136, we assessed
the sensitivity of our neutrality test for MLG frequency
changes to the effective population size estimates, us-
ing a range of values (10 ≤ Ne ≤ 500). We found
that the observed selection gradient can no longer be
explained by drift alone if the effective population size
exceeds 150 (or even 10 if we consider only the MLGs
present in 1987, Fig. 4).

Changes in flowering time at the regional level. At
the regional level (Eq. 3), we found no effect of the
interaction between block and sampling year (LRT χ2

= 0; df = 1; p = 1). All other effects were significant
(Table 3): the random block effect only explained 5%
of the total variance whereas the population effect

Fig. 4. Test of selection for increasing values of Ne . P-value, defined as the pro-
portion of simulated datasets where the slope of the selection gradient is steeper
than the observed slope, for the simulations of drift-alone (A) considering all the
homozygous MLGs (n = 48) or (B) considering only the MLGs that were already
present in 1987 (n = 12). The dotted line indicates the 0.05 threshold value for sig-
nificance. The vertical dashed line is the effective size estimated using the temporal
FST and considering the 16 microsatellite loci as independent (Ne = 19; p = 0.182
with n = 48 (A); p = 0.047 with n = 12 (B)).

accounted for 34% of variance. The significant year
effect showed that the material we collected in 2005
or 2009 in Corsica flowered about five days earlier (78
degree.days, Table 3) compared to the one we collected
between 1987 and 1990.

Table 3. Effect of sampling year on flowering time at the regional scale, taking into
account the population effect. The effect on the mean flowering time is given for the
fixed year effect and variance components are given for random effects (with stan-
dard errors in brackets). For each component, the deviance, degrees of freedom,
likelihood ratio (χ2 and p-values are reported.

Tested effect on
flowering time

Mean effect or variance
component (SE)

df χ2 p

year −78.00∗ 1 9.3 0.002
block 2379 (1029) 1 5.7 0.017
population 14874 (4423) 1 40.1 2.10−10

error 26971 (8260) 167
Total variance 44224

∗assuming an average daily temperature of 15°C over the time period considered, the difference of 78.00
degree.days corresponds to five days.

Discussion
Pairing up a resurrection study with population ge-
netic analyses proved highly insightful to understand
how flowering time changed through time in M. trun-
catula and to get insights into the mechanisms involved.
Growing plants collected in the Cape Corsica popula-
tion 22 generations apart in a common garden experi-
ment provided evidence for a diminution of flowering
times by about two days (i.e. a reduction between 2 and
4% in flowering time). This study also highlighted the
peculiar genetic structure of this highly selfing popu-
lation, where some multilocus genotypes are persistent
through time. This enabled us to measure the fitness of
a genotype as its frequency change through time and to
establish a multilocus selection gradient. We used this
multilocus fitness measure as well as a fitness measure
based on individual seed production in the greenhouse
to estimate the selection gradient for flowering time.
Both gradients predict evolution towards earlier flow-
ering but only the selection gradient using seed pro-
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duction as a proxy for fitness was significant. Simulat-
ing evolution across 22 generations showed that the ob-
served change in flowering time can be caused by drift
alone, provided the effective size of the population is
lower than 150. These analyses suffer from the diffi-
culty to estimate the effective size in a highly selfing
population, where effective recombination is severely
reduced.

Can we use effective population size estimates to
test whether the genetic change is caused by selec-
tion or drift in a predominantly selfing population?.
As pointed out in the Introduction, simulating drift is
one of the methods to test whether selection has oc-
curred, but it requires knowledge about the effective
population size. Using changes in allele frequencies be-
tween 1987 and 2009 in a natural population, we es-
timated a temporal FST of 22.6%, which corresponds
to an effective size of 19 (95% confidence interval: 15-
25). This estimate is several orders of magnitude lower
than the census population size (> 2,000 individuals).
Similarly low effective population sizes have been es-
timated previously in other M. truncatula populations,
based on the temporal variance in allele frequencies
(Siol et al. 2007), and attributed to the high selfing rate
of this species. Yet, the observed levels of polymor-
phism are often incompatible with such drastically low
effective sizes (see Fig. 3c in Hereford 2009; Jullien et al.
2019). Ne estimates are likely biased and/or imprecise,
because some of the assumptions underlying the tem-
poral method are violated, e.g.: isolation of the popu-
lations under scrutiny, absence of selection, indepen-
dence of marker loci (Jullien et al. 2019). For exam-
ple, the quick change in allele frequency caused by a
migration event will be misinterpreted as strong drift
because temporal methods estimate Ne using the pace
at which allele frequency changes and therefore un-
derestimate it (Wang and Whitlock 2003). In addition,
strong selfing affects the precision of temporal FST es-
timates because the number of independent loci is re-
duced (Supplementary Material S3). In our focal pop-
ulation, the whole genome behaves practically as a sin-
gle locus, which limits the precision of our effective size
estimates. Unfortunately, we show in Supplementary
Material S3 that inferring effective size from the varia-
tion of MLG frequencies (i.e., considering a single, mul-
tiallelic super-locus) is unlikely to improve the quality
of our estimates.
Finally, if selection occurs in a non-random mating pop-
ulation, it will exacerbate the Hill-Robertson effect and
further reduce the effective size (Comeron et al. 2007).
Indeed, selection will create heritable variance in fitness
among individuals, thereby locally reducing Ne (Barton
1995; Charlesworth and Willis 2009; Robertson 1961).
In predominantly selfing species, due to drastically re-
duced effective recombination (Nordborg 2000), selec-
tion will extend the reduction in diversity caused by the

selective sweep to a larger proportion of the genome
compared to a random mating population (Caballero
and Santiago 1995; Kamran-Disfani and Agrawal 2014).
With selection, the effective size estimated using the
temporal variance in allele frequencies can therefore
not be considered as a “neutral” effective size but rather
reflects the combined effects of inbreeding and selection
(Le Rouzic et al. 2015). Overall, due to the reduced effec-
tive recombination and potential migration, predom-
inantly selfing populations can strongly deviate from
the assumptions of the temporal method to estimate ef-
fective size and such estimates should be treated with
caution (See Fig. 3 in Jullien et al. 2019).
If highly selfing organisms strongly deviate from the
general assumptions of population genetics models, a
major benefit, however, is that the temporal survey of
MLGs provides a highly integrative measure of fitness,
which is analogous to measures of genotype-specific
growth rates in asexual organisms. Our results show
that changes in frequencies of MLGs through time are
positively correlated to the fitness measured as the seed
production in the greenhouse (Fig. 3A). This relation-
ship is not significant if we consider all the MLGs found
in 2009, but this is not surprising considering the poten-
tially strong environmental variance in the field and the
approximation due to the possibility that a MLG that
was absent in 1987 appeared within the 22 years time
period. Despite these imprecision, such integrative es-
timates of fitness are highly valuable because of the dif-
ficulty to obtain lifetime measures of fitness in the field
(Shaw et al. 2008), which are generally hindered by per-
vasive trade-offs between life history traits such as re-
production and survival (Anderson et al. 2014; Ågren
et al. 2013).

What selective pressure could have led to this genetic
change in flowering time? Insights from ecophysi-
ology. The evidence that the change in phenology ob-
served in this population across 22 generations is the
result of selection as opposed to drift remains equiv-
ocal. A further step towards evaluating whether se-
lection is responsible for the genetic change observed
is to characterize the potential selective pressure in-
volved. Phenological changes associated to climate
change have been reported in a large number of plants
(Amano et al. 2010; Cleland et al. 2007; Parmesan and
Yohe 2003; Root et al. 2003). In this context, ecophys-
iological models of phenology are insightful to under-
stand how climate change can affect traits such as flow-
ering time (Chuine 2000; Oddou-Muratorio and Davi
2014). The phenological response to climate change
is complex, because the promoting effect of increased
temperatures opposes the influence of reduced vernal-
ization (Wilczek et al. 2010). Ecophysiological models
generally predict a plastic shift towards earlier flow-
ering times, as long as vernalization is sufficient dur-
ing winter (Morin et al. 2009). In agreement with
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these predictions, a meta-analysis exploring the phe-
nological response to climate change in plant popula-
tions showed that phenotypic changes are mostly plas-
tic, while evidence for genetic adaptation remains rel-
atively scarce (Merilä and Hendry 2014, and other ref-
erences of Evolutionary Applications special issue, Jan-
uary 2014). However, a large part of the intraspecific
variation observed in phenology is genetic (Hendry
and Day 2005) and the architecture of the network un-
derlying flowering time variation is well described in
some species such as Arabidopsis thaliana (Sasaki et al.
2018; Wilczek et al. 2010). How climate change will af-
fect the genetic values of phenological traits remains
uncertain. In a first hypothesis, we may assume that
the phenotypic optimum for flowering time is not af-
fected by climate change. We therefore expect a ge-
netic change occurring in the opposite direction than
that of the plastic response (Fig. 5A). This hypothesis re-
sembles counter-gradient variation, which occurs when
the genetic influence on a trait along a gradient op-
poses the environmental influence, resulting in reduced
phenotypic variation across the gradient (Levins 1969).
Counter-gradients are widespread along geographical
gradients, as shown by the meta-analysis by Conover
et al. (2009), who found evidence for counter-gradient in
60 species and for co-gradients in 11 species. Therefore,
assuming that the same mechanism observed across
spatial gradients could occur in temporal gradients, we
would expect the genetic response of flowering time to
counter-balance the plastic response to climate change.

Yet, our temporal survey rejects the counter-gradient
hypothesis, both at the population and at the regional
scale. Instead, we found evidence for a genetic change
towards earlier flowering, in the same direction as the
plastic response to the environmental change (here a
rise in temperatures). Such a co-gradient is expected
if climate change has shifted the phenotypic optimum
towards earlier flowering dates (Fig. 5B). Several hy-
potheses could explain such a shift and the resulting co-
gradient. First, in a plant with undetermined flowering
such as M. truncatula, reduced frost risk early in the sea-
son should favour earlier flowering, because plants that
manage to flower early in the season will carry on pro-
ducing flowers until summer drought becomes limit-
ing (end of May-June). We can therefore expect that the
earliest a plant flowers, the highest its fitness. Second,
climate change in the Mediterranean region also tends
to reduce precipitations in spring and early summer
(Goubanova and Li 2007; Schröter et al. 2005), thereby
shortening the reproductive period. Severe early sum-
mer drought could therefore create a strong selective
pressure towards earlier flowering. Such a genetic
shift in flowering time in response to extended drought
have been reported before in the literature (Franks et al.
2007).

Finally, although it is generally assumed that flower-
ing date should be under stabilising selection in order

Fig. 5. Hypotheses for the expected selective pressure on flowering time un-
der climate change. (A) Selective response expected under the hypothesis that
the phenotypic optimum for flowering date remains the same. The selective re-
sponse is expected in the opposite direction compared to the plastic response to
increased temperatures. This corresponds to the counter-gradient hypothesis. (B)
Selective response expected under the hypothesis that the phenotypic optimum for
flowering date is displaced with climate change and that it becomes advantageous
to flower earlier. The selective response is expected in the same direction as the
plastic response to increased temperatures. This corresponds to the co-gradient
hypothesis. (C) Selective response expected under the hypothesis that flowering
time is under directional selection.

to avoid frost or drought when flowering occurs re-
spectively too early or too late, a recent meta-analysis
found widespread evidence for frequent directional se-
lection towards early flowering (Munguía-Rosas et al.
2011). This could be due to several advantages, among
which an increased time for seed maturation in early
reproducing plants and a longer period of growth for
the progeny issued from seeds that germinate immedi-
ately (as reviewed by Elzinga et al. 2007; Kudo 2006).
Under this scenario of directional selection, we also ex-
pect a pattern of co-gradient, as observed in the data
(Fig. 5C). Besides the evidence for a genetic change in
flowering date in M. truncatula in Corsica, we found no
evidence for a change in the sensitivity to vernalization,
despite genetic variance for this trait in the population
(H2 = 0.19). In the literature, most studies have found
at least some genetic variation for plasticity, but cor-
responding heritabilities were generally low (Scheiner
1993). Our results also suggest that the sensitivity to
vernalization is not independent from flowering date,
because the intercept and the slope of the reaction norm
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to the vernalization treatment are genetically correlated
(Gavrilets and Scheiner 1993). Therefore, a lower num-
ber of chilling units received during winter (short ver-
nalization treatment) results in higher heritability of
flowering date. This correlation could favour the se-
lective response of flowering date to climate warming
because warmer winters will inflate the genetic vari-
ance of flowering date. Alternatively, if early flower-
ing genotypes are selected for, or arrive in the popula-
tion by migration, the evolution of the sensitivity to ver-
nalization might be constrained by the positive genetic
correlation with flowering time: early flowering genes
tend to be associated with genes reducing the sensitiv-
ity to vernalization cues.

Conclusions. Because it is difficult to rule out the effect
of drift on the observed genetic change in phenology,
our results do not entirely answer the question of the
adaptive potential in selfing populations raised in the
Introduction. Yet, several lines of evidence support the
role of selection. First, the observed genetic change is
in the direction expected for a response to raising tem-
peratures and reduced rainfalls in the Mediterranean
region. Second, the selection gradient measured in
the greenhouse suggests that early flowering genotypes
produce more seeds. The changes in MLG composition
through time provide more equivocal results, but are
also compatible with the hypothesis that MLGs with
early flowering times had a better reproductive suc-
cess than later flowering genotypes and replaced them,
resulting in the observed genetic change in flowering
time. Our simulations of the effect of drift are impacted
by uncertainty in effective population size estimations,
but the highest effective population size compatible
with the observed change caused by drift alone remains
relatively low (Ne ≈ 150, Fig. 4A). Finally, the shift
in flowering date observed in the Cape Corsica pop-
ulation was also detected at the regional scale, which
suggests that the set of populations studied could be
geographic replicates for this response to selection of
flowering times in M. truncatula in Corsica. Ultimately,
only a longer survey of this population combined with
a pattern test (Sheets and Mitchell 2001) could provide
a definitive answer to the question of adaptation to
climate change through a genetic change in flowering
time in this predominantly selfing population. Finally,
it is worth pointing out that, in contrast with the the-
oretical predictions presented in the Introduction, this
population displays significant genetic variance for a
quantitative trait such as flowering time. As suggested
before for M. truncatula (Jullien et al. 2019), it is likely
that other evolutionary mechanisms, such as migration,
contribute to maintain the adaptive potential of popu-
lations in this predominantly selfing species.
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diversity at the 16 microsatellite loci. Table S5: Estimates of the selfing rate. Fig-
ure S1: Distribution of residual heterozygosity across MLGs for the two sampling
years pooled. Supplementary Material S2: Details about the multiallelic method to
simulate the effect of successive generations of drift. Supplementary Material S3:
Comparison of the FST estimation variance when considering the loci as indepen-
dent or using the multilocus genotypes as alleles of a single locus. Figure S2 and
S3: results of the simulations.
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Supplementary
Information
S1: GENETHAPLO: a java program to analyse
the genome-wide multilocus genetic struc-
ture of predominantly selfing or clonal pop-
ulations

Multilocus genotypes provide valuable information
about mating systems (Jullien et al. 2019). Four soft-
ware packages were previously developed to identify
individuals originating from clonal reproduction us-
ing their multilocus genotype: MLGSIM (Stenberg et
al. 2003); GENOTYPE and GENODIVE (Meirmans and
Van Tienderen 2004), GENECLONE (Arnaud-Haond
and Belkhir 2007) and poppr (Kamvar et al. 2014). Yet,
none of these programs is specifically designed to iden-
tify individuals reproducing by selfing, in particular to
detect repeated multilocus genotypes within a popula-
tion and through time (or space) and recognize poten-
tial recombinants, formed by rare outcrossing events.
GENETHAPLO is a program written in Java with four
modules:
1. A module to convert the format of a dataset
2. A module to filter the dataset
3. A module to analyse the genetic diversity
4. A module to analyse the multilocus genetic structure

Formatting the data file. The first line of the data file
is a header line describing the content of each column,
i.e. the name of the population, of the sub-population,
of the individual and of each locus. Each following
line provides the genotype of an individual at the
specified loci. The individuals should be sorted so that
populations and sub-populations are grouped together
in consecutive lines.
Example:
temp,pop,Individu,ENPB1,MTIC59L,MTIC37C,MTIC126,FMTBN,MTIC243,MTIC40,MTIC86
pop,1987,F20089-1987-001,278278,110110,086086,099099,198198,118118,128128,157157
pop,1987,F20089-1987-003,278278,110110,086086,099099,198198,118118,128128,157157
pop,1987,F20089-1987-004,278278,110110,086086,099099,198198,118118,128128,149149
...
pop,2009,F20089-2009-006,274280,097110,086086,099099,166166,118118,134134,126126
pop,2009,F20089-2009-007,278278,110110,086086,099099,198198,118118,128128,149149
pop,2009,F20089-2009-008,274280,097097,095095,099099,188188,118118,128128,155155

Module 1: format conversion. This module takes a
dataset in the read2snp (Uricaru et al. 2014) format and
converts it to a format suitable for GENETHAPLO, as
detailed above.

Module 2: data filter. This module allows to filter out
the loci, and individuals, having a percentage of miss-
ing data exceeding a specific threshold (given by the
user). The two output files are i) a reduced dataset and
ii) the list of the loci and individuals that have been re-
moved. The percentage of missing data before and after
filtering is also provided.
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Module 3: genetic diversity. This module computes the
key descriptors of genetic diversity classically used in
population genetics studies. A first table summarizes
the average number of individuals, alleles, the expected
and observed heterozygosity and the FIS. The self-
ing rate is also calculated from the FIS for each sub-
population. The module also provides these descrip-
tors of diversity per locus and a table of allele frequen-
cies for each sub-population.

Module 4: multilocus genetic structure. This module
comprises three steps:
1. Grouping individuals according to their multilo-
cus genotypes (thereafter called MLG): This module is
based on a graph algorithm, where each node is an in-
dividual and nodes are connected when the individuals
share the same MLG. An error rate can be specified by
the user to allow grouping MLGs that differ at less than
a given proportion of loci. This avoids over-splitting
the MLGs due to genotyping errors or recent mutations.
The module also takes into account missing data that
can generate uncertainties. In case of missing data, it is
possible for an individual to have a genotype compati-
ble with several MLG. In such a case, the individual is
randomly assigned to one of the possible MLG groups
based on a random draw where each MLG group has
a probability of being chosen that is proportional to its
size. The output files provide i) the list of all individ-
uals with the MLG to which they are assigned ii) the
list of all identified MLGs with their frequency in each
sub-population, their residual heterozygosity, defined
as the proportion of heterozygous loci out of the total
number of loci without missing values, and the num-
ber of missing values in each MLG.
2. Estimating genetic distance between MLGs: The ge-
netic distance between two MLGs is estimated as the
number of alleles that differ between the two synthetic
MLGs divided by the total number of alleles without
missing data in these two MLGs. This module gener-
ates a distance matrix as well as a histogram depicting
the pairwise distance distribution.
3. Identifying recombinant MLGs: This module uses
the genetic distances to rapidly identify putative re-
combination events between MLGs. A MLG is a candi-
date recombinant between two other MLGs (thereafter
called “parental MLGs”) if the sum of the allele differ-
ences between it and its two putative parents equals the
number of allele differences between these two parental
MLGs. Only the MLGs that are represented by at least
two individuals can be considered as potential parents.
The output file provides a list of potential families, with
the details of pairwise genetic distances.

Running the program. This java program can be
launched from a command prompt, in the folder where
the modules are stored, using the command java
-jar module.jar, where module.jar should be
replaced by the corresponding module name.

∗ the type of analysis for the module 4 can be:
- only MLG groups (no argument)
- MLG groups and distances (d as an argument, as shown in the example)
- MLG groups + distance + potential recombinants (r as an argument, as shown in the example)

If no argument (infile or option) is added in the com-
mand, a short description of the script is displayed.
For example:

Example of output of the console:

Example of output figures:

GENETHAPLO is a program freely available at
https://github.com/laugay/GenetHaplo.
Source codes are available from authors upon request.

References. Arnaud-Haond, S., and K. Belkhir. 2007. genclone:
a computer program to analyse genotypic data, test for clonality
and describe spatial clonal organization. Molecular Ecology Notes
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Kamvar, Z. N., J. F. Tabima, and N. J. Grünwald. 2014. Poppr: an
R package for genetic analysis of populations with clonal, partially
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Meirmans, P. G., and P. H. Van Tienderen. 2004. genotype and
genodive: two programs for the analysis of genetic diversity of
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Supplementary tables

Table S1. List of the 17 populations sampled in Corsica (France) with geographic
coordinates and sampling years

Population Latitude Longitude Altitude Sampling
years

FRA20025 42.756332397 9.4508333206 60 1985-2005
FRA20031 42.182167053 9.3766670227 130 1985-2005
FRA20035 42.361167908 9.4963331223 280 1985-2009
FRA20039 42.021499634 8.7348337173 410 1985-2005
FRA20043* 42.462001801 8.6848335266 40 1987-2009
FRA20044 42.551166534 8.7391662598 250 1985-2005
FRA20046 42.592441559 8.9075956345 240 1985-2005
FRA20049 42.444000244 9.4596662521 120 1985-2005
FRA20050 42.165782928 9.546872139 10 1985-2009
FRA20051 42.199165344 9.4646663666 100 1987-2005
FRA20056 41.41350174 9.1668329239 60 1985-2009
FRA20058 41.405334473 9.1265001297 195 1985-209
FRA20069 42.591667175 8.9081668854 410 1987-2005
FRA20087 42.901668549 9.470000267 15 1987-2005
FRA20088 42.958332062 9.3950004578 160 1987-2005
FRA20089† 42.970500946 9.3668336868 380 1987-2009

Table S2. Effect of sampling year on sensitivity to vernalization, taking into account
the family effect (genetic effect). For each effect, the variance component (with
standard errors in brackets), the deviance, degrees of freedom, likelihood ratio (χ2)
and p-values are reported.

Tested effect on sensitiv-
ity to vernalization

Variance
component (SE)

df χ2 p

block 0.01 (0.003) 1 21.0 5.10−6

family 0.03 (0.008) 1 32.6 1.10−8

error 0.13 (0.012) 542

Table S3. Analysis of the family effect (genetic effect) on relative seed production
(seed production standardized by year and treatment), taking into account the block
effect. For each random effect, variance components (with standard deviations in
brackets), degrees of freedom, likelihood ratio (χ2) and p-values are reported.

Tested effect on
relative seed
production

Variance
component (SD)

df χ2 p

block 0.024 (0.15) 1 116 < 2.10−16

family 0.090 (0.30) 1 291 < 2.10−16

error 0.153 (0.39) 1094

Table S4. Genetic diversity at the 16 microsatellite loci for the Cape Corsica popula-
tion in 1987 and 2009. n stands for the sample size, Na and Na−rar are the average
number of alleles per locus and the allelic richness (after correction using a rarefac-
tion method), He is the expected heterozygosity, FIS is the heterozygote deficiency
(both with 95% confidence interval in brackets, estimated by bootstrapping the in-
dividuals) and LD is the percentage of loci under significant linkage disequilibrium
(for a type I error fixed at 5% when rejecting the equilibrium hypothesis). Wilcoxon
signed rank tests were performed across loci for Na−rar , He and FIS to test for a
significant difference between the two years and the p-values are given.

Sampling
year

n Na Na−rar He (CI95) FIS (CI95) LD

1987 64 3.6 3.4 0.351
(0.252-0.424)

0.942
(0.913-0.966)

89%

2009 81 3.9 3.7 0.623
(0.599-0.627)

0.967
(0.957-0.976)

96%

p-value 0.211 6.10-5 0.090
Table S5. Estimates of the selfing rate in the Cape Corsica population for each
sampling year obtained using the program RMES by maximizing the log-likelihood
of the whole multilocus heterozygosity structure of the sample. The 95% confidence
intervals and the log-likelihood are given for the two unconstrained models and the
constrained model, along with the p-value of the likelihood ratio test comparing
constrained and unconstrained models.

Sampling year Selfing rate [CI95] Log-likelihood
(Unconstrained) 1987 0.944 [0.902-0.966] -90.896
(Unconstrained) 2009 0.980 [0.974-0.986] -84.592
Constrained 0.970 [0.960-0.978] -177.952
p-value LRT 0.026

Supplementary Figures

Fig. S1. Distribution of residual heterozygosity across MLGs for the two sampling
years pooled. Residual heterozygosity is defined here as the proportion of het-
erozygous loci in the multilocus genotype (over 16 loci) of each individual.

S2: Details about the multiallelic method to
simulate the effect of successive generations
of drift
We simulated the effect of 22 generations of drift, us-
ing an extension to multiallelic data of the approach
described in Frachon et al. (2017) and inspired by
Goldringer and Bataillon (2004). In order to account
for the sampling variance in initial MLG frequencies,
we simulated individual MLG frequency trajectories as
follows: suppose that we observe a vector y of MLG
counts, out of n total counts, in the 1987 sample. We
assume that these observed counts are drawn from a
multinomial distribution Mult(n, x) where x is the vec-
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tor of (unknown) MLG frequencies in the 1987 popu-
lation. Assuming a Dirichlet Dir(1) prior distribution
for x, and using the Bayes inversion formula, the pos-
terior distribution of x is distributed as Dir(y + 1). For
each simulation, we therefore randomly draw the ini-
tial MLG frequencies in the 1987 sample π1987, from
a Dir(y + 1) distribution. We then draw “pseudo-
observed” MLG counts using a random draw from
Mult(n,π1987).

References. Frachon, L., C. Libourel, R. Villoutreix, S. Carrère,
C. Glorieux, C. Huard-Chauveau, M. Navascués, L. Gay, R. Vitalis,
E. Baron, L. Amsellem, O. Bouchez, M. Vidal, V. Le Corre, D. Roby,
J. Bergelson, and F. Roux. 2017. Intermediate degrees of synergistic
pleiotropy drive adaptive evolution in ecological time. Nature
Ecology Evolution 1:1551-1561.
Goldringer, I., and T. Bataillon. 2004. On the distribution of temporal
variations in allele frequency: consequences for the estimation
of effective population size and the detection of loci undergoing
selection. Genetics 168:563-568.

S3: Comparison of the FST estimation vari-
ance when considering the loci as indepen-
dent or using the multilocus genotypes as al-
leles of a single locus
Due to reduced effective recombination, the entire
genome of a predominantly selfing population can be-
have as a giant supergene. This violates the hypoth-
esis of independence between loci that is commonly
assumed in population genetics, in particular for FST
estimation. One solution to this violation could be to
take the linkage disequilibrium into account by con-
catenating all loci and considering the distinct multi-
locus genotype (thereafter MLG) as different alleles of
a single (mega) locus. Here we use simulations to com-
pare estimates of genetic differentiation measured us-
ing all loci considered independent or using MLGs as
alleles of a single locus, and compare bias and estima-
tion variance (MSE).

Methods. We used the individual-based simulations of
diploid hermaphroditic populations performed using
SLiM 2.5 (Haller and Messer 2017) by Jullien et al.
(2019). Briefly, we simulated the evolution of 20 inde-
pendent loci (with a recombination rate of 0.5) in an iso-
lated population with a given selfing rate and effective
population size. Each simulation comprised two peri-
ods. A first period of 25 N generations (with N the de-
mographic population size, measured as the number of
diploid individuals) allowed the populations to reach
the mutation-drift equilibrium. At this stage (time t0
= 0), 100 diploid individuals were randomly sampled.
Twenty generations later (t20), a second sample of 100
individuals was drawn. This matches the sampling de-
sign performed on the focal population in Cape Cor-
sica. Further details can be found in Jullien et al. (2019).
We simulated 1,000 replicates for populations with a
selfing rate ranging between 0.8 and 1 and a population

size N of 250 individuals. For each simulated dataset,
we assessed the relative temporal differentiation be-
tween the two samples using Weir and Cockerham’s
(1984) estimator of FST , as implemented in the R pack-
age hierfstat (Goudet 2005). We then grouped individ-
uals with identical combinations of alleles (multilocus
genotypes, MLG) using the program GENETHAPLO
(Supplementary Material S1 above and as detailed in
the main text, except for the error rate, which was set
to zero). MLGs with residual heterozygosity were re-
moved for the multilocus assessment of temporal dif-
ferentiation. We considered each MLG as an allele of a
single locus and computed the allele frequency for each
temporal sample (t0, t20). We used the function hap-
loDiv of the R package diversity (Keenan et al. 2013)
to estimate the FST on this haploid locus using Weir
and Cockerham’s method (1984). We also reiterated this
analysis without removing the MLGs with residual het-
erozygosity to assess the effect of this step on the bias
and variance of FST estimation.
For each simulated selfing rate, we calculated the ex-
pected FST using the relationship established in Fra-
chon et al. (2017): FST = τ/(4Ne + τ), where Ne is the
number of haploid individuals (or gene copy number)
and τ the number of generations between the two tem-
poral samples. Selfing reduces the number of indepen-
dent gametes sampled for reproduction, so that the ef-
fective size is reduced to Ne ∼ N(2− σ)/2 (Wright 1969,
Pollak 1987) with σ the selfing rate and N the popula-
tion size. As a result, FST = τ

4N 2−σ
2 +τ

.

We measured the bias as the difference between this
reference FST and the FST we estimated assuming in-
dependent loci or the FST we estimated using MLGs
as alleles of a single locus. We measured the mean
square error as the sum of the bias and the variance:

MSE = ∑1000
i=1 ( ̂FST indep or MLG(i)− FST expected(i))2.

Results and discussion. When using MLGs as alleles
of a single locus, the estimated FST suffers from an
increased negative bias compared to the method as-
suming that all loci are independent (Fig. S2). The bias
decreases with increasing selfing rate but is always neg-
ative for the selfing rates we considered (>0.8), which
will tend to overestimate the effective population size
(Fig. S3). This bias is likely due to the dependence
of FST on the frequency of the most frequent allelic
type (Jakobsson et al. 2013, Edge and Rosenberg 2014,
Alcala and Rosenberg 2017): as the number of alleles
increases, the frequency of the most frequent allele nec-
essarily decreases, which sets an upper bound to the
FST estimates (Fig. 2 in Jakobsson et al. 2013). Remov-
ing MLGs with residual heterozygosity reduces the
bias, because heterozygous MLGs are generally unique
and therefore form new alleles of the single “MLG”
locus. In addition, the precision of the FST estimates us-
ing the MLG method is expected to decrease when the
number of loci considered increases, because genetic
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diversity is influenced by haplotype length (Mehta et
al. 2019). As already shown (Navascués et al. 2020), the
variance of the FST estimation assuming independent
loci increases with high selfing rates (Fig. S3), due to
the linkage disequilibrium that reduces the number of
effective loci (Golding and Strobeck 1980, Nordborg
2000). Surprisingly, the MLG method seems to limit
the estimation variance. This is most probably arti-
ficial, because the upper-bound on the FST estimates
also constrains its variance. Altogether, despite the
high sampling variance due to the low number of
effective loci available under strong selfing, our re-
sults suggest that it is preferable to assume that all loci
are independent instead of using MLGs to estimate FST .

Fig. S2. Estimates of temporal differentiation (FST ) using all loci and assuming
independence (in black) or using the MLG (concatenated genotype) as alleles of
a single locus, with (green) or without (blue) exclusion of the MLGs with residual
heterozygosity. The red line stands for the expected value for the FST where FST =

τ

4N 2−σ
2 +τ

with τ the number of generations between the two temporal samples, σ

the selfing rate and N the simulated population size.

References. Alcala, N., and N. A. Rosenberg. 2017. Mathematical
Constraints on FST: Biallelic Markers in Arbitrarily Many Popula-
tions. Genetics 206:1581-1600.
Edge, M. D., and N. A. Rosenberg. 2014. Upper bounds on FST
in terms of the frequency of the most frequent allele and total
homozygosity: The case of a specified number of alleles. Theoretical
Population Biology 97:20-34.

Fig. S3. Average bias (A) and MSE (B) for the estimation of temporal differentia-
tion (FST ) using all loci and assuming independence (in black) or using the MLG
(concatenated genotype) as alleles of a single locus, with (green) or without (blue)
exclusion of the MLGs with residual heterozygosity.
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