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Abstract:  
 

Disrupted antiviral immune responses are associated with severe COVID-19, the disease caused 

by SAR-CoV-2. Here, we show that the 73-amino-acid protein encoded by ORF9c of the viral 

genome contains a putative transmembrane domain, interacts with membrane proteins in 

multiple cellular compartments, and impairs antiviral processes in a lung epithelial cell line. 

Proteomic, interactome, and transcriptomic analyses, combined with bioinformatic analysis, 

revealed that expression of only this highly unstable small viral protein impaired interferon 

signaling, antigen presentation, and complement signaling, while inducing IL-6 signaling. 

Furthermore, we showed that interfering with ORF9c degradation by either proteasome 

inhibition or inhibition of the ATPase VCP blunted the effects of ORF9c. Our study indicated 

that ORF9c enables immune evasion and coordinates cellular changes essential for the SARS-

CoV-2 life cycle.  

 
 

One-sentence summary:  

SARS-CoV-2 ORF9c is the first human coronavirus protein localized to membrane, suppressing 

antiviral response, resembling full viral infection. 
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Introduction 

SARS-CoV-2 is an enveloped, positive-sense single strand 29.9 kb RNA virus (1, 2) that causes 

severe respiratory disease in humans (COVID-19). This coronavirus was first identified in 

Wuhan, China, at the end of 2019 (3). Due to its easy human-to-human transmission and the lack 

of effective antiviral therapy, COVID-19 has caused a pandemic with more than 19 million cases 

and over 740,000 deaths worldwide (https://covid19.who.int). Mechanistically, the host protein 

ACE2 serves as the viral receptor and host cellular proteases, such as TMPRSS2, play key roles 

in SARS-CoV-2 entry into host cells (4-7). ACE2 expression is high in alveolar epithelial cells 

(8), making the lung a highly vulnerable target for the virus.  

SARS-CoV-2 infection causes a wide range of disease, from asymptomatic to mild disease to 

severe disease that can lead to death (9). SARS-CoV-2 is most similar to the coronaviruses 

SARS-CoV and MERS-CoV (10, 11). However, neither of those became a global pandemic. 

Current therapies are primarily palliative and supportive (9). More than 2000 clinical trials are 

currently in progress worldwide (12) (https://clinicaltrials.gov/ct2/who_table). Without effective 

vaccines or treatments, there is an urgent need to understand the pathology of SARS-CoV-2 

infection, the roles of each of the 29 proteins encoded within the viral genome in the life cycle, 

virulence, and pathogenicity of the virus, and identify strategies for intervention or treatment.  

Various therapeutic and vaccine strategies target viral entry mechanisms, such as vaccines or 

antibodies targeting on the Spike (S) protein (13-16); others target viral replication or assembly 

processes, such as the antiviral drug remdesivir, which interferes with RNA replication and has 

emerged as superior to placebo in shortening recovery time in adults (17). Another strategy for 

treatment is interfere with viral immune evasion mechanisms and thus enable the body’s natural 
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antiviral responses to be more effective at clearing the virus. Indeed, investigation of 

mechanisms of immune evasion by SARS-CoV-2 is an active area of translational research with 

immune evasion properties discovered for nonstructural protein 1 (Nsp1) (18). 

The SARS-CoV-2 genome contains 15 open reading frames (ORFs), which encode 29 viral 

proteins (19-21). ORF1a and ORF1ab encode polyproteins that are cleaved into 16 nonstructural 

proteins (Nsp1 – Nsp16) that comprise the replicase-transcriptase complex. Spike (S) is encoded 

by ORF2, envelope (E) by ORF4, membrane (M) by ORF5, and nucleocapsid (N) by ORF9. An 

additional 9 ORFs encode “accessory” proteins: ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, 

ORF9b, ORF9c, and ORF10.   

 

Various studies have investigated the functions of the virally encoded proteins by performing 

interactome analysis in cells expressing individual viral proteins (19) or by evaluating the 

proteomic or transcriptomic changes associated with either viral infection (22-27). Others have 

used computational approaches to investigate protein-protein interactions between SARS-CoV-2 

viral proteins and host proteins (28). The interactome and proteome studies identified cellular 

processes affected by SARS-CoV-2 infection or specific viral proteins, notably innate immune 

signaling (19, 20, 23, 28-30), ubiquitin ligase activities (19, 20, 23, 28-30), p38 mitogen-

activated protein kinase (MAPK) signaling (19, 20, 23, 28-30). The transcriptomic studies 

identified interferon signaling (24), cell death (27), interleukin 1 (IL-1), IL-6, and chemokine 

signaling (22).  

 

Given the intense interest in catalytically active CoV-2 proteins (31-34), we examined the less-

studied group of ORFs encoding accessory proteins, which are largely thought to maintain viral 
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structural organization in replication organelles and within the viral particle (35, 36).  Here, we 

showed that expression of only ORF9c is sufficient to alter cellular networks in a manner that 

resembles full SARS-CoV-2 virus infection. 

 

Results 

SARS-CoV-2 ORF9c encodes an unstable protein with a putative transmembrane domain  

Seven of the 29 CoV-2 proteins are ORFs that lack catalytic activity and, in some cases, lack a 

known function (19). Each of these were tagged with Strep at the N terminus and expressed them 

individually in the lung cancer epithelial cell line A549 in the presence or absence of the 

proteasome inhibitor MG132 (Fig. 1A). The protein encoded by ORF9c was particularly 

unstable, with a profound increase in abundance evident in MG132-treated compared to that in 

vehicle-treated A549 cells (Fig 1A).  

ORF9c is present in previously characterized strains of SARS-CoV (37), a conservation 

suggesting a function in coronavirus pathogenesis. Phylogenetic analysis and alignment of the 

protein sequences showed that mutations are present in ORF9c among different coronavirus 

strains with bat SARS-like coronavirus ORF14 as the closest ortholog sharing 94% sequence 

identity and only 77% identity with ORF14 of SARS-CoV (Fig. 1B, fig. S1A). TMHMM 

analysis (38) of SARS-CoV-2 ORF9c predicted a transmembrane sequence in the C-terminal 

domain, a motif not present in SARS-CoV-1 (or other human coronaviruses) ORF9c sequence 

(Fig. 1B, fig. S1B). Additionally, a single nucleotide mutation in SARS-CoV-2 ORF9c altered a 

termination codon, enabling the reading frame to extend by 3 amino acids (Fig. 1C).  
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SARS-CoV-2 ORF9c interactome includes membrane-associated proteins distributed 

throughout multiple cellular compartments  

We assessed potential functions of ORF9c by performing transcriptome, interactome, and 

proteome analysis of A549 lung cancer cells transfected with ORF9c tagged at the N terminus 

with 2 copies of the Strep tag (19). To map the ORF9c interactome, we conducted liquid 

chromatography tandem mass spectrometry (LC-MS/MS) of 2xStrep-tagged ORF9c compared 

with control 2xStrep-tagged GFP) immunoprecipitated from A549 cells 24 h after transfection.  

ORF9c interactome analysis revealed that most interacting proteins were classified as membrane 

proteins (Fig. 1D, table S1) according to Gene Ontology Cellular Component. As a protein with a 

transmembrane domain, this was not surprising. However, we were surprised to find that the 

ORF9c interactome was distributed throughout the membrane-bound organelles (Fig. 1D), 

including >30 proteins in the protein biosynthesis and transport systems of the endoplasmic 

reticulum (ER) and Golgi, >15 proteins in the mitochondria, and >30 other membrane-related 

proteins. Given the instability of ORF9c, we were not surprised to identify a group of membrane-

associated proteins that function with the proteasome.  Comparison between ORF9c and ORF10, 

both expressed using the Strep-tagged vector, confirmed that enrichment of membranal proteins 

as part of the interactome was selectively seen for the ORF9c (fig. S1C). 

 

Proteome analysis shows ORF9c downregulates proteins involved in interferon signaling and 

antigen processing. 

We conducted both label free quantification (LFQ) and tandem mass tag (TMT) mass 

spectrometry analysis to identify changes in the cellular proteome in A549 cells expressing 

ORF9c. We compared the proteomic changes associated with ORF9c expression in the presence 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.256776doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.256776


 

7 
 

or absence of proteasomal inhibition with MG132, using DMSO as the vehicle control for 

comparison in each set. Principle component analysis (PCA) revealed that ORF9c contributed to 

major variance in all data sets (fig. S2A, S2B). Pairwise comparisons between ORF9c and 

control untransfected samples identified differentially expressed proteins in both the DMSO and 

MG132 groups (Fig 2A). In both the DMSO and MG132 datasets, most changes induced by 

ORF9c were a reduction in protein abundance (downregulation) (Fig. 2A, table S1).  

Downregulated proteins identified using both approaches consistently showed ~60% overlap, 

while no overlap were identified among the upregulated proteins. Thus, to maximize the 

discovery of ORF9c dysregulated proteins, results from both technologies were combined. 

Including the differentially regulated proteins identified by both the TMT and LFQ analysis 

revealed 14 proteins were upregulated in common by ORF9c expression in the presence or 

absence of the proteasome inhibitor and 144 proteins were downregulated in common (Fig. 2B).  

Using the downregulated proteins and upregulated proteins identified for either the DMSO or 

MG132 condition separately, we performed Ingenuity Pathway Analysis (IPA) to assess 

signaling pathways deregulated in ORF9c-expressing cells. In both the DMSO and MG132 

condition, interferon (IFN) signaling exhibited the greatest difference, both in terms of the 

intensity of the downregulation and the number of proteins significantly associated with this 

pathway, in response to ORF9c (Fig. 2C, table S1). Other pathways affected by ORF9c and of 

particular importance to virulence were antigen presentation and innate immune response 

pathways, such as IRF/cytosolic pattern recognition receptors. We further examined potential 

upstream regulators of these pathways using Ingenuity Pathway Analysis for proteins that 

exhibited a change in abundance in the ORF9c-expressing cells.  This analysis revealed that 

several components of the IFN machinery [interferons (IFNL1, IFNA), interferon responsive 
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transcription factors (IRF7, IRF1), and an interferon receptor (INFAR)] were reduced, consistent 

with the impaired IFN signaling, and an increase in MAPK1 (also known as ERK2) abundance 

(Fig. 2C, table S1). 

To assess if there were notable differences in the intensity of the changes in protein abundance in 

response to proteasome inhibition, we calculated relative changes in protein abundance between 

control and ORF9c-expressing cells from both the DMSO and MG132 conditions for proteins 

associated with IFN signaling or the ubiquitin proteasome (UBP) system and antigen 

presentation (Fig. 2D). The intensity of the changes was similar in the presence or absence of 

MG132, suggesting even small amounts of the unstable ORF9c are sufficient to induce cellular 

changes including those that contribute to immune evasion.  

Consistent with the IPA-based analysis (Fig. 2B), IFN signaling components, including IFI35, 

multiple IFIT proteins, IRF9, ISG15, MX1, PSMB8, and STAT proteins, were downregulated in 

ORF9c-expressing cells in both the presence and absence of MG132 (Fig. 2D, left). Indicative of 

a decrease in antigen presentation capacity, multiple proteins involved in this process were 

decreased, including proteins involved in antigen loading and display [HLA proteins, β2M, and 

antigen transporters (TAP1 and TAP2)] and proteins involved in UBP [ubiquitin-conjugating 

enzymes UBE2I and UBE2L6), deubiquitination enzymes (USP18 and UPS41), and proteasome 

components (PSMB and PSME proteins)] (Fig 2D, right).  

These changes in the proteome indicated that the expression of only ORF9c, even in the absence 

of proteasomal inhibition to stabilize this protein, is sufficient to elicit effective inhibition of 

IFN, immune recognition, and UBP components at the protein level. Such a response suggested 

that ORF9c contributes to immune evasion of SARS-CoV-2.  
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ORF9c attenuates transcription of immune and stress signaling pathways.  

We assessed transcriptional changes elicited by ORF9c expression in A549 cells using RNA-seq 

analysis.  PCA showed that changes induced by ORF9c in both DMSO- and MG132-treated cells 

cluster in distinct experimental groups (Fig. S2C). In contrast to the proteomic results that 

revealed predominant downregulation of proteins following ORF9c expression, RNA-seq 

analysis showed a similar number of transcripts were increased or decreased in the presence or 

absence of MG132 (Fig. 3A, table S2). Additionally, the number of differentially regulated 

transcripts was higher than that for the differentially regulated proteins.     

Using IPA, we identified the pathways significantly enriched in differentially regulated 

transcripts. The same set of pathways were identified in the DMSO and MG132 conditions, and 

similar to the proteomic results, most related to immune signaling (Fig. 3B, upper, table S2). 

However, many of the specific pathways were different from those identified at proteomic level. 

At the transcriptional level, we detected the greatest effects on the complement system and 

several pathways involved in inflammatory signaling. Thus, some components of antigen 

presentation and immune signaling pathways showed comparable changes at the protein and 

mRNA levels; other changes elicited by ORF9c expression were unique to the transcriptional 

level, such as induction of IL-6 signaling and p38 MAPK signaling, or the protein level, such as 

impairment of IFN signaling. 

We analyzed the ORF9c-regulated transcripts for those encoding upstream regulators of the 

pathways altered at the transcriptional level by ORF9c. This analysis identified the classic 

immune modulators tumor necrosis factor (TNF), IL-1B, IFNg, transforming growth factor β 

(TGFb), and NF-kB signaling components (Fig. 3B, lower, table S2).  
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We evaluated transcripts associated with the complement system or IL-6 signaling in detail. In 

both the presence and absence of proteasome inhibition, complement system transcripts were 

mostly downregulated by ORF9c expression in A549 cells (Fig. 3C, left). For IL-6 signaling, we 

found some differences between the MG132 and DMSO conditions (Fig. 3C, right). For several 

transcripts the intensity of the upregulation was greater in the absence of proteasome inhibition 

(MAP3K14 and MAP2K3, IL6 and IL6R, SOCS1 and SOCS3); for others the presence of the 

proteasome inhibitor resulted in a greater reduction in transcript abundance (IL1B, TNFAIP6, 

CD14, IL1R2). Thus, these results suggested that ORF9c had a dose-dependent effect on some 

transcripts.  

 

Common proteome and transcriptome changes induced by ORF9c 

We combined the results of the proteomic and transcriptomic (Fig. 4A), which revealed a small 

set of commonly upregulated or downregulated genes by ORF9c at both the transcription and 

protein levels (Fig. 4B). We performed IPA canonical pathway analysis and found commonly 

altered pathways at both the transcript and protein levels (Fig. 4C, table S1, S2). The direction of 

regulation (increased or decreased activity) was consistent between the transcripts and proteins. 

However, the number of components significantly enriched in most of the pathways differed 

between the protein and transcript levels.  

We compared our findings at the transcriptome, proteome, and interactome levels with those 

reported by Stukalov et al. (39) for proteins with altered ubiquitination (ubiquitinome) in 

response to SARS-CoV-2 infection of A549 cells. Within the top 10 enriched IPA canonical 

pathways, we noticed enrichment across all 5 protein ubiquitination data sets, sirtuin signaling, 

phagosome maturation, tight junction signaling, and caveolar-mediate endocytosis (Fig. 4D, 
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table S3). Seven of the 10 were common between the ubiquitinome data (39) and our proteomic 

analyses by LFQ or TMT mass spectrometry. 

We also compared the pathway enrichment across our transcriptomic data and those from 

Blanco-Melo et al. (22) reporting transcriptomic changes upon SARS-CoV-2 infection in human 

primary epithelial cells or ACE-expressing A549 cells and with those from Stukalov et al. (39) 

reporting transcriptomic changes in ACE2-expressing A549 cells 12 and 24 hours after infection 

(Fig. 4E, table S3). The changes in cellular pathways that we observed at the transcriptional level 

in A549 cells expressing only ORF9c were remarkably similar to those observed in SARS-CoV-

2-infected primary lung cells with a few exceptions. We observed an increase in transcripts 

associated with B cell signaling and IL-6 signaling in the ORF9c-expressing  A549 cells. In 

contrast, the other studies of ACE2-expressing A549 cells infected with SARS-CoV-2 showed 

similar pathway responses, but these were different from the infected primary lung epithelial 

cells. To visualize how the transcript and protein level changes induced by ORF9c were related, 

we used the Molecular Complex Detection (MCODE) algorithm, which uses physical 

interactions among components, to construct interaction networks overlaid with the direction of 

change in either the MG132 or DMSO condition used for mapping changes in transcript and 

protein levels (Fig. 4A, 4F, table S1, S2). This analysis revealed a complement module, a 

chemotaxis module, an interferon module, and an antigen presentation module, all of which were 

mostly downregulated and often coordinately downregulated at both the transcript and protein 

levels. Two modules appeared primarily induced at the transcript level, a histone acetylation 

module and a module containing the stress responsive AP1 family members (FOSB, FOSL1, 

CREB, and ATF3), suggesting that transcriptional repression may underlie some gene expression 

changes elicited by ORF9c expression.  
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ERAD / proteasome inhibitors can partially reverse cellular changes elicited by SARS-CoV-2 

ORF9c  

In the presence or absence of the proteasome inhibitor, we observed substantial overlap (55 – 

65%) in the ORF9c-downregulated proteins (Fig. 2A) and 54 – 72% overlap in ORF9c-

upregulated transcripts and 45 – 64% in the downregulated transcripts (Fig. 3A). Thus, despite 

ORF9c increasing in MG132-treated A459 cells, the persistent changes in MG132-treated cells 

suggested that even a low amount of ORF9c is sufficient to elicit its cellular effects. However, 

some transcripts (399) and proteins (97) were downregulated by ORF9c in cells not treated with 

MG132 and were upregulated in cells treated with MG132 (Fig. 5A).  

Pathway analysis on the transcripts and proteins showed discordant regulation in DMSO- or 

MG132-treated cells in response ORF9c. The most pronounced among all three datasets were 

components of the UBP and the unfolded protein response (UPR) (Fig. 5B, table S4). Changes in 

events or pathways associated with the cell cycle was not surprising given the critical role UBP 

plays in their regulation. We thus hypothesized that both the UBP and UPR were involved in 

degradation of ORF9c. Finding that UPR signaling was also reversed upon MG132 treatment 

(Fig 5B) is consistent with the role of UPR signaling in degradation of ORF9c.  

To directly assess the importance of UBP and UPR components in ORF9c instability, we 

performed an siRNA-based screen targeting over 1100 genes that encode components of both 

machineries in A549 cells stably expressing Strep-tagged ORF9c (Fig. S3). The top hits 

independently validated as blocking ORF9c degradation were siRNAs targeting VCP [also 

known as p97, an ATPase involved in export of unfolded proteins from the ER for ER-associated 

degradation (ERAD) and in ER to Golgi transport] (40, 41), the proteasomal subunit PSMD2, 

and the proteasome maturation factor POMP (42), which has been also implicated in ERAD (43) 
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and in IFN-induced reorganization of proteasomes into immunoproteasomes (44) (Fig. 5C, Table 

1).  

To assess if interfering with ERAD affected the cellular effects induced by ORF9c, we compared 

the transcript abundance for 6 genes (IFNGR1, IGS15, IRF9, SOCS1, PSMB8, TAP1) that were 

downregulated by expression of ORF9c in DMSO-treated cells with their abundance in cells 

treated with the VCP inhibitor MNS-873, the heat shock protein 90 (HSP90) inhibitor 

geldanamycin, or the proteasome inhibitor bortezomib. Although the HSP90 inhibitor and the 

proteasome inhibitor increased transcript abundance for some of the gens tested, VCP inhibition 

was the most consistently effective at enabling expression of each of these transcripts in the 

ORF9c-expressing cells (Fig. 5D). These observations suggested that ORF9c ability to attenuate 

key cellular signaling involved in antiviral responses, including antigen presentation, immune, 

and IFN pathways, requires the activity of VCP.  

 

Discussion 

The key to our ability to control spread of the SARS-CoV-2 virus is to understand its mechanism 

of action and how the concerted action of its 29 encoded proteins subvert cellular regulatory 

networks. One can divide viral “success” into two key phases: infection, which is the ability to 

enter a given cell type, and multiplication that enables continuous infection through viral 

replication and packaging, which exploits host cell machineries (45). A third aspect to viral 

success is evasion from immune clearance. Disruption of either the infection or replication 

phases should effectively inhibit the SARS-CoV-2 life cycle. Accordingly, many efforts focus on 

neutralizing interaction of the viral S protein with ACE2 (4, 46). Other efforts strive to interfere 
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with the viral life cycle after it invades target cells, and many focus on catalytically active 

proteins encoded by the SARS-CoV-2 genome (47).  

Here, we analyzed one small, unstable SARS-CoV-2 protein, ORF9c in the context of an 

epithelial lung cancer cell line. Limited overlap between published studies of the ORF9c 

interactome can be attributed to their use of different cell system (HEK293 compared with A549 

lung cancer cells used here, as the use of different filtering criteria (19). However, many of the 

cellular changes elicited by ORF9c in our study also occur following infection with full 

replicative SARS-CoV-2 virus (22). Those phenotypes included changes in IFN and other 

cytokine signaling, immune recognition (including antigen presentation; dendritic cell, T cell, 

and acute immune responses; and pattern recognition), cell cycle, and the complement system, 

all of which were downregulated by ORF9c. Additionally, similar to cells infected with the virus 

or expressing ORF9c, IL-1, IL-6, and p38 MAPK signaling pathways were upregulated. The 

primary change identified in our analysis was deregulation of the IFN system, coupled with 

changes in cytokines associated with TNF and STAT signaling and factors implicated in innate 

immunity. In addition to mediating an antiviral response, aberrant IFN signaling is also critical 

for numerous pathological indications linked to COVID-19 (48). Thus, we concluded that SARS-

CoV-2 ORF9c elicits pathologies not seen with previously characterized coronavirus prototypes, 

primarily through effective modulation of IFN signaling. Our findings suggested that ORF9c 

enables cells to escape from immune surveillance through by reducing HLA abundance and 

antigen presentation, while also slowing cell replication, which could viral replication of infected 

cells.  

Strikingly, ORF9c is predicted have a transmembrane domain and we found that the ORF9c 

interactome was mostly comprised of membrane-associated proteins in multiple organelles, 
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including ER, Golgi, mitochondria, cell surface membrane, and peroxisomes. Indeed, many of 

the cellular changes that we observed following ORF9c expression are associated with 

membrane proteins or pathways mediated by proteins that associate with the membranes of 

various cellular compartments. Importantly, SARS-CoV-2 ORF9c is the first human coronavirus 

ORF9c protein that has acquired this putative transmembrane sequence. Mutations have been 

acquired along the course of evolution of ORF9c, although ~80% of the SARS-CoV-2 ORF9c 

sequence is identical to the ortholog in other coronaviruses, although greater similarity was 

identified with the bat SARS-CoV-2 sequence. The membranal anchoring capability identified in 

SARS-CoV-2 ORF9c is novel feature that may mediate the effect on IFN signaling, antigen 

presentation, and immune evasion phenotypes, characteristics that make SARS-CoV-2 much 

more virulent and pathogenic than other coronaviruses. Notably, 0.7-1.4% of patients were found 

to possess a mutation that is expected to impair transmembrane domain of SARS-CoV-2 ORF9c 

(19) ; awaiting future assessment of clinical outcome, our data would predict a better clinical 

outcome, distinguishing these patients from those harboring the transmembrane domain. 

Correspondingly, the interactome for the less virulence and pathogenic SARS-CoV-1 ORF9c 

(49) did not overlap with that for SARS-CoV-2 ORF9c.  

A notable signature that we identified is the upregulation of histone and histone deacetylase-

related factors, which suggested that histone modification may underlie the transcriptional 

repression. The increased transcription of AP1 family members (FOSB, FOSL1, CREB, and 

ATF3), which participate in the cellular stress response, may reflect the response to stress 

imposed by ORF9c, which, in turn, can limit immune-related signaling identified in our study.   

Another remarkable signature of ORF9c expression in A459 cells was the association with UBP 

components. Together with the observations on cellular immune pathways, this association with 
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the UBP suggested that ORF9c induces changes in UBP components that alter the stability of 

cellular proteins implicated in cytokine signaling, antigen presentation, innate immunity, and the 

cell cycle. Additionally, we identified UPR components as important for ORF9c instability, 

suggesting that this protein is misfolded or at least recognized as a misfolded protein by the host 

cell. In this scenario, we propose that misfolded ORF9c engages UPR (through VCP) and the 

UBP, which clears this protein. By engaging the UBP, ORF9c promotes enhanced proteasome 

activity as suggested by our proteome analysis. 

Our analysis revealed that interfering with VCP activity blunted the transcriptional repressive 

effects of SARS-CoV-2 ORF9c on impact immune system components, such as IRF9, INFGR1, 

ISG15, SOCS1 and TAP1. Proteasome inhibition with bortezomib was also effective, although 

not as consistently effective as MNS-873, the VCP inhibitor. These findings suggested that 

inhibition of VCP or the proteasome, which has inhibitors currently in clinical trials for cancer 

(50, 51), may be considered among therapeutic measures to fight SARS-CoV-2 virulence and 

pathologies. However, we cannot exclude the possibility that ORF9c stability and degradation 

mechanisms differ based on cell type or the activity of other viral proteins in infected cells.  

Another potential therapeutic opportunity involves targeting the membrane association of 

ORF9c, because this is a unique feature of the protein in the SARS-CoV-2 coronavirus. Thus, 

identifying small molecules that could interfere with ORF9c localization to the membrane could 

limit ORF9c function and impede the ability of the virus to evade the immune response and 

reduce viral replication.  

Given that ORF9c is expected to affect immune evasion, virulence and pathogenesis, additional 

studies should assess the consequences of ORF9c inhibition in vivo, using primates and possibly 

mouse models where SARS-CoV-2 shown to impact IFN signaling and immune response (48).   
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Materials and Methods 
 

Cell lines 

A549 cells were cultured in Dulbecco’s Modified Eagle’s Medium (Corning) supplemented with  

10% Fetal Bovine Serum (Gibco, Life Technologies) and 1% Penicillin/Streptomycin (Corning) 

and maintained at 37°C in a humidified atmosphere of 5% CO2. 

 

Transfection 

Ten million A549 cells were plated in p15 dishes and transfected using Jet Prime (Polyplus) with 

15 μg of Strep-tagged expression ORF constructs or empty vector. Samples were harvested 24h 

after transfection using Dulbecco’s Phosphate Buffered Saline without calcium and magnesium 

(D-PBS) and supplemented with 10 mM EDTA. Cell pellets were frozen and stored at -80°C. At 

least three biological replicates were independently prepared for immunoprecipitation or MG132 

treatment. 

 

Immunoblotting 

After 24h transfection, A549 were treated with 10µM MG132 (Selleck) during 4h. Whole cell 

extracts were prepared in RIPA buffer (Thermo Fisher) complemented with cOmplete mini 

EDTA-free protease and PhosSTOP phosphatase inhibitor cocktails (Roche). Following protein 

quantification using Pierce’s BCA kit, 5x Laemmli buffer was added and the mix was boiled for 

5 minutes. SDS-PAGE resolved proteins were transferred to nitrocellulose membranes and 

incubated with Strep-tag (Biolegend 688202), b-Tubulin (abcam ab6046) primary antibodies. 

Secondary antibodies were used at 1:5000. 

 

Immunoprecipitation  

Immunoprecipitation of streptavidin-tagged CoV-2 ORFs was performed as previously described 

(19). Briefly, frozen cell pellets were thawed on ice for 15-20 minutes and suspended in 1ml 

Lysis Buffer with 50 mM Tris-HCl, pH 7.4 at 4°C, 150 mM NaCl, 1 mM EDTA and 

supplemented with 0.5% Nonidet P-40 Substitute, Complete mini EDTA-free protease and 

PhosSTOP phosphatase inhibitor cocktails (Roche). Samples were centrifuged 10 minutes at 4°C 

at 13,000g. Protein quantification was performed using Pierce’s BCA quantification kit as per 
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the manufacturer’s indications. Supernatants (1 mg protein) were incubated 2h at 4°C with 

MagStrep “type3” beads (30 μl; IBA Lifesciences) that had been previously equilibrated twice 

with 1 ml Wash Buffer (IP Buffer supplemented with 0.05% NP40). Beads were washed five 

times with 1 ml Wash Buffer and then five times with 1 ml Ammonium Bicarbonate 50mM.  

 

RNA-seq analysis 

Raw FASTQ files were processed using cutadapt v1.18 (52) to remove adapters. RNA-Seq 

sequencing reads were aligned using STAR aligner version 2.7 (53) based on  human genome 

version 38 and Ensemble gene annotation version 84. Gene expression quantification was 

performed based on RSEM v1.3.1 (54). Gene differential expression was performed using 

estimated read counts from RSEM by the R Bioconductor package DESeq2 following 

generalized linear model based on negative binomial distribution (55). Genes with Benjamini-

Hochberg (BH) corrected p value< 0.05 and fold change >=2 or <=1/2 were selected as 

significantly differentially expressed genes.  

 

Pathway and network analysis 

Significant differentially expressed genes and proteins were then analyzed using Ingenuity 

Pathway Analysis (Qiagen, Redwood City, USA) using Canonical Pathways and Upstream 

Regulators. Canonical Pathway analysis results with BH corrected P<0.1 and Upstream 

Regulators with P<0.001 were shown in the Supplementary Tables. Differentially expressed 

genes and differentially expressed proteins were further analyzed using Metascape for MCODE 

network analysis (56). Subcellular locations of proteins were analyzed using DAVID based on 

Gene Ontology Cellular Component category (57) and with the aid of Protein Atlas Protein 

localization information. Because proteins targeted by ORF9c in interactome and ubiquitinome 

and proteins targeted by MG132 were usually changed at smaller fold. Differentially expressed 

genes in Figure 4D, Figure 5A and 5B were selected based on BH correct P <0.05 without fold 

change cutoff. Differentially expressed proteins in Figure 4D, Figure 5A and 5B were selected 

based on P <0.01 without fold change cutoff.  
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Sequence analysis of ORF9c protein 

Protein sequences similar to SARS-CoV-2 ORF9c were retrieved through NCBI Blastp using the  

nr database (58). Sequence alignment was performed using Clustalo (59). Phylogenetic tree was 

built using PhyML algorithm by 100 times bootstrap, and visualized using Seaview (60) and 

Geneious version 2020.2.2 (San Diego, CA). Transmembrane domain prediction was performed 

using TMHMM web server v2.0 (38). Transmembrane domain was predicted based on TMHMM 

posterior probability more than 0.5. 

 

Statistical analysis 

Statistical test results of RNA-Seq, proteomics and interactome data provided in Supplementary 

Tables. Analyses of omics data in this study were performed using R customized scripts. 

Statistical analysis of proteomics data sets was performed using MSstats (label-free data) and 

MStatsTMT (TMT data) bioconductor package. Differential expression of RNA-Seq was 

performed using DESeq2 bioconductor package following Negative Binomial Distribution and 

Wald test. Pathway enrichment and upstream regulator analyses were performed using IPA 

following Fisher’s Exact Test and Z-score calculation considering directional changes in IPA 

database. 

 

Data deposits – GSE / public datasets 

RNA-Seq data sets were uploaded to NCBI GEO with accession number GSE TBA. Proteomics 

data were uploaded to ProteinXchange with accession number (TBA). Public datasets used in 

this study was processed by Coronascape component of Metascape (56), including Stukalov et 

al. (39) from BioRxiv, and Blanco-Melo et al. (22). 

 

Supplementary Materials include Supplemental Methods, Supplemental Figures and 

Legends (3) and Supplemental Tables (5) are found online at: www.xxx. 
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Table 1. Confirmed siRNA targets that stabilize ORF9c when knocked down in A549 cells.  
 
 
 

 
GeneID was obtained from Entrez Gene ID at the National Center for Biotechnology 
Information (NCBI)  
  

Gene 
Symbol GeneID 

Numbers of individual 
siRNA 

RefSeq 
Accession 
Number 

siRNA sequences 
Z score > 3, 
p-val<0.05 

total 
individual 
siRNAs 

VCP 7415 4 4 NM_007126 

GCAUGUGGGUGCUGACUUA, 
CAAAUUGGCUGGUGAGUCU, 
CCUGAUUGCUCGAGCUGUA, 
GUAAUCUCUUCGAGGUAUA 

POMP 51371 3 4 NM_015932 

GGGUCUAUUUGCUCCGCUA, 
UCAUGAUCUUCUUCGGAAA, 
CGAAGUCAUGGGAGAGCCA, 
GUAAUAGUGUGCUGUUCAU 

PSMD2 5708 3 4 NM_002808 

CCGGAGGGCUGUACCUUUA, 
CCAGUUAGCUCAAUAUCAU, 
GCUCUGAGAUUGGCAUUGA, 
GAAUGCUGGUUACGUUUGA 

RNF130 55819 2 4 NM_018434 

GUAGAAUGGUUUUGAAGAA, 
UAACGUAGCAUUCGAUAUG, 
CAAAUGCACGCGACAGGAA, 
GUGCCGAAUUUGCCAUGUA 

UBE2G2 7327 2 4 NM_003343 

CCACUUGAUUACCCGUUAA, 
GCGAUGACCGGGAGCAGUU, 
GAGCUAACGUGGAUGCGUC, 
GAUGGGAGAGUCUGCAUUU 
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Figure 1. The SARS-CoV-2 ORF9c interactome in A549 cells. A. Stability of accessory 

proteins encoded by SARS-CoV-2 ORFs in A549 cells. Proteins were prepared 24 h after 

transfection of lung cancer A549 cells with the indicated Strep-tagged ORF constructs in the 

presence or absence of MG132 (10 µM added 4 h before harvest). Proteins were detected 

Western blotting with antibodies to Strep. B. Sequence alignment of SARS-CoV-2 ORF9c to 

related orthologs. Dots indicate identity. Amino acid color is displayed using Clustal scheme as 

hydrophobic (I, L, M, V) as green, aromatic (F, W, Y) as blue, positive charge (K, R, H) as red, 

proline/glycine and some hydrophilic polar amino acids (G,P,S,T) as orange. C. Alignment of 

the gene sequence showing the position of the stop codon in ORF14 orthologs and 3 codon 

extension in ORF9c. D. Interactome of ORF9c is based on LC-MS/MS of ORF9c-interacting 

proteins immunoprecipitated from A549 24 h after transfection. Left: Number of ORF9C-

interacting proteins according to their cell compartment (from Gene Ontology). Total values 

exceed 100% because some proteins are assigned / located in more than one compartment. Right: 

Protein subcellular localization map for the portion of the ORF9c interactome that is either a 

membrane protein or a membrane-related protein (as defined by Gene Ontology).  

 

Figure 2. Proteomic profiling of A549 cells expressing SARS-CoV-2 ORF9c. A. Proteomic 

profiling of A549 cells infected with Strep-tagged SARS-CoV-2 ORF9c compared Strep-tagged 

GFP as a control . Left: Volcano plots show differentially regulated proteins from MS/TMT or 

MS/LFQ analysis. Red dots, upregulated proteins; blue dots, downregulated proteins. Right: 

Venn diagrams show intersection of up- or down-regulated proteins between ORF9c-infected 

A549 versus control cells cultured in DMSO vehicle or MG132 from both MS/TMT and 

MS/LFQ analysis. B. Differentially regulated proteins identified in both MS/TMT and MS/LFQ 

were subjected to IPA “canonical pathway” analyses. Shown are pathways enriched based on 

differentially regulated proteins (comparing ORF9c with control). Dot size is scaled to -log10 

Bonferroni Hochberg -corrected P (BHP) value. Dot color represents a gradient of Z scores with 

score predicting pathway activity: A positive score indicates activation; a negative score 

indicates inhibition. C. IPA “upstream regulator” analyses for differentially regulated proteins 

(comparing ORF9c with control). Dot size is scaled to -log10 P value. Dot color represents a 

gradient of Z scores with score predicting change in abundance: A positive score indicates 

increase; a negative score indicates decrease. D. Heatmap representation of differentially 
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regulated proteins classified as interferon signaling or as protein ubiquitination-proteasome 

(UBP) and antigen (Ag) presentation. Data are from MS/TMT analysis. Color bars present 

normalized abundance values.   

 

Figure 3. Transcriptomic profiling of A549 cells expressing SARS-CoV-2 ORF9c. A. Volcano 

plots show differentially abundant transcripts based on RNA-Seq analyses. Red dots, up-

regulation; blue dots, downregulation. Venn diagrams depict intersection of up- or down-regulated 

genes between ORF9c-infected A549 cells versus control cells. B. IPA “canonical pathway” and 

“upstream regulator” analyses of differentially expressed genes from ORF9c compared to control 

cells. Dot size is scaled to -log10 BH-corrected P value (BHP) or -log10 P value. Dot color 

represents a Z score gradient with score predicting activity or abundance: A positive score indicates 

activation or increase, and a negative score indicates inhibition or decrease. C. Heatmap 

representation of differentially expressed genes associated with the complement system or IL-6 

signaling, based on RNA-Seq. Color bars present normalized expression values. 

 

Figure 4. Comparison of transcriptomic and proteomic profiles of A549 cells expressing 

SARS-CoV-2 ORF9c. A. Venn diagram depicting intersection of up- or down-regulated genes or 

proteins between ORF9c-expressing A549 versus control cells, both under control (DMSO) or 

MG132 conditions. B. List of the 3 common upregulated genes or protein and 29 downregulated 

genes or proteins common to all data sets. C. IPA “canonical pathway” analyses of differentially 

expressed genes or proteins from ORF9c-expressing compared to control cells. Dot color 

represents a gradient of Z scores with score predicting pathway activity: A positive score indicates 

activation; a negative score indicates inhibition. D. IPA-based comparison of pathways enriched 

based on different analyses indicated. Comparison is based on ORF9c interactome, proteome and 

transcriptome data from this study and that of a published data set (39). Dot size and color as 

described in C. E. IPA-based comparison of pathways enriched based on different transcriptome 

analyses from this study and the indicated published data sets from SARS-CoV-2–infected cells 

(22, 39). Lung, Blanco-Melo, data are SARS-CoV-2 infected primary lung epithelial cells; A549, 

Blanco-Melo, data are from A459 cells and infected with SARS-CoV-2; A549-ACE2, 24h, 

Sukalov and A549-ACE2, 12h, Sukalov, data are from A459 cells expressing ACE2 and infected 

with SARS-CoV-2 12 hours and 24 hours after infection. Dot size and color as described in C. F. 
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Protein-protein interaction network of the ORF9c-dysregulated transcriptome and proteome. The 

protein-protein interaction network was defined by the Molecular Complex Detection (MCODE) 

algorithm based on known protein physical interactions. Protein color represents direction of 

changes in ORF9c versus control cells grown in DMSO or MG132.  

 

Figure 5. The UBP and UPR control ORF9c stability and partially controls its cellular 

activity.  A. Heatmap analysis of the cellular proteins that show opposing direction of regulation 

in cells expressing ORF9c and exposed to MG132 treatment compared to ORF9c-expressing 

cells exposed to DMSO. Data are from MS TMT. B. IPA “canonical pathway: analysis of 

cellular pathways enriched following MG132 treatment of indicated treatment groups. C. 

Representative data showing the increase in ORF9c abundance in cells in which the indicated 

proteins were silenced. Cells exposed to MG132 served as a positive control. D. Quantitative 

RT-PCR analysis of the indicated transcripts in A549 cells stably expressing SARS-CoV-2 

ORF9c and exposed to the indicated inhibitors [VCP inhibitor MNS-873 (2 µM), HSP90 

inhibitor Geldanamycin (0.1 µM), and proteasome inhibitor Bortezomib (15 nM)] for 24 h. Cells 

expressing Strep-GFP served as a control for the effects of the inhibitors in the absence of 

ORF9c. 
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Supplemental Methods 
 
Affinity purification coupled to mass spectrometry 

Beads were resuspended in 8M urea, 50 mM ammonium bicarbonate, and cysteine disulfide 

bonds were reduced with 10 mM tris (2-carboxyethyl) phosphine (TCEP) at 30°C for 60 min. 

Cysteines were then alkylated with 30 mM iodoacetamide (IAA) in the dark at room temperature 

for 30 min. Following alkylation, urea was diluted to 1 M urea, and proteins were digested 

overnight with mass spec grade Trypsin/Lys-C mix (Promega, Madison, WI). Finally, beads 

were pulled down and the peptide solution collected in a new tube. Affinity purification was 

carried out in a Bravo AssayMap platform (Agilent) using AssayMap streptavidin cartridges 

(Agilent). Digested peptides were then desalted in a Bravo AssayMap platform (Agilent) using 

AssayMap C18 cartridges and dried down in a SpeedVac concentrator.  

 

Prior to LC-MS/MS analysis, dried peptides were reconstituted with 2% ACN, 0.1% FA and 

concentration was determined using a NanoDropTM spectrophometer (ThermoFisher). Samples 

were then analyzed by LC-MS/MS using a Proxeon EASY-nanoLC system (ThermoFisher) 

coupled to an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific). Peptides 

were separated using an analytical C18 Aurora column (75µm x 250 mm, 1.6 µm particles; 

IonOpticks) at a flow rate of 300 nL/min (60oC) using a 75-min gradient: 1% to 5% B in 1 min, 

6% to 23% B in 44 min, 23% to 34% B in 28 min, and 34% to 48% B in 2 min (A= FA 0.1%; 

B=80% ACN: 0.1% FA). The mass spectrometer was operated in positive data-dependent 

acquisition mode. MS1 spectra were measured in the Orbitrap in a mass-to-charge (m/z) of 375 – 

1500 with a resolution of 60,000 at m/z 200. Automatic gain control target was set to 4 x 105 with 

a maximum injection time of 50 ms. The instrument was set to run in top speed mode with 2-

second cycles for the survey and MS/MS scans. After a survey scan, the most abundant 

precursors (with charge state between +2 and +7) were isolated in the quadrupole with an 

isolation window of 0.7 m/z and fragmented with HCD at 30% normalized collision energy. 

Fragmented precursors were detected in the ion trap as rapid scan mode with automatic gain 

control target set to 1 x 104 and a maximum injection time set at 35 ms. The dynamic exclusion 

was set to 20 seconds with a 10 ppm mass tolerance around the precursor. 
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Statistical analysis of interactome data was carried out using in-house R script (version 3.5.1, 64-

bit), including R Bioconductor packages such as limma and MSstats. First, feature (a peptide 

sequence with potential amino acid modifications) intensities were log2-transformed and loess-

normalized within each ORF or control batch to account for systematic errors. Testing for 

differential abundance was performed using MSstats bioconductor package based on a linear 

mixed-effects model. Importantly, the log2FC and p-value of proteins missing completely in the 

negative control (Strep-tagged GFP) were imputed as follows. The imputed log2FC was 

calculated as the sum of protein intensity (i.e., sum of peptide intensities of a given protein 

within a given sample) across replicates of the ORF pulldown and divided by 3.3. The imputed 

p-value was calculated by dividing 0.05 by the number of replicates the protein was confidently 

identified in the pulldown group. The PPI score is not used for filtering but to indicate 

significance of different candidates in the list.  

 

High confidence interacting proteins were selected using the following filtering criteria: log2FC 

> 3.3 (10x) and a p-value <0.025 (to include the p-value of proteins detected in at least 2 ORF9c 

pulldown replicates but not detected in the negative controls). We also considered the 

‘crapomeScore’ < 0.5, which is the fraction of single affinity purification experiments a given 

protein-interacting candidate receives in the Crapome database (crapome.org). A score of 1 

means the candidate is identified in all experiments in that database. 

 

Global proteome profiling 

Cells were lysed in UAB buffer (8M urea, 50 mM ammonium bicarbonate (ABC) and 

Benzonase 24U/100ml) with vigorous shaking (20 Hz for 10 min at room temperature using a 

Retsch MM301 instrument). Lysates were centrifuged at 14,000xg for 10 minutes to remove 

cellular debris, and protein concentration in supernatants was determined using bicinchoninic 

acid (BCA) protein assay (Thermo Scientific). Proteins were reduced with 5 mM tris (2-

carboxyethyl) phosphine (TCEP) at 30°C for 60 min, and subsequently alkylated with 15 mM 

iodoacetamide (IAA) in the dark at room temperature for 30 min. Urea was then diluted to 1 M 

urea using 50 mM ammonium bicarbonate, and proteins digested overnight with mass spec grade 

Trypsin/Lys-C mix (1:25 enzyme/substrate ratio). Samples then were acidified with formic acid 

(FA) and desalted using AssayMap C18 cartridges mounted on an Agilent AssayMap BRAVO 
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liquid handling system. Cartridges were sequentially conditioned with 100% acetonitrile (ACN) 

and 0.1% FA, and samples were loaded and washed with 0.1% FA, and peptides eluted with 60% 

ACN, 0.1% FA. Finally, organic solvent was removed in a SpeedVac prior to LC-MS/MS 

analysis.  

For TMT sample preparation, total peptide amount was determined using a NanoDrop 

spectrophotometer (Thermo Scientific), and 25 micrograms of sample was labeled with one 

TMTpro tag according to the manufacturer’s recommendations. The pooled TMT sample was 

dried in a SpeedVac, resuspended in 0.1% FA and desalted using a C18 TopTip (PolyLC, 

Columbia, MD) according to the manufacturer’s recommendations. Finally, organic solvent was 

removed in a SpeedVac. The dried pooled sample was reconstituted in 20 mM ammonium 

formate, pH ~10, and fractionated using a Waters Acquity BEH C18 column (2.1x 15 cm, 1.7 

µm pore size) mounted on an M-Class Ultra Performance Liquid Chromatography (UPLC) 

system (Waters). Peptides were separated using a 33-min gradient:  1% to 5% in 0.5 min,  5% to 

23.5% B in 1 min, 23.5% to 40% B in 23 min, 40% to 45% B in 1.5 min, 45% to 60% B in 2 

min, 60% to 70% B in 4 min, and 70%B to 90% in 1 min (A=20 mM ammonium formate, pH 

10; B = 100% ACN). A total of 24 fractions were collected and pooled non-contiguously into 12 

fractions (i.e., 1+13, 2+14, 3+15, etc.). Pooled fractions were dried to completeness in a 

SpeedVac prior to mass spectrometry analysis. 

 

For LC-MS/MS (TMT) analysis, dried peptide fractions were reconstituted with 2% ACN, 0.1% 

FA and analyzed by LC-MS/MS using a Proxeon EASY nanoLC system (Thermo Fisher 

Scientific) coupled to an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific). 

Peptides were separated using an analytical C18 Aurora column (75µm x 250 mm, 1.6µm 

particles; IonOpticks) at a flow rate of 300 µl/min using a 75-min gradient: 1% to 6% B in 1 min, 

6% to 23% B in 44 min, 23% to 34% B in 28 min, and 27% to 48% B in 2 min (A= FA 0.1%; 

B=80% ACN: 0.1% FA). The mass spectrometer was operated in positive data-dependent 

acquisition mode. MS1 spectra were measured in the Orbitrap with a resolution of 60,000 (AGC 

target: 4e5; maximum injection time: 50 ms; mass range: from 350 to 1500 m/z). The instrument 

was set to run in top speed mode with 3 s cycles for the survey and the MS/MS scans. After a 

survey scan, tandem MS was performed in the Ion Routing Multipole HCD-Cell on the most 

abundant precursors by isolating them in the quadrupole (Isolation window: 0.7 m/z; charge 
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state: + 2-7; collision energy: 35%). Resulting fragments were detected in the Orbitrap at 50,000 

resolution (First mass: 110 m/z; AGC target for MS/MS: 1e5; maximum injection time: 105 ms). 

The dynamic exclusion was set to 20 s with a 10 ppm mass tolerance around the precursor and its 

isotopes. 

 

For TMT data processing, all mass spectra from were analyzed with MaxQuant software version 

1.5.5.1. MS/MS spectra were searched against the Homo sapiens Uniprot protein sequence 

database (downloaded January 2018) and GPM cRAP sequences (commonly known protein 

contaminants). Reporter ion MS2 type was selected along with TMT 16plex option. Precursor 

mass tolerance was set to 20ppm and 4.5ppm for the first search, where initial mass recalibration 

was completed, and the main search, respectively. Product ions were searched with a mass 

tolerance 0.5 Da. The maximum precursor ion charge state used for searching was 7. 

Carbamidomethylation of cysteine was searched as a fixed modification, while oxidation of 

methionine and acetylation of protein N-termini were searched as variable modifications. The 

enzyme was set to trypsin in a specific mode and a maximum of two missed cleavages was 

allowed for searching. The target-decoy-based false discovery rate (FDR) filter for spectrum and 

protein identification was set to 1%.  

 

Statistical analysis of TMT data was carried out using in-house R script (version 3.5.1, 64-bit), 

including R Bioconductor packages. First, TMT reporter intensities were log2-transformed and 

normalized (loess normalization) across samples to account for systematic errors. Then, all non-

razor peptide sequences were removed from the list. Protein-level quantification and statistical 

testing for differential abundance were performed using MSstatsTMT bioconductor package 

 

For LC-MS/MS (label-free) analysis, dried peptides were reconstituted with 2% ACN, 0.1% FA, 

and concentration was determined using a NanoDropTM spectrophometer (ThermoFisher). 

Samples were then analyzed by LC-MS/MS using a Proxeon EASY-nanoLC system 

(ThermoFisher) coupled to an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher 

Scientific). Peptides were separated using an analytical C18 Aurora column (75µm x 250 mm, 

1.6 µm particles; IonOpticks) at a flow rate of 300 nL/min (60oC) using a 75-min gradient: 1% to 

5% B in 1 min, 6% to 23% B in 44 min, 23% to 34% B in 28 min, and 34% to 48% B in 2 min 
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(A= FA 0.1%; B=80% ACN: 0.1% FA). The mass spectrometer was operated in positive data-

dependent acquisition mode. MS1 spectra were measured in the Orbitrap in a mass-to-charge 

(m/z) of 375 – 1500 with a resolution of 60,000 at m/z 200. Automatic gain control target was set 

to 4 x 105 with a maximum injection time of 50 ms. The instrument was set to run in top speed 

mode with 2-second cycles for the survey and the MS/MS scans. After a survey scan, the most 

abundant precursors (with charge state between +2 and +7) were isolated in the quadrupole with 

an isolation window of 1.6 m/z and fragmented with HCD at 30% normalized collision energy. 

Fragmented precursors were detected in the ion trap as rapid scan mode with automatic gain 

control target set to 1 x 104 and a maximum injection time set at 35 ms. The dynamic exclusion 

was set to 20 seconds with a 10 ppm mass tolerance around the precursor. 

 

For processing label-free LC-MS/MS data, all raw files were processed with MaxQuant (version 

1.5.5.1) using the integrated Andromeda Search engine against a target/decoy version of the 

curated human Uniprot proteome without isoforms (downloaded in January of 2020) and the 

GPM cRAP sequences (commonly known protein contaminants). First search peptide tolerance 

was set to 20 ppm, and main search peptide tolerance was set to 4.5 ppm. Fragment mass 

tolerance was set to 20 ppm. Trypsin was set as the enzyme in specific mode, and up to two 

missed cleavages was allowed. Carbamidomethylation of cysteine was specified as fixed 

modification and protein N-terminal acetylation and oxidation of methionine were considered 

variable modifications. In addition, the phosphopeptide-enriched samples were also searched 

with phosphorylation of serine, threonine or tyrosine considered as variable modification. The 

target-decoy-based false discovery rate (FDR) filter for spectrum and protein identification was 

set to 1%. 

Statistical analysis of label-free proteomics data was carried out using in-house R script (version 

3.5.1, 64-bit), including R Bioconductor packages. First, peptide feature intensities (MaxQuant 

evidence table) were log2-transformed and normalized (loess normalization) across samples to 

account for systematic errors. Then all non-razor peptide sequences were removed from the list. 

Protein-level quantification and statistical testing for differential abundance were performed 

using MSstats bioconductor package. 
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siRNA screen 

The 1141 Ubiquitome siRNA library was generated from the ON-TARGETplus® 

SMARTpool® human siRNA genome library (a pool of 4 unique siRNAs, Dharmacon, Thermo 

Scientific). siRNA was used at a final concentration of 10 nM with 0.01μl Lipofectamine 

RNAiMAX (Invitrogen) reagent and 600 cells in a final volume of 50μl/well in black and clear 

bottom CellCarrier-384 well plates (PerkinElmer). siRNAs were pre-spotted on a Bravo 

automated liquid handling platform (Agilent), and all other liquid additions performed with a 

Thermo/Matrix Wellmate. Plates were incubated at 37°C in 10% CO2 for 72h. For positive 

controls, MG132 was added to wells 4 hours before fixation at a final concentration of 10uM. 

Cells were then fixed (paraformaldehyde 3.7% in PBS, 10min), permeabilized (0.5% Triton X-

100 in PBS, 5 min), blocked (3% BSA in PBS, 1 h), and then incubated first with primary 

antibody (anti-Strep-tag, Thermo Fisher, cat# MA5-17282,1:1000 in 3% BSA) and then with 

secondary antibody(Alexa Fluor 488 Donkey-anti mouse antibody, Invitrogen, 1:1000 in 3% 

BSA). Wash buffers were PBS plus 0.1% Triton X-100. siRNAs pools containing 48 non-

targeting siRNAs (Dharmacon) were used as a negative control. 

 

High-content imaging analysis  

Cells were imaged with an IC200 high-content screening system (Vala Sciences) using a 20X 

objective to visualize Strep-ORF9c proteins (Alexa 488) and nuclei (DAPI). Four images were 

obtained from different fields in each well for 384-well plates. Images were analyzed with 

Acapella high-content imaging and analysis software for valid cell numbers per field and to 

determine average Alexa 488 intensity per cell. A549 cells expressing SARS-CoV-2 Strep-

ORF9c were treated with DMSO or MG132 (10uM) served as negative and positive imaging 

controls, respectively. Plate-to-plate variability was normalized using a control-based method; 

associated control samples were aggregated, and the mean and variance across wells were 

determined. The Alexa488 mean intensity for all wells with siRNA knockdown was normalized 

using unique non-targeting siRNAs included in each plate as reference data points. The top 36 

scoring hits were obtained using a threshold of > 1.46-fold increase in average intensity from 

duplicates (p-value <0.05). Ten of the 36 siRNA pools were selected for confirmation in a 

secondary deconvolution screen. For that screen, quantification data were converted to a Z-score, 
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and the average Z-score from data in triplicate plates was determined. Genes were defined as 

confirmed screen hits if they had 3 or more individual positive siRNA score (cut-off of >3 SD).  

 

qPCR and primers 

A549 cells were transfected with CoV-2 ORFs plasmids and samples harvested at 24h, 48 and 72 

h. Total RNA was extracted using RNAeasy (Qiagen) and transcribed into cDNA by cDNA 

Archive Kit (Applied Biosystems) according to the manufacturer′s instructions. Expression of 

CoV-2 ORFs accessory protein transcripts was analyzed by quantitative real-time PCR (qRT-

PCR) using the following primers: IFNGR1 F AGCAGGAAGTCGATTATGATCCC, R 

CTGGCACTGAATCTCGTCACA; ISG15 F CGCAGATCACCCAGAAGATCG, R 

TTCGTCGCATTTGTCCACCA; PSMB8 F GGTCCTACATTAGTGCCTTACGG, R 

CGCAGATAGTACAGCCTGCATT; SOCS1 F TTTTCGCCCTTAGCGTGAAGA, R 

GAGGCAGTCGAAGCTCTCG; TAP1 F GCAAGACGACTTACTCTGGGT, R 

GGATCTGACACCACTGGACC. Cycle threshold values were determined and normalized to 

the housekeeping gene GAPDH for each experiment. Relative gene expression was calculated by 

the 2−ΔΔCt method. Results are expressed as means ± SDs of 3 independent experiments. 

Statistical analysis was performed using Student′s t-test. A p-value of < 0.05 was considered 

statistically significant. 
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Supplementary Figures Legend 

 

Figure S1. Phylogenetic analysis and transmembrane prediction for SARS-CoV-2 ORF9c.  

A. Phylogenetic tree of SARS-CoV-2 ORF9c in indicated strains of coronavirus B. (Upper panel) 

TMHMM prediction that the SARS-CoV-2 ORF9c C-terminal contains a transmembrane domain 

spanning ~20 amino acids. (Lower panel) Comparable analysis of SARS-CoV ORF14 indicating 

a low probability of a transmembrane domain. C. Gene Ontology (GO) cellular component 

enrichment analysis of strep-tagged ORF9c- and strep-tagged ORF10-interacting proteins in A549 

cells detected by APMS revealed an enrichment of membrane or membrane-related terms in 

ORF9c. The heatmap shows the –log p-value of enrichment analysis performed in Metascape.  

 

Figure S2. Principal component analysis of the proteomic and transcriptomic data for A549 

cells expressing SARS-CoV-2 ORF9c. 

A, B. PCA of MS/LFQ and MS/TMT data showing ORF9c expression as a major determinant, 

contributing to 28% to 43% of respective sample variance. MG132 treatment also distinguished 

samples by contributing to 15 – 20% of total variance. C. PCA showing ORF9c expression as the 

major factor contributing to 33% of sample variance. MG132 treatment also distinguished samples 

by contributing to 13% of total variance.  

 

Figure S3. Schematic outline for the siRNA screen performed to identify UBP components 

that can halt ORF9c degradation. Outlined is the approach we used for siRNA screen of A549 

cells that stably express strep-ORF9c using reverse transfection of over 1,100 genes from the UBP 

library. Microscopy-based screen enabled the identification of siRNA of select UBP components 

that prevented the degradation of ORF9c.  

 
Supplemental Tables Legend 
 
Table S1. Interactome and proteome data analysis, pathway enrichment and upstream regulators 

analyses 

Table S2. Transcriptome data analysis, pathway enrichment and upstream regulators analyses 

Table S3. Canonical pathway comparison of different omics technologies and public data sets 

Table S4. Canonical pathway analysis of MG132 reversed genes and proteins 
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