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Abstract: The brain exhibits highly organized patterns of spontaneous activity as measured by 

resting-state fMRI fluctuations that are being widely used to assess the brain’s functional 

connectivity. Some evidence suggests that spatiotemporally coherent waves are a core feature of 

spontaneous activity that shapes functional connectivity, though this has been difficult to 

establish using fMRI given the temporal constraints of the hemodynamic signal. Here we 5 

investigated the structure of spontaneous waves in human fMRI and monkey 

electrocorticography. In both species, we found clear, repeatable, and directionally constrained 

activity waves coursed along a spatial axis approximately representing cortical hierarchical 

organization. These cortical propagations were closely associated with activity changes in 

distinct subcortical structures, particularly those related to arousal regulation, and modulated 10 

across different states of vigilance. The findings demonstrate a neural origin of spatiotemporal 

fMRI wave propagation at rest and link it to the principal gradient of resting-state fMRI 

connectivity.  

 
Keywords: infra-slow propagating activity; cortical hierarchy; multimodal neuroimaging; global 15 

signal. 
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Introduction  

The human brain represents about only 2% of the total body weight but accounts for 

~20% of the total energy budget, and a majority (~95%) of brain energy is consumed by intrinsic 

brain activity at rest (1, 2). This budget allocation is consistent with a highly organized nature of 

fMRI signals collected in the resting state, which are being widely used for inferring functional 5 

brain connectivity in health and disease (3, 4). The study of resting-state fMRI (rsfMRI) 

dynamics has suggested that the highly structured rsfMRI connectivity, i.e., correlations, may 

arise from transient fMRI co-activations caused by event-like brain activity (5–8), which were 

also to show systematic transitioning patterns (9, 10). Consistent with these findings, the 

propagating structures have been found in rsfMRI by using a template-refining approach to 10 

extract repeated quasi-periodic patterns (11–13) or by decomposing rsfMRI lag structures to 

recover lag threads (14, 15). These propagating structures contribute significantly to rsfMRI 

connectivity (14, 16) and appear sensitive to brain state changes and diseases (17–19), and could 

be the key to understanding the functional role of intrinsic brain activity (20).  

Nevertheless, to date the neural origin of the rsfMRI propagations remains elusive. The 15 

study of propagating activity using fMRI faces a serious issue due to the spatial heterogeneity of 

hemodynamic delays (21). A series of recent studies have shown that a systemic low-frequency 

oscillation of blood signals, which can be recorded at peripheral sites such as fingertips and toes, 

induces systematic rsfMRI delays across brain regions that are consistent with the blood transit 

time through the cerebrovascular tree (22–26), suggesting a potential contribution of 20 

hemodynamic delays to apparent rsfMRI propagations. On the other hand, simultaneous fMRI-

electrophysiology recordings in rats have provided clear evidence for the co-modulation of 

neural activity with the rsfMRI propagations (12), which is however insufficient to prove the 
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neural origin of the “propagation” per se. In other experimental setups, spatially propagating 

waves have been observed among neural populations, e.g., wide-field optical imaging of voltage-

sensitive dye or calcium in mice. However, such waves are difficult to compare with those 

measured with fMRI, as they are usually local (millimeters) and on a rapid time scale (<1 s) (27, 

28). Most recently, globally propagating waves on the seconds timescale (~5 seconds) and the 5 

lag structure were observed in mice using calcium imaging and suggested to account for resting-

state hemodynamic connectivity (18, 29). However, it remains unclear whether similar resting-

state infra-slow propagations over the entire cortex are present in neural signals of awake 

primates, and if so, whether and how are they similar to the propagating activity in human 

rsfMRI. There is also a lack of a detailed characterization of the infra-slow propagating activity, 10 

including its trajectories and subcortical involvements. Furthermore, although the contribution of 

these slow propagations to rsfMRI connectivity has been demonstrated (14–16, 29, 30), it 

remains unclear whether they can be linked to any specific component of rsfMRI connectivity. 

Both the major quasi-periodic pattern (11) and the latency projection of the lag structure (14, 15) 

showed a distinct contrast between the default-mode network and sensory/motor regions. This 15 

contrast superficially resembles the so-called principal gradient of the brain’s spontaneous 

activity, which has been derived by embedding the rsfMRI connectivity matrix into a low-

dimensional space (31, 32). This coincidence raises two important questions.  First, is the 

direction of spatiotemporal fMRI propagation fundamentally linked to the reported rsfMRI 

connectivity gradient? And second, do the large-scale propagating waves reflect an underlying 20 

pattern of electrophysiological activity following the same trajectory?    

To address these questions, this study combines human rsfMRI and monkey 

electrophysiology to study the infra-slow propagating brain activity. We developed a data-driven 
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method to detect single propagating instances and map their propagating trajectories. The 

application of this method to high-resolution rsfMRI data of Human Connectome Project (HCP) 

revealed global propagations mostly in two opposite directions along a axis strikingly similar to 

the principal gradient of rsfMRI connectivity (31). The application of the same method to a 

large-scale electrocorticography (ECoG) recording from monkeys revealed very similar cross-5 

hierarchy propagations between the lower- and higher-order brain regions, which are present 

most strongly at the gamma-band (42–95 Hz) power signals. Close inspection of the global 

rsfMRI propagations suggests local, embedded propagations within sensory modalities proceed 

in the opposite direction of the global propagation. More importantly, these cortical propagations 

are accompanied by sequential co-activation/de-activation in specific subcortical structures, 10 

particularly those related to arousal regulation. Consistent with this finding, the temporal 

dynamics of the infra-slow propagating activity are significantly modulated across brain states of 

distinct vigilance. Taken together, the study demonstrates a characteristic pattern of spontaneous, 

slowly propagating activity across the cortical hierarchy in humans and nonhuman primates, 

maps its detailed trajectories and associated subcortical changes, demonstrates its brain-state 15 

dependency, and also links it to the principal gradient of the rsfMRI connectivity.  

Results  

Infra-slow propagations along the principal gradient (PG) of rsfMRI connectivity. 

We first examined and characterized infra-slow propagating activity in rsfMRI signals 

using data from 460 HCP subjects. Simple visual inspection of pre-processed signals suggested 20 

clear propagating activity that often coursed from higher-order cognitive areas, mostly the 

default-mode network, to lower-order sensory/motor regions, a direction similar to the principal 

gradient (PG) of rsfMRI connectivity, or in an opposite direction. Following previous work (31), 
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the principal gradient was obtained by decomposing rsfMRI connectivity data using a data-

driven method, and it reveals a gradient of functional connections that aligns well with the 

cortical hierarchy defined both anatomically and functionally (31). To visualize the propagating 

activity in a 2-D representation, we projected the rsfMRI signals onto the principal gradient 

direction (Fig. 1A) to generate time-position graphs (Fig. 1B). It was immediately noticed that 5 

local rsfMRI peaks at various principal gradient positions tended to cluster together in time and 

form continuous bands, some of which were tilted and propagated either from the sensory/motor 

to the default-mode network or in an opposite direction (Fig. 1B, upper), which we will refer to 

as the bottom-up and top-down propagations henceforth. In contrast, projecting the same signal 

onto a few other directions, including one obtained by randomly rotating the principal gradient 10 

map on brain surface (Fig. 1B, bottom), revealed straightly vertical bands, suggesting an absence 

of propagating behavior along these directions. To locate and quantify single propagating 

instances, we cut the rsfMRI signals into time segments based on troughs of the global mean 

signal, which successfully separated the bands in the time-position graphs (Fig. 1B). For each 

segment, we correlated the relative timing of local rsfMRI peaks with their relative position 15 

along different directions. A high time-position correlation would suggest a propagation along 

the corresponding direction (Fig. 1C and Animations 1-2). We then computed and summarized 

the time-position correlations for all rsfMRI segments showing a global involvement (defined as 

the global signal peak exceeding a threshold established using a null model, see Methods and 

Fig. S1 for the details), which account for 58.80 % of the total segments. The time-position 20 

correlations of local peaks for the principal gradient direction showed a non-Gaussian, bimodal 

(p = 0.012, Hartigan’s dip test) distribution with a relatively larger peak for positive correlations, 

indicating significant propagations along this axis, particularly in the bottom-up direction (Fig. 
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1D, the left column). In contrast, they showed Gaussian-like, single-mode distributions for the 

other four control directions (Fig. 1D, the right four columns), which are significantly different 

from the principal gradient distribution (p = 0 for all four control directions, two-sample 

Kolmogorov-Smirnov test). This is even true for the second gradient of rsfMRI connectivity (31) 

that showed a strong motor-to-visual contrast (Fig. 1D, the second column), suggesting a lack of 5 

propagations along this direction in these rsfMRI time segments. All these results suggest the 

existence of significant rsfMRI propagating activity along the principal gradient direction.   

 
The cortical hierarchical axis is the dominant direction of rsfMRI propagations. 

We then developed a data-driven method to obtain main trajectories of rsfMRI 10 

propagations without setting a priori direction. The existing quasi-periodic pattern method was 

designed to find repeated spatiotemporal patterns that are not necessarily propagations (12), 

whereas the lag structure/thread method relied on session-based quantification of temporal lags 

in which the delays caused by anti-direction propagations may cancel each other (14, 15). We 

show that the propagations can cause systematic delays of local peaks and thus a significant 15 

time-position relationship along the propagating direction (Fig. 1C). To identify the major 

propagating direction in a data-driven way, we derived a delay profile for each rsfMRI segment 

by computing the relative delay of local peaks with respect to the global mean peak, and then 

applied a singular value decomposition to extract the principal components of all the delay 

profiles, which are expected to represent main trajectories of propagating activity (Fig. 2A). The 20 

application of this method to synthesized data containing simulated propagating structures 

successfully recovered two propagating directions (Fig. 2B). In comparison, the diffusive 

embedding method, which was employed to derive the  principal gradient of rsfMRI connectivity 

(31), recovered the more frequent propagation but not the other one (Fig. 2 and Fig. S2). 
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Decomposing the delay profiles of the rsfMRI segments of global involvement generated a 

principal delay profile (Fig. 2C), i.e., the first principal component (4.22% of the total variance, 

see Fig. S3 for additional components), that is extremely similar (r = 0.93 across 59,412 vertices, 

p = 0) to the principal gradient of rsfMRI connectivity (Fig. 2D). In particular, the primary visual 

cortex (V1) appears to be an outlier for the overall hierarchical arrangements suggested by both 5 

maps. This deviation is however consistent with our observation that the V1 co-activates with the 

default mode network in the cross-hierarchy propagations (Fig. 1C for a single instance 

example). This principal delay profile is highly reproducible across sessions and subject groups 

(Fig. S4) and distinct from the lag map measured through dynamic susceptibility contrast MRI 

scans (r = 0.0035, p = 0.39; Fig. S5) (26). We then projected the rsfMRI signals onto this 10 

principal propagating direction and identified segments showing a significant (p < 0.05, 

compared with a pooled null distribution from the four control directions) time-position 

correlation. The top-down propagations (N = 8,519) and bottom-up propagations (N = 18,114) 

were found to account for 9.08% and 19.7% of the total time respectively with an average speed 

of 13.45 ± 7.78 mm/sec and 13.74 ± 7.51 mm/sec (mean ± SD) respectively. We then obtained 15 

the averaged patterns of these two types of propagations in both the time-position graph and 

brain surface (Fig. 2E), which are consistent with those of single instances (Fig. 1C). The above 

analyses were repeated on the rsfMRI signals going through different spatial and temporal 

filtering procedures, and the major findings about the cross-hierarchy contrast in the principal 

delay profile remained highly similar (Fig. S6). Thus, the infra-slow rsfMRI propagations are 20 

primarily along a hierarchical axis linking the higher-order and the lower-order brain regions, as 

represented either by the principal gradient or our principal delay profile.   

 
Infra-slow propagations in monkey ECoG signals follow a similar cross-hierarchy trajectory. 
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To determine whether similar propagations are present in electrophysiological data free 

of hemodynamic contributions, we applied the same method to large-scale ECoG recordings 

from 4 monkeys in an eyes-closed rest condition. Using the same dataset, we have previously 

identified brain networks highly similar to resting-state connectivity networks based on power 

signal correlations (33). We first focused on the gamma-band (42–95 Hz) power that is known to 5 

be tightly linked to fMRI signals (34). The principal propagating direction (detected as the 

second component in one of 4 monkey) obtained by decomposing delay profiles of ECoG 

gamma-power showed a clear cross-hierarchy contrast between the sensory/motor areas and the 

higher-order frontal, anterior temporal, and parietal regions (Fig. 3A). This pattern, which is 

reproducible in all 4 monkeys (Fig. 3A and Fig. S7), is inversely similar (r = -0.71 ± 0.067, p < 10 

10-16, see Fig. S8 for electrode mapping on a macaque brain surface (35)) to the cortical 

myelination map that has been suggested to be a good approximation of cortical hierarchy (36). 

To further validate the existence of infra-slow propagations, we projected the ECoG gamma 

power signals onto this propagating direction in a similar way as the human rsfMRI analysis. The 

resulting time-position graphs clearly contained tilted bands with significant time-position 15 

correlations of local peaks, which are corresponding to the cross-hierarchy propagating activity 

on the brain surface (Fig. 3B and Animations 3-4). The time-position correlations for this cross-

hierarchy axis showed a heavy tailed distribution that is significantly different (p = 1.65x10-34, 

two-sample Kolmogorov-Smirnov test) from that of control directions (Fig. 3C), which were 

obtained by rotating the principal delay profiles at a random angle to preserve the spatial 20 

continuity of electrodes (Fig. S7). Similar to the human results, the distribution is also 

asymmetric and characterized by a much larger peak for positive time-position correlations that 

suggest more bottom-up propagations. We then identified ECoG segments with propagating 
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activity based on the time-position correlations and averaged them to obtain the mean 

propagating patterns of ECoG gamma power (Fig. 3D), which are similar to those of single 

instances.  

To know whether similar cross-hierarchy propagations are also present in resting-state 

brain activity of other frequency ranges, we repeated the same analysis for power signals of four 5 

other bands, i.e., delta (1–4 Hz), theta (5–8 Hz), alpha (9–15 Hz), and beta (17–32 Hz) bands, as 

well as the infra-slow (<0.1 Hz) band of the raw signals. It appeared that the principal delay 

profiles for the powers of the lower frequency bands are more characterized by a big contrast 

between the somatosensory/motor areas and the visual regions (Fig. 4A), and their spatial 

correlation with the cortical myelination map of monkeys is significantly (p < 0.01 for all four 10 

bands compared with the gamma band) lower than the gamma-band power (Fig. 4B and Fig. S9-

13). Likewise, the principal delay profile of the infra-slow ECoG signals also had a significantly 

lower (p = 0.0135) correlation with the cortical myelination map than the gamma-band power 

without showing a clear cross-hierarchy contrast (Fig. 4B). Since it has been suggested that the 

low (30-80 Hz) and high (80-150 Hz) gamma activity may originate from different sources (37), 15 

we derived the principal delay profiles separately for the powers of the low and high gamma 

bands. Similar infra-slow propagations are present in the powers of these two gamma bands (Fig. 

S14). We repeated the same analyses on the ECoG gamma-band power going through different 

spatial and temporal filtering procedures, and the cross-hierarchy contrast in the principal delay 

profile can also be seen (Fig. S15).  In summary, the gamma-band power of monkey ECoG 20 

signals exhibited infra-slow propagations similar to human rsfMRI in terms of the time scale 

(~5-10 seconds) and, more importantly, the dominant propagating direction across the cortical 

hierarchy.  
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Fine-scale propagations within sensory modalities are against the direction of global 
propagations. 

The anomalous position of the V1 in the PG and the principal delay profile (Fig. 2C), i.e., 

having similar scores/delays with the DMN, motivated us to examine fine-scale propagations 5 

within sensory modalities that are embedded in the global cross-hierarchy propagations. Within 

the visual system, the principal delay profile showed the most negative delay values at three 

isolated brain areas, including the MT+ complex, the dorsal stream visual cortex, and the ventral 

stream visual cortex (38), and increased its value towards the early visual cortex, as well as 

retinotopically from the periphery towards foveal areas (Fig. 5A). A simple linear regression 10 

confirmed a significant relationship between the delay value and the hierarchy level of brain 

regions (p = 3.3x10-298 for fV1-fV2-fV3-fV4-V4t-MT-MST-V6-V6A; and p = 0 for pV1-pV2-

pV3-pV4-V4t-MT-MST-V6-V6A), which was defined based on a previous study (39) (Fig. 5B). 

This pattern is consistent with the trajectory of the bottom-up (i.e., sensory/motor to DMN) 

propagations within the visual cortex (Fig. 5C), which is actually from high-hierarchical visual 15 

areas to lower low-hierarchical ones. We then had closer inspection of the principal delay profile 

within the auditory and somatosensory systems to see whether the similar trend is present. 

Within the auditory system, the principal delay profile displayed a clear gradient across 

hierarchies from the A4, to belt regions, and then to A1 (p = 0) (Fig. 5D and 5E), which is again 

consistent with the bottom-up propagation of local rsfMRI peaks (Fig. 5F). Local propagations 20 

within somatosensory system (Fig. 5G and Fig. 5H) appeared to follow more closely the 

somatotopic arrangement and show a strong contrast between limbs areas and eyes, face, and 

trunk areas (Fig. 5I). Nevertheless, the principal delay profile indeed showed a gradual and 

significant (p = 6.1x10-313) increase of value from the Brodmann area 2 (BA 2), to BA 1, and 

then to BA 3b and BA 3a (Fig. 5J). Similar analyses were also performed for the PG map, and 25 
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the weaker but still significant relationships were found between the PG value and the 

hierarchical level (Fig. 5 and Fig. S16). Outside the sensory systems, the very negative delays 

were also found in the frontal eye field (FEF), intraparietal sulcus (IPS), and BA 46 (Fig. 5K). 

Altogether, these regions compose a task-positive network known to have strong negative 

rsfMRI correlations with the default-mode network (40). To summarize, the local propagations 5 

within the sensory systems, which are embedded in the global cross-hierarchy propagations, 

appear to start/end at the sensory association areas and are opposite to the overall direction of the 

global propagation.  

 
Subcortical co-activations/de-activations associated with the cross-hierarchy propagations. 10 

We then examined subcortical changes associated with these cortical propagations for 

additional evidence for its neural origin and also for important clues for underlying mechanisms. 

We averaged, in the volume space, the rsfMRI segments showing the propagations and 

converted them to Z-scores that represent the significance level of the deviation from the 

temporal mean. We found that the bottom-up cortical propagation is associated with strong, 15 

sequential co-activations/de-activations in specific subcortical regions. At the very early phase (t 

= -5.0 sec, with respect to the global signal peak) of this propagation, the weak co-activations at 

the sensory/motor regions are accompanied by strong de-activations in the default-mode network 

and extended areas. These cortical changes are associated with strong thalamic de-activations at 

the anterior nuclei (AN; peak Z: -24.41, mean Z: -12.98) and the dorsal part of the parvocellular 20 

division of the mediodorsal nucleus (MDpc; peak Z: -24.43, mean Z: -7.19), and to a less extent 

at the lateral dorsal (LD; peak Z: -19.56, mean Z: -10.73), the ventral lateral (VL; peak Z: -17.42, 

mean Z: -8.11), and the central lateral (CL; peak Z: -26.45,  mean Z: -8.73) nuclei of the 

thalamus (Fig. 6A). In contrast, the significant thalamic co-activations are mostly confined at the 
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anterior pulvinar (PuA; peak Z: 8.98, mean Z: 5.05). Starting from this time point, the thalamic 

co-activations started to spread from the PuA first to the posterior and ventral parts of the 

thalamus, which include many sensory relay nuclei, such as the ventral posterior medial (VPM), 

the ventral posterior lateral (VPL) nuclei and other parts of the pulvinar, and later to the AN and 

MDpc (Fig. 6B-D). Along this process, the cortical and thalamic co(de)-activations show 5 

striking correspondence consistent with known anatomical connections. For example, the V1 de-

activation (t = -5.0 sec) is associated with very specific de-activation at the lateral geniculate 

nucleus (LGN) (Fig. 6A, the first row), and the maximal A1 co-activation (t = 1.4 sec) is also 

accompanied by the peak co-activation at the medial geniculate nucleus (MGN) (Fig. 6C, left). 

Outside the thalamus, a number of brainstem regions, including multiple nuclei related to arousal 10 

regulation, i.e., the dorsal raphé (DR; peak Z: -13.17, mean Z: -6.73), the median raphé (MR; 

peak Z: -9.07, mean Z: -6.14), the pendunculopontine nucleus (PPN; peak Z: -8.46, mean Z: -

5.65), the ventral tegmental area (VTA; peak Z: -11.02, mean Z: -6.79), and the locus coeruleus 

(LC; peak Z: -9.46, mean Z: -6.23) showed significant de-activations at very early phase (t = -6.5 

sec) of the bottom-up propagation (Fig. 6E), along with the strong cortical de-activations at the 15 

precuneus and the cingulate (Fig. 6E, top right). The early de-activation of these brainstem 

nuclei was followed by a slow and gradual de-activation of three subcortical regions of arousal 

relevance, including the nucleus basalis (NB), the ventral part of the nucleus accumbens (NAcc) 

at the basal forebrain, and the substantia nigra (SN), which reached their peak de-activations 

around the middle of this propagation (t = 0) with widespread cortical co-activations (Fig. 6F 20 

and 6G). Interestingly, the subcortical dynamics at the top-down propagation does not simply 

mirror that of the bottom-up propagation (Fig. 6 and Fig. S17). Most notably, the strong de-

activations are largely absent for the AN/MD and the brainstem nuclei throughout the top-down 
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propagation (Fig. 6 and Fig. S17). In summary, the cortical propagations are associated with co-

activations and de-activations in corresponding thalamic nuclei, as well as the de-activation of 

subcortical regions of arousal relevance.  

The modulation of the cross-hierarchy propagations across brain states of vigilance. 

The de-activations of arousal-related subcortical regions suggested a potential link 5 

between the bottom-up propagation and the brain arousal. Consistent with this notion, the 

rsfMRI lags between different brain regions were found to be completely reversed from wake to 

sleep in humans (41), and also from wake to anesthesia in mice (18). We thus suspected that the 

cross-hierarchy propagations in two opposite directions are sensitive to changes of brain arousal 

state. To test this hypothesis, we divided all rsfMRI sessions into three groups with the low, 10 

medium, and high level of arousal according to an adapted fMRI-based arousal estimation (42) 

and then compared their cross-hierarchy propagations. The ratio of the cross-hierarchy 

propagations in the two opposite directions is significantly different (p = 0 high vs. medium; p = 

0 high vs. low; permutation test) in the three groups with the high arousal group having relatively 

less bottom-up propagations (Fig. 7A and Fig. S18). The fMRI-based arousal estimation 15 

involved only a template-matching process that is not expected to introduce any bias towards any 

propagating directions. To have a more independent estimation of brain arousal level, we also 

computed this ratio in a subset of the sessions in which subjects were noted by experimenters to 

be sleeping during the rsfMRI scanning. This subset of rsfMRI sessions showed significantly 

lower (p = 0.021, permutation test) ratio compared with other sessions (Fig. 7B). A similar 20 

comparison was made for the cross-hierarchy propagations in monkey ECoG gamma powers 

across three experimental conditions: a more alert eyes-open condition, a more sleep-conducive 

eyes-closed condition, and the sleep condition. Consistent with the human rsfMRI results, the 
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ratio of the top-down propagations to the bottom-up propagations are significantly different (p = 

0.0233 eye-open vs. eye-closed; p = 0.0045 eye-open vs. sleep; p = 0.029 eye-closed vs. sleep; 

permutation test) across the three conditions with the sleep state showing much more bottom-up 

propagations and less top-down ones (Fig. S18). To summarize, both monkey electrophysiology 

and human rsfMRI data suggest that the state of lower arousal is associated with less top-down 5 

but more bottom-up propagating activity.  

Discussion  

Here we showed that the resting-state brain activity, measured by fMRI in humans or 

electrophysiology in monkeys, is characterized by distinctive propagations sweeping the cortex 

in two opposite directions along an axis. This trajectory is extremely similar to, and thus these 10 

spatiotemporal propagations may underlie, the principal gradient of rsfMRI connectivity (31). 

The cross-hierarchy ECoG propagations are present most strongly in the gamma-band power. 

The local propagations within the sensory modalities are in a direction opposite to the overall 

direction of the global propagation, suggesting that these neuronal processes start/end at the 

sensory association regions. The bottom-up propagation is associated with sequential co-15 

(de)activations at specific subcortical nuclei, including many related to arousal regulation. 

Consistent with this finding, the cross-hierarchy propagations are significantly modulated by the 

brain arousal level. Overall, the findings from this study supported the neural origin of the infra-

slow rsfMRI propagations, revealed detailed features and behavioral relevance of infra-slow 

propagating activity, and also linked it to the principal gradient of rsfMRI connectivity.  20 

The study added direct evidence for the neural origin of rsfMRI propagations by showing 

corresponding electrophysiological propagations on a similar time scale, along a similar 

direction, and showing a similar state-dependency. Inferring the propagating activity with fMRI 
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signals could be problematic given the known region-specific hemodynamic delays (21). This 

concern became heightened given a series of studies showing that the systematic low-frequency 

oscillations of blood signals cause rsfMRI signal delays consistent with the blood transition time 

(22–26). Some indirect evidence has been used to argue against the vascular origin of the infra-

slow rsfMRI propagations. For example, the rsfMRI lag structures/threads persist after 5 

regressing out the vascular time lags (43) and are sensitive to brain state, which are not expected 

from a vascular based propagation (18, 41). Consistent with the previous findings, we found no 

similarity (r = 0.0035 and p = 0.39, Fig. S5) between the principal delay profile and the vascular 

lags as measured by the dynamic susceptibility contrast MRI (26), as well as a strong 

dependency of the cross-hierarchy propagations on brain state (Fig. 7). Moreover, the detailed 10 

features of the cross-hierarchy propagations, including the existence of propagating instances in 

opposite directions (Fig. 2), their fine-scale trajectories within the sensory systems (Fig. 5), the 

sequential involvement of specific subcortical nuclei (Fig. 6), good correspondences between 

cortical and thalamic co-activations/de-activations (Fig. 6) added further evidence against their 

vascular origin.  15 

The study provided additional details about the infra-slow propagating activity. First, the 

cross-hierarchy propagations are present much more strongly in the gamma-band power than 

other bandlimited powers and the infra-slow band of the raw signals. This explains the previous 

finding that the long-range ECoG power correlations between the high-order regions, can only be 

found in the gamma band (33). Given that the gamma activity is correlated with neuronal firing 20 

rates (44), the cross-hierarchy propagations of gamma-band power may represent an excursion of 

cortical excitation sweeping along the hierarchical axis. Although it has been suggested that the 

evoked low (30-80 Hz) and high (80-150 Hz) gamma powers originate from different sources 
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(37), we observed similar cross-hierarchy propagations in these two sub-gamma-bands. Either 

the spontaneous gamma-band activity may not contain two separate components, or they both 

contain similar cross-hierarchy propagations. The infra-slow (<0.1 Hz) ECoG signals (not the 

power) have been shown to have structured correlations similar to rsfMRI (45), but we failed to 

identify similar cross-hierarchy propagations from them (Fig. 4). However, we cannot exclude 5 

the possibility that the monkey ECoG was not optimized for and thus fail to record the infra-slow 

activity (46). Secondly, the fine-scale spatiotemporal dynamics were also elucidated within the 

sensory modalities. Specifically, the cross-hierarchy propagations appear to start/end at the 

unimodal association areas, rather than the primary areas. Thirdly, the cross-hierarchy 

propagating activity is conserved across human and monkeys. The fast (< 1 sec) propagating 10 

brain activity has also been studied in mice mostly using the optical imaging, but often described 

as along the anterior-posterior axis (27, 29). Close inspection has suggested that they may indeed 

follow more specific trajectories between the sensory/motor regions and higher-order cortices 

(18, 28), and it remains to be determined whether the infra-slow propagating activity in rodents 

is also aligned with the cortical hierarchical gradient.  15 

The specific subcortical co-activations/de-activations point to the involvement of the 

ascending arousal system in the bottom-up propagation, which might represent a brain process 

associated with transit arousal modulations. The earliest co-activations at the sensory association 

areas are accompanied by significant de-activations in multiple brainstem nuclei of the ascending 

arousal system, including the locus coeruleus, median raphe, pedunculopontine nucleus, and 20 

ventral tegmental area. The early brainstem de-activation is then followed by a slow and gradual 

de-activation of three other subcortical regions of arousal relevance, i.e., the substantia nigra, 

nucleus basalis, and nucleus accumbens (47). Importantly, the brainstem de-activation is also 
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accompanied, if not triggered, by strong de-activations in a set of cortical and thalamic regions, 

including the default-mode network, the frontoparietal network, the precuneus, and the anterior 

and mediodorsal thalamus (Fig. 6E). This exact set of brain regions showed significant reduction 

in glucose metabolic rate and cerebral blood flow during anesthetic-induced unconsciousness 

(48), suggesting that the bottom-up propagating activity is associated with transient arousal 5 

modulations. Consistent with this hypothesis, its occurrence rate is significantly modulated 

across brain states of distinct arousal levels (Fig. 7). The large global rsfMRI peaks have been 

linked to a neurophysiological event indicative of arousal modulations (6), which may represent 

an instantaneous phase (at t = 0) of this bottom-up propagation, given their similar sensory-

dominant cortical co-activations and subcortical de-activations (6).  10 

 While the subcortical ascending arousal system may be involved in the initiation of the 

cross-hierarchy propagations, the network mechanism underlying its cortical propagation 

remains elusive. The cross-hierarchy propagations are unlikely mediated through axonal 

conduction given its slow speed (~5-25 mm/sec). This speed however fells into the velocity 

range (~10-100 mm/sec) of spontaneous waves of depolarization observed in the barrel cortex of 15 

rodents through optical imaging and whole-cell recordings (49). It has been hypothesized that the 

recurrent excitation through local synaptic connections in layer 2/3 contributes to those 

spontaneous propagating waves. The similar mechanisms may also underlie the infra-slow 

propagations observed in this study. Moreover, the top-down and bottom-up propagations may 

take distinct routes cross cortical layers that are consistent with the known feedback and 20 

feedforward connections (50–52). The propagating speed is close to what has been observed for 

the propagation of epileptic activity (20-100 mm/sec) (53–56), but it remains unclear whether 

they share common mechanisms. Multimodal techniques capable of imaging brain activity across 
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distinct spatial and temporal scales are required for a deep understanding of the mechanism 

underlying the cross-hierarchy propagations in the future.  

Cross-hierarchy propagating activity may, in fact, underlies the principal gradient of 

rsfMRI connectivity (31). We showed an extremely high similarity (r = 0.93) between the 

principal propagating direction and the principal connectivity gradient, which is unlikely a 5 

coincidence. Instead, the propagations are expected to synchronize rsfMRI signals and affect 

their observed correlations in a systematic way along its trajectory. It is also worth noting that we 

failed to find a trajectory similar to the second motor-to-visual gradient of rsfMRI connectivity 

using the delay profile method (Fig. S3) or observe single instances of such propagation (Fig. 

1D, the second column). Such a motor-to-visual contrast, which is also present in the vascular 10 

lag map (Fig. S5), may be caused by small but significant time delays observed between the 

motor and visual areas in the cross-hierarchy propagations. The cross-hierarchy propagating 

activity might also be related to other rsfMRI findings showing features related to the 

hierarchical axis. For example, converging evidence from rats, monkeys, and humans has 

suggested that rsfMRI connectivity/dynamics of the higher-order cognitive networks and lower-15 

order sensory/motor networks are divergently modulated by anesthesia (57–60).  

The overlap between the principal propagating direction and the hierarchical axis of the 

brain implies the functional significance of the infra-slow propagating activity. A speculation of 

its functional roles comes from its analogy to “propagations” in artificial neuronal networks (61). 

The learning of such large-scale, non-linear models requires efficient algorithms, which often 20 

involves iterative propagations of information across hierarchical layers, including a forward 

propagation of information and, more importantly, a backpropagation of model errors to 

optimize weights/connections in a successive manner (62). Such repetitive, sequential activations 
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across hierarchical stages might be even more important for the modification of real neuronal 

synapses. The cross-hierarchy propagations would serve this purpose by creating successive 

excitations across the hierarchical axis of the brain. Consistent with this conjecture, the 

hippocampal ripples, a neuronal process tightly linked to learning and memory consolidation, 

have been found to be co-modulated with cortical delta-band power in a slow (~0.1 Hz) rhythm  5 

comparable to the time scale of the infra-slow propagating activity (63), and also associated with 

massive fMRI cortical activations with region-specific delays, particularly at the V1, suggestive 

of propagating behavior (64).   

Materials and Methods 

HCP data and preprocessing 10 

We used the human connectome project (HCP) 500-subject data release, including 526 

healthy subjects scanned on a 3T customized Siemens Skyra scanner. We limited our analyses to 

460 subjects (age: 22-35 years, 271 females) who completed all four 15-min resting-state fMRI 

(rsfMRI) sessions on two separate days (two sessions per day). The data were collected using 

multiband echo-planar imaging with an acceleration factor of 8 (65). The temporal and spatial 15 

resolution of the data are 0.72 sec and 2-mm isotropic respectively. Four 15-min scanning 

sessions of 460 subjects were used in our analysis. 

The rsfMRI data were preprocessed based on (66) using FSL (67), FreeSurfer (68), and 

HCP workbench (69) and the HCP FIX-ICA denoising pipeline was applied to remove artifacts. 

The multimodal surface matching registration was used in the HCP dataset to improve inter-20 

subject registration (70, 71). We used both rsfMRI surface and volume data. The rsfMRI cortical 

surface data were represented in standard HCP fs_LR 32k surface mesh and each hemisphere 

included 32,492 nodes (59,412 total excluding the non-cortical medial wall). We smoothed 
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rsfMRI data both spatially on the fs_LR 32k surface using a Gaussian smoothing kernel (sigma = 

2 mm) and temporally using bandpass filtering at 0.001 - 0.1 Hz, and then standardized each 

vertex’s signal by subtracting the mean and dividing by the standard deviation. For the rsfMRI 

volume data including both cortical and subcortical areas, we smoothed rsfMRI volume data 

temporally (0.001-0.1 Hz) and standardized each voxel's signal by subtracting the mean and 5 

dividing by the standard deviation.  

ECoG data and preprocessing 

The monkey electrophysiology dataset was downloaded from the website 

(http://neurotycho.org) and had been described in a previous publication (33). To sum up, all 

procedures were approved by the RIKEN ethics committee. An implanted customized 128-10 

channel ECoG electrode array (Unique Medical, Japan) was used to record neural signals (72).  

Each ECoG electrode had a 3-mm diameter platinum disc with a 5 mm inter-electrode distance. 

We used the ECoG data from four adult macaque monkeys (monkey K, G, and C Macaca fuscata 

and monkey S Macaca mulatta). The 128-channel ECoG electrode array was implanted in the 

left hemisphere covering the majority of cortical regions. The reference and ground electrodes 15 

were implanted in the subdural space and the epidural space, respectively. ECoG recordings 

were conducted with a sampling rate of 1kHz using the Cerebus data acquisition system 

(Blackrock, UT, USA). More specific information can be found in (73).  

The ECoG signals were recorded under three brain states: the eyes-open, eyes-closed, and 

sleep states. Under the eyes-closed waking state and the natural sleep state, the monkeys sat 20 

calmly in a dark and quiet environment with eyes covered. During the sleep condition, the slow-

wave oscillations were observed intermittently on the ECoG data. Under the eye-open condition, 

the eye mask was removed. Experiments were conducted on separate days. The ECoG data under 
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the eyes-open and eyes-closed conditions were available in all of the four monkeys. The ECoG 

data under the natural sleep condition were only available in monkey C and monkey G.  

The total length of ECoG data under the eyes-closed condition was about 85 min, 89 min, 

60 min, and 62 min for monkey C, monkey G, monkey K, and monkey S, respectively. The total 

length of ECoG data under the eyes-open condition was about 103 min, 85 min, 60 min, and 61 5 

min for monkey C, monkey G, monkey K, and monkey S, respectively. The total length of ECoG 

data under the sleep condition was about 243 min and 157 min for monkey C and monkey G, 

respectively.  

We removed the line noise at the primary frequency (50 Hz) and its harmonics using 

Chronux (74). We excluded three channels for monkey G, one channel for monkey K, and one 10 

channel for monkey S from subsequent analyses due to serious artifacts that cannot be removed. 

We re-referenced the ECoG signals to the mean of all channels. To extract the band-limited 

power signals, we first calculated spectrograms between 1 and 100 Hz using a multi-taper time-

frequency transformation with a window length of 1 sec, a step of 0.2 sec and the number of 

tapers equal to 5 provided by Chronux (74). We then converted the power spectrogram into 15 

decibel units using the logarithmic function. Next, we normalized the power spectrogram at each 

frequency bin by subtracting the temporal mean and dividing by its temporal standard deviation. 

The normalized spectrogram was averaged within different frequency bands: delta 1 - 4 Hz; theta 

5 - 8 Hz; alpha 9 - 15 Hz; beta 17 - 32 Hz; and gamma 42 - 95 Hz. The gamma frequency band 

was defined conservatively as 42–95 Hz, within which the power signals of different frequency 20 

bins show similar temporal dynamics. We also extracted the power of the low- (30-80 Hz) and 

high-gamma (80-150 Hz) bands as defined by a previous study (37). Then, the band limited 

power signals were smoothed both temporally using a low-pass filter (<0.1 Hz) and spatially 
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using a Gaussian smoothing kernel (sigma = 5 mm), then standardized by removing the mean 

and dividing by its standard deviation. The effect of temporal filter used here was examined to 

make sure that it won’t produce any phase shifts (Fig. S19). 

Projecting the rsfMRI signals onto the principal gradient direction 

The rsfMRI signals were projected onto the principal gradient (PG) (31) direction to 5 

generate time-position correlations as follows. The principal gradient was obtained by a previous 

study with applying the diffusion mapping, a low-dimensional embedding method, to a group 

averaged connectome matrix (31). First, we reduced the spatial dimension by sorting 59,412 

cortical surface vertices according to the principal graident and then dividing these cortical 

surface vertices into 70 position bins of equal size. Next, the fMRI signals within each position 10 

bin were averaged to generate the time-position graph (see Fig. 1A). Secondly, the time-position 

graph was cut into time segments based on the troughs of the global mean signal. Thirdly, for 

each time segment, the Pearson’s correlation between the relative timing with respect to the 

global mean peak and position of local peaks across all the position bins was calculated. A strong 

positive time-position correlation would indicate a propagation of the fMRI signal along the 15 

principal gradient direction within this time segment and a strong negative time-position 

correlation would indicate a propagation opposite the PG direction. The local peak of each 

position bin was defined as the local maxima with a value larger than zero. If more than one 

local peak were detected, the local peak was defined as the one with the largest peak amplitude. 

The time-position correlation was only computed for time segments whose local peaks were 20 

identified in at least 56 (70 � 80%) position bins.    

To focus our analysis on the time segments with a global involvement, we identified time 

segments with relatively large global peak amplitudes by using a threshold defined from a null 
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distribution and calculated time-position correlations of those identified time segments. We first 

generated a null distribution of global peak amplitudes by randomly shifting the fMRI signals of 

position bins and then calculating the global peak amplitudes of those randomly shifted signals. 

The random shifts were uniformly distributed integers between 1 and the total number of time 

points (1200) in a single scanning session. The time segments with a global involvement were 5 

defined as those with a global peak amplitude exceeding the 99th percentile of the null 

distribution, which account for 58.80 % of the total segments. We also calculated the delays 

between the global peak and the local peaks of 70 position bins for time segments of the real 

fMRI signals and randomly shifted signals.  

For the time segments with a global involvement, the time-position correlations along 10 

four other control directions were also computed in the same way as described for the principal 

gradient. The four control directions included the second gradient of rsfMRI connectivity derived 

by the principal gradient study (31), and three artificial directions, i.e., anterior-to-posterior 

direction, dorsal-to-ventral direction, and randomly rotated principal gradient. The anterior-to-

posterior direction map was generated by assigning increasing amplitude to vertices from 15 

posterior to anterior direction according to the y coordinate. The dorsal-to-ventral direction map 

was generated by assigning increasing amplitude to vertices from ventral to dorsal direction 

according to the z coordinate. The randomly rotated principal gradient was generated by rotating 

the principal gradient map on the spherical fs_LR 32k surface space with random degrees with 

respect to the x, y, z axes, which relocated and the principal gradient preserved the relative 20 

topology of the PG. 

Principal propagating direction in the human rsfMRI signals 
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A principal delay (PD) profile was derived by applying a singular value decomposition 

(SVD) (75) to delay profiles of time segments with a global involvement. For any given time 

segment with a global involvement, a delay profile was computed as the relative time delay of 

the local peak at each cortical surface vertex with respect to the global peak. The local peak of 

each vertex was defined as the local maxima with a value larger than zero. If more than one local 5 

peak were detected, which were rare, the local peak was defined as the one with the largest peak 

amplitude. We focused on the delay profiles with at least 47,530 (59,412�80%) local peaks. For 

those selected delay profiles, if the local peak amplitude was less than zero or no local maxima 

was detected, then its relative time delay was defined as the mean time delay of its three nearest 

vertices with local peaks larger than zero. Specifically, for each vertex without time delay, the 10 

distance on the brain surface between this vertex and other vertices with time delay was 

calculated and sorted. Then the averaged time delay of three vertices with smallest distance were 

used to replace the time delay of that vertex. The distance on the brain surface was calculated 

based on the coordinates of vertices. Next, a delay matrix was formed by concatenating all of the 

delay profiles, to which we then applied SVD to extract the principal delay profiles (see Fig. 15 

2A). This delay profile decomposition method shares a similar idea with several previous 

approaches (76–78) in utilizing the time delays between brain regions to infer propagating brain 

activity.   

SVD is to reduce high dimensional data to lower dimensions of uncorrelated components. 

The delay matrix is an � � � matrix, where � is the number of cortical vertices and � is the 20 

number of delay profile. The delay matrix was denoted as �. Applying SVD to � generates:  

    

X = USV T      (1)  
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where � is an � � � orthonormal matrix, whose column represents left singular vector � 

is an � � � diagonal matrix, whose diagonal entries represent singular values of �. � is an 

� � � orthonormal matrix, whose column represents right singular vector. The columns of � 

were ordered based on the variance explained of �. The square of each diagonal singular value in 

� denoted the variance of the corresponding vectors. A principal delay profile is the first column 5 

of �, which explains the largest variance of X. It is expected to reflect the major propagating 

direction.  

The rsfMRI time segments with a propagation along the principal delay profile were 

defined as described below. The rsfMRI segments with a global involvement were projected onto 

the principal delay profile direction and the corresponding time-position correlations were then 10 

calculated in the same way as described above. We repeated the same procedure for the four 

control directions describe above, and built a null distribution of time-position correlations by 

pooling time-position correlations for all the four control directions. A positive correlation 

exceeding the 1.64 standard deviation (SD) of the null distribution was regarded as a bottom-up 

(from sensory/motor regions (SM) to the default mode network (DMN)) propagation and a 15 

negative correlation exceeding 1.64SD of the null distribution was regarded as a top-down (from 

the DMN to SM) propagation. The 1.64SD was used because the critical value for a 90% 

confidence level with 5% on each side is 1.64. The total time of the top-down or bottom-up 

propagations was calculated as the total length of all the time segments identified to have a top-

down or bottom-up propagation.  20 

The SVD components captured the major propagating directions but in an arbitrary unit 

rather than in seconds. Therefore, we re-scaled the derived principal delay profile based on the 

time-position relationship of the time segments with top-down or bottom-up propagations. 
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Specifically, we calculated the regression coefficient of the time-position relationship for each 

segment with a propagation to estimate the propagating speed with assuming the geodesic 

distance on the cortical surface between the primary sensory/motor regions and the default-mode 

network is 80 mm (31). We computed the averaged propagating speed across all the time 

segments with propagations and then utilized it to re-scale the principal delay profiles into the 5 

unit of seconds.  Applying such rescaling procedure on the synthesized data successfully 

generated two principal delay profiles that are consistent with the duration of simulated 

propagating structures (Fig. 2B and Fig. S2).  

The z-score maps for averaged bottom-up and top-down propagations were calculated in 

the surface and volume space as follows. First, the global peaks within the time segments with 10 

propagations were located. A time window of 15.12 sec (21TR � 0.72 sec/TR) was defined to 

contain ten time points before and ten time points after each of these global peaks, with setting 

the global peak point as time zero. Second, rsfMRI signals in both surface and volume space of 

these time windows were averaged respectively to obtain maps showing averaged propagation, 

which were then converted to z-score maps according to the formula below:    15 

z = (x − μ) / (σ / n)         (2)  

The normalized rsfMRI signals have a zero mean (	 
 0) and a unit standard deviation 

(� 
 1). � is the total number of time segments with propagations, and � is the averaged 

propagating map. The false discovery rate (FDR) is used to correct multiple comparisons. The 

function 'fizt_t2p' from AFNI (79) was used to covert the z-score to the p-value. The FDR q 20 

values were generated by using the 3dFDR program from AFNI (79). The associated time-

position graphs of the defined time windows with propagations were also averaged. 
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The cerebrospinal fluid regions were masked out from the averaged top-down and 

bottom-up propagations in the volume space. The cerebrospinal fluid regions were defined based 

on the Harvard-Oxford subcortical structural probabilistic atlas (80) using a threshold of 30% 

probability.  

We tested the reproducibility of the principal delay profile in humans using a split-half 5 

analysis. There are four sessions of rsfMRI data acquired in two different days. For each session 

of data, we randomly split subjects into two equal groups and calculated the principal delay 

profile for each group as described above.  

The principal delay profile was also computed on fMRI signals with skipping the 

temporal filtering and/or spatial filtering, or switching their order (Fig. S6). For all these cases, 10 

the fMRI signals were also cut into time segments based on the global mean signal, calculated 

using the fMRIs signal filtered of filtered data. Otherwise, we would have time segments of a 

few seconds, which would stop any meaningful subsequent analyses. 

Simulation of rsfMRI signals with artificial propagations 

To test whether the delay profile decomposition method and the principal gradient 15 

method can successfully identify the direction of propagating activity, we simulated fMRI 

signals on the brain cortical surface containing propagating structures along artificial directions 

and then applied these two methods to the simulated data. The propagating structures were 

generated by creating a spatial band of high amplitude signals and then shifting it along the 

anterior-to-posterior, posterior-to-anterior, or dorsal-to-ventral directions over time on the brain 20 

surface. The signal modulation within the activation band along its propagating direction was 

described as a Gaussian function. We simulated 6 types of propagating structures that propagated 

across the whole brain with two different speeds in three different directions, including those 
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propagating through the whole brain in the anterior-posterior and the opposite directions in 19 

and 29 seconds respectively, as well as those propagating across the whole brain in the dorsal-to-

ventral directions in 11 and 20 seconds. The simulated propagating structures were convolved 

with a canonical hemodynamic response function from SPM (https://www.fil.ion.ucl.ac.uk/spm/) 

and then randomly inserted into background fMRI signals that were modeled as white noise. We 5 

randomly inserted two of each type of propagating structure along the anterior-to-posterior 

direction, one of each type of propagating structure along the posterior-to-anterior direction, 

three of each type of propagating structure along the dorsal-to-ventral direction into each session 

of simulated fMRI signals of 1200 time points. The temporal resolution of simulated fMRI 

signals was assigned as 1 sec arbitrarily. The simulated fMRI signals were further spatially 10 

smoothed using a Gaussian smoothing kernel (sigma = 2 mm) and temporally filtered using 

bandpass filtering at 0.001 - 0.1 Hz. We simulated a total of 50 sessions of fMRI data, and then 

derived their principal delay profile as described above and the principal gradient by 

decomposing the connectivity matrix using codes provided by the previous study (31). The 

procedure was repeated for two sets of simulated data with different signal-to-noise ratio (SNR), 15 

which were obtained by setting the peak signal of the activation bands as 2 and 5 times of the SD 

of background white noise. 

Principal propagating direction in the monkey ECoG data 

The delay profile decomposition method described above was also applied to the ECoG 

data to derive the principal delay profile for different bandlimited powers, as well as the infra-20 

slow (< 0.1 Hz) band of the raw signal (not power). Here we take the gamma-power as an 

example. The global mean signal was calculated as the averaged ECoG gamma-power across all 

electrodes. The signals were cut into time segments based on troughs of the global mean signal. 

Next, the time segments with a global involvement were identified if the global peak amplitude 
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exceeded the threshold (the 99th percentile of a null distribution of the global peak amplitudes). 

The null distribution was created by calculating the global peak amplitudes after randomly 

shifting the time series of each electrode. The random shifts were uniformly distributed integers 

between 1 and the number of the time points in the experimental session. The analyses below 

focused on the time segments with a global involvement.  5 

A delay profile was generated for each time segment by computing the relative time 

delays between the local peak of individual electrodes and the global peak. The local peak of 

each electrode was defined as the local maxima with a value larger than zero. If more than one 

local peak were detected for a signal segment, the local peak was defined as the one with the 

largest peak amplitude. We focused on the delay profiles with at least 102 (128 � 80%) local 10 

peaks within a time segment. For those selected delay profiles, if the local peak was less than 

zero or no local maxima was detected, its relative time delay with respect to the global peak was 

defined as the mean of its three neighboring electrodes. Next, a delay matrix was formed by 

concatenating all of the delay profiles, to which we then applied SVD to extract the principal 

delay profile. 15 

The ECoG gamma-power signals were projected onto the principal delay profile direction 

to identify time segments with propagations. The time segments were generated as described 

above and only those with a global involvement, which account for 44.05 � 3.59 % (mean � SD 

across four monkeys) of the total segments, were analyzed. For each time segment, the Pearson’s 

correlation between the relative timing and position of local peaks across all the electrodes was 20 

calculated. To create a threshold for detecting time segments with propagations, we generated a 

null distribution of time-position correlations along the randomly rotated principal delay profiles 

with retaining the relative positions of electrodes which were obtained by randomly rotating the 
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principal delay profiles on a coordinate plane with random degrees with respect to the x, y axes. 

The time segments with a bottom-up (from the SM regions to the high-order regions) 

propagation along the principal delay profile were identified if the time-position correlation had 

a positive value exceeding the threshold (1.64SD of the null distribution of time-position 

correlations). The time segments with a top-down (from the high-order regions to the SM 5 

regions) propagation along the principal delay profile were identified if the time-position 

correlation had a negative value exceeding the threshold (1.64SD of the null distribution of time-

position correlations). The averaged top-down and bottom-up propagation maps were calculated 

as follows. First, we identified the global peaks for the time segments with propagations. Then, a 

12.2-sec time window (61 � 0.2 sec; the temporal resolution of bandlimited power signals is 0.2 10 

seconds) centering on each of these global peaks was defined to cover thirty time points before 

and thirty time points after the global peak. Second, we averaged the ECoG bandlimited power 

signals and associated time-position graphs of these time windows to obtain the averaged 

propagating maps.  

Considering that SVD components captured the major propagating directions in an 15 

arbitrary unit, we rescaled the derived principal delay profile to second unit using the same 

strategy as we used for human rsfMRI data. Briefly, we calculated the regression coefficient of 

the position-time relationship for each segment with a propagation to estimate the propagating 

speed. Then the averaged propagating speed across all the time segments with propagations was 

computed and utilized to re-scale the principal delay profiles into the unit of seconds.  20 

We quantified the cross-hierarchy pattern of the principal delay profile from monkeys by 

comparing it with the cortical myelination map, which has been suggested to be a good 

estimation of cortical anatomical hierarchy (36). Given that the cortical myelination map was 
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available on the average Yerkes19 macaque surface (35), we manually mapped the location of 

128 electrodes of each monkey onto the average Yerkes19 macaque surface (35) based on the 

gyrus and sulci of the brain (see Fig. S8). Next, we extracted a vector of the myelination values 

at the locations of the 128 electrodes for each monkey. Then, a Pearson’s correlation between the 

principal delay profile and this myelination vector was calculated to estimate the spatial 5 

similarity of the two, which was used for quantifying the cross-hierarchy pattern of the principal 

delay profile.  

The principal delay profile was also calculated from ECoG gamma powers with skipping 

the temporal filtering and/or spatial filtering, or switching their order (Fig. S15).  

Fine-scale propagations within sensory modalities in the rsfMRI signals 10 

A simple linear regression was applied to examine the relationship between the delay in 

the principal delay profile and the hierarchy level across brain regions within each sensory 

modality. Each vertex was numbered according to the hierarchy level of the brain region to 

which the vertex belongs. In the simple linear regression model, the hierarchy level of vertices 

was the predictor variable and the delay value was the response variable. A significant p-value of 15 

the regression coefficient would indicate whether the propagation is along the hierarchy order in 

a sensory modality.  

The hierarchical level of different visual regions was determined according to (39). The 

hierarchy of the auditory system was determined according to (81, 82). The hierarchy of the 

somatosensory cortex was determined according to (83). The retinotopy map (84) was used to 20 

identify the peripheral and foveal areas of the V1-V4. Peripheral and foveal areas in the V1-V4 

were divided based on a cut-off value of 2.5 in the eccentricity map. The atlas of topographic 

subareas in the somatosensory-motor strip (85) was used to identify brain regions responsible for 
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face, upper limb, trunk, lower limb, and eye. The HCP’s multi-modal cortical parcellation atlas 

(38) was used to locate different brain regions on the cortical surface. All these atlases can be 

downloaded from the website (https://balsa.wustl.edu). 

Subcortical co-activations/de-activations associated with rsfMRI propagations 

The temporal dynamics of subcortical regions at the top-down and bottom-up 5 

propagations were studied mainly based on the z-score maps of the propagations in the volume 

space, which were obtained as described above. We simply averaged these z-score maps at 

various time points across voxels within any subcortical region of interests. The location of 

thalamic nuclei/regions was determined according to Morel Atlas (86). The Harvard ascending 

arousal network (AAN) atlas was used to locate the brainstem nuclei of the ascending arousal 10 

network (87). The masks of the substantia nigra (SN), the nucleus accumbens (NAc), and the 

nucleus basalis (NB) were acquired by taking the overlap between the brain regions showing 

significant (Z < -7) de-activations at time zero z-score map for the bottom-up propagation and 

those defined by brain atlases of SN (88), NAc (80) and NB (6). The de-activations in SN and 

NAc appeared to be only in a subsection of atlas-defined structures (Fig. S20).  15 

Modulation of cross-hierarchy propagations across different brain states  

We quantified and compared the occurrence rate of the top-down and bottom-up 

propagations across different brain states or sessions that are likely associated with distinct 

arousal levels. For the human rsfMRI data, we classified fMRI sessions into sub-groups with 

different arousal levels, which were estimated in two different ways. First, we adapted a 20 

template-matching method (42) to estimate the arousal level based on a previous study (89). 

Briefly, we calculated the spatial correlation between individual rsfMRI time points and a global 

co-activation pattern that has been linked to transient arousal events previously (6). Then, we 

extracted the envelope amplitude of this spatial correlation time course and averaged it within 
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each session to quantify the general arousal state of subjects in a specific session. The envelope 

amplitude was computed as the absolute value of the Hilbert transform. Since the presence of 

this global co-activation pattern suggest the occurrence of transient arousal events and thus 

relatively drowsy state, a higher value of this fMRI-based metric is corresponding to a lower 

arousal state. Based on this fMRI-based arousal measure, we divided all of the rsfMRI scanning 5 

sessions into three groups of equal size (N = 613 sessions for each, each session is 15 minutes in 

length) with low, medium, and high arousal levels, and then compared the occurrence rate of the 

rsfMRI propagations. Secondly, we identified, based on the note of HCP experimenters, a subset 

of 117 rsfMRI sessions in which the subjects were noted to be sleeping (90). We then compared 

the occurrence rate of propagations in this subset and all other sessions (N = 1723 sessions). For 10 

the ECoG gamma-band powers concatenated from the four monkeys, we compared the 

occurrence rate of the top-down and bottom-up propagations across sessions collected in three 

different conditions: 11 sessions (each session is 25 minutes in length) for eyes-open state, 10 

sessions for eyes-closed state, 15 sessions for sleep state.  

Since these propagations are detected only in rsfMRI/ECoG segments with a global 15 

involvement, and their occurrence rate changes across arousal states might simply reflect a 

change of the global signal, which has been shown to be closely related to brain arousal level 

(91–95). For this reason, we also calculated and compared the ratio of the top-down propagations 

to the bottom-up propagations that should be exempted from any potential bias caused by the 

change of globally averaged signal.  20 

The statistical significance of the difference in the occurrence rate of propagations, as 

well as its ratio, across different arousal states were determined using permutation test. For each 

comparison described above, we randomly divided the data into subgroups of the same size, 
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calculated the differences, and repeated the procedure 1,000,000 times to build a null distribution 

for the differences. Then, we obtained the p-values of the observed differences by comparing 

them with the null distributions.  
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Fig. 1. RsfMRI propagations along the principal gradient (PG) of rsfMRI connectivity. (A) 
Illustration of the steps for projecting rsfMRI signals onto a specific direction, e.g., the principal 
gradient, to produce a time-position graph. The principal gradient was computed in a previous 
study (31) by applying the diffusion mapping to the averaged connectome matrix and indicted a 5 
transition across brain hierarchies from the SM regions to the DMN. (B) The time-position 
graphs for the principal gradient and a control direction from a representative subject show clear 
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bands, which are tilted only in the principal gradient time-position graph. The bands can be well 
separated by cutting rsfMRI segments according to troughs (black vertical lines) of the global 
mean signal. The vertical axis of the time-position graph represents the cortical distance from 
core regions of the DMN to the SM on the principal gradient (31). (C) Two exemplary rsfMRI 
segments with propagations in two opposite directions along the principal gradient, i.e., the 5 
DMN-to-SM (i.e., top-down) and SM-to-DMN (i.e., bottom-up) propagations. The relative 
timing of the local rsfMR peaks show a significant correlation with their positions along the 
principal gradient but not in the control direction (left), and the propagating activity can be 
viewed on brain surface (right). Gray dots in the time-position graphs indicate the local rsfMRI 
peaks and the red lines are the regression lines for their time-position relationship. The time is 10 
with respect to the global mean peak for the segment. Green and blue asterisks mark 
approximately spatial peaks with a larger size representing a later time point and the timing 
being denoted by the direction of the black arrows. (D) The distributions of the time-position 
correlations of rsfMRI segments in five different directions. The principal gradient direction is 
associated with a clear bimodal distribution that is significantly different from those of the 15 
motor-to-visual, the anterior-to-posterior, the dorsal-to-ventral, and the rotated principal gradient 
directions (p = 0 for all four control directions, two-sample Kolmogorov-Smirnov test). 
Abbreviation: PG, principal gradient; SM, sensory/motor; DMN, default mode network; VIS, 
visual cortex; M1, primary motor cortex; S1, primary somatosensory cortex; iFG, inferior frontal 
gyrus; mFG, middle frontal gyrus; AG, angular gyrus; mTemp, middle temporal cortex.   20 
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Fig. 2. The major propagating direction of rsfMRI signals is highly similar to the principal 
gradient of rsfMRI connectivity. (A) Illustration of the procedures for deriving the principal 
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delay profiles that represent the major propagating directions of rsfMRI signals. Specifically, the 
fMRI signals were cut into time segments based on the troughs of the global mean signal denoted 
by the gray vertical lines. Next, a delay profile was computed for each segment as the relative 
time delays of the local peak (black diamonds) at each cortical vertex with respect to the global 
peak (black dashed line). Finally, a singular value decomposition was applied to the delay matrix 5 
composed by delay profiles to extract the principal delay profile. (B) Decomposing delay profiles 
of synthesized fMRI data (left) using the proposed method recovered the directions of simulated 
propagating structures (middle). The decomposition of the connectivity matrix of the synthesized 
signals using the principal gradient method recovered the dominant direction but not the second 
one (right). (C) The application of the proposed method to real rsfMRI data produced the 10 
principal delay profile representing the principal direction of infra-slow rsfMRI propagations, 
which is extremely similar (r = 0.93, p = 0) to (D) the principal gradient of rsfMRI connectivity, 
including detailed features at the primary visual cortex (V1) and Brodmann area 46 (BA 46). (E) 
The averaged bottom-up (top, N = 18114) and top-down (bottom, N = 8519) propagations as 
presented on the time-position graphs (left) and the brain surface (right). Abbreviation: iFG, 15 
inferior frontal gyrus; mFG, middle frontal gyrus; AG, angular gyrus; mTemp, middle temporal 
cortex; M1, primary motor cortex; S1, primary somatosensory cortex; A1, primary auditory 
cortex; sFG, superior frontal gyrus; PMC, posteromedial cortex; ACC, anterior cingulate cortex; 
vmPFC, ventromedial prefrontal cotex; V1, primary visual cortex; BA 46, Brodmann area 46.  
 20 
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Fig. 3. Cross-hierarchy propagations in the monkey ECoG signals. (A) The principal delay 
profile of the ECoG gamma-band (42–95 Hz) power shows a clear contrast between the 
sensory/motor (SM) areas and the higher-order (HO) brain regions, including the frontal, anterior ior 
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temporal, and parietal cortices. This pattern is consistent across monkeys and inversely similar to 
the cortical myelination map of the monkey, which has been suggested as a good surrogate for 
estimating the cortical hierarchy (36). (B) Single exemplary instances of the top-down (i.e., from 
the higher-order to the sensory/motor regions) and bottom-up (i.e., from the sensory/motor to the 
higher-order regions) propagations as shown in the time-position graphs and on the brain surface.5 
(C) The time-position correlations of the ECoG gamma-power segments for the principal 
propagating direction show a heavy tailed distribution that is significantly different (p = 1.65x10-

34, two-sample Kolmogorov-Smirnov test) from the one obtained for control directions. The 
distributions were obtained by pooling the results from all four monkeys. (D) The averaged 
patterns of the top-down (N = 16) propagations for monkey S and bottom-up (N = 90) 10 
propagations for monkey C as shown in the time-position graphs (left) and the brain surface 
(right). Abbreviation: SM, sensory/motor region; sTemp, superior temporal cortex; Front, frontal 
cortex; Visual, visual cortex.  
 
 15 

Fig. 4. A reproducible cross-hierarchy propagating direction was present most strongly in the 
gamma-band power of ECoG signals. (A) The principal delay profiles derived for the ECoG 
powers of four other frequency bands: delta, 1–4 Hz; theta, 5–8 Hz; alpha, 9–15 Hz; beta, 17–32 
Hz, as well as the infra-slow band (< 0.1 Hz) of ECoG signals (not power). (B) The spatial 20 
similarity between different principal delay profiles and the monkey cortical myelination map 
that has been suggested to be a good approximation of cortical hierarchy (36). The principal 
delay profiles and associated statistics were derived with respect to ten 25-minute eyes-closed 
sessions from all the monkeys. The error bar represents the standard error of mean. Asterisks 
represent the level of significance: **: 0.001  p  0.01. *: 0.01  p  0.05.  25 
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Fig. 5. Local embedded propagations within the sensory modalities in human fMRI signals. (A) 
The local contrast of the principal delay profile within the three visual-related regions defined by 
a multi-modal parcellation atlas (38). (B) The averaged delay values of 13 visual parcels that 5 
were arranged according to their hierarchical (39) and retinotopic relationships (84). It should be 
noted that we do not assume any hierarchical relationship between the foveal and peripheral 
visual parcels. (C) The local trajectory of the bottom-up propagation within the visual system 
closely follows the principal delay profile, i.e., from the visual association areas to the early 
peripheral visual areas and then to the early foveal visual regions. (D-F) Results for the auditory 10 
system indicated a similar contrast and local propagation between the primary and association 
auditory areas. (G-I) Results for the somatosensory system show a weaker but still significant 
relationship between the delay and hierarchical level of 4 somatosensory parcels. The contrast of 
the principal delay profile also shows certain correspondence with (J) the somatotopic 
arrangement (85). (K) The principal delay profile on a flat brain surface suggests a few other 15 
brain regions outside the sensory systems showing large negative delays. Together with the 
sensory association areas, they compose the task-positive regions that have been shown 
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previously to have strong negative-correlation with the DMN (40). Abbreviation: V6A, area 
V6A; V6, sixth visual area; MT+, MT+ complex; MST, medial superior temporal area; MT/V5, 
middle temporal area/fifth visual area; V4t, V4 transition zone; V4, fourth visual area (pV4 and 
fV4 are peripheral and foveal V4 respectively, same thereafter); V3, third visual area; V2, 
second visual area; V1, primary visual cortex; A4, auditory 4 complex; PBelt, parabelt complex; 5 
LBelt, lateral belt complex; MBelt, medial belt complex; A1, primary auditory cortex; BA, 
Brodmann’s area; FEF, frontal eye fields; IPS, intraarietal sulcus area; BA46, Brodmann area 46; 
SM, sensory/motor; DMN, default mode network. 
 
 10 

 
Fig. 6. Subcortical co-(de)activations associated with the bottom-up propagation. (A-D) The 
thalamic co-activations/de-activation at different phases of the bottom-up propagations show a 
good correspondence with the cortical changes. The thalamic nuclei were located using the 15 
Morel Atlas (86). The time is with respect to the global mean peak. (A) The early de-activation 
of the default-mode network and V1 are associated with the thalamic de-activations in a few 
higher-order nuclei, particularly the AN and a part of MDpc, as well as the LGN, but the 
thalamic co-activation is only limited to the PuA. The thalamic co-activations then spread first to 
the posterior and ventral part of the thalamus (B) and eventually to the AN and MDpc at very 20 
late phase (D). (C) The MGN shows specific co-activations with the maximal A1 co-activation. 
(E) The earliest phase of the bottom-up propagation (t = -6.5 sec) involves the de-activations of a 
few brainstem nuclei of the ascending arousal system (AAS), which were located using the 
Harvard Ascending Arousal Network Atlas (87). The plots also showed the early co-activation of 
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the AMG in the brainstem. (F) Following the early brainstem de-activations, the nucleus 
accumbens (NAc) at the ventral striatum, the nucleus basalis (NB) at the basal forebrain, and the 
substantia nigra (SN) at the brain stem started to slowly de-activate and reach the plateau with 
the widespread cortical co-activation. (G) The temporal dynamics of the subcortical regions 
shown in (A-F). The Z-score time courses were averaged within 37 thalamic regions of interest 5 
(ROIs) defined by the Morel’s atlas and 9 brainstem ROIs defined by the Harvard AAS atlas, as 
well as the three ROIs (NAc, NB, and SN) we defined by combining our results with 
corresponding brain atlases (80) (see the bottom for the masks we used). Each group of ROIs 
were sorted according to their value at t = -5.8 sec. The q-value after FDR corresponding to z-
score 4.4 and 7 is 10-5 and 7.4x10-13 respectively. Error bars represent the standard error of the 10 

mean (SEM). Asterisks represent the level of significance: *: 0.01  p  0.05; **: 0.001  p  
0.01; ***: p  0.001. Abbreviation: AMG, amygdala; MDmc, mediodorsal nucleus 
magnocellular part; MDpc, mediodorsal nucleus parvocellular part; MV, medioventral nucleus; 
CL, central lateral nucleus; CeM, central median nucleus; CM, centre median nucleus; Pv, 
paraventricular nucleus; Hb, Habenular nucleus; Pf, parafascicular nucleus; sPf, 15 
subparafascicular nucleus; PuM, medial pulvinar; PuI, inferior pulvinar; PuL, lateral pulvinar; 
PuA, anterior pulvinar; LP, lateral posterior nucleus; MGN, medial geniculate nucleus; SG, 
suprageniculate nucleus; Li, limitans nucleus; Po, posterior nucleus; LGN, lateral geniculate 
nucleus; VPLa, ventral posterior lateral nucleus anterior part; VPLp, ventral posterior lateral 
nucleus posterior part; VPM, ventral posterior medial nucleus; VPI, ventral posterior inferior 20 
nucleus; VLa, ventral lateral anterior nucleus; VLpd, ventral lateral posterior nucleus dorsal part; 
VLpv, ventral lateral posterior nucleus ventral part; VAmc, ventral anterior nucleus 
magnocellular part; VApc, ventral anterior nucleus parvocellular part; VM, ventral medial 
nucleus; AD, anterior dorsal nucleus; AM, anterior medial nucleus; AV, anterior ventral nucleus; 
LD, lateral dorsal nucleus; AN, anterior nucleus; STh, subthalamic nucleus; DR, dorsal raphe; 25 
VTA, ventral tegmental area; LC, locus coeruleus; MR, median raphe; PPN, pedunculopontine 
nucleus; PO, pontis oralis; PBC, parabrachial complex; MRF, midbrain reticular formation; 
PAG, periaqueductal gray; NAc, nucleus accumbens; NB, nucleus Basalis; SN, substantia Nigra. 
 

 30 

Fig. 7. The cross-hierarchy propagating activity is sensitive to brain arousal level. (A) The ratio 
of the top-down propagation to the bottom-up propagation is significantly different in three 
groups of sessions showing distinct arousal levels as measured by an fMRI-based arousal index 
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(89). (B) The same ratio is also significantly lower in a subset of sessions in which subjects were 
noted to be sleeping during rsfMRI scanning. (C) The ratio of the top-down propagation to the 
bottom-up propagation in the monkey ECoG gamma powers shows a similar and significant 
modulation across the eyes-open, eyes-closed, and sleep sessions. Error bars represent the 
standard error of the mean (SEM). Asterisks represent the level of significance: *: 0.01 < p � 5 
0.05; **: 0.001 < p � 0.01; ***:  p � 0.001.  
 

 

Legends for Supplementary Animations:  

Animation 1: 10 

Single exemplary instance of bottom-up propagation in human rsfMRI on the brain surface.  

Animation 2: 
Single exemplary instance of top-down propagation in human rsfMRI on the brain surface.  

Animation 3: 
Single exemplary instance of bottom-up propagation in monkey ECoG on the brain surface.  15 

Animation 4: 
Single exemplary instance of top-down propagation in monkey ECoG on the brain surface.  

 

 

 20 
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