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Abstract  

Nowadays,  the  massive  amount  of  data  generated  by  modern  sequencing  technologies  provides             

an  unprecedented  opportunity  to  find  genes  associated  with  cancer  patient  prognosis,  connecting             

basic  and  translational  research.  However,  treating  high  dimensionality  of  gene  expression  data             

and  integrating  it  with  clinical  variables  are  major  challenges  to  carry  out  these  analyses.  Here,                

we  present  Reboot,  an  original  and  efficient  algorithm  to  find  genes  and  splicing  isoforms               

associated  with  cancer  patient  survival,  disease  progression,  or  other  clinical  endpoints.  Reboot             

innovates  by  using  a  multivariate  strategy  with  penalized  Cox  regression  (LASSO  method)             

combined  with  a  bootstrap  approach,  in  addition  to  statistical  tests  for  supporting  the  findings,               

which  are  automatically  plotted.  Applying  Reboot  on  data  from  154  glioblastoma  patients,  we              

identified  a  three-gene  signature  (IKBIP,  OSMR,  PODNL1)  whose  increased  derived  risk  score             

was  significantly  associated  with  worse  patients’  prognosis,  even  in  conjunction  with  other             

well-established  clinical  parameters.  Similarly,  Reboot  was  able  to  find  a  seven-splicing  isoforms             

signature  (CENPF-201;  MLKL-202;  NUP54-201;  MCF2L-201;  TFDP1-207;  BBS1-206;        

HTT-202)  related  to  worse  overall  survival  in  177  pancreatic  adenocarcinoma  patients  with             

elevated  risk  scores  after  uni-  and  multivariate  analyses.  In  summary,  Reboot  is  an  efficient,               

intuitive,  and  straightforward  way  for  finding  genes  or  splicing  isoforms  (transcripts)  signatures             

relevant  to  patient  prognosis,  which  can  democratize  this  kind  of  analysis  and  shed  light  on  still                 

under-investigated  sets  of  cancer-related  genes.  Reboot  effectively  runs  on  either  servers  or             

personal   computers   and   it   is   freely   available   at   github.com/galantelab/reboot.  
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INTRODUCTION  
 
The  improvement  of  prognostic  prediction  and  the  identification  of  potential  therapeutic  targets             

are  major  interests  in  oncology (Hussein  et  al.  2018;  Schirrmacher  2019) .  To  achieve  these  goals,                

large  consortiums (International  Cancer  Genome  Consortium  et  al.  2010;  Grossman  et  al.  2016)              

have  been  created,  generated  and  made  available  an  unprecedented  amount  of  data,  which              

includes  clinical  ( e.g.,  survival  time,  tumor  recurrence,  treatment)  and  molecular  information            

( e.g.,  mutation  and  gene  expression  profiles)  from  cancer  patients  and  their  samples.  In              

particular,  a  number  of  studies  have  shown  that  alterations  in  gene  expression (Huang  et  al.  2013;                 

Sturtz  et  al.  2014;  Gutierrez  et  al.  2019)  and  in  splicing  profiles (Yu  et  al.  2020;  Meng  et  al.                    

2020;  Liu  et  al.  2020)  are  pivotal  to  tumorigenesis.  Once  these  alterations  are  established,               

researchers  are  often  interested  in  pinpointing  genes  or  splicing  isoforms  impacting  in  the              

prognosis   of   patients,   which   are   naturally   suitable   therapeutic   targets.  

In  this  scenario,  Cox  regression  models  are  the  gold  standard  methodology  to  find  genes               

or  splicing  isoforms  associated  with  cancer  patient  survival.  Most  commonly,  analyses            

performed  on  datasets  with  a  large  number  of  covariates  are  either  based  on  simple  univariate                

regression  models  or  their  derived  forms  for  variable  selection (Zhang  2016) .  However,             

multivariate  regression  models  are  more  suitable  for  multifactorial  phenomena  due  to  their             

ability  to  provide  synergistic  and  antagonistic  interrelation  for  explanatory  variables (Xing  et  al.              

2017;  Glover  et  al.  2015;  Martinez  and  Kolodner  2010) ,  a  typical  condition  when  dealing  with                

complex   diseases   like   cancer.  

Nevertheless,  such  traditional  models  are  susceptible  to  data  idiosyncrasy.  For  instance,            

considering  the  high  number  of  covariates  usually  present  in  gene  expression  data,  it  may  be  a                 

challenging  task  to  build  Cox  models  accounting  for  all  of  them  with  high  accuracy (Xu  2012) .                 

In  a  first  attempt  to  overcome  this  limitation,  some  methods  such  as  the  Least  Absolute                

Shrinkage  and  Selection  Operator  (LASSO)  have  been  implemented  to  simultaneously  estimate            

coefficients  and  treat  data  high  dimensionality  using  variable  selection  techniques (Tibshirani            

1997) .  Nonetheless,  these  implementations  ordinarily  exhibit  poor  performance  for  large  datasets            

( e.g.,  gene  expression  data  generated  by  RNA  sequencing  methodologies),  leading  to  struggling             

in  the  algorithms'  convergence  steps.  Additionally,  high  collinearity  and  low  variance  of  gene              
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expression  may  result  in  incorrect  estimations  of  the  individual  contributions  of  genes  and  even               

the  identification  of  redundant  variables  in  a  derived  model (Lesaffre  and  Marx  1993) .  Moreover,               

finding  and  testing  the  prognostic  value  or  biomarker  potential  of  a  gene  set  is  a  demanding  task                  

for  researchers  and  clinicians  without  extensive  bioinformatics  training (Zhang  et  al.  2019) .  To              

aid,  several  computational  tools  have  been  created,  but  still  with  flaws  inherent  to  them,  namely:                

(i)  finding  genes  that  are  suitable  for  accomplishing  the  user's  goals;  (ii)  difficulties  to  determine                

the  exact  data  type  and  even  the  appropriate  method  for  user's  experiments;  (iii)  impossibility  to                

customize  analyses  and  inputs,  among  others (Gill  et  al.  2016) .  An  easy-to-use  command-line              

tool   is   routinely   a   worthy   and   more   powerful   option.  

Here,  we  present  Reboot,  an  algorithm  to  identify  and  validate  gene  or  transcript              

signatures  highly  associated  with  patient  prognosis.  Reboot  innovates  by  using  a  multivariate             

strategy  with  penalized  Cox  regression  (LASSO  method (Tibshirani  1997) )  combined  with  a             

bootstrap  approach (Efron  1992) .  Our  algorithm  deals  with  collinear  variables  inherent  in  gene              

expression  data  preventing  redundancies  and  incorrect  estimates,  also/thereby  removing  genes           

with  low  impact  on  survival  ( i.e.,  low  expression  variance  among  individuals).  Reboot  provides              

complementary  statistical  tests  to  bolster  gene  signatures  associated  with  patient  survival  or  any              

other  endpoint  chosen.  Furthermore,  Reboot  generates  supporting  figures,  such  as  Kaplan-Meier            

curves (Jager  et  al.  2008)  and  Forest  Plots (Lewis  and  Clarke  2001)  to  facilitate  the  interpretation                 

of  survival  outcomes.  Finally,  Reboot  seeks  not  only  genes  but  also  splicing  isoforms              

(transcripts)  associated  with  patient  prognosis,  successfully  managing  to  cope  with  the  escalation             

of  the  analysis  and  incorporating  a  deeper  level  of  transcriptomic  data  interpretation  to  survival               

analyses   in   a   practical   way.  
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RESULTS  

Implementation   and   availability  
 

Reboot  is  written  in  R  (v3.6)  and  comprises  two  major  modules:  regression  and  survival (Figure                

1) .  These  two  modules  were  designed  to  work  independently,  allowing  users  to  identify  genetic               

signatures  using  the  "regression"  module,  and  to  test  the  significance  of  these  signatures  in               

prognosis  using  the  "survival"  module,  possibly  with  additional  validation  datasets.  Moreover,            

we  also  provide  a  “complete”  mode  option  which  enables  the  integrated  execution  of  the  two                

modules   in   case   the   same   dataset   is   intended   to   be   used   in   both   analyses.  

 

 
Figure  1.  Reboot  pipeline  automatically  integrates  robust  statistical  tests,  provides  plots,  and  allows  users  to                
control  parameters  straightforwardly.  In  module  I,  gene  or  transcript  expression  data  are  filtered  for  variance  and                 
cox  proportional  hazard  assumptions.  Then,  genes  go  through  a  bootstrap  resampling  random  selection  for  LASSO                
regression  and  signature  generation  if  they  are  not  significantly  correlated.  In  module  II,  a  signature-based  score  is                  
created  and  applied  in  survival  analysis.  Users  are  able  to  perform  multivariate  analyses,  with  or  without  bootstrap                  
resampling   and   ROC   curves,   if   clinical   data   are   available.   Plots   are   automatically   yielded   to   the   users.  
 

The  Reboot  “regression”  module  is  an  easy-to-run  step,  which  encapsulates  statistical            

models  to  identify  genes  or  splicing  isoforms  (transcripts)  signatures.  In  brief,  this  module  starts               

by  checking  and  removing  data  attributes  with  variance  lower  than  a  user-defined  or  default               

cutoff.  Next,  a  Schoenfeld  test (Abeysekera  and  Sooriyarachchi  2009)  is  applied  in  a  univariate               

way  for  each  remaining  attribute  in  the  dataset  using  the  packages  "survival" (Therneau  2015)               
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and  "survminer"  (Kassambara  et  al.  2019).  Every  attribute  that  fails  this  proportional  hazard              

assumption  test  is  automatically  removed  from  the  analysis.  After  that,  a  Spearman’s  correlation              

(Akoglu  2018)  filter  is  applied  to  every  iteration  of  the  bootstrap  process (Efron  1992)  based  on                 

the  settable  fraction  of  pairs  with  a  correlation  coefficient  higher  than  0.8  and  a  p-value  <  0.05.                  

Lastly,  a  bootstrap  process  is  executed,  which  consists  of  a  random  sampling  of  attributes  to  be                 

evaluated  in  a  multivariate  analysis.  Regression  itself  is  performed  using  a  Least  Absolute              

Shrinkage  and  Selection  Operator  (LASSO)  algorithm (Tibshirani  1997)  from  the  R  packages             

"penalized"    (Goeman   2010)    and   "survival"    (Therneau   2015) .   

The  next  step  in  Reboot  is  the  “survival”  module,  which  is  also  easily  executable.  It                

receives  and  tests  a  gene/transcript  signature  produced  in  the  previous  (regression)  module.  In              

this  step,  the  Reboot  algorithm  first  produces  and  applies  a  score  for  all  samples  based  on  the                  

gene/transcript  signature  coefficients  obtained  from  the  “regression”  module  and  their           

corresponding  expression  values  using  the  following  formula: ,  where  “C”  is  the         x E∑
n

n = 1
C      

coefficient  and  “E”  is  the  expression  value.  Next,  the  Schoenfeld  test  is  applied  to  verify  whether                 

the  score  addresses  the  Cox  model  assumptions.  Based  on  the  median  value  (default)  of  the                

obtained  scores,  all  individuals  being  tested  are  stratified  into  two  groups,  “low”  or  “high”  score.                

The  log-rank  test (Bland  and  Altman  2004)  is  then  applied  in  order  to  assess  the  relevance  of  the                   

observed  differences  and  to  evaluate  the  relevance  of  the  signature  score  as  a  prognostic  factor                

for  a  given  event,  such  as  overall  survival,  progression-  or  recurrence-free  survival.  Next,  a               

Kaplan-Meier  survival  curve  is  generated (Jager  et  al.  2008) (Schröder  et  al.  2011) (Jager  et  al.               

2008)  Of  note,  Reboot  offers  a  multivariate  option  that  allows  extension  of  the  survival  model  by                 

additional  clinical  variables  ( e.g.,  therapy,  age,  and  gender) (van  Dijk  et  al.  2008) .  If  this  option                 

is  chosen,  after  applying  the  Schoenfeld  test  to  all  variables,  multiple  univariate  analyses  are               

performed  and  only  variables  under  a  minimal  threshold  (see  Methods)  are  selected  for  the  final                

multivariate  model (Bradburn  et  al.  2003b)  and  illustrated  in  a  forest  plot  using  the  R  package                 

"forestmodel"   (Kennedy   2018).   

Moreover,  Reboot  has  an  alternative  to  the  use  of  the  median  value  as  a  cutoff  to  stratify                  

patients  (e.g.,  into  "low"  and  “high”  groups,  based  on  gene  expression);  this  cutoff  value  may  be                 

defined  using  a  Receiver  Operator  Characteristic  (ROC)  curve (López-Ratón  et  al.            
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2014) (Obuchowski  and  Bullen  2018) (López-Ratón  et  al.  2014)  with  the  Nearest  Neighbour            

Estimate  (NNE)  method  and  the  Youden  statistics (Hajian-Tilaki  2013) .  In  this  case,  a              

patient-oriented  bootstrap  resampling  strategy  is  performed  using  the  R  package  "sjstats"            

(Lüdecke  2020).  In  order  to  derive  highly  confident  and  robust  results,  additional  filters  are               

applied  such  as  null  data  removal,  the  minimum  number  of  co-variables  available  and              

proportionality  requirements (Clark  et  al.  2003) .  As  a  consequence,  these  filters  ensure  that  the               

final  dataset  is  composed  of  at  least  70%  of  patients'  data  present  in  the  original  one.                 

Additionally,  the  final  dataset  als  has  a  minimum  of  two  co-variables  to  be  tested  with  the  score,                  

whose  less  abundant  categories’  frequencies  are  not  smaller  than  20%.  After  100  cycles,  the               

relevance  frequency  of  each  co-variable  with  the  event  is  calculated  and  only  the  ones  with  at                 

least   25%   are   plotted.  

 
Usage   and   performance  

Reboot  was  designed  to  be  easy-to-install  and  of  straightforward  use.  To  generate  a              

genetic  signature,  Reboot  only  requires  a  matrix  of  survival  data  along  with  gene/transcript              

expression  values  as  input  in  the  form  of  a  “.tsv”  file.  This  file  should  contain  as  its  first  three                    

columns  the  sample  identifiers,  the  survival  status  of  individuals  ( e.g.,  0  =  alive  or  1  =  dead)  and                   

the  follow-up  time  ,  as  well  as  gene  expression  values  for  multiple  genes  or  transcripts  across  all                  

individuals  (file  rows).  In  order  to  test  a  genetic  signature,  Reboot  requires  in  addition  to  survival                 

and  expression  data,  a  signature  matrix  with  the  previously  produced  regression  coefficients             

(“.tsv”  file),  which  is  not  necessary  when  "Complete"  mode  is  run.  In  case  a  multivariate  survival                 

analysis  is  requested  by  the  user,  an  additional  file  containing  clinical  variables  to  be  tested                

should  also  be  provided  (“.tsv”  file; (Bradburn  et  al.  2003a)) .  Figure  S6  shows  summarized               

examples   of   inputs   to   Reboot.  

As  output,  Reboot  generates  two  main  textual  results  (“.tsv”  files):  (i)  a  list  of  genes  or                 

transcripts  that  comprise  the  genetic  signature  and  their  corresponding  regression  coefficients,            

which  explain  the  contribution  of  each  gene  or  transcript  to  the  signature;  and  (ii)  the  survival                 

impact  of  the  signature  score,  including  hazard  ratio  estimates,  log-rank  p-values,  number  of              

samples  and  median  survival  per  group,  among  others.  In  addition,  multiple  plots  are  produced:               

(i)  a  lollipop  plot,  displaying  the  ten  most  significant  gene  coefficients  comprising  the  signature;               
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(ii)  a  coefficient  histogram,  displaying  the  distribution  of  all  gene  coefficients  in  the  signature;               

(iii)  a  proportional  hazard  assumptions  plot  (Schoenfeld  test);  and  (iv)  a  Kaplan-Meier  plot              

(Figure  1) .  Should  the  multivariate  option  be  chosen,  Reboot  returns  all  files  and  plots  generated                

in  the  univariate  analysis  plus  an  additional  file  (in  “.tsv”  format  as  well)  containing  the  survival                 

results  of  the  signature  score  along  with  all  other  clinical  variables,  also  visible  as  a  forest  plot.                  

Furthermore,  if  the  score  stratification  is  performed  with  the  ROC  method,  the  curve  is  also                

plotted.  Finally,  a  histogram  of  co-variable  frequencies  is  also  provided  in  case  the  multivariate               

option   was   done   with   bootstrap   resampling.  

In  order  to  analyze  the  performance  and  features  of  Reboot,  we  built  a  toy  dataset                

containing  clinical  and  random  gene  expression  data  from  The  Cancer  Genome  Atlas  (TCGA;              

(Grossman  et  al.  2016) ) Tables  S1  and  S2 .  Correlation  between  the  number  of  iterations  and                

execution  time  was  assessed  by  varying  the  number  of  iterations  and  keeping  group  size  and                

number  of  instances  (patients)  constant  in  two  independent  tests  using  either  a  server  or  a  laptop                 

(see  Methods  for  details).  As  expected,  a  linear  behavior  for  running  time  was  observed  and                

server  performance  was  slightly  better  than  laptop.  Considering  Reboot  modules  separately,            

regression  massively  accounts  for  the  total  running  time (Figure  2A  and  Figure  2B) .  In  another                

test,  group  size  variation  was  also  evaluated,  while  the  number  of  iterations  and  patients  was  kept                 

constant.  In  contrast  to  the  previous  experiment,  group  size  variation  presented  a  weak  linear               

correlation.  Nevertheless,  the  server  again  performed  slightly  better  both  in  regression  and             

survival  modules,  and  time  proportion  between  them  showed  a  preponderance  of  the  regression              

module,  as  expected (Figure  S2A,  Figure  S2B) .  Furthermore,  the  number  of  patients  also              

presented   a   linear   behavior   when   tested   in   an   isolated   way    (Figure   S2C) .   

The  frequency  of  sampling  for  the  analysis  follows  a  distribution  in  which  the  expected               

average  is  given  by  equation  1,  where  “G”  is  the  group  size,  “B”  the  number  of  iterations,  and                   

“N”   the   total   number   of   attributes.  

 

Equation   (1)   
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Since  “B”  and  “G”  are  both  directly  proportional  to  attribute  frequency,  we  also  sought  to                

compute  time  correlation  of  different  increasing  rates  of  group  size  and  number  of  iterations  with                

time.  For  this  analysis,  a  larger  group  of  500  genes  was  randomly  selected,  similar  to  data                 

retrieved  previously (Table  S3) .  Both  variables  were  increased  by  powers  of  2  and  3  and                

multiplied,  resulting  in  two  curves  containing  points  with  the  same  frequency (Figure  2C) .              

Group  size  increase  was  more  efficient  (lower  time  consumption)  for  small  frequency  values              

when  compared  to  the  number  of  iterations.  However,  group  size  exhibits  exponential  behavior,              

whereas  number  of  iterations  remains  linear,  even  for  high  values,  indicating  that  increasing  the               

number  of  iterations  is  more  efficient  for  high  attribute  coverage (Figure  2C) .  Besides  time               

performance,  large  group  sizes  may  introduce  convergence  issues  as  dimensionality  increases.            

Reboot  deals  with  convergence  failure  by  reshuffling  and  recomputing  coefficients,  which  may             

also   introduce   bias   for   large   groups.  

Additionally,  we  performed  assays  to  compare  the  impact  of  algorithm  differences  and  to              

justify  why  we  picked  LASSO  instead  of  others.  Firstly,  LASSO  and  Ridge  regressions (Hoerl               

and  Kennard  1970)  were  run  with  a  group  size  of  10  and  1000  iterations (Figure  2D) .  Non-zero                  

coefficients  were  extracted  and  a  distribution  was  built  for  each  analysis.  As  expected,  the               

LASSO  algorithm  used  in  Reboot  compresses  coefficients  more  efficiently,  denoted  by  the             

highly  populated  regions  around  0  in  relation  to  Ridge (Figure  2D) .  Remarkably,  LASSO  also               

tends  to  keep  significant  coefficients  closer  to  0,  while  Ridge  allows  drastic  distancing  from               

coefficients (Figure  2D) .  LASSO  also  exhibits  its  variable  selection  feature,  compressing            

coefficients   to   zero,   and   leaving   a   lower   number   of   significant   coefficients    (Figure   S1D) .  

Finally,  we  scrutinized  the  total  sampling  frequency  of  the  attributes.  Data  obtained  for              

Figure  S1A  was  used  to  compute  gene  frequency,  according  to  equation  1,  by  varying  “G”                

(Figure  2E) .  Mean  standard  deviation  for  all  eight  distributions  was  4.93,  contributing  to  a               

reliable  uniformity  of  variable  assessment  despite  the  stochastic  process  associated  with  the             

iterative  process.  Obtaining  a  satisfactory  frequency  depends  on  the  total  number  of  attributes              

“N”,  the  group  size  chosen  “G”  and  the  number  of  iterations  “B”.  It  is  recommended  that  the                  

frequency  of  each  attribute  be  N/G.  In  accordance  with  equation  1,  “B”  may  be  chosen  in  terms                  

of   equation   2.   
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Given  that  a  free  variation  of  “B”  performs  better  in  terms  of  computational  time  and                

prevents  bias,  “G”  may  be  chosen  for  restricted  lower  values  and  “B”  estimated,  with  no                

restrictions.  

 

 
Figure  2:  Reboot  is  computationally  efficient.  (A)  Evaluation  of  total  execution  time  for  a  Reboot  complete  run  in                   
a  server  and  a  laptop  according  to  the  number  of  iterations.  Number  of  iterations  varied  from  100  to  1000  in  steps  of                       
100,  keeping  group  size  20,  145  patients,  and  50  randomly  chosen  genes.  Survival  was  performed  in  multivariate                  
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mode.  (B)  Table  with  extracted  parameters  obtained  in  A.  (C)  Time  assay  comparing  the  impact  of  group  size  and                    
the  number  of  iterations  on  time  of  execution.  Group  size  and  the  number  of  iterations  varied  from  3  to  243  in                      
powers  of  3  and  from  2  to  32  in  powers  of  2,  respectively,  in  both  curves.  Legend  attribution  corresponds  to  the                      
variable  that  varied  in  powers  of  3.  (D)  Coefficient  distribution  profile  obtained  from  LASSO  and  Ridge  algorithms.                  
(E)  Frequency  distribution  of  attribute  selection  performed  with  group  size  variation.  Theoretical  average  is  shown                
in   dashed   lines.    
 
 
Using   Reboot   to   identify   genes   related   to   prognosis   in   glioblastoma  

 

To  show  how  straightforward,  useful  and  fast  Reboot  can  be,  we  have  applied  it  to  a  set  of  1,013                    

protein-coding  genes  up-regulated  in  glioblastoma  (GBM)  in  comparison  to  low-grade  glioma            

(LGG)  patients  (log2FoldChange  ≥  2  and  FDR  adjusted  p-value  <  0.05; Table  S4 ).  Reboot  was                

executed  using  the  “regression”  module  parameters  “-G  10  -P  0.3  -V  0.01  -B  1000”  and  its                 

execution  took  1.15  hours  in  a  standard  server  (see  Methods).  As  a  result,  we  identified  255                 

genes   associated   with   patients'   overall   survival    (Table   S5) .   

To  determine  whether  these  255  genes  could  be  important  in  GBM  patient  prognosis,  we               

further  investigated  them.  First,  we  performed  functional  enrichment  analysis  that  revealed  131             

genes  (51.37%)  associated  with  several  hallmarks  of  cancer  according  to  the  Molecular             

Signatures  Database  (FDR < 0.01,  hypergeometric  test; Table  S6,  Figure  3A ).  Among  the  top  10              

enriched  hallmarks,  we  found  49  genes  linked  to  at  least  2  hallmarks  relevant  for  glioblastoma                

progression  and  invasion,  including  those  defining  epithelial-mesenchymal  transition (Iwadate          

2016) ,  encoding  components  of  blood  coagulation (Navone  et  al.  2019) ,  as  well  as  genes               

up-regulated  in  response  to  hypoxia (Monteiro  et  al.  2017)  and/or  by  KRAS  activation (Holmen               

and  Williams  2005) ,  among  others.  Genes  associated  with  GBM  patients'  survival  were  also              

enriched  in  a  number  of  GO  biological  processes  and  glioblastoma-related  KEGG  pathways             

(FDR < 0.01,  hypergeometric  test; Tables  S7-S8,  Figure  3B ).  GO  groups  include,  but  are  not              

limited  to,  processes  related  to  inflammatory  response,  cell  adhesion,  proliferation,  and  motility,             

while  the  glioblastoma-related  KEGG  pathways  with  the  greatest  number  of  genes  were             

proteoglycans/pathways   in   cancer,   PI3K-Akt   signaling   pathway,   and   focal   adhesion.  
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Figure  3. Functional  enrichment  analysis  of  genes  associated  with  glioblastoma  patients'  overall  survival              
obtained  using  Reboot  regression.  (A)  Top  10  enriched  hallmarks  of  cancer  and  genes  associated  with  at  least  2  of                    
them;  (B)  Groups  of  enriched  GO  biological  processes  and  glioblastoma-related  KEGG  pathways;  (C)              
Network-based  on  protein-protein  interactions  from  STRING  database  with  cancer  driver  genes  highlighted  in  bold;               
(D)  Schematic  diagram  of  how  up-regulation  of  15  genes  in  glioblastoma  may  lead  to  activation  of  the  PI3K-Akt                   
signaling   pathway   (simplified   KEGG   representation   with   gene   products   highlighted   in   blue).  

 

We  also  conducted  a  protein-protein  interaction  analysis  using  these  255  genes,  which             

displayed  a  highly  connected  gene  network  comprising  four  cancer  driver  genes  according  to  the               

Cancer  Gene  Census  (CGC)  database  ( https://cancer.sanger.ac.uk/cosmic/census ; Figure  3C ):         
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COL1A1,  EGFR,  CDK4,  and  CDKN2C.  Moreover,  according  to  CGC,  six  other  driver  genes              

were  observed  in  the  produced  signature,  most  of  them  having  an  oncogenic  role  ( Table  S9 ).                

Several  genes  associated  with  GBM  initiation  and  progression  were  also  observed  in  the              

network,  including  EGFR,  MMP2,  HSPG2,  and  various  members  of  the  collagen  gene  family              

( e.g. ,  COL1A1,  COL1A2,  and  COL5A1),  which  encode  components  of  the  extracellular  matrix.             

Of  note,  fibronectin  (FN1)  was  the  top  enriched  gene  in  our  network. A n  intracranial  GBM                

xenograft  model (Serres  et  al.  2014)  showed  that  expression  of  FN1  promotes  cell  proliferation               

and  resistance  to  ionizing  irradiation,  facilitates  cell  invasion  and  enhances  angiogenic  tumor             

growth.  More  recently, (Liao  et  al.  2018)  provided  evidence  that  fibronectin  silencing  in  gliomas               

is  associated  with  disruption  of  the  PI3K-Akt  signaling  pathway  and  subsequent  inhibition  of  cell               

proliferation,  as  well  as  promotion  of  cell  apoptosis  and  senescence.  Accordingly,  we  observed              

15  genes  highly  expressed  in  GBM  mostly  encoding  activators  of  the  PI3K-Akt  signaling              

pathway (Figure  3D) ,  which  is  frequently  activated  in  GBM  (approximately  90%; (Langhans  et              

al.  2017;  Li  et  al.  2016) .  Altogether,  these  255  candidates  contain  many  genes  already  reported  as                 

relevant  to  GBM  origin,  maintenance  and  progression,  suggesting  that  Reboot  consistently            

selected   a   gene   list   potentially   related   to   prognosis   in   glioblastoma.  

 

Using   Reboot   to   identify   a   minimal   gene   signature   relevant   to   GBM   survival  

 

Next,  we  sought  to  determine  the  minimum  gene  set  with  the  highest  regression  coefficients  that                

are  capable  of  explaining  differences  in  overall  survival  (OS)  of  GBM  patients  using  Reboot               

“survival”  module  in  multivariate  mode  (run  in  docker  with  parameters  “-M  -C”;  execution  time               

~10  seconds  in  a  standard  laptop).  Out  of  the  total  255  genes  associated  with  patients'  overall                 

survival  using  Reboot (Figure  4A;  Table  S4) ,  we  identified  three  candidates:  IKBIP,  OSMR,              

PODNL1.  They  are  among  the  top  10  genes  identified  as  the  most  relevant  for  the  prognosis  of                  

GBM  patients (Figure  4B) and  are  over-expressed  in  GBM  samples  in  comparison  to  low-grade               

glioma  (LGG) (Figure  4C) .  Moreover,  IKBIP,  OSMR,  PODNL1  combined  score  has  a             

significant  impact  on  survival  of  GBM  patients  (HR=0.48  95%  CI:  [0.32-0.71],  p-value  <  0.001;               

Figure  4D ).  The  median  OS  for  patients  with  a  high  score  (>  0.34)  was  335  days,  yet  for  the  low                     
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score  group  was  468  days.  More  importantly,  the  obtained  risk  score  remained  significant  (HR  =                

0.53  95%  CI:  [0.33-0.86),  p-value  =  0.01, Figure  4E )  even  when  considered  together  with               

relevant  clinical  parameters  for  GBM  patients,  including  age  at  diagnosis,  chromosome  19/20             

co-gain,   G-CIMP,    IDH1    mutation,   and    MGMT    methylation   status.   

 

 

 
Figure  4.  Reboot’s  application  on  the  glioblastoma  dataset.  (A)  Histogram  displaying  the  distribution  of  all  gene                 
coefficients  obtained  using  Reboot  regression;  (B)  Top  10  genes  identified  as  relevant  for  the  prognosis  of  GBM                  
patients;  (C)  Boxplots  displaying  the  expression  values  of  a  3-gene  signature  identified  in  GBM  patients  with                 
Reboot  (Wilcoxon  test;  **p<0.01,  ***p<0.001);  (D)  Kaplan-Meier  curve  based  on  the  3-gene  signature  score               
identified  in  GBM  patients  with  Reboot;  and  (E)  Forest  plot  of  a  multivariate  model  including  the  3-gene  signature                   
score   adjusted   for   clinical   parameters   relevant   to   prognosis   in   glioblastoma.  

 

In  addition,  we  attempted  to  validate  this  three-gene  signature  in  an  independent  cohort  of               

71  primary  glioblastoma  patients  from  the  Chinese  Glioma  Genome  Atlas  (CGGA).  Similarly,             

higher  combined  scores  tended  to  be  associated  with  worse  prognosis  of  GBM  patients              

(HR=0.66  95%  CI:  [0.38-1.15],  p-value  =  0.14; Figure  S1 ).  The  median  OS  for  patients  with                
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higher  scores  (>  0.44)  was  381  days  versus  550  days  for  the  low  score  group.  Although  we                  

observed  a  clear  separation  between  the  higher  and  lower  score  groups  in  the  CGGA  cohort,  the                 

lack  of  statistical  support  might  be  explained  by  the  smaller  CGGA  cohort  size  and  sequencing                

depth  (71  samples,  ~22.5  million reads  on  average)  compared  to  TCGA  (154  samples,  ~64.8               

million reads  on  average).  Thus,  this  result  indicated  that  Reboot  was  efficient  in  selecting  a                

minimal  gene  signature,  in  which  a  high  expression  is  associated  with  worse  prognosis  to  GBM                

patients.  

 

Finding  alternative  splicing  isoforms  signature  relevant  to  pancreatic         

adenocarcinoma   patients'   prognosis   with   Reboot  

 

Next,  we  used  Reboot  to  find  splicing  isoforms  related  to  pancreatic  adenocarcinoma  patients'              

prognosis.  First,  we  retrieved  expression  data  from  167  healthy  pancreatic  tissues  from  The              

Genotype-Tissue  Expression  (GTEx; (Carithers  et  al.  2015)  and  from  177  pancreatic            

adenocarcinomas  (PAAD)  samples  from  TCGA (Grossman  et  al.  2016) .  For  cancer  data,  we  also               

obtained  their  respective  clinical  information (Liu  et  al.  2018) .  Next,  by  using  Kallisto (Bray  et                

al.  2016)  and  SUPPA2 (Trincado  et  al.  2018)  tools  ,  we  found  a  complete  set  of  alternative                  

splicing  isoforms  (ASI)  in  pancreatic  adenocarcinoma,  which  fed  the  Reboot’s  algorithm  to             

perform   the   signature   (part   I)   and   the   survival   (part   II)   analyses   ( Figure   5A) .  

We  found  386  significantly  ASI,  of  which  224  and  162  were  up-regulated  and              

down-regulated,  respectively,  in  PAAD  versus  healthy  pancreas  tissue (Figure  5B) .  To  prove  the              

Reboot  robustness  in  candidate  selection,  we  randomly  split  the  initial  ASI  data  into  training               

(70%)  and  validation  (30%)  sets (Figure  5C) .  When  applying  the  “regression”  module  on  the               

training  dataset  (parameters:  -B  100  -G  10  -P  0.3  -V  0.036  -F  FALSE;  its  execution  took  4.71                  

minutes  in  a  standard  laptop),  a  signature  with  62  transcripts  emerged (Table  S10  and  Figure                

S3) .  After  setting  a  cutoff  of  0.035  to  coefficients,  Reboot  found  a  minimal  signature  of  seven                 

transcripts  (CENPF-201;  MLKL-202;  NUP54-201;  MCF2L-201;  TFDP1-207;  BBS1-206;        

HTT-202)   presenting   significant   survival   results    (Figure   5C   and   S4,   Table   S10) .  
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Figure  5.  Reboot  selects  alternative  splicing  isoforms  associated  with  pancreatic  adenocarcinoma            

tumorigenesis  and  its  patient's  prognosis.  (A)  Selection  of  alternative  splicing  isoform  (ASI)  based  on  transcript                

expression  data  from  healthy  (GTEx)  and  tumoral  (TCGA)  pancreas.  (B)  MA  plot  showing  the  mean  expression  (in                  

TPM)  and  ΔPSI  (percent  spliced  in)  values  of  all  ASI.  Highlighted  ASIs  compose  the  seven-transcripts  signature                 

generated  with  Reboot.  (C)  ASI  data  was  split  into  training  (70%)  and  validation  (30%)  set  to  find  a  transcript                    

signature  in  survival  analysis.  Kaplan-Meiers  made  by  Reboot  when  using  both  the  training  (HR:  0.4428  [0.2719  -                  

0.7211];  p  =  8e-04)  and  the  validation  dataset  (HR:  0.2791  [0.1191  -  0.6541];  p  =  0.0018)  showed  a  worse  survival                     

outcome  for  patients  with  higher  scores  (above  median  value).  Follow-up  time  (days)  is  shown  in  the  bottom  for                   

each  group.  (D)  MCF2L  mapping  on  the  reference  genome  (1).  Canonical  (longer:  MCF2L-232)  and  ASI  (shorter:                 

MCF2L-201)  isoforms,  respectively(2).  Protein  domains  encoded  from  canonical  (MCF2L-232)  and  ASI            

(MCF2L-201)  isoforms,  respectively.  (3).  Predicted  3D  protein  structure  for  canonical  (MCF2L-232)  and  ASI              

(MCF2L-201)   transcripts   (4).  

 

When  testing  the  signature  with  module  II  (survival)  of  Reboot  on  the  validation  dataset               

(53  patients;  parameters:  -M  TRUE  -R  FALSE  -F  FALSE;  execution  time  ~5  seconds  in  a                

standard  laptop),  we  found  that  patients  with  higher  scores  (values  above  the  median)  had  worse                

overall  survival  (HR:  0.2791  [0.1191  -  0.6541];  p-value  =  0.0018; Figure  5C  and  Figure  S4) .                

The  median  OS  for  patients  in  the  high  score  group  (>  0.17)  was  684  days,  whereas  this  value                   

could  not  be  calculated  in  the  low  score  group  since  less  than  half  of  the  patients  died.                  
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Furthermore,  this  result  remained  statistically  significant  after  the  multivariate  analysis,           

accounting  for  relevant  clinical  variables  such  as  age,  gender,  race,  Tumor  Node  Metastasis              

(TNM)  classification (Amin  et  al.  2017) ,  histology,  and  grade  (HR:  0.3806  [0.1569  -  0.923];               

p-value  =  0.0326; Figure  S4) .  Additionally,  the  same  results  were  observed  when  applying  the               

score  on  the  training  dataset,  as  expected (Figure  S4) ,  where  the  median  OS  for  patients  in  the                  

high  score  group  (>  0.28)  was  517  days  versus  1332  days  for  the  low  score  group.  Of  note,  other                    

endpoints  such  as  Disease-Specific  (DSS),  Progression-Free  (PFI)  or  Disease-Free  Interval  (DFI)            

may  be  used  instead  in  order  to  better  fit  the  data  and  meet  survival  requirements (Liu  et  al.                   

2018) .  

Further  investigation  was  performed  for  transcripts  with  major  contributions  to  the            

genetic  score (Figure  S4) .  MCF2L-201,  which  had  a  significant  positive  score,  lacks  three              

protein  domains:  RhoGEF,  Spectrin  and  CRAL_TRIO_2,  which  are  all  present  in  the  canonical              

isoform  MCF2L-232 (Figure  5D) .  However,  MCF2L-201  maintains  PH  and  SH3_2,  which  are             

also  present  in  the  canonical  isoform.  Another  isoform,  HTT-202,  which  scored  negatively  in  our               

signature,  lacks  the  huntingtin  protein  region  DUF3652,  present  in  the  canonical  isoform             

HTT-201 (Figure  S5) .  Taken  together,  these  results  demonstrate  that  Reboot  is  effective  not  only               

to   identify   relevant   genes   but   also   splicing   isoforms   related   to   cancer.  
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DISCUSSION  
 

In  the  past  few  years,  advances  in  RNA  sequencing  technology  have  provided  us  an               

unprecedented  opportunity  to  find  novel  gene  signatures  acting  as  prognostic  or  diagnostic             

biomarkers  in  cancer (Byron  et  al.  2016) .  Notwithstanding,  treating  high  dimensionality  of  gene              

expression  integrated  with  clinical  variables  are  major  challenges  when  performing  this  analysis,             

notably  by  researchers  without  extensive  training  in  computational  biology.  It  is  therefore  an              

urgent  task  to  establish  robust  and  straightforward  methods  capable  of  handling  ultra-large             

datasets  and  finding  these  genes.  Here  we  describe  Reboot,  a  user-friendly  algorithm  to  seek,               

evaluate,  and  validate  genes  and  splicing  isoforms  signatures  acting  as  prognostic  or  diagnostic              

biomarkers  in  cancer.  Reboot  is  original  and  efficient:  i)  it  combines  a  multivariate  strategy  with                

penalized  Cox  regression  (LASSO  method)  and  a  bootstrap  approach,  plus  a  variety  of  statistical               

tests  to  find  genes  or  transcripts  candidates;  ii)  it  is  easy-to-use,  well  documented,  and  of  simple                 

installation;  iii)  it  includes  effortless  steps  to  plot  its  results  and  to  facilitate  data  interpretation                

and   further   analyses.  

Availability  of  tools  that  manage  to  escalate  genetic  score  analysis  with  high  dimensional              

datasets,  such  as  those  found  in  gene  expression  data,  are  scarce.  Beyond  that,  to  the  best  of  our                   

knowledge,  there  is  no  state-of-the-art  pipeline  that  integrates  posterior  validation,  including            

clinical  data,  gene,  and  splicing  isoforms  expression.  As  genetic  analyses  get  wider  in  order  to                

capture  the  complexity  of  intricate  diseases  such  as  cancer (Frampton  et  al.  2013;  Cheng  et  al.                 

2015;  Campesato  et  al.  2015) ),  coverage  of  the  transcriptome  with  more  genes  or  transcripts               

(splicing  isoforms)  becomes  crucial,  which  significantly  raises  the  dimension  of  input  datasets.             

Moreover,  beyond  all  implemented  filters  that  automate  pre-processing,  bootstrapping  strategy           

allows  a  wide  range  of  dataset  dimensions.  For  instance,  the  number  of  iterations  has  a  strong                 

linear  correlation  with  time.  The  association  with  the  LASSO  algorithm,  which  presents  a  strong               

variable  selection  feature,  balances  score  attributes  in  the  analysis,  yielding  less  false  positives              

but  still  exhibiting  gains  of  a  multivariate  analysis.  All  of  these  approaches  were  included  in                

Reboot,   which   introduces   a   robust,   complete,   and   computationally   efficient   algorithm.  
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We  selected  and  tested  Reboot  on  data  from  glioblastoma  (GBM)  and  pancreatic             

adenocarcinoma  (PAAD),  two  cancer  types  presenting  a  poor  survival  rate  and limited             

therapeutic  options  for  their  patients (Kleeff  et  al.  2016) (Di  Carlo  et  al.  2019) (Kleeff  et  al.  2016) .                 

First,  we  identified  prognostic  genes  in  GBM,  which  were  associated  with  a  number  of  processes                

relevant  for  glioblastoma  tumorigenesis,  progression,  and  invasion  ( e.g.,  epithelial-mesenchymal          

transition,  inflammatory  response,  and  cell  proliferation).  This  list  includes  genes  already            

described  as  related  to  GBM  or  other  gliomas.  In  particular,  the  epidermal  growth  factor  receptor                

(EGFR)  is  a  primary  driver  of  glioblastoma  tumorigenesis,  contributing  mainly  to  cell             

proliferation  and  invasion (Huang  et  al.  2009) .  MMP2  is  also  highly  expressed  in  gliomas  and  it                 

was  recently  associated  with  stimulation  of  vasculogenic  mimicry  in  glioma  cells (Liu  et  al.               

2019) .  HSPG2,  in  glioma  tissues,  is  associated  with  the transformation  of  brain  extracellular              

matrix  into  tumour  microenvironment  and  represents  a  negative  prognostic  factor  in  overall  and              

relapse-free   survival    (Ma   et   al.   2018;   Kazanskaya   et   al.   2018) .  

Next,  by  using  the  “survival”  module  in  multivariate  mode,  Reboot  found  a  signature              

containing  three  genes  (IKBIP,  OSMR,  and  PODNL1)  associated  with  GBM  patients’  overall             

survival.  Interestingly,  they  have  emerged  as  prominent  genes  in  glioblastoma:  i)  IKBIP  has  been               

described  as  a  novel  p53  target  with  pro-apoptotic  activity,  whose  high  expression  is  associated               

with  poor  prognosis  in  GBM (Cao  et  al.  2019;  Long  and  Li  2019) .  Although  in  our  results                  

MGMT  methylation  was  not  considered  a  significant  co-variable,  another  study  has  identified             

gene  IKBIP  as  part  of  a  signature  that  predicts  prognosis  only  in  GBM  patients  with  methylated                 

MGMT  promoter (Wang  et  al.  2016) .  OSMR,  characterized  as  a  novel  key  regulator  of               

glioblastoma  tumorigenesis  through  EGFRvIII-STAT3  signaling,  also  correlates  with  poor          

prognosis  in  GBM  patients  both  independently  and  also  as  part  of  a  4-gene  signature (Mohan  et                 

al.  2017;  Cao  et  al.  2019) .  Interestingly,  PODNL1  encodes  a  protein  involved  in  extracellular               

matrix  formation  with  an  unclear  role  in  GBM  tumorigenesis.  The  latter  gene  up-regulation  has               

also  been  correlated  with  the  poorest  survival  rates  in  GBM  patients  in  distinct  studies (Shergalis                

et  al.  2018;  Yan  et  al.  2013) .  Altogether,  Reboot  identified  a  valuable  set  of  genes  to  be  further                   

and   deeper   investigated   in   GBM.  
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Second,  we  used  Reboot  to  seek  for  alternative  splicing  isoforms  associated  with             

pancreatic  adenocarcinoma  (PAAD)  patients'  prognosis.  As  illustrated  in  our  analyses,  a  genetic             

score  obtained  from  differentially  expressed  transcripts  stratifies  patients  with  bad  and  good             

prognosis  as  efficiently  as  from  gene  analyses.  Interestingly,  a  signature  score  with  only  seven               

transcripts  was  enough  to  yield  statistical  significance  in  the  survival  analysis  of  PAAD  patients.               

Among  them,  only  three  isoforms  are  canonical  (CENPF,  MLKL,  NUP54).  Some  of  these  genes               

( e.g.,  CENPF,  MLKL,  TFDP1,  MCF2L)  have  a  known  influence  on  cancer,  while  others  ( e.g.,               

NUP54,  BBS1,  and  HTT)  have  been  superficially  studied  in  a  tumoral  context.  CENPF,  for               

instance,  was  already  related  to  worse  outcomes  and  survival  in  several  cancer  types  (R.  Li  et  al.                  

2020;  H.-B.  Liu,  Huang,  and  Luo  2020;  Garcés  et  al.  2020;  Ying  Liu  et  al.  2020).  Another  great                   

example  is  the  MLKL  gene.  This  gene  was  shown  to  be  up-regulated  in  pancreatic  cancer,  as  we                  

observed  with  Reboot,  especially  under  the  context  of  invasion  (Ando  et  al.  2020).  The               

transcription  factor  TFDP1  is  another  gene  whose  functions  remain  uncovered  in  cancer,  but              

significant  somatic  copy  number  alterations  and  corresponding  somatic  gene  expression  changes            

were  observed  in  papillary  thyroid  carcinomas  (Yang  et  al.  2020).  Additionally,  it  is  considered  a                

prognostic  marker  in  liver  cancer  (unfavorable),  stomach  cancer  (favorable)  and  renal  cancer             

(favorable)  according  to  The  Human  Protein  Atlas  (Uhlen  et  al.  2017).  Inconsistencies  in  these               

results  may  have  arisen  from  a  possible  divergence  of  the  role  of  different  isoforms  from  this                 

gene.  Our  results  indicate  that  an  isoform  (TFDP1-207,  down-regulated  in  our  analysis)  other              

than  the  canonical  (TFDP1-201,  up-regulated  in  our  data)  is  of  great  significance  for  PAAD               

patient  prognosis,  an  evidence  that  more  detailed  scrutiny  is  required  for  this  gene              

(https://www.proteinatlas.org/ENSG00000198176-TFDP1/pathology).  Taken  together,  it  is  clear       

that  transcript-centered  analysis  may  shed  light  on  more  detailed  molecular  mechanisms  that             

would  not  be  possible  in  a  gene-based  analysis.  Therefore,  the  results  provided  by  Reboot  seem                

trustworthy   and   robust.   

Nucleoporin  54  (NUP54),  on  the  other  hand,  has  not  been  extensively  studied  in  cancer.               

Even  though  an  association  between  larger  tumor  size  and  loss  of  heterozygosity  (LOH)  in               

NUP54  was  found  in  patients  with  hepatocellular  carcinoma,  potentially  playing  an  important             

role  in  its  development  and  progression  (G.-L.  Huang  et  al.  2010).  Moreover,  it  was  recently                
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reported  a  novel  function  for  NUP54  in  the  response  to  ionizing  radiation  and  the  maintenance  of                 

homologous  recombination-mediated  genome  integrity  in  cell  lines  (Rodriguez-Berriguete  et  al.           

2018).   

Among  the  best-scored  transcripts,  MCF2L-201,  which  was  found  to  be  up-regulated  in             

PAAD,  is  a  compelling  example.  The  canonical  isoform  of  the  MCF2L  gene  (MCF2L-232)              

encodes  DBL  from  the  Guanine  Exchange  Factor  protein  family,  known  to  directly  interact  and               

regulate  important  factors  for  cell  cycle  such  as  Cdc42  and  RhoA  complexes  (Jaiswal  et  al.                

2013).  It  has  been  shown  that  the  minimal  and  sufficient  catalytic  activity  of  DBL  is  composed                 

of  a  DH  and  a  PH  domain  linked  in  tandem  (Cerione  and  Zheng  1996).  Although  MCF2L-201                 

does  not  present  a  DH  domain,  it  keeps  a  PH  and  a  SH3  domain.  PH  domains  perform  essential                   

contact  with  Cdc42  and  RhoA  in  the  DBL  structure  (Snyder  et  al.  2002).  They  are  also  known  to                   

be  responsible  for  protein  subcellular  localization  and  phosphoinositide  interaction  (Zheng  et  al.             

1996;  Han  et  al.  1998).  Moreover,  SH3  (Src  homology  3)  domains  are  abundant  in  oncogenic                

pathways  such  as  cell  migration  and  proliferation,  distributed  along  with  many  different  protein              

structures  (Birge  et  al.  1996).  SH3  domains  have  also  been  implicated  in  pancreatic  cancer               

specifically  due  to  its  relevance  for  oncogenic  pathways  (Thalappilly  et  al.  2008).  Although  a               

few  isoforms  of  MCF2L  have  been  initially  explored,  such  as  MCF2L-203  -  which  does  not                

catalyze  guanine  nucleotide  exchange  on  CDC42  -  and  MCF2L-205  -  which,  on  the  other  hand,                

activates  CDC42 (Ueda  et  al.  2004)  -  MCF2L-201  requires  further  investigation.  Details  about              

how  the  PH-SH3  protein  may  act  and  its  role  in  pancreatic  cancer  deserve  deeper  analyses,  even                 

though   our   study   provides   some   guidance   on   that.   

 Despite  the  fact  that  Huntingtin  is  mostly  known  to  cause  Huntington  disease  by  the                

expansion  of  the  trinucleotide  CAG  in  its  first  exon,  it  has  a  wide  tissue  expression  and  its                  

trinucleotide  expansion  has  been  correlated  to  tumor  progression,  including  metastasis,  and            

inversely  correlated  to  carcinogenesis  (Thion  and  Humbert  2018).  Huntingtin  transcript  HTT-202            

is  non-canonical  and  we  found  it  down-regulated  in  pancreatic  tumors.  Its  protein  structure              

presents  neither  the  characteristic  polymorphic  trinucleotide  repetitive  region  nor  the  main            

huntingtin  annotated  domain:  DUF3652;  thus,  its  function  is  an  enigma.  A  similar  case  involves               

the  BBS1  gene  since  it  is  most  known  for  its  association  with  the  Bardet-Biedl  Syndrome  (BBS)                 
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(Forsythe  and  Beales  2003) (Beales  et  al.  2000) (Forsythe  and  Beales  2003) .  More  interesting  is              

the  fact  that  higher  expression  of  BBS1  was  related  to  better  survival  in  patients  with  malignant                 

pleural  mesothelioma (Vavougios  et  al.  2015) ,  although  in  our  PAAD  signature  this  gene  was               

down-regulated.  Furthermore,  BBS1  was  part  of  a  15-gene  signature  associated  with  bone             

metastasis  in  breast  carcinomas.  Specifically,  its  up-regulation  was  correlated  to  the  epithelial  to              

mesenchymal  transition  status  of  the  tumor (Savci-Heijink  et  al.  2016) .  Thus,  Reboot’s  algorithm              

makes  splicing  isoform  expression  analysis  feasible  in  cancer  prognosis,also  providing  clues  to             

decipher   unclear   molecular   mechanisms   of   tumorigenesis   and   cancer   progression.  

 

CONCLUSIONS  

In  conclusion,  here  we  present  Reboot,  an  algorithm  to  seek,  evaluate,  and  validate  genes               

and  transcripts  signatures  acting  as  prognostic  or  diagnostic  biomarkers  in  cancer.  Reboot  brings              

novelties  by  combining  a  multivariate  strategy  with  penalized  Cox  regression  (LASSO  method)             

and  bootstrap  approach,  plus  a  variety  of  statistical  tests  to  find  genes  or  transcripts  candidates.                

Reboot  shows  its  usefulness  by  identifying  prognostic  genes  and  a  minimal  set  of  genes               

associated  with  glioblastoma  patients'  survival  and  a  splicing  isoforms  signature  associated  with             

pancreatic  adenocarcinoma.  We  believe  that  Reboot  will  be  of  immediate  interest  to  the  cancer               

research  community  because  it  will  accelerate  and  democratize  the  search  for  genes  and              

transcripts  biomarkers,  even  by  researchers  and  clinicians  without  extensive  bioinformatics           

training.  
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METHODS  

Usage   and   performance  
 
Expression  and  clinical  data  from  TCGA  were  obtained  from  individuals  that  presented  only  a               

single  primary  glioblastoma  tumor  by  an in-house  R  script  ( toyfordocker.R  found  in             

https://galantelab.github.io/reboot ).  Gene  expression  was  obtained  from  processed  datasets  in          

FPKM.  The  same  50  randomly  picked  genes  were  used  in  all  essays  with  exception  of                

concomitant  group  size  and  number  of  iterations  variation,  in  which  500  genes  were  randomly               

picked.  For  time  comparisons,  laptop  and  server  specifications  are:  CPU:  Intel(R)  Xeon(R)             

Silver  4114,  2.20  GHz,  128  GB  of  ram;  and  CPU:  Intel(R)  Core  (TM)  i7-8550U  1.80  GHz,                 

16GB  of  RAM,  respectively.  All-time  essays  were  computed  with  the  parameter  “M”  and  all               

others  were  set  default  unless  otherwise  stated.  All  linear  regressions  (Pearson)  and  plots  were               

generated   in   R.   

 

Gene   expression   profiles  

Mapped  RNA-seq  and  clinical  data  of  154  and  248  samples  from  patients  with  primary               

glioblastoma  (GBM)  and  low  grade  glioma  (LGG  grade  II),  respectively,  were  downloaded  from              

TCGA (Grossman  et  al.  2016) .  We  also  obtained  RNA  sequencing  and  clinical  data  of  71                

samples  from  primary  GBM  patients  from  the  Chinese  Glioma  Genome  Atlas  (CGGA)  for              

validation  purposes.  All  datasets  were  processed  using  Kallisto (Bray  et  al.  2016)  with              

GENCODE  (v29)  as  reference  to  the  human  transcriptome.  Gene-level  counts  (TPM  normalized)             

were   obtained   using   tximport    (Soneson   et   al.   2015) .  

 

Differential   gene   expression  

Differential  gene  expression  of  GBM  versus  LGG-II  samples  from  TCGA  was  performed  using              

DESeq2 (Love  et  al.  2014) ,  and  we  considered  as  up-regulated  only  genes  presenting  a               

log2FoldChange   ≥   2   and   false   discovery   rate   (FDR)   adjusted   p-value   <   0.05.  

 

Functional   analyses  
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For  Gene  Ontology  enrichment  analysis,  we  used  ShinyGO (Ge  et  al.  2019)  and  REVIGO               

(Supek  et  al.  2011)  web  tools.  ShinyGO  was  also  used  to  evaluate  cancer  hallmarks  from  the                 

Molecular  Signatures  Database  -  MSigDB  (www.gsea-msigdb.org/gsea/msigdb/)  and  KEGG         

pathways  (www.genome.jp/kegg/).  Only  functional  terms  with  an  FDR < 0.01  (hypergeometric          

test)  were  considered  relevant.  Protein-protein  interaction  analysis  was  performed  in  Cytoscape            

(Shannon   et   al.   2003)    using   the   STRING   database    (Szklarczyk   et   al.   2019) .  

 

Transcript   expression   profiles  

Mapped  RNA-seq  data  from  177  tumor  patients  with  pancreatic  adenocarcinoma  from  TCGA             

(Grossman  et  al.  2016) ,  along  with  their  respective  clinical  data  (J.  Liu  et  al.  2018),  were                 

downloaded.  The  TCGA  dataset  was  reprocessed  using  Kallisto (Bray  et  al.  2016)  with              

GENCODE  (v29)  as  reference  to  the  human  transcriptome  and  transcript-level  counts  (TPM             

normalized)  were  obtained  using  tximport (Soneson  et  al.  2015) .  We  directly  downloaded             

transcript-level  TPM  normalized  data  of  pancreatic  samples  from  167  healthy  individuals  from             

The  Genotype-Tissue  Expression  (GTEx;  Carithers  et  al.  2015)  through  the  UCSC  Xena  portal              

(toil.xenahubs.net/).  Only  transcripts  available  in  both  datasets  were  further  considered  in  the             

analyses.  

 

Differential   transcript   expression  

Analysis  of  differential  transcripts  usage  between  tumoral  (pancreatic  adenocarcinoma)  and                    

healthy  pancreatic  samples  from  TCGA  and  GTEx  was  performed  using  SUPPA2  (Trincado                        

et  al.  2018;  version  2.3).  We  considered  as  significant  only  transcripts  presenting  a  |ΔPSI|  ≥                              

0.1  and  FDR  adjusted  p-value  ≤  0.05.              

 

3D   structure   prediction  

MCFL2-201,  MCF2L-232,  HTT-201  and  HTT-202  transcript  sequences  were  submitted  to           

ORFfinder (Tatusov  and  Tatusov  2007)  with  default  values.  The  longest  positive  open  reading              

frames  (ORFs)  were  then  submitted  to  Pfam (Punta  et  al.  2012) .  Finally,  the  amino  acid                
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sequences  of  both  transcripts  were  submitted  to  Phyre2  ( (Kelley  et  al.  2015) version  2.0 (Kelley  et               

al.   2015)    for   3D   structure   prediction   in   “intensive”   mode.  

 

Availability   and   updates  

Reboot  is  implemented  as  an  R  package  that  is  freely  available  under  the  GNU  General  Public                 
Licence  version  3  (GPL3)  at https://galantelab.github.io/reboot/ .  Reboot  updates  will  be           
announced  at  its  webpage  and  each  respective  Docker  image  will  be  released  along  with  new                
versions.  
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