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ABSTRACT 16 

Dollar spot, caused by the fungal pathogen Clarireedia spp., is an economically important 17 

disease of amenity turfgrass in temperate climates worldwide. This disease often occurs in a 18 

highly variable manner, even on a local scale with relatively uniform environmental conditions. 19 

The objective of this study was to investigate mechanisms behind this local variation, focusing 20 

on contributions of the soil and rhizosphere microbiome. Turfgrass, rhizosphere, and bulk soil 21 

samples were taken from within a 256 m2 area of healthy turfgrass, transported to a controlled 22 

environment chamber, and inoculated with C. jacksonii. Bacterial communities were profiled 23 

targeting the 16s rRNA gene, and 16 different soil chemical properties were assessed. Despite 24 

their initial uniform appearance, the samples differentiated into highly susceptible and 25 

moderately susceptible groups following inoculation in the controlled environment chamber. The 26 

highly susceptible samples harbored a unique rhizosphere microbiome with lower relative 27 

abundance of antibiotic-producing bacterial taxa and higher predicted abundance of genes 28 

associated with xenobiotic biodegradation pathways. In addition, stepwise regression revealed 29 

that bulk soil iron content was the only significant soil characteristic that positively regressed 30 

with decreased dollar spot susceptibility during the peak disease development stage. These 31 

findings suggest that localized variation in soil iron induces the plant to select for a particular 32 

rhizosphere microbiome that alters the disease outcome. More broadly, further research in this 33 

area may indicate how plot-scale variability in soil properties can drive variable plant disease 34 

development through alterations in the rhizosphere microbiome. 35 

 36 

IMPORTANCE 37 
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Dollar spot is the most economically important disease of amenity turfgrass, and more fungicides 38 

are applied targeting dollar spot than any other turfgrass disease. Dollar spot symptoms are small 39 

(3-5 cm), circular patches that develop in a highly variable manner within plot-scale even under 40 

seemingly uniform conditions. The mechanism behind this variable development is unknown. 41 

This study observed that differences in dollar spot development over a 256 m2 area were 42 

associated with differences in bulk soil iron concentration and correlated with a particular 43 

rhizosphere microbiome. These findings provide important clues for understanding the 44 

mechanisms behind the highly variable development of dollar spot, which may offer important 45 

clues for innovative control strategies. Additionally, these results also suggest that small changes 46 

in soil properties can alter plant activity and hence the plant-associated microbial community 47 

which has important implications for a broad array of important agricultural and horticultural 48 

plant pathosystems.  49 

 50 

INTRODUCTION 51 

Dollar spot on cool-season turfgrasses in North America is caused by the fungus Clarireedia 52 

jacksonii and is the most economically important disease of amenity turfgrass in temperate 53 

climates around the world (1). It causes roughly circular patches of bleached turfgrass 3 to 5 cm 54 

in diameter that can blight the stand and reduce the functionality of the site for recreational 55 

purposes (2). The primary host of dollar spot is creeping bentgrass (Agrostis stolonifera), and a 56 

lack of host resistance or effective cultural control strategies has made dollar spot the target of 57 

more fungicide applications than any other turfgrass disease (3). Heavy reliance on synthetic 58 

fungicides has led to the development of fungicide resistant fungal populations (4), imposes a 59 

significant financial burden on the turfgrass manager (5), and increases the risk of human and 60 
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environmental contamination resulting from repeated chemical exposures (6). The development 61 

of dollar spot symptoms is often highly variable within several meters distance, even in 62 

uniformly managed turfgrass with nearly identical environmental conditions (7). While it is not 63 

known why dollar spot symptoms develop in such a variable manner, one plausible explanation 64 

is a link to hyperlocal variations in microbial antagonists or variations in soil physical, chemical, 65 

or biological properties.  66 

Spatial variation in plant disease is often observed in both managed and natural plant systems, 67 

and most studies on variation in plant disease incidence and severity have been conducted in 68 

large-scale agricultural fields over tens or hundreds of hectares. A. Adiobo et al. (8) observed 69 

that the physicochemical and microbial properties of andosols suppressed Pythium myriotylum 70 

root rot in cocoyam (Xanthosoma sagittifolium) more effectively than ferralsols. Varied 71 

susceptibility to disease in adjacent fields with similar soil physicochemical characteristics has 72 

commonly been attributed to disease suppressive or disease conducive soils and is often 73 

influenced by cropping history (9, 10). Though on a larger scale than the variation observed in 74 

dollar spot, the pathogen suppression function of a specific suppressive soil has provided some 75 

clues as to how the same soil type could have dramatically different pathogen suppression 76 

functions. Enrichment of the antagonistic microbial population in the rhizosphere often serves as 77 

the key plant pathogen suppression mechanism in previously characterized disease suppressive 78 

soils (11). As a classic example, enriched antibiotic 2,4-diacetylphloroglucinol-producing 79 

fluorescent Pseudomonas species led to a reduction in take-all disease when found in the 80 

rhizosphere of wheat and flax (12). 81 

The rhizosphere microbiome and its functions are co-determined by both the plant and the soil. 82 

The host plant produces root exudates that recruit particular microbes from within the soil (11). 83 
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The soil harbors varied microbial communities shaped by soil type and associated properties, 84 

such as structure and pH (13). Therefore, the rhizosphere microbiome and its microbial disease 85 

suppressive function can shift following changes in the soil environment. H. Peng et al. (14) 86 

varied the chemical and physical properties of Fusarium oxysporum f. sp. cubense suppressive 87 

and conducive soils and showed that soil physicochemical traits can mediate suppressiveness of 88 

both suppressive and conducive soils against the pathogen’s chlamydospores. This suggests that 89 

soil physicochemical and microbial properties can cooperatively affect plant disease suppression 90 

in agricultural fields.  91 

Soil spatial variation in microbial properties is often studied at multiple levels, including micro, 92 

plot, field, landscape and regional scales (15, 16). Over a small plot-scale, spatial variation of 93 

smut disease (Ustilago syntherismae) on crabgrass (Digitaria sanguinalis) was influenced by 94 

both pathogen spore density and spatial location (17). However, soil property influences were 95 

not investigated in this study and spores or other long-distance dispersal mechanisms have never 96 

been associated with dollar spot in a field environment (2). High spatial variations in soil 97 

physicochemical and microbial properties were observed in a managed grassland, including a 98 

wide range of soil pH, nitrogen content, microbial biomass, and microbial catabolism profiles 99 

within the scales of several centimeters to meters (18), but the impact of these variations on 100 

plant-pathogen interactions remained unclear. Recently, Z. Wei et al. (19) examined disease 101 

variation in tomato (Solanum lycopersicum) and observed that the rhizosphere soil bacterial 102 

community effectively predicted the severity of the soil-borne bacterial disease Ralstonia 103 

solanacearum. Similarly, S. Chen et al. (20) observed differences in rhizosphere bacterial 104 

community structure, diversity, acid phosphatase activity, root iron content, and bulk soil 105 

calcium and magnesium between healthy and unhealthy blueberry plants (Vaccinium 106 
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corymbosum). These results again indicate the importance of both soil chemical properties and 107 

the rhizosphere microbiome on plant health over a field-scale or smaller. However, it remains 108 

unknown whether the rhizosphere and/or bulk soil microbiome impacts the disease severity of a 109 

foliar fungal pathogen when interacting with specific soil chemical properties.  110 

In this study, various factors contributing to the localized variation in dollar spot development on 111 

monocultured turfgrass was studied. Rhizosphere and bulk soil microbiomes as well as soil 112 

chemical properties were examined to determine possible causes for the highly variable spatial 113 

nature of dollar spot development. We hypothesized that soil chemical properties and the 114 

rhizosphere microbiome are both significant variables in determining dollar spot disease 115 

susceptibility in a uniformly managed and monocultured turfgrass system. Turfgrass is an 116 

excellent system to study this phenomenon because the high plant density allows for robust 117 

sampling over a small scale. The initial 132 cm2 surface area turfgrass soil plug harbored an 118 

estimated 1,200 individual creeping bentgrass plants, and each sub-sample derived from the soil 119 

core contained 10 to 15 individual plants. By understanding the factors that drive variation in 120 

dollar spot disease development within a plot-scale in a high-density monoculture system, we 121 

may discover mechanisms that can be targeted for improved biological management of a number 122 

of important plant pathogens.   123 

 124 

RESULTS 125 

Dollar spot development. Dollar spot development was measured as decrease of greenness over 126 

time in order to standardize the quantification of disease symptoms as lesion shape and color can 127 

be difficult to determine with simple visual assessments. The resulting greenness decay curve 128 
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followed a sigmoidal decay pattern (r=0.9286 and p-value<0.0001) (Fig.1). Disease symptoms 129 

initially developed within two days after inoculation (DAI), then increased rapidly over the next 130 

four to twelve DAI, before slowing during the saturation phase on 14 to 16 DAI. Substantial 131 

differences in symptom severity between samples started showing up on four DAI and 132 

differences remained apparent throughout the incubation.  133 

Attributing soil bacterial community difference as a function of disease variability. Turf 134 

samples were grouped into high, medium, and low disease according to the disease severity of 135 

each DAI. The bacterial microbiome from rhizosphere and bulk soil associated with each sample, 136 

which had been separated prior to inoculation, was then assessed to see if the microbiome 137 

structure explained turfgrass responses to C. jacksonii inoculation. The rhizosphere bacterial 138 

community differed between high and low disease severity groups when categorized based on 139 

severity between 4 and 10 DAI according to permutational analysis of variance (PERMANOVA) 140 

(Table 1). There were no differences in bacterial community structure found between high and 141 

low disease severity groups when categorized according to initial disease development (DAI 0-2) 142 

or the disease saturation phase (DAI 12-16). In addition, no differences in the bulk soil bacterial 143 

community were found among the disease severity groups throughout the entire incubation 144 

(Table 1). The period that the rhizosphere soil microbiome showed differences in structure 145 

between the high and low disease groups (4-10 DAI) matched the backslope of the disease 146 

development curve (Fig. 1), which suggested that the initial soil rhizosphere microbiome can 147 

affect the peak dollar spot development. The samples were then re-categorized according to their 148 

disease status during the peak disease development stage (4-10 DAI) to make the peak disease 149 

development period as the target of prediction instead of any single day within this period. The 150 

samples initially categorized as high disease during the 4 to 10 DAI period never shifted into the 151 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 18, 2020. ; https://doi.org/10.1101/2020.08.17.255265doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.17.255265


low severity group and vice versa, so the 18 samples naturally broke into two groups except for 152 

one sample that stayed in the medium disease group throughout the study and was excluded from 153 

further analysis. Further analyses were performed based on breaking the samples into nine highly 154 

susceptible (HS) samples and eight moderately susceptible (MS) samples.  155 

Comparison of rhizosphere bacterial communities of highly susceptible and moderately 156 

susceptible turfgrass. Two-dimensional principal coordinate analysis showed that distinct 157 

bacterial community structures existed between the bulk and rhizosphere soil and between the 158 

rhizosphere soil of HS and MS samples (Fig. 2). PERMANOVA statistically confirmed the 159 

visual observations of bacterial community composition differences between sample types (Fig. 160 

2a) and susceptibility groups of rhizosphere soil (Fig. 2b). Although the overall rhizosphere 161 

bacterial compositions are different between MS and HS turfgrass, the major microbial taxa are 162 

identical when analyzed at family and genus levels with less than 20% and more than 75% of the 163 

taxa unidentified at each taxonomic level, respectively (Fig. 3). The dominant families identified 164 

included Gemmataceae, Pirellulaceae, Chitinophagaceae, Pedospheraceae, and 165 

Burkholderiaceae (Fig. 3a) and the dominant genus’ identified included Flavobacterium, 166 

Haliangium, Chthoniobacter, Pirellula, and Gaiella (Fig. 3b). The majority of the rhizosphere 167 

soil amplicon sequence variants (ASVs) are shared between the HS and MS turfgrass (8077) 168 

with more ASVs being unique to HS (1181) than MS (347) (Fig. 4). Highly susceptible turfgrass 169 

samples also had a higher species richness and β-diversity as shown using the Shannon index 170 

(Fig. 5).  171 

In the rhizosphere, there were 28 families and 32 genera different in relative abundance between 172 

HS and MS samples according to Welch’s t-test (Fig. 6a). A balance analysis that accounted for 173 

the compositional nature of the dataset was also performed to detect the microbial signature for 174 
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discerning the high and low disease rhizosphere bacterial community. The signatures were 175 

determined by searching the association between the factor for overall microbiome difference 176 

with the bacterial taxa balances defined as normalized log ratio of the geometric mean of the 177 

numerator and denominator bacterial taxa. The results showed that relative abundance log ratio 178 

of Rhizobacter (numerator) to Microvirga (denominator) at the genus level and Solibacteraceae 179 

subgroup3 (numerator) to Saprospiraceae (denominator) at the Family level were robust 180 

microbial signatures to differentiate the HS and MS turfgrass rhizosphere bacterial community 181 

with an adjusted area under the receiver operating characteristic curve for cross-validation equal 182 

to 0.9875 and 0.983  for genus and family level, respectively (Fig. 6b). 183 

A co-occurrence network analysis was performed to visualize the microbial interaction of HS 184 

and MS turf rhizosphere soil bacteria and showed different network patterns (Fig. 7a). The co-185 

occurrence networks were then further analyzed using “NetShift” to quantify the differences and 186 

identify the keystone microbial taxa that triggered the shift of the microbial networking between 187 

HS and MS rhizosphere bacterial communities when clustered at the Family and Genus level 188 

(Fig. 7b). There were 55 families and 28 genera identified as driver taxa when comparing HS and 189 

MS co-occurrence networks aggregated at each taxonomic level.   190 

Rhizosphere soil bacterial function was predicted using Tax4Fun2 (21) to explore the potential 191 

microbial functional differences between HS and MS samples during the peak disease 192 

development period. Predicted functional pathways at level-two according to KEGG reference 193 

for molecular functions of genes (22) including nucleotide metabolism, folding, sorting and 194 

degradation, cell motility, translation, transcription, replication and repair, and metabolism of 195 

cofactors and vitamins associated genes were found to be more abundant in rhizosphere of MS 196 
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samples (Fig 8). In the HS samples rhizosphere genes associated with xenobiotic biodegradation 197 

and metabolism pathways associated genes were more abundant (Fig. 8).  198 

Bulk soil nutrient and chemical property analysis. Bulk soil chemical properties were 199 

compared among the three disease severity groups categorized according to turf dollar spot 200 

severity throughout the incubation period. The bulk soil was sampled prior to the inoculation of 201 

C. jacksonii to evaluate if bulk soil chemical property explained the turfgrass responses to the 202 

pathogen inoculation. The results showed that iron concentration was significantly lower in the 203 

high disease than the low disease group throughout the peak disease development stage from 4 to 204 

10 DAI (Table 2), and iron was also lower in the HS samples relative to the MS samples 205 

(p=0.0021) following re-categorization of the samples (Table S1 in the supplemental material). A 206 

Mantel test was conducted to determine correlation between the overall soil chemical properties 207 

and the soil bacterial community. Bulk soil chemical properties did not correlate with the bulk 208 

soil bacterial community (r=-0.2297, p=0.966) but they did correlate with the rhizosphere 209 

bacterial community (r= 0.274, p=0.048). To further examine the relationship between bulk soil 210 

chemical properties and dollar spot severity during the peak disease development stage, a 211 

backward stepwise regression model was constructed after removing significant colinear 212 

variables. The stepwise model (adjusted r2=0.5041, p=0.002031) suggested that iron significantly 213 

(p=0.00062) and positively regressed with average turfgrass greenness during the peak 214 

development period (Table 3). 215 

 216 

DISCUSSION 217 
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The results from this study indicated that initial differences in the soil rhizosphere bacterial 218 

community can predict the level of dollar spot susceptibility in turfgrass plants. These 219 

differences occurred over small areas despite uniform host plants and seemingly uniform 220 

environmental conditions. The mechanisms of disease suppression provided by the rhizosphere 221 

community were not directly studied, but differential analysis of microbial taxa relative 222 

abundances, and NetShift analysis of co-occurrence networks in this study provided supporting 223 

information for the hypothesis that disease suppression is related to the occurrence of 224 

antagonistic organisms in the rhizosphere. A similar hypothesis was also suggested in work done 225 

by Z. Wei et al. (19), which indicated that the rhizosphere bacterial community determined 226 

occurrence and severity of Ralstonia solanacearum in tomato plants and specifically linked 227 

disease suppression to the antagonistic activity of soil bacteria in the genera Bacillus and 228 

Pseudomonas. In our study, differential analysis revealed that certain families and genera were 229 

higher in relative abundance in the rhizosphere of MS samples compared to HS samples. These 230 

families, including Nocardiaceae and Xanthomonadaceae, and genera, including Rhodococcus 231 

and Janthinobacterium, are known to produce a range of antimicrobial compounds (23-26). 232 

Among the microbial co-occurrence network shift drivers identified through “NetShift”, node 233 

betweenness was significantly increased in MS samples for certain genera, including 234 

Pseudonocardia, Streptomyces, and “Candidatus Entotheonella,” which are all known for their 235 

ability to produce antifungal compounds (27-29). While more research is needed, these findings 236 

provide possible explanations for microbial suppression of dollar spot in MS turf samples.  237 

In addition to known antibiotic producers, other bacterial taxa with environmental or plant 238 

functional importance in the rhizosphere differed between the HS and MS samples. The balance 239 

analysis revealed that the log ratios of Saprospiraceae and Solibacteraceae subgroup3 at the 240 
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family level and Rhizobacter to Microvirga at the genus level can effectively differentiate 241 

between the rhizosphere microbiomes of the HS and MS groups. These results corresponded 242 

with differential relative abundance analysis as these taxa of microbial signatures were also 243 

captured by the differential relative abundance analyses. Microbial species under the genus 244 

Microvirga include many root symbionts (30), whereas members of the Rhizobacter genus are 245 

common rhizobacteria (31) and can also be plant pathogenic (32). Although the relative 246 

abundances were low, these identified taxa served as key signatures to differentiate the HS and 247 

MS rhizosphere bacterial community and may also have functional importance. For example, the 248 

identified family signature Saprospiraceae was present at a low level in our study (<1% in 249 

relative abundance), but members of the Saprospiraceae family are known to break down 250 

complex organic compounds in the environment (33) and are also suggested to have functional 251 

importance while underrepresented in soil abundance (34). The manner in which these microbial 252 

signatures interacted with the pathogen and host plant and whether they can be used for future 253 

evaluations of dollar spot suppression requires further research.  254 

Functional prediction was performed to better understand implications of the differences 255 

identified in microbiome composition and interaction of HS and MS samples in the absence of a 256 

comprehensive metagenomic analysis. The MS rhizosphere microbiome was more enriched in 257 

genetic information processing and cellular processes metabolic pathways, whereas HS 258 

rhizosphere microbiome was more abundant in predicted xenobiotic biodegradation and 259 

metabolism. This result could help explain why the HS rhizosphere microbiome resulted in a 260 

more susceptible turfgrass sample. Many chemical compounds, such as salicylic acid (SA) 261 

analogs and β-Aminobutyric acid, can induce plant systemic acquired resistance that primes 262 

plants to defend against pathogens through activation of SA or abscisic acid (ABA) signaling 263 
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pathways (35). Higher predicted abundance in gene associated with xenobiotic biodegradation 264 

and metabolism metabolic pathways in the HS rhizosphere microbiome suggested that the 265 

microbiome can more actively degrade xenobiotics such as agrochemicals, transformation 266 

products and secondary metabolites that either have direct antagonistic effects on pathogen 267 

growth, or compounds that have roles in priming plants against pathogens. 268 

In the study by Z. Wei et al. (19), structural and functional differences in the rhizosphere 269 

microbiome were found to be the sole factors determining disease severity on tomato. In our 270 

study, bulk soil iron concentration predicted the disease susceptibility as well as that of the 271 

rhizosphere microbiome and seemed to contribute significantly to dollar spot suppression. S. Gu 272 

et al. (36) recently showed that siderophore production as a result of bacterial competition for 273 

iron resources in the soil environment strongly mediates R. solanacearum activity in the tomato 274 

rhizosphere. Specifically, iron-scavenging siderophores produced by nonpathogenic members of 275 

the bacterial consortia enhanced the fitness of these nonpathogenic bacteria in the soil 276 

environment and suppressed pathogen growth. Further large-scale screening of all major 277 

bacterial phylogenetic lineages established a strong positive linkage between inhibitory 278 

siderophore production by nonpathogenic bacteria and R. solanacearum suppression, indicating 279 

that the relative abundance of bacteria that produce pathogen-unusable siderophores in the 280 

tomato rhizosphere microbiome served as an effective predictor for disease outcome (37). These 281 

studies were done in a soil-borne pathosystem and it is unclear how pathogen-suppressing 282 

siderophore producers in the rhizosphere would compete with C. jacksonii, which is a foliar 283 

pathogen and poor soil saprophyte. Other mechanisms are likely involved, such as iron directly 284 

or indirectly neutralizing pathogen activity. For example, G. M. Gadd (38) observed that oxalic 285 

acid, a potential virulence factor of C. jacksonii, can react with the free iron in the plant-soil 286 
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interface and precipitate as crystalline or amorphous solids. Also, in iron-deficient soils, induced 287 

bacterial production of the siderophore pyoverdine repressed the expression of plant defense-288 

related genes such as the genes involved in SA and ABA pathways which can lead to a higher 289 

plant susceptibility to diseases (39). 290 

Low soil iron can also lead to low iron in the plant tissue. Iron plays multifaceted roles in plant 291 

defense mechanisms and plant-pathogen interactions (40). For example, iron serves as a key 292 

factor in plant disease defense via numerous regulatory genes involved in microbe response and 293 

plant homeostasis, including upregulating the transcription of pathogenesis-related genes and 294 

catalyzing the reactive oxygen species when attacked by pathogens (41, 42). Unbalanced iron 295 

homeostasis in plants can have serious impacts on disease outcomes. Low iron in Arabidopsis 296 

thaliana led to more severe Dickeya dadantii infection due to less ferritin coding 297 

transcript AtFER1, callose deposition, and reactive oxygen species production (43). These 298 

collective studies on low soil and plant iron may help explain how lower soil iron in our study 299 

can lead to higher dollar spot susceptibility in turf and vice versa, but direct evidence on how soil 300 

iron interacts with the turfgrass plant to defend against dollar spot requires further analysis.  301 

Numerous field and in vitro studies have shown the beneficial effect of iron in plant disease 302 

suppression (44-46), and the beneficial effects of iron are often found in conjunction with a 303 

pathogen-suppressive soil microbiome (14, 20). Healthy blueberry (Vaccinium corymbosum) 304 

plants were found to associate with more diverse rhizosphere bacterial communities and higher 305 

iron content in the roots compared with unhealthy plants (20). An in vitro study demonstrated 306 

that soil Fe-EDDHA amendment has an additive and complementary effect in suppressing 307 

Fusarium wilt (Fusarium oxysporum f. sp. cubense) disease severity in banana (Musa spp.) 308 

grown in a disease suppressive soil (14). The mechanisms of such a complementary effect of iron 309 
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in our study remain unclear, but the Mantel test results suggest that the rhizosphere microbiome 310 

was likely mediated by interaction between soil iron levels and turfgrass plants, which in turn 311 

impacted disease development.  312 

The rhizosphere microbiome is recruited or expelled from the bulk soil through the production of 313 

phytochemicals (47, 48) including many organic acids and secondary metabolites (49). More 314 

specifically, previous work by Y. Pii et al. (50) demonstrated that plant iron status had a 315 

significant impact on the formation of rhizosphere microbiome structures, possibly via the 316 

release of different qualitative and quantitative root exudates. In our study, higher Fe in the bulk 317 

soil of MS samples likely induced production of root exudates that then recruited a particular 318 

rhizosphere microbiome that was more suppressive to dollar spot development. However, this 319 

proposed mechanisms requires significant additional research before it can be used to develop 320 

innovative plant disease control strategies. 321 

This study revealed several factors that led to variation in disease development over a small area 322 

in amenity turfgrass. Although further research is required before making firm conclusions, our 323 

findings suggest that antibiotic-producing members in the rhizosphere microbiome likely played 324 

a key role in the dollar spot suppression observed in MS samples. Further, soil iron-plant 325 

interactions were possibly a key regulatory factor in the assembly of a suppressive rhizosphere 326 

microbiome, and this soil-plant-microbe interaction ultimately resulted in the observed variation 327 

in disease development on monocultured turfgrass within a small scale. Future studies on 328 

whether the disease suppressive function can be transplanted into a conducive soil, and how 329 

turfgrass physiologically mediates root exudates to recruit a disease suppressive rhizosphere 330 

microbiome by responding to different levels of soil iron will be critical in further exploring the 331 

hypotheses raised by this research. 332 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 18, 2020. ; https://doi.org/10.1101/2020.08.17.255265doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.17.255265


 333 

MATERIALS AND METHODS 334 

Experimental design, sampling scheme and sample preparation. The experiment was 335 

conducted on a mature stand of creeping bentgrass (Agrostis stolonifera ‘Alpha’) at the O.J Noer 336 

Turfgrass Research Facility in Verona, WI, USA. The turf was grown on a native Troxel silt 337 

loam and mowed three times per week at the height of 1.25 cm. Eighteen turfgrass samples and 338 

the associated soil were taken using a soil sampler with a 13-cm diameter and a 15-cm depth in a 339 

256 m2 square plot on Oct. 10th, 2019. The samples were divided into a top layer (the top 7.5 cm) 340 

and a bottom layer (7.5 to 15 cm depth) by carefully inserting the soil sampler to the specified 341 

depths. Due to the nature of the turfgrass and soil properties, there was hardly any soil without 342 

direct contact with roots in the top layer, and rarely root presence in the bottom layer soil. 343 

Therefore, we defined the bulk soil as the soil from the bottom layer without direct root contact. 344 

The soil samples of each layer were stored separately as turf and bulk soil samples. The turf 345 

samples were then used for inoculation experiments after they were sub-sampled for rhizosphere 346 

microbiome analysis. Bulk soil samples were sub-sampled from the homogenized bottom layer 347 

soil for both microbiome and chemical property analysis. Two, 1-cm diameter subsamples to 5-348 

cm depth containing approximately 10 to 15 individual creeping bentgrass plants were taken 349 

from each turf sample for microbiome analysis using a custom-made soil probe. The subsamples 350 

from the same turf sample were immediately crushed with a sterile scapula and tweezer, and the 351 

soil loosely attached to the root system was separated from plant and rhizosphere soil by 352 

aggressively shaking in a sterile glass petri dish, rhizosphere soil remained closely attached to 353 

the root was then carefully collected using scapula avoiding the root tissues. The intact turf 354 

samples, which the subsamples were taken from, were then inoculated with one milliliter of 355 
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dollar spot inoculum using a vaporizer within one hour of sampling. The dollar spot inoculum 356 

was created by growing C. jacksonii on potato dextrose broth for 72 hrs, rinsing three times in 357 

distilled water, and homogenizing in sterile 0.85% saline water in a blender for one minute. The 358 

final inoculum had an approximate C. jacksonii density of 4.1*104 CFU/ml, as determined by 359 

testing with triplicated serial dilutions on potato dextrose agar.  360 

After inoculation, the turf samples were incubated in a growth chamber at 25˚C, 70% relative 361 

humidity, and 15 hr photoperiod. Each sample was placed on a sterile filter paper with an 362 

individual glass water pan. The turf samples were maintained at 0.5 cm height using sterile 363 

scissors, supplied with distilled water through wetting the filter paper, and measured for dollar 364 

spot severity every other day for 16 days (Fig. S1 in the supplemental material). Dollar spot 365 

severity was assessed by taking digital photos 30 cm directly above the turf surface and counting 366 

the percentage of green pixels using imageJ. Bulk soil samples were sent to the Cornell Nutrient 367 

Analysis Laboratory (Ithaca, NY) to analyze the chemical properties including pH, organic 368 

matter content, and Al, Ca, Cu ,Fe, K, Mg, Mn, Mo, Na, P, S, Zn, C and N content according to 369 

procedures outline in B. K. Gugino et al. (51). Briefly, soil were dried in open containers 370 

overnight, sieved to remove pebbles and plant tissues, soil organic matter content was measured 371 

by dry combustion at 550˚C for two hours, and pH was measured as 1:1 soil to water solution by 372 

volume using an automatic pH probe (Lignin, Albuquerque, NM). Soil nutrients were extracted 373 

using Morgan’s solution and quantified with an Inductively Coupled Argon Plasma 374 

Spectrophotometry (Thermo Fisher Scientific, Cambridge, UK).  375 

Library Preparation and short-amplicon sequencing. For each of the bulk soil and 376 

rhizosphere soil samples, 0.25 g soil was used for DNA extraction using a DNeasy PowerLyzer 377 

PowerSoil kit (Qiagen Inc., Germantown, MD) following the manufacturer’s protocol. All 378 
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extractions were quantified for nucleic acid concentration using a NanoDrop1000 (Thermo 379 

Fischer Scientific, Waltham, MA). The PCR was performed according to K. A. Dill-McFarland 380 

et al. (52) with minor modifications. Briefly, each reaction contained 5 µL of the DNA template 381 

at 10 ng/µL, 12.5 µL Kapa HiFi HotStart ReadyMix, 6.5 µL PCR-grade water, and 0.5 µL of 382 

each barcoded forward and reverse primer (53), which targeted the v4 region of the 16S rRNA 383 

gene. The thermocycling conditions were 3 min at 95 °C prior to 25 cycles of 30 s at 95 °C, 30 s 384 

at 55 °C, and 30 s at 72 °C, with a final step of 5 min at 72 °C. The amplicons were purified 385 

using a ZR-96 Zymoclean™ Gel DNA Recovery kit (Zymo Research, Irvine, CA) and 386 

normalized with a Mag-Bind® EquiPure Library Normalization Kit (Omega Bio-Tek Inc, 387 

Norcross, GA). The amplicons were then pooled and quantified to 4 nM with a Qubit™ dsDNA 388 

HS Assay kit (Thermo Fischer Scientific, Waltham, MA). The final pool was sequenced on 389 

Illumina MiSeq with a 2x250bp PE Illumina Reagent Kit v2 (Illumina, Inc., San Diego, CA) in 390 

the Biotechnology Center at the University of Wisconsin-Madison 391 

Data analysis. The raw sequences were processed using package “DADA2” in R 3.6.0. Forward 392 

and reverse reads were quality filtered according to average quality score and merged. The 393 

taxonomy levels associated with each amplicon sequence variant (ASV) was assigned according 394 

to SILVA database (v.132) after removing the chimeras. The ASV and taxonomic tables were 395 

then exported as .txt files and analyzed using R packages “phyloseq” and “vegan.” The reads for 396 

each sample were normalized using variance stabilizing transformation with the “DeSeq2” 397 

package due to a relatively even reads variation among the samples in the library (54). Microbial 398 

compositional differences and correlations were analyzed using Bray-Curtis dissimilarity. 399 

Shannon diversity of HS and MS were compared using nonparametric Wilcoxon test in JMP Pro 400 

14 (SAS Institute, Cary, NC).  401 
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Microbial co-occurrence network of HS and MS samples were constructed using Molecular 402 

Ecological Network Analysis (MENA) (55), which uses a Random Matrix Theory (RMT)-based 403 

method to predict the microbial interactions and capture the magnitude of the interactions. The 404 

nodes and the edge lists were then imported into Gephi 0.9.2 (56) for network visualization. 405 

Since the overall ASVs were comprised of approximatly 90% of the ASVs having less than 406 

0.02% of overall reads, ASVs that represent less than 0.02% of the total reads after normalization 407 

for each sample were filtered out to make the result more readable. The core community of the 408 

HS and MS microbial networks were compared to quantify the rewiring of the taxa in the 409 

networks by calculating the of neighborhood shift and change of betweenness for the nodes using 410 

NetShift (57). Nodes with the highest degree change among these parameters are considered the 411 

driver taxa. When analyzed at family and genus level, the ASVs were aggregated at each 412 

taxonomy level to create the edge list. Microbial balance analysis was performed using “selbal” 413 

package in R at family and genus level using unnormalized ASV counts, as the compositional 414 

nature of the short-amplicon sequencing result and the uneven sequencing depths were both 415 

accounted in the analysis (58). Differential relative abundances were analyzed using Welch’s t-416 

test at a significance level of α=0.05 in using Statistical Analysis of Taxonomic and Functional 417 

Profiles (STAMP) (59). 418 

Rhizosphere microbiome functional prediction was performed using an R-based tool Tax4Fun2 419 

(21), which used the sequences of the ASV to blast against the SILVA (v.132) reference genome 420 

database to create a metagenome profile. The genetic functions were then assigned by BLASTp 421 

against the KEGG KO (22) as a reference database. Differences in functional pathways at level-422 

two were statistically analyzed using Welch’s t-test in STAMP. The associations of Bray-Curtis 423 
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dissimilarity among bulk soil chemical properties, bulk soil microbiome, and rhizosphere 424 

microbiome samples were examined using Mantel test in R.  425 

Soil chemical properties among the disease groups were statistically analyzed with 426 

nonparametric Wilcoxon test in JMP Pro 14 (SAS Institute, Cary, NC) and regression with 427 

average disease severity of peak disease development stage (4-10 DAI) was performed using a 428 

stepwise selection for the optimal predictive model in R. Collinearity variable selection and 429 

removal was performed using a customized function vif_func (60) to calculate the variance 430 

inflation factor. The best model was constructed with backward selection using a function 431 

stepAIC under package “MASS”. 432 

Data availability. All the raw sequences generated from this study were deposited at the NCBI 433 

Sequence Read Archive and are publicly accessible under the project number of PRJNA642971. 434 
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 611 

Figure 1. Dollar spot development as indicated by turf greenness decay curve fitted with 612 

sigmoidal model (r=0.9286, p<0.0001) throughout 16 days of incubation after dollar spot 613 

inoculation (n=18). DAI stands for days after inoculation with C. jacksonii. 614 
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 625 
Figure 2. Principal coordinate analysis (PCoA) of bulk soil versus rhizosphere microbiome (a), 626 

and MS versus HS turfgrass rhizosphere microbiome (b). Significant differences between MS 627 

and HS samples were tested using PERMANOVA. 628 
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 630 

Figure 3. Relative abundance of rhizosphere microbiome from MS and HS turfgrass at Family (a) 631 

and Genus (b) level. 632 
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 644 

Figure 4. Proportions of shared and unique ASV between the MS and HS rhizosphere soil 645 

showed as Venn diagram. 646 

 647 

 648 

Figure 5. Bacterial Shannon diversity and richness of rhizosphere microbiome for turfgrass of 649 

MS and HS susceptibility group. The Shannon diversity significant difference was performed 650 

using a nonparametric Wilcoxon test. 651 

652 
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653 

 654 

Figure 6. Rhizosphere microbial taxa relative abundance differences at family and genus level 655 

tested with Welch’s t-test (a). Compositional balance change analysis identifying the microbial 656 

signatures that discriminate the rhizosphere microbiome between HS and MS (b), the balance 657 

indicates the logarithm ratio of the relative abundance of identified denominator and numerator. 658 

 659 
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660 

 661 

Figure 7. Rhizosphere soil bacterial microbiome co-occurrence networks at phylum level of 662 

dollar spot MS and HS turfgrass (a), in which the size of the nodes were scaled based on in-663 

degree values, blue and pink paths represents positive and negative correlation, respectively. 664 

NetShift analysis by comparing the co-occurrence networks to identify the driver taxa at family 665 

and genus levels (b), where the nodes were scaled based on the degree in neighbor shift, the red 666 

nodes are the identified important drivers responsible for the network shift between the MS and 667 

HS turfgrass rhizosphere microbiome, and the green, red and blue paths represents the edges 668 

showed in MS, HS and both, respectively. 669 

 670 
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 671 
Figure 8. Significant differences in predicted rhizosphere microbiome functional pathways of 672 

MS and HS turfgrass using Tax4Fun2 and tested by Welch’s t-test. 673 

 674 

 675 

Table 1. Paired-PERMANOVA analysis of turf-associated soil microbiome prior to C. jacksonii 676 

inoculation as categorized based on disease level (high, medium, and low) after inoculation of C. 677 

jacksonii and throughout the incubation. Asterix indicates the significance level: * p<0.05 and ** 678 

P<0.01. DAI stands for Days after inoculation of C. jacksonii. 679 

 680 

  681 

 Pair-comparison 
0 DAI 2 DAI 4 DAI 6 DAI 8 DAI 

R2 P-value R2 P-value R2 P-value R2 P-value R2 P-value 

Rhizosphere 

High vs Low 0.116 0.126 0.124 0.090 0.138 0.006** 0.139 0.003** 0.118 0.021* 

High vs Med 0.080 1.000 0.100 0.603 0.136 0.012* 0.112 0.090 0.103 0.345 

Low vs Med 0.115 0.117 0.089 1.000 0.103 0.147 0.116 0.036* 0.096 0.807 

Bulk 

High vs Low 0.125 0.144 0.101 0.597 0.087 1.000 0.089 1.000 0.085 1.000 

High vs Med 0.094 0.978 0.096 0.939 0.086 1.000 0.112 0.372 0.122 0.207 

Low vs Med 0.093 0.984 0.087 1.000 0.076 1.000 0.088 1.000 0.099 0.549 

 
 

          

 Pair-comparison 
10 DAI 12 DAI 14 DAI 16 DAI 

R2 P-value R2 P-value R2 P-value R2 P-value 

Rhizosphere 

High vs Low 0.126 0.024* 0.091 1.000 0.091 1.000 0.091 1.000 

High vs Med 0.128 0.036* 0.080 1.000 0.096 0.840 0.096 0.816 

Low vs Med 0.109 0.096 0.092 1.000 0.100 0.540 0.100 0.573 

Bulk 

High vs Low 0.080 1.000 0.080 1.000 0.091 1.000 0.091 1.000 

High vs Med 0.081 1.000 0.088 1.000 0.092 1.000 0.092 1.000 

Low vs Med 0.080 1.000 0.076 1.000 0.068 1.000 0.068 1.000 
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Table 2. Mean separation of turf-associated bulk soil chemical elements as categorized based on disease severity (high, medium, and 682 

low) after inoculation of C. jacksonii and throughout the incubation (a). Iron content (mg/kg of dry soil) of each severity group 683 

categorized based on the peak of disease development stage (b). Non-parametric Kruskal-Wallis test and Steel-Dwass paired-684 

comparison were conducted to test the significance level. Asterix indicates the significance level: * p<0.05 and ** P<0.01. DAI stands 685 

for Days after inoculation of C. jacksonii. Numbers followed by ± indicates standard errors. 686 

 (A) 687 

(B) 688 

 Group 
DAI 4 DAI 6 DAI 8 DAI 10 

       Mean        Mean        Mean        Mean   

Fe 

High 0.825 ± 0.035 b 0.811 ± 0.037 b 0.818 ± 0.035 b 0.795 ± 0.031 b 

Low 0.989 ± 0.035 a 0.975 ± 0.037 a 0.987 ± 0.035 a 0.989 ± 0.031 a 

Medium 0.859 ± 0.035 b 0.887 ± 0.037 ab 0.868 ± 0.035 ab 0.889 ± 0.031 ab 

 DAI 0 DAI 2 DAI 4 DAI 6 DAI 8 DAI 10 DAI 12 DAI 14 DAI 16 

ChiSq P-value ChiSq P-value ChiSq P-value ChiSq P-value ChiSq P-value ChiSq P-value ChiSq P-value ChiSq P-value ChiSq P-value 

pH 0.626 0.060 4.526 0.104 3.170 0.205 1.509 0.470 1.064 0.587 2.561 0.278 2.012 0.366 2.667 0.264 2.667 0.264 

OM 0.986 0.611 0.184 0.912 5.535 0.063 2.611 0.271 0.784 0.676 1.092 0.579 0.246 0.884 0.012 0.994 0.012 0.994 

Al 3.942 0.139 6.398 0.041* 8.082 0.018* 5.661 0.059 4.012 0.135 9.310 0.01** 3.310 0.191 3.193 0.203 0.319 0.203 

Ca 1.977 0.372 2.854 0.240 5.719 0.057 9.310 0.01** 2.561 0.278 5.485 0.064 1.450 0.484 0.889 0.641 0.889 0.641 

Cu 2.117 0.347 10.714 0.005** 4.667 0.097 2.328 0.312 0.363 0.834 2.538 0.281 3.170 0.205 0.924 0.630 0.924 0.630 

Fe 5.099 0.078 3.509 0.173 9.275 0.01** 7.906 0.019* 8.924 0.012* 11.614 0.003** 4.714 0.095 4.994 0.082 4.994 0.082 

K 0.363 0.834 0.152 0.927 3.521 0.172 7.029 0.030 3.193 0.203 2.047 0.359 0.328 0.849 1.263 0.532 1.263 0.532 

Mg 1.063 0.587 2.538 0.281 3.661 0.160 4.678 0.096 0.854 0.653 3.170 0.205 1.275 0.529 0.667 0.717 0.667 0.717 

Mn 3.029 0.220 0.877 0.645 1.205 0.548 1.509 0.470 2.632 0.268 3.895 0.143 0.503 0.778 0.246 0.884 0.246 0.884 

Mo 0.456 0.796 0.222 0.895 0.714 0.700 5.556 0.062 1.556 0.459 0.714 0.700 0.105 0.949 0.737 0.692 0.737 0.692 

Na 1.310 0.520 0.152 0.927 4.012 0.135 3.825 0.148 0.667 0.717 3.790 0.150 0.737 0.692 0.421 0.810 0.421 0.810 

P 3.240 0.198 1.368 0.505 1.298 0.523 2.246 0.325 0.877 0.645 1.064 0.587 0.714 0.700 0.573 0.751 0.531 0.751 

S 1.556 0.459 0.105 0.949 0.140 0.932 0.433 0.805 0.561 0.755 0.035 0.983 2.117 0.347 2.117 0.347 2.117 0.347 

Zn 1.298 0.523 3.415 0.181 0.012 0.994 0.246 0.884 1.509 0.470 1.064 0.587 0.246 0.884 1.275 0.529 1.275 0.529 

C 1.064 0.587 3.193 0.203 0.667 0.717 0.246 0.884 1.450 0.484 0.012 0.994 3.193 0.203 2.538 0.281 2.538 0.281 

N 1.485 0.476 2.819 0.244 0.152 0.927 1.766 0.414 1.205 0.548 0.152 0.927 3.614 0.164 2.538 0.281 2.538 0.281 
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Table 3. Correlations among bulk soil chemical property, bulk soil microbiome and rhizosphere 689 

microbiome using Mantel tests. Asterix indicates the significance level: * p<0.05. 690 

 

 

 

 

 

Correlation 
Mantel Statistic 

R P-value 

Soil Chem vs Bulk Microbiome -0.230 0.97 

Soil Chem vs Rhizo Microbiome 0.245 0.048* 

Bulk Microbiome vs  Rhizo Microbiome -0.065 0.58 
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Table 4. Stepwise selection of the optimal regression model for bulk soil chemical elements and 691 

average dollar spot disease severity (greenness) during the peak disease development stage (4-10 692 

DAI). Asterix indicates the significance level: *** p<0.001. 693 

Coefficients Estimate 
 Std. 
Error 

t-value P(>|t|) 

Intercept 27.09 13.06 2.075 0.056 

Fe 69.74 16.19 4.309 <0.001*** 

Zn -27.28 15.81 15.81 0.105 

Residual standard error: 6.011 on 15 degrees of freedom 

Multiple R-squared:  0.5624, 

F-statistic: 9.641 on 2 and 15 DF, p-value: 0.002031 
 694 

 695 

 696 

 697 

  698 
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Supplementary Table S1. Wilcoxon non-parametric comparison of soil chemical properties 699 

between HS and MS associated bulk soil. 700 

Property 
Level Mean Std. Dev. 

Std. Error 
Mean 

Lower 
95% 

Upper 
95% 

Wilcoxon p-value 

pH 
HS 7.240778 0.233394 0.0777981 7.061375 7.420181 

0.0543 
MS 7.398875 0.07535 0.0266401 7.335881 7.461869 

OM 
HS 2.985949 0.275381 0.0917936 2.774273 3.197625 

0.7361 
MS 3.076462 0.103921 0.0367415 2.989582 3.163342 

Al 
HS 2.774205 0.252402 0.0841339 2.580192 2.968218 

0.0161* 
MS 3.162284 0.29524 0.104383 2.915458 3.409111 

Ca 
HS 1639.915 80.10273 26.700911 1578.342 1701.487 

0.0433* 
MS 1714.069 110.1071 38.928753 1622.017 1806.121 

Cu 
HS 0.080371 0.032808 0.0109359 0.055153 0.105589 

0.2482 
MS 0.092079 0.020072 0.0070966 0.075298 0.10886 

Fe 
HS 0.818683 0.097546 0.0325154 0.743702 0.893664 

0.0021** 
MS 0.975093 0.055358 0.0195718 0.928813 1.021373 

K 
HS 155.3454 11.78698 3.9289926 146.2852 164.4057 

0.1489 
MS 161.5223 8.360104 2.955743 154.5331 168.5115 

Mg 
HS 493.3613 26.29071 8.7635684 473.1525 513.5702 

0.2898 
MS 507.6362 38.32882 13.551285 475.5925 539.6799 

Mn 
HS 2.186369 1.367373 0.4557909 1.135313 3.237424 

0.0833 
MS 3.398221 1.248337 0.4413539 2.354585 4.441857 

Mo 
HS 0.005837 0.001988 0.0006626 0.004309 0.007364 

0.9233 
MS 0.005627 0.001894 0.0006696 0.004044 0.00721 

Na 
HS 27.50916 2.103361 0.7011202 25.89237 29.12594 

0.5006 
MS 28.36482 1.818714 0.6430124 26.84434 29.8853 

P 
HS 16.69933 1.557548 0.5191827 15.50209 17.89657 

0.4414 
MS 15.66392 2.09468 0.7405812 13.91272 17.41511 

S 
HS 4.721017 0.446798 0.1489327 4.377577 5.064456 

0.5006 
MS 4.889829 0.443375 0.1567568 4.519157 5.2605 

Zn 
HS 0.825432 0.158275 0.0527584 0.703771 0.947093 

0.8474 
MS 0.849113 0.034658 0.0122533 0.820139 0.878088 

C 
HS 1.798 0.085772 0.0285905 1.73207 1.86393 

0.9233 
MS 1.843875 0.214384 0.0757961 1.664646 2.023104 

N 
HS 0.170222 0.011998 0.0039992 0.161 0.179445 

0.8474 
MS 0.176125 0.021649 0.0076542 0.158026 0.194224 

 701 

 702 

  703 
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 704 

 705 

Supplementary Figure S1. Set-up of each turf sample in the controlled environment growth 706 

chamber for the incubation after inoculation with C. jacksonii. 707 

 708 

 709 
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