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Abstract 
We present LipidFinder 2.0, incorporating four new modules that apply artefact filters, remove lipid and 
contaminant stacks, in-source fragments and salt clusters, and a new isotope deletion method which 
is significantly more sensitive than available open-access alternatives. We also incorporate a novel 
false discovery rate (FDR) method, utilizing a target-decoy strategy, which allows users to assess data 
quality. A renewed lipid profiling method is introduced which searches three different databases from 
LIPID MAPS and returns bulk lipid structures only, and a lipid category scatter plot with color blind 
friendly pallet. An API interface with XCMS Online is made available on LipidFinder’s online version. 
We show using real data that LipidFinder 2.0 provides a significant improvement over non-lipid metab-
olite filtering and lipid profiling, compared to available tools. 
Availability: LipidFinder 2.0 is freely available at https://github.com/ODonnell-Lipidomics/LipidFinder 
and http://lipidmaps.org/resources/tools/lipidfinder. 
Contact: lipidfinder@cardiff.ac.uk 
Supplementary information: Supplementary data are available at Bioinformatics online. 

 

1 Introduction 
Lipidomics describes the discovery and analysis of lipids (fats), which are 
essential molecules for life in all organisms (Wenk, 2005). However, it is 
hampered by the lack of specifically tailored informatics tools that effec-
tively clean up raw datasets, which can contain huge numbers of artifacts 
(around 90-95% of initial signals) as described in detail in our Supplemen-
tary Information. Informatics tools used for lipidomics have been to a 
large extent designed for global metabolomics (and some are still focused 
primarily on this). The lack of specialized filters for lipidomics can have 

a negative effect on the output’s robustness since lipids have unique ana-
lytical challenges (Cappadona, et al., 2012; O'Donnell, et al., 2014). In 
2017 we published a Python tool, LipidFinder, designed to be an addi-
tional stage of the lipidomics pipeline (O'Connor, et al., 2017). Specifi-
cally tailored for high-resolution LC/MS, LipidFinder processes the out-
put of pre-processing tools, such as XCMS, to filter out common artefacts, 
including well known ESI contaminants and adducts, and remove back-
ground effects. LipidFinder was found to retain most reference lipids, im-
proving the quality of lipidomic data. However, its output datasets still 
contained a significant level of artefacts, creating substantial problems for 
downstream statistical power. Thus, we developed new features and here 
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we present LipidFinder 2.0, which integrates a new user-friendly interface 
to configure its parameters, additional filters and methods to improve the 
reliability and speed of the output. 

A significant issue in identification is over-annotation where MS is used 
to assign a fully annotated structure. This has led to major mistakes in 
structural assignment (Bowden, et al., 2017; Liebisch, et al., 2015). This 
problem is unique to lipids due to the large numbers of isobaric ions. Cur-
rently open access lipidomics software don’t address this. Here we include 
an enhanced putative identification procedure that allows different degrees 
of profiling, returning only the bulk structure. We introduce a novel false 
discovery rate (FDR) method, using a target-decoy strategy. LipidFinder 
2.0 supports as input datasets from popular pre-processing tools. We tested 
performance with real data, using XCMS-based lipidomics pipeline 
with/without LipidFinder and results are shown in Supplementary Results. 

2 System and methods 
The lipidomics analysis pipeline including LipidFinder 2.0 is outlined in 
Figure 1. Major changes have been introduced in its internal framework 
to improve usability, performance and reliability. These are explained in 
detail in the Supplementary Information and summarised here. 
 

 
LipidFinder is designed to be integrated after the pre-processing stage in 
the popular XCMS-based data processing pipeline in lipidomics to im-
prove the removal of artefacts, and to produce putative profiles enabling 
the statistical analysis of LC/MS datasets. New innovations are: 
(i) A user-friendly configuration process for each module. The configura-
tion stage is designed for usability/adaptability for new or expert users, 
including a set of default settings customised for high-res LC/MS and a 
graphical user and command line interfaces. All widely used pre-pro-
cessing tools can now be accommodated (Supplementary Methods). 
(ii) Three new filters and a novel metric method added to the clean-up 
stage. The new filters add in-source ion fragments, isotopes and salt clus-
ters to the already broad list of common artefacts that LipidFinder targets 
and removes from MS datasets. Although isotope annotation can also be 
performed with CAMERA (included in XCMS), we found that its ap-
proach is not tailored optimally for lipidomics, thus we have implemented 
a new method with a more accurate intensity ratio check. Last, we have 
introduced a novel FDR method that serves as a metric to assess data qual-
ity. This is a new innovation not available in other lipidomics pipelines. 
(iii) A comprehensive re-design of the profiling step to extend its applica-
bility. Here, the putative lipid profiling stage now returns lipid bulk struc-
tures rather than fully annotated, featuring three lipidomics databases from 
LIPID MAPS. It also returns lipid category scatter plots and fully anno-
tated output files. All these are described in full (Supplementary Data). 

 
3. Implementation 
LipidFinder 2.0 is fully implemented in Python, supporting versions 2.7 
and 3.3 or newer. The source code has been reorganized in a structure 
more similar to a Python library than a software tool, providing the scripts 
for the different stages shown in Section 2 and in Supplementary Results. 
The purpose is to encourage users with experience in programming to re-
use LipidFinder’s filters or even entire stages to create their own tailored 
pipelines. Special attention was paid to PeakFilter to ensure it performs 
efficiently with large datasets. Also, as byproduct of our collaboration 
with LIPID MAPS (Fahy, et al., 2019), we developed an API that provides 
direct access to the databases, which has significantly reduced the time 
cost of MS Search. We have also linked LipidFinder on LIPID MAPS with 
XCMS Online to directly import pre-processed files. An analysis of the 
efficiency of the new implementation is shown in the Supplementary Re-
sults. We have produced the user manual in two formats: a PDF file and a 
Jupyter notebook. The latter converts it into an interactive cookbook 
where users can learn how to set up LipidFinder and how to use it. 

The configuration files for each stage are now stored in JavaScript ob-
ject notation (JSON) format, a readable text format that can be opened and 
modified by any text editor. Every data file involved in LipidFinder’s 
workflow, including those already provided with its source code, is saved 
either in comma-separated values (CSV) format (PeakFilter, Amalgama-
tor) or Microsoft Excel spreadsheet (XLS and XLSX) format (MS 
Search), all of them widely supported by data handling applications. 

Finally, we performed analysis with a biological dataset comprising li-
pids extracted from raw and peritoneal macrophages, in order to demon-
strate the significant improvements in data quality and visualization 
achieved using LipidFinder 2.0, detailed in Supplementary Results. 
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Fig. 1. Common pipeline for untargeted lipidomics incorporating LipidFinder 2.0. It 
also shows LipidFinder’s new main workflow. 
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Supplementary Introduction  
 
Liquid chromatography-mass spectrometry (LC/MS) is an essential method for discovery and 
characterisation of lipids in biological samples. Pre-processing is a required step in the 
lipidomics pipeline, however most available informatics solutions are tailored for metabolomics 
and not specifically lipidomics and thus, they retain large numbers of artefactual ions in datasets. 
This leads to major challenges for statistical analysis and renders robust identification of novel 
lipids impossible.  
 
Liquid chromatography coupled to mass spectrometry (LC/MS), is one of the most popular 
analysis methods used for profiling of lipids in biological samples. This method (untargeted 
lipidomics) is widely used due to its high coverage of molecules, aiming to support discovery of 
biomarkers related to development, disease and therapeutic response(Covey, 1986). However, 
depending on the experimental methodology and the tissue analysed, output datasets can 
contain up to tens of thousands of ions/peaks (features). For example, with human platelets, raw 
datasets can comprise close to 60 K features, of which it is estimated only around 4-5 K are real 
lipids(Slatter, et al., 2016). The rest are common artefacts, e.g. isotope peaks, electrospray 
ionisation (ESI) contaminant ions, salt clusters, in-source fragments and others. Also, a single 
lipid may be represented by many features. If these are not removed, two main problems result. 
First, novel lipids cannot be easily distinguished from non-lipids. Second, when comparing 
datasets for biomarker discovery, statistical power is reduced. Thus, new computational 
methods are urgently required to help researchers cope with this significant Big Data problem. 
 
In lipidomics/metabolomics (Weckwerth, 2003), the common data processing pipeline starts with 
interrogation of biological samples using LC/MS. The output can be represented in a 3D 
chromatogram: mass-to-charge ratio (m/z) vs retention time vs signal intensity. It is essential to 
detect all “features” in the data, that is, every unique representation of m/z and retention time, 
and return these in a usable format for further analysis. Hence, the raw dataset needs to be “pre-
processed”. For this, several tools have been implemented over the last 10-15 years: XCMS, 
MZmine and MetAlign are examples of open access options (Lommen and Kools, 2012; Pluskal, 
et al., 2010; Smith, et al., 2006). The last step of the pipeline is to match each feature to a known 
analyte, while also retaining unidentified ions for further analysis as potential new lipids. LC/MS 
is extremely useful for lipid discovery and comparative profiling. However, it is always 
recommended to follow LC/MS up with targeted methods such as tandem mass spectrometry 
(MS/MS), to validate the putative profiling returned by this “untargeted” lipidomics. 
 
Pre-processing software tools for MS include two main methods devised to facilitate determining 
true lipid or metabolite ions: peak identification and peak alignment. The former aims to detect 
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and extract every peak’s key information from the raw LC/MS data (e.g. mass centroid position 
and area under the curve). Peak alignment corrects for minor changes in retention time arising 
from fluctuations of environmental temperature and humidity, and health of chromatographic 
columns (Smith, et al., 2015; Zhang, et al., 2014). Insufficiently addressing alignment negatively 
impacts subsequent statistical analysis and identification of lipids/metabolites (Zhou, et al., 
2012). Furthermore, some tools also include additional filters and methodologies to confirm that 
returned features correspond to known analytes. XCMS/CAMERA incorporates baseline and 
noise elimination, and an isotope and adduct detection method, as well as putative identification 
for features (Zhou, et al., 2012). 
 
Supplementary System and Methods 
 
Input dataset and configuration process 
In contrast to LipidFinder 1.0, which only worked with XCMS and SIEVE™ (ThermoFisher) 
datasets, LipidFinder 2.0 works with input files from widely used preprocessing tools. Here, the 
input file layout is far more flexible: a first column with a unique identifier per feature, m/z and 
retention time columns, and all sample measurement columns together are the only 
requirements. All columns except the identifier can be placed anywhere in the dataset. Also, the 
file can contain extra columns that can be retained in the output. The list of formats was extended 
so as well as comma-separated values (CSV), LipidFinder can read tab-separated values (TSV) 
and Microsoft Excel spreadsheet (XLS and XLSX) files. 
 
Configuring LipidFinder 1.0 was considered challenging for inexperienced users, because it 
required editing a CSV file containing the parameter names, their description, restrictions and 
values. Thus, typos, incorrect data types and invalid values (due to threshold violations) were 
common mistakes during this step. To address this, a new configuration process with two 
interface options has been added to each stage. A graphical user interface (GUI) and a 
command-line interface (CLI) have been developed paying special attention to their usability to 
improve user interaction with the software. For example, we include an additional help text for 
parameters to provide support for new users and default values optimised for high-resolution 
LC/MS data. The resulting configuration file is still saved in a readable text format, so 
experienced users can edit it manually. We have also incorporated the functionality to transfer 
parameters between stages, that is, users can import the configuration file of a previous stage 
to copy the values of shared parameters, saving time and preventing errors during the 
configuration. Finally, LipidFinder 2.0 provides backward compatibility, so any configuration file 
from its previous version can be used as a foundation to generate the new ones. 
 
PeakFilter 
The first module in LipidFinder’s workflow is PeakFilter, designed to improve the quality of 
datasets through applying a series of corrective steps, outlined in Supplementary Figure 1. 
However, LipidFinder 1.0 still retained artefactual ions that need to be removed in order to 
ensure data quality. To this end, we include 4 new modules into PeakFilter, depicted in orange 

Supplementary Figure 1. PeakFilter’s 
updated workflow. The 4 new modules are 
highlighted in orange. 
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in Supplementary Figure 1, along with significantly improving the functionality of our Stack 
Removal module. These are described below. 
 
2.2.1 In-source fragmentation removal 
In-source fragmentation is a common problem that arises in LC/MS where fragmentation of ions, 
to generate product ions, occurs in the source despite ESI being considered a soft ionization 
method(Gabelica and De Pauw, 2005). These product ions can be impossible to tell from real 
molecular ions and are misidentified using database searches, as they are isobaric with the 
precursor ions of real lipids (Xu, et al., 2015). To solve this issue, we developed a method that 
searches for common well-known lipid-related in-source ion fragments and removes them from 
the dataset. The most common forms of these are either i) fatty acyl ions, and related ketenes 
generated from phospholipids and detected in negative mode, and ii) neutral loss ions from the 
loss of common fatty acyls, headgroups, CO2 or H2O which can appear in either positive of 
negative mode. The default in-source fragments and common neutral losses targeted as well as 
the algorithm are provided in Supplementary Information (Appendix 1). The use of this module 
requires LC separation since default targets will induce the filter to remove free fatty acids unless 
clearly separated from larger lipids. 
 
2.2.2 Stack removal 
LipidFinder 1.0 included a module to remove lipid and contaminant stacks. However, the 
implementation of this filter was too strict and some stacks remained in the resulting datasets. 
In this update we revisited the definition of both types of stacks to improve the accuracy of the 
algorithm. Generally, a stack is formed by a series of features differing from each other by the 
same m/z gap (or multiples of it), specifically those identified as common contaminating ions 
and adducts in ESI, http://www.waters.com/webassets/cms/support/docs/bckgrnd_ion_mstr
_lst_4_13_2010.pdf (Keller, et al., 2008). Here, a lipid stack is a cluster of features with the same 
retention time. On the other hand, a contaminant stack comprises a series of features that elute 
with a gap between retention times that is maintained across the series. Thus, if plotting features 
in a m/z versus retention time scatter plot, lipid stacks are visualized as vertical sets whilst 
contaminant stacks are observed as diagonally spaced out features. Importantly, some lipid 
classes appear visually in the aforementioned scatter plots as clusters eluting in a diagonal 
fashion. For example, triglycerides that differ by 2C fragments and saturation/unsaturation follow 
predictable patterns in terms of retention time shift as the mobile phase lipophilicity increases. 
To avoid removing true lipids that follow this pattern, we have added the condition that a stack 
must have at least 4 features to be categorized as such before it is removed. 
 
2.2.3 Isotope removal 
Isotope peaks due to the presence of one or more 13C atoms per molecule demonstrate a 
predictable pattern of features in scatter plots, eluting at the same retention time. These isotopes 
need to be either removed or combined with the molecular ion prior to searching databases for 
matches. This is important since related lipids often show multiple M+2 molecular species 
(differences in double bonds), and depending on instrument resolution an isotope with two 13C 
atoms could appear isobaric with a similar lipid to the molecular ion, but with one double bond 
less. 
 
XCMS includes in its latest versions the CAMERA package which, among other features, detects 
and labels isotopic peaks. However, we found that the intensity ratio check used in its algorithm 
is not adequate for lipidomics, because the decrease in intensity of isotope peaks follows a non-
linear relationship with the m/z increment in lipids (Yergey, 1983). Also, CAMERA labels a 
feature as an isotope if at least a chosen number of samples comply with the requirements (50% 
by default). Many studies in lipidomics involve diverse sample conditions, so different lipids (and 
isotopes) may be present only in some samples. Thus, CAMERA’s approach can be fallible, 
particularly since it does not distinguish between technical and biological replicates. We have 
developed a new deisotoping filter that calculates the isotopic distribution based on polynomial 
expansion of the parent intensity rather than the linear functions used in CAMERA. Furthermore, 
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the conditions are checked independently for each set of technical replicates belonging to the 
same biological sample, treating them as separate entities. The method is described in detail in 
Appendix 2, and we have validated our formulae using the Yergey algorithm. 
 
2.2.4 Salt cluster removal 
We have also implemented the salt cluster filter published by (McMillan, et al., 2016). This 
algorithm targets the common artefacts of ESI recognized by their particular high mass defects 
and early elution in LC/MS data. The method uses a mass-defect cutoff and a whitelist of bona-
fide metabolites (with high mass defects) to screen out the salt clusters. 
 
2.2.5 False Discovery Rate 
The presence of diverse isotope and adduct features in samples is a critical challenge for the 
identification process, leading to false positives. The false discovery rate (FDR) is a common 
metric used to estimate the error of metabolite-spectrum matches and, hence, evaluate the 
confidence of the resulting profile (Schrimpe-Rutledge, et al., 2016). Although there is currently 
no agreed upon method to determine FDR in lipidomics, it is widely accepted in MS-based 
proteomics to use a target-decoy strategy (Elias and Gygi, 2007; Kall, et al., 2008). 
 
The last feature added to PeakFilter is a FDR method developed adopting a similar approach. 
This uses target and decoy databases to measure robustness of a method, retrieving the 
number of hits from a dataset found in the decoy database (𝑛!) versus the number of hits in the 
target database (𝑛"), and calculating FDR as 𝑛! 𝑛"⁄ . The target database is based on real 
molecules, while the decoy database is made up of false ions, e.g. m/z values which would not 
be expected in nature (described in detail below). In this method, the number of decoy hits would 
be considered to mirror the frequency of false lipid matches by LipidFinder’s putative profiling. 
Overall, FDR estimates provide a sense of robustness of the data after PeakFilter, that is, a 
theoretical estimate of how many lipid-like artefacts and/or non-lipid metabolites might remain 
afterwards. 
 
To create its decoy database, JUMPm, a metabolite identification tool, altered the metabolites 
m/z values from the target database by violating the octet rule on chemistry (Jones, 2016). This 
means that each m/z value was adjusted to another theoretical value that did not fit this rule. We 
found that this m/z alteration does not work in lipidomics since many lipids differ from each other 
by the mass of one hydrogen, resulting in a decoy database that contains a significant 
percentage of m/z matching real lipids. Thus, we instead built a decoy database by adding 0.5 
Da to every analyte, since this is a very rare mass defect in lipids. For our target database, we 
used an in-silico database (COMP_DB) composed of major classes of lipid species, generated 
from a list of commonly occurring acyl/alkyl chains. The almost 30,000 lipid species in 
COMP_DB are listed in “bulk format”, specifying total number of carbons and double-bonds in 
their constituent chains. Our decoy (COMB_DB_0.5Da) was generated from COMP_DB, as 
above. We show a validation and also an application of the approach using real data in Sections 
4.1 and 4.4. 
 
MS Search 
Lipidomics datasets are large and complex, and there are significant challenges relating to both 
their identification and their subsequent visualisation. MS data can only ever provide bulk 
information on putative structures (e.g. potential lipid category, number of carbons and 
rings/double bonds on fatty acyl substituents, etc.). It cannot be used to define a lipid down to 
actual fatty acids, confirm head groups, assign either geometric isomers/enantiomers or position 
of functional groups (e.g. for oxidized groups). With this in mind, m/z searches must only return 
the correct bulk structures for MS data without providing detailed structural annotation. To 
address this issue, once lipidomics data has been processed through PeakFilter’s modules 
(Supplementary Figure 1) and amalgamated (if needed), MS Search performs putative mass 
assignment through a bulk structure search on LIPID MAPS. This module queries the selected 
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repository lipid database to determine whether each remaining feature is a known analyte or not 
based on its m/z. This revised stage offers 3 in-house lipidomics databases: 
COMP_DB: a computationally generated lipid database composed of about 30,000 bulk 
(isobaric) species covering the major classes of lipid species. It has been customized for 
precursor ion searching. 
ALL_LMSD: the entire LIPID MAPS structure database (LMSD) of over 43,000 unique 
biologically relevant lipid structures. 
CURATED_LMSD: a subset of approximately 21,000 curated structures from LMSD that have 
been reported in the literature (excluding computationally generated structures). 
MS Search allows the user specify mass tolerance and restrict the list of adducts and lipid 
categories being searched. The putative profile will only include matched lipids for a feature 
when searching against one of the LMSD databases and no bulk structures are found. The 
output file format has been changed from CSV to XLSX to enable inclusion of interactive content 
(via hyperlinks) for output results, as we did on LipidFinder’s online version (Fahy, et al., 2019). 
 
Once putative matches have been assigned, visualization of data is required in a manner that 
allows the user to interpret the large amount of resulting data. This is a major challenge when 
dealing with often thousands of individual m/z values, including a large proportion of ions that 
have not been matched to any database entry. To aid this, MS Search now allows the user to 
create a summary file and a lipid category scatter plot from the putative identifications. The 
summary file retains information on the closest match of the most frequent lipid category for 
each unique m/z and retention time. To generate the lipid category scatter plot, the eight main 
lipid categories described by the LIPID MAPS Lipid Classification System 
(http://www.lipidmaps.org/data/classification/LM_classification_exp.php) are used, with the 
addition of an “unknown” category for unidentified features. Each lipid category is always 
assigned the same color, easing the comparisons between plots during the analysis. 
Additionally, LipidFinder 2.0 provides the option to use a color blind friendly palette.  
 
It is important to note that unlike metabolites, lipids generally behave similarly across individual 
categories/classes in large cohort sample sets (e.g. phospholipids as a group tend to change 
together with disease or genotype), and it is highly unusual that a single lipid will stratify without 
others that are structurally related. We propose that taking the approach of plotting and 
statistically analyzing lipids in their LIPID MAPS categories has several advantages: i) if several 
lipids within a category alter similarly, it provides confidence that the difference is real, and ii) if 
analyzed in sub-groups, the statistical power is increased when applying corrections for multiple 
comparison testing. Our suggested approach is to screen categories for differences first using 
an untargeted method as described herein, then to validate the changes across the individual 
lipid categories using gold standard targeted quantitative MS/MS methods (generally restricted 
to single categories only) as the second step. 
 
Supplementary Results 
 
FDR analysis 
Decoy databases are designed to be populated with ions that should not commonly exist in the 
types of samples being analysed, and as expected, ours (COMP_DB_0.5Da) does not share 
any m/z values with COMP_DB ions. Thus, high quality lipidomics data from well-calibrated 
instruments, that has been effectively cleaned up should return a low FDR using a decoy-versus-
target database approach, as only implausible lipids will be recognised by the decoy. To validate 
this approach, we created two “theoretical” sets of experimental data for testing, each of which 
contain 400 high resolution m/z values randomly selected from the target database, COMP_DB. 
The first is comprised of only [M−H]– and [M+H]+ ions calculated from the neutral mass of real 
lipids (molecular ions) whilst the second includes several common lipid adducts: [M−H]–, 
[M+OAc]–, [M+H]+, [M+Na]+ and [M+NH4]+ (molecular ions+adducts). In both sets of ions, there 
are 200 of each polarity. See Appendix 4 for the detailed list of each dataset. To fully evaluate 
this approach, we performed the FDR test under two different database search conditions: a) 
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limit the search to common lipid adducts: [M−H]–, [M+OAc]–, [M+H]+, [M+Na]+ and [M+NH4]+ 
(common) which are more representative of real lipidomics datasets, or b) screen for all 
available ions in the LIPID MAPS MS search tool, including a number of potential adducts of 
less direct relevance to lipids (all). We chose a standard mass tolerance for high resolution MS 
(± 0.001 Da) for both tests to fit with the expected instrumentation imperfections, e.g. suboptimal 
calibration, and other random electronic noise that will make real experiment m/z values differ 
slightly from the theoretical ones. Supplementary Table 1 shows the results for both datasets in 
each search condition. The number of features that returned at least one match in the target (𝑛") 
and in the decoy (𝑛!) databases is also shown for completeness. 
 
Supplementary Table 1 shows that our method returns a 0% FDR (with 100% 𝑛") when 
searching for common lipid ions. These results demonstrate that the construction of a decoy 
database by adding 0.5 Da to every bulk lipid structure included in the target database is an 
effective strategy, since the method did not return any decoy hits even with a standard tolerance. 
Even if we expand our database search space to include every possible adduct available in the 
LIPID MAPS MS search tool, the FDR is negligible. This suggests that our proposed FDR 
approach can be used as a metric to assess the quality of LC/MS lipidomics datasets, e.g. 
retained artefactual ions or potential calibration drifts. 
 
 
 
 
Source ions Target ions Tolerance (Da) 𝑛" 𝑛! FDR (%) 
Molecular ions Common ± 0.001 400 0 0.00 
Molecular ions All ± 0.001 400 8 2.00 
Molecular ions + adducts Common ± 0.001 400 0 0.00 
Molecular ions + adducts All ± 0.001 400 7 1.75 
 
Supplementary Table 1. FDR of two sets of 400 ions calculated from randomly selected neutral lipid m/z of the 
target database (COMP_DB) and two different database search conditions. 𝑛!: number of target database matches; 
𝑛": number of decoy database matches. 
 
 
 
Isotope removal analysis 
Here we compared annotation of isotope peaks as achieved by CAMERA and LipidFinder 2.0 
using a dataset of lipids generated by high-resolution LC/MS analysis of lipid extracts from RAW 
cells and peritoneal macrophages. Both approaches were applied to the datasets first pre-
processed with XCMS Online with the Orbitrap II parameter set (Tautenhahn, et al., 2012). 
Following this, we ran MS Search to generate putative identifications of as many features as 
possible. This profiling was done searching against the COMP_DB database with a mass 
tolerance of ± 0.001 Da, and screening for all available ions (of the corresponding polarity). 
Supplementary Table 2 presents the isotope annotation returned by both software tools for 8 
features (4 positive, 4 negative ions) and their putative identification. 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.08.16.250878doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.16.250878
http://creativecommons.org/licenses/by/4.0/


 
 

 

 
Overall, CAMERA and LipidFinder 2.0 agreed on many isotope annotations. In several cases 
this agreement was over all sample replicates (6 RAW 264.7 and 6 resident peritoneal 
macrophages). For instance, in Supplementary Table 2 we find m/z 668.6188 (positive mode) 
and m/z 802.5756 (negative mode). On average, disagreement between both methods 
happened in less than 50% of replicates. As a result, CAMERA with its “majority rule” annotated 
whole features as isotopes that LipidFinder 2.0, with its more restrictive intensity thresholds, only 
annotated partially, i.e. defining those features as isotopes for some but not all sample 
replicates. This problem becomes critical when the discrepancy delineates the diverse biological 
groups of the dataset. See two examples in Table 2: m/z 941.6996 (+ve mode), whose M+1 
isotope was found only in the peritoneal group; and m/z 730.5391 (-ve mode), whose M+1 
isotope was only annotated in raw samples. In both cases the intensity was too low in the 
untagged group, meaning that those features are likely to be isotopes in their annotated group, 
and another type of analyte in the other. 
 
Finally, we focus on features where each method has returned a different annotation. In 
Supplementary Table 2 we show m/z 831.6834 (+ve mode) and m/z 751.5724 (-ve mode), for 
which LipidFinder 2.0 did not detect isotopes in any sample replicate whilst CAMERA did. In the 
former instance, the isotope has a higher intensity than our defined upper threshold for every 
sample. In the negative example, the mass of the feature annotated as the M+1 isotope by 
CAMERA is much lower than the expected increment of one 13C: the absolute difference 
between the “parent” and its isotope is 0.9887 Da (instead of 1.0033 Da). Furthermore, both 
M+1 isotopes were putatively identified as MGDG(38:0) and PC(32:0), respectively, another 
reason to believe they may have been incorrectly annotated as isotopes. Conversely, 
Supplementary Table 2 contains m/z 878.8170 (+ve mode) and m/z 704.5594 (-ve mode) as 
examples where LipidFinder detected isotopes in every sample replicate whilst CAMERA did 

m/z RT 
(min) 

Putative IDs Software Isotope m/z RT 
(min) 

Putative IDs 
Bulk structure Adduct Bulk structure Adduct 

668.6188 41.26 DG(38:1) or [M+NH4]+ CAMERA M+1 669.6222 41.25 unknown  
  TG(P-38:0)   M+2 670.6254 41.24 TG(87:7) [M+2H]2+ 
    LipidFinder M+1 669.6222 41.25 unknown  
     M+2 670.6254 41.24 TG(87:7) [M+2H]2+ 

831.6834 54.86 PA(45:0) [M+H]+ CAMERA M+1 832.6873 54.85 MGDG(38:0) [M+NH4]+ 
  DG(50:6) [M+Na]+ LipidFinder none     

878.8170 51.66 TG(52:1) [M+NH4]+ CAMERA none     
    LipidFinder M+1 879.8201 51.63 unknown  

941.6996 52.08 PA(54:8) [M+H]+ CAMERA M+1 942.7038 52.08 MGDG(47:8) [M+NH4]+ 
  TG(56:8) [M+K]+ LipidFinder M+1 (Peritoneal) 942.7038 52.08 MGDG(47:8) [M+NH4]+ 

704.5594 40.27 PE(O-34:0) [M−H]– CAMERA none     
  PC(O-32:0) [M−CH3]– LipidFinder M+1 705.5628 40.23 unknown  

730.5391 40.21 PE(35:1) [M−H]– CAMERA M+1 731.5425 40.21 unknown  

  PC(33:1) [M−CH3]– LipidFinder M+1 (RAW) 731.5425 40.21 unknown  

751.5724 41.20 unknown  CAMERA M+1 752.5611 41.24 PC(32:0) [M+F]– 
     M+2 753.5590 41.23 unknown  
    LipidFinder none     

802.5756 41.41 PE(P-42:6) [M−H]– CAMERA M+1 803.5790 41.42 unknown  
  PC(P-40:6) [M−CH3]– LipidFinder M+1 803.5790 41.42 unknown  

RT: retention time. The putative profile shows a few examples of the classes and adducts of the closest matches (smallest Δppm) with ±0.001 
Da tolerance. If LipidFinder 2.0 annotated a feature as an isotope in only one of the biological sample groups (RAW or peritoneal) it is marked 
as so in the “Isotope” column. 

Supplementary Table 2. Comparison of the isotope annotation of CAMERA vs LipidFinder 2.0 for 8 features, 4 in 
positive mode and 4 in negative mode, of the macrophages dataset right after being pre-processed with XCMS and 
putatively identified with MS Search (COMP_DB database). 
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not. The latter method is assigning different peak groups (pcgroup) to the “parent” features and 
their corresponding isotopes, even though they are less than 3 seconds apart from each other 
in both cases. 
 
Overall performance analysis 
LipidFinder 2.0 includes several new modules all designed to improve data quality. To 
demonstrate this, we provide a comparison of effectiveness and performance of the lipidomics 
pipeline (Supplementary Figure 2) with and without either the old or new versions of LipidFinder. 
For XCMS we chose the online version with the Orbitrap II set of parameters. We used the 
output files from XCMS Online as input for both LipidFinder versions, with the default 
parameterization of LipidFinder 2.0 applied in both cases. Supplementary Figure 2 shows the 
retained features of the macrophages dataset in both positive and negative mode in scatter plots 
of m/z versus retention time.  Last, an example of the color blind pallet for both a scatter plot 
and volcano plot of the data is presented in Supplementary Figures 3,4. 
 
Prior to using LipidFinder, XCMS datasets contain eluting features that form repeating patterns 
(Supplementary Figure 2, left panels). For example, series of dots following (almost) straight 
lines. These are in many cases related to well-known artefacts such as in-source fragments, 
lipid stacks, ESI contaminants or salt clusters. Applying the FDR method to these XCMS 
datasets we obtain high %FDR values, indicating that many features match our decoy lipid m/z 
values (Supplementary Table 3). LipidFinder 1.0 performs reasonably at removing several of 
these artefacts, resulting in a reduced FDR (Supplementary Table 3, Supplementary Figure 2, 
middle panels). However, significant artefacts still remain, e.g. the dense column of dots 
throughout the first minute (salt clusters), or the short vertical lines of equally distant dots 
(isotopes). In contrast, the incorporation of the new modules presented here into the lipidomics 
pipeline results in further improvements to data output as shown by improved FDR 
(Supplementary Table 3, Supplementary Figure 2, right panels). The first release of LipidFinder 
removed a third of the total features in each dataset and reduced the number of decoy hits up 
to a fourth of that of XCMS Online. The reduction of target hits is also expected as LipidFinder 
has modules designed to “simplify” the dataset. For instance, adduct removal will find all adducts 
for a given lipid and retain only the most intense one. LipidFinder 2.0 improves on the results of 
its predecessor removing two thirds of the total number of features from XCMS Online, but 
retaining almost as many target hits as LipidFinder 1.0 and decreasing FDR by half. Here, the 
minor reduction of target hits is due mainly to in-source fragment removal, e.g. where fatty acids 
will be retained only if they do not co-elute with other features from which they may have 
originated.  
 
 
Processing  Polarity 𝑛 𝑛" 𝑛! FDR (%) 
XCMS Online Negative 6336 2020 214 10.59 
+LipidFinder 1.0 Negative 4222 1000 69 6.90 
+LipidFinder 2.0 Negative 2350 937 37 3.95 
XCMS Online Positive 16611 5792 1308 22.58 
+LipidFinder 1.0 Positive 10671 2553 318 12.46 
+LipidFinder 2.0 Positive 5387 2451 193 7.87 
 
Supplementary Table 3.  FDR of macrophages datasets (both polarity modes) after XCMS Online, either alone 
or followed by LipidFinder 1.0 or 2.0. 𝑛: total number of features; 𝑛!: number of target database matches; 𝑛": 
number of decoy database matches. 
 
Our previous version of LipidFinder typically took 30 minutes to analyze 12 samples (with about 
23K features for each mode). In the new version, we sought to improve processing speed 
through parallelization and algorithm redesign based on computational cost analysis. Here we 
compare time taken to process the macrophages datasets (positive and negative mode) after 
using the same configurations and conditions as for the previous analysis, using both versions 
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and finding that the total has reduced by 10 minutes (Supplementary Table 4). The benchmarks 
show increased time cost for PeakFilter. This is due to the computational requirements of the 
FDR method, creating a bottleneck. If we omit that step, the new implementation outperforms 
its predecessor, even with the addition of three new modules. We observe similar improvements 
in Amalgamator and MS Search. Furthermore, during the algorithm redesign aforementioned 
we have paid special attention to the computational complexity. This means that not only is 
LipidFinder 2.0 more efficient, but its time cost will increase more slowly with larger datasets. 
 
LipidFinder on LIPID MAPS 
LipidFinder 2.0 replaces LipidFinder 1.0 on its online version, available on LIPID MAPS as a 
web application (Fahy et al., 2018). As an additional feature, LipidFinder on LIPID MAPS 
incorporates the option to import pre-processed files directly from XCMS Online. To do so, users 
are requested their username from XCMS Online and the JobID that has generated the pre-
processed file they want to import. This feature will only fetch datasets from pairwise and 
multigroup job types. After the file has been imported correctly, it can be processed with 
LipidFinder 2.0 and analysed with the statistical methods available. 
 
 
 
 

Version 
PeakFilter Amalgamator MS Search 

Negative mode Positive mode   

1.0 59s 163s 21s 1539s 

2.0 122s (38s) 322s (95s) 12s 1261s 
 

Supplementary Table 4. Benchmark results of LipidFinder’s old and new implementations for the same 
macrophage datasets and parameters.PeakFilter version 2.0 includes all the new additional modules. The time in 
parenthesis corresponds to the time cost without the FDR module. Selected CURATED_LMSD database to 
compare Web Search (v1.0) and MS Search (v2.0). 

 

 

Supplementary Figure 2. Comparison of the number of features retained after XCMS, and after 
PeakFilter for LipidFinder 1.0 and LipidFinder 2.0. These results are based on the macrophages dataset 
(RAW and peritoneal) in both polarity modes. Used XCMS Online with Orbitrap II parameters, and the default 
parameter values of LipidFinder 2.0 were chosen for both versions of LipidFinder. The FDR is included in every 
plot as an additional metric to ease the comparison between results. 
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Supplementary Figure 3. Example of lipid category scatter plot for macrophages data. Both polarity modes run 
through LipidFinder 2.0 with the default parameters and amalgamated. MS Search performed against COMP_DB 
database with 0.001 Da tolerance. 

Supplementary Figure 4.  Volcano plot of significantly increased lipids in both pResMf and RAW 264.7 cells 
by lipid category. Mf lipid extracts from RAW cells and pResMf were analyzed by LC-FTMS on the Orbitrap Elite, 
at 60,000 resolution, then processed using XCMS followed by LipidFinder. Volcano plots representing fold-change 
and p-value of lipids in pResMf relative RAW cells by lipid category. Statistical significance was determined using the 
Holm-Sidak method, with alpha=5.00%. Each row was analysed individually, without assuming a consistent SD. 
Differential expression was classified as significant when P < 0.05 and |FC| > 1.5 (depicted in black). Both polarity 
modes run through LipidFinder 2.0 with the default parameters and amalgamated. MS Search performed against 
COMP_DB database with 0.001 Da tolerance. 
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Appendix 1. In-source ion fragmentation removal 

Default list of in-source fragments and common neutral losses. In all cases the parent m/z has to be above 400: 

• Common phospholipid (PLs) fragments (m/z values) to remove from the dataset in negative polarity mode: 237.4042, 255.233, 

261.4229, 263.4388, 265.4546, 279.233, 281.2486, 283.2643, 285.4444, 303.233, 309.4659, 311.4187, 327.233, 329.2486. 

• Neutral m/z loss for fatty acids (FA) in both negative and positive polarity modes: 256.2402, 280.2402, 282.2559, 284.2715, 304.2402, 

328.2402, 330.2559. 

• Neutral m/z loss for ketenes in both negative and positive polarity modes: 238.4094, 262.4308, 264.4467, 266.4626, 286.4523, 

310.4738, 312.4896. 

• Neutral m/z loss for phosphatidylserines (PS) in negative polarity mode: 78.9591, 87.0321, 96.9696, 152.9958. 

• Neutral m/z loss of headgroup and a fatty acid for PS in negative polarity mode: 326.4948, 344.3256, 350.5162, 352.5321, 354.548, 

368.3256, 370.3413, 372.3569, 374.5377, 392.3256, 398.5592, 400.575, 416.3256, 418.3413 

• Neutral m/z loss for PS in positive polarity mode: 87.0321, 185.0727. 

• Neutral m/z loss for phosphatidic acids (PA) in negative polarity mode: 78.9591, 96.9696, 152.9958. 

• Neutral m/z loss for PA in positive polarity mode: 97.9952. 

• Neutral m/z loss for phosphatidylethanolamines (PE) in positive polarity mode: 141.0631. 

• Neutral m/z loss for phosphatidylglycerols (PG) in positive polarity mode: 172.0739. 

• Neutral m/z loss for phosphatidylinositols (PI) in negative polarity mode: 78.9591, 96.9696, 152.9958, 241.1128. 

• Neutral m/z loss for PI in positive polarity mode: 260.1360. 

• Neutral m/z loss of H2O in both negative and positive polarity modes: 18.0153. 

• Neutral m/z loss of CO2 in both negative and positive polarity modes: 44.0095. 

• Neutral m/z loss of both H2O and CO2 in both negative and positive polarity modes: 62.0248. 

• Neutral m/z loss of NH3 and a fatty acid for NH4
+ adducts of diglycerides and triglycerides in positive polarity mode: 273.4552, 

297.4767, 299.4926, 301.5084, 321.4981, 345.5196, 347.5355. 

• Neutral m/z loss of H2O and NH4
+ for diglycerides in positive polarity mode: 35.0458. 

High-level description of the in-source fragmentation removal algorithm: 

algorithm	remove_in-source_fragments	is	
	 input:	 	 dataset,	
	 	 	 	 list	of	in-source	fragments	and	their	corresponding	m/z	cut-off	(mzfrag	,	mzcut-off),	
	 	 	 	 list	of	neutral	losses	and	their	corresponding	m/z	cut-offs	(mzloss	,	mzcut-off)	
	 output:		 dataset	without	in-source	fragments	
begin	

for	each	in-source	fragment	(mzfrag)	do	
	 for	each	feature	x	(mzx	,	rtx)	∈	dataset	such	that	mzx	≈	mzfrag	do	
	 	 if	∃	feature	y	(mzy	,	rty)	∈	dataset	such	that	mzy	≥	mzcut-off	and	rty	≈	rtx	then	
	 	 	 remove	in-source	fragment	x	from	dataset	

	 	 for	each	neutral	loss	(mzloss)	do	
	 for	each	feature	x	(mzx	,	rtx)	∈	dataset	such	that	mzx	≥	mzcut-off	do	
	 	 if	∃	feature	y	(mzy	,	rty)	∈	dataset	such	that	mzy	≈ (mzx	-	mzloss)	and	rty	≈	rtx	then	
	 	 	 remove	in-source	fragment	y	from	dataset	
return	dataset	

	 end	
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Appendix 2. Isotope removal algorithm 

CAMERA is used by XCMS to detect and annotate diverse ion species, including adducts and isotopes. However, its algorithm is not adequate 

to properly identify lipid isotopes because it uses a linear intensity ratio check to identify them, when this type of isotopic peaks has been 

shown to increase exponentially with their m/z value (Yergey, 1983). Moreover, the resultant thresholds are too broad, thus low-intensity 

lipids might be misidentified as isotopes. This is of special relevance for the first (M+1) and second (M+2) isotopes. We have implemented 

in LipidFinder an algorithm that replaces CAMERA’s intensity threshold equations for the first two isotopes (equations (1) and (2)) by the 

appropriate polynomial expansion ones (equations (3) and (4)). Following the same approach as CAMERA, we calculate a rough 

approximation of the number of carbons in a lipid as 𝑛𝑢𝑚𝐶 = ⌈m/z 12⁄ ⌉. 

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦!"# = [𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦! ∗ 0.011			,			𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦! ∗ 0.011 ∗ 𝑛𝑢𝑚𝐶!]     (1) 

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦!"$ = [𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦! ∗ 10%&			,			𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦! ∗ 2]      (2) 

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦!"# = [𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦! ∗ 𝑛𝑢𝑚𝐶!#.( ∗ 0.002 ∗ 𝑐𝑜𝑒𝑓)*+			,			𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦! ∗ 𝑛𝑢𝑚𝐶!#.( ∗ 0.002 ∗ 𝑐𝑜𝑒𝑓),-] (3) 

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦!"$ = [𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦! ∗ 𝑛𝑢𝑚𝐶!#.. ∗ 0.0001 ∗ 𝑐𝑜𝑒𝑓)*+			,			𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦! ∗ 𝑛𝑢𝑚𝐶!#.. ∗ 0.0001 ∗ 𝑐𝑜𝑒𝑓),-] (4) 

For illustration purposes, Supplementary Figure 5 shows the previously mentioned differences regarding intensity thresholds for isotopes 

M+1 and M+2 from a default parent intensity of 100 and diverse m/z values, applying LipidFinder’s default values for the minimum and 

maximum coefficients (0.7 and 1.3, respectively). As we can see, the tolerance in our algorithm is much narrower than that of CAMERA 

(especially for M+2) and it increases proportionally with the m/z of the parent in both cases. 

As we indicate earlier, we have found cases where a feature matches the m/z, retention time and intensity conditions to be an isotope of 

another analyte, but it has not been annotated as such by CAMERA because its algorithm has assigned a different peak group (pcgroup) to 

it. To address this problem, LipidFinder’s method analyses every feature that is within the isotopic m/z and same retention time as the parent, 

and then applies the intensity thresholds to find the isotope. Although it is likely to be less efficient for large datasets, since the algorithm 

explores the whole dataset for every analyte, we consider this approach to be more accurate. 

There is one last main difference between both methods: instead of annotating a feature as an isotope only if that feature meets the conditions 

in at least half of the samples (CAMERA’s default), our isotope removal algorithm is applied to each biological sample independently. 

Finally, we include a high-level description of the isotope removal algorithm applied to each biological sample (note that C13 offset 
represents the exact difference between 13C and 12C isotopes): 

algorithm	remove_isotopes	is	
	 input:	 	 sample_dataset	(SD),	
	 	 	 	 coefficientmin,	
	 	 	 	 coefficientmax	
	 output:		 SD	without	isotopes	
begin	

C13_offset	=	1.003354838		
for	each	feature	x	(mzx	,	rtx	,	intensityx)	∈	SD	do	

Supplementary Figure 5. Comparison of M+1 and M+2 isotopes’ intensity thresholds for CAMERA and LipidFinder. The minimum and maximum intensity thresholds have been 
calculated from a parent m/z that varies from 150 to 1350 and a fixed parent intensity of 100. For LipidFinder, the minimum and maximum coefficients applied are 0.7 and 1.3, respectively. 
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	 numC	=	ceiling(mzx	/	12)	
	 thresholdmin	=	intensityx	*	numC1.3	*	0.002	*	coefficientmin	
	 thresholdmax	=	intensityx	*	numC1.3	*	0.002	*	coefficientmax	
	 if	∃	feature	y	(mzy	,	rty	,	intensityy)	∈	SD	such	that	
	 mzy	≈ (mzx	+	C13_offset)	and	rty	≈	rtx	and	thresholdmin	≤	intensityy	≤	thresholdmax	then	
	 	 remove	isotope	M+1	y	from	SD	
	 	 thresholdmin	=	intensityx	*	numC1.7	*	0.0001	*	coefficientmin	
	 	 thresholdmax	=	intensityx	*	numC1.7	*	0.0001	*	coefficientmax	
	 	 if	∃	feature	z	(mzz	,	rtz	,	intensityz)	∈	SD	such	that	
	 	 mzz	≈ (mzx	+	2	*	C13_offset)	and	rtz	≈	rtx	and	thresholdmin	≤	intensityz	≤	thresholdmax	then	
	 	 	 remove	isotope	M+2	z	from	SD	
	 	 for	i	∈	[3	,	8]	do	
	 	 	 thresholdmin	=	intensityx	*	10-(i+2)	
	 	 	 thresholdmax	=	intensityx	*	2	
	 	 	 if	∃	feature	w	(mzw	,	rtw	,	intensityw)	∈	SD	such	that	
	 	 	 mzw	≈ (mzx	+	i	*	C13_offset)	and	rtw	≈	rtx	and	thresholdmin	≤	intensityw	≤	thresholdmax	then	
	 	 	 	 remove	isotope	M+i	w	from	SD	
return	SD	

	 end	
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Appendix 3. Macrophage dataset 

 

The real-case macrophages dataset example was obtained in the laboratory as follows: 

 

1. Resident peritoneal macrophages 

C57BL/6 mice were killed by asphyxiation using CO2, and death confirmed using cervical dislocation. Peritoneal cells were obtained by 

peritoneal lavage with 5 ml of PBS containing 5 mM EDTA and kept on ice until use. Resident macrophages were identified in all experiments 

as F4/80 + CD11b + CD73+ and MHCIIlow cells and isolated by Fluorescence activated cell sorting.  

2. Culture of RAW 264.7 

Murine macrophage-like RAW 264.7 cells were cultured in DMEM containing 0.26 mg/mL L-glutamine, 10% (v/v) fetal calf serum, 1 % 

Penicillin-Streptomycin (GE Healthcare, Cardiff, UK)). Cells were routinely grown in T175 flasks at 37 °C and 5 % CO2 and subcultured by 

trypsination at 1:3 ratio. 

 

3. Global lipidomics  

Following harvesting of cells, lipids were extracted using two consecutive liquid-liquid extractions. First, hexane:isopropanol:acetic acid, 

then a modified Bligh and Dyer method (Bligh and Dyer, 1959), then resuspended in methanol and stored at -80 °C until LC/MS/MS. For 

this, lipids were extracted by adding solvent (1M acetic acid/propan-2-ol/hexane; 2:20:30; v/v/v) in a ratio of 2.5 mL solvent per 1 mL 

sample, and then vortexing for 1 min. Hexane (2.5 mL) was added, samples vortexed for 1 min and centrifuged for 5 min at 500 g, 4°C. The 

upper hexane layer was collected. The sample was re-extracted by adding hexane (2.5 mL) to the remaining aqueous phase, vortexing for 1 

min and centrifuging for 5 min at 500 g, 4°C. Again, the upper hexane layer was collected and combined with the first hexane layer. The 

remaining aqueous phase was re-extracted as follows: 3.75 mL solvent (chloroform/methanol; 1:2; v/v) was added per sample. After 

vortexing for 1 min., 1.25 mL chloroform was added, and vortexed again for 30 sec., before adding 1.25 mL water, followed by 30 sec. 

vortex. Samples were centrifuged for 5 min. at 500 g and 4°C and the bottom chloroform layer collected and combined with the two hexane 

layers before drying under vacuum. Samples were re- suspended in 200 μL methanol.   

Lipid extracts were separated on an Accucore C18 column (150 x 2.1 mm, 2.6 µm) at a flow rate of 0.425 mL/min at 30 °C. All samples 

were loaded via Nexera X2 autosampler at 4 °C. The mobile phase consists of A (H2O:ACN 80:20 v/v) and a phase B (IPA: ACN, 70:30 v/v). 

The column was equilibrated in Solvent B 16%, and 20µL sample (dissolved in MeOH) were injected. A linear gradient was optimised as 

follows: 0 – 12 min, 16 – 60 % B; 12 – 19 min, 60 – 72 % B; 19 – 42 min, 72 – 84 % B; 42 – 51 min, 42 – 100 % B; and holding 100 % B 

for 6 min, followed by returning to solvent 16 % B and holding for 8 min for re-equilibration. MS conditions were as follows for analysis in 

positive ESI ionization mode: resolution 60,000 at 400 m/z HESI-II temperature 400 °C, N2 as drying gas, sheath gas flow 37 arbitrary units 

(au), auxiliary gas flow 15 au, sweep gas flow 1 au, capillary temperature 320 °C, spray voltage + 4.0 kV, S-lens RF level 62 %. Lock mass 

was m/z 391.2843. For analysis in negative ESI ionization mode: resolution 60,000 at 400 m/z, HESI-II temperature 350°C, N2 as drying gas, 

sheath gas flow 37 au, auxiliary gas flow 15 au, sweep gas flow 2 au, capillary temperature 320 °C, spray voltage – 3.5 kV, S-lens RF level 

69 %. Lock mass was m/z 265.1479. 

A sample dataset was created by analyzing 6 technical replicates of peritoneal lavage extracts, and 6 technical replicates of RAW cell extracts, 

prepared as above, with 2 blanks of phosphate-buffered saline also included. The entire batch was run on the Orbitrap in both positive and 

negative mode, then processed together, first using XCMS Online (Orbitrap II settings), followed by LipidFinder 1.0 or 2.0 using LipidFinder 

2.0 default parameter settings.  
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