1	Blocking palmitoylation of Toxoplasma gondii myosin light
2	chain 1 disrupts glideosome composition but has little impact
3	on parasite motility
4	Pramod K. Rompikuntal ¹ , Ian T. Foe ² , Bin Deng ^{4,5} , Matthew Bogyo ^{2,3} , Gary E. Ward ^{1*}
5	¹ Department of Microbiology and Molecular Genetics, University of Vermont Larner
6	College of Medicine, Burlington, VT 05405, USA
7	² Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305,
8	USA
9	³ Department of Microbiology and Immunology, Stanford University School of Medicine,
10	Stanford, CA 94305, USA
11	⁴ Department of Biology & ⁵ Vermont Genetics Network Proteomics Facility, University of
12	Vermont, Burlington VT 05405, USA
13	* Corresponding author: Tel: (802) 656-4868, e-mail: gary.ward@uvm.edu

14 Abstract

Toxoplasma gondii is a widespread apicomplexan parasite that causes severe disease in 15 16 immunocompromised individuals and the developing fetus. Like other apicomplexans, T. gondii 17 uses an unusual form of gliding motility to invade cells of its hosts and to disseminate throughout 18 the body during infection. It is well established that a myosin-based motor consisting of a Class 19 XIVa heavy chain (TgMyoA) and two light chains (TgMLC1 and TgELC1/2) plays an important role in parasite motility. The ability of the motor to generate force at the parasite periphery is 20 21 thought to be reliant upon its anchoring and immobilization within a peripheral membrane-bound 22 compartment, the inner membrane complex (IMC). The motor does not insert into the IMC directly; rather, this interaction is believed to be mediated by the binding of TgMLC1 to the 23 24 IMC-anchored protein, TgGAP45. The binding of TgMLC1 to TgGAP45 is therefore considered a key element in the force transduction machinery of the parasite. TgMLC1 is palmitoylated, and 25 26 we show here that palmitovlation occurs on two N-terminal cysteine residues, C8 and C11. 27 Mutations that block TgMLC1 palmitoylation disrupt the association of TgMLC1 with the membrane fraction of the parasite in phase partitioning experiments and completely block the 28 binding of TgMLC1 to TgGAP45. Surprisingly, the loss of TgMLC1 binding to TgGAP45 in 29 these mutant parasites has little effect on their ability to initiate or sustain movement. These 30 results question a key tenet of the current model of apicomplexan motility and suggest that our 31 32 understanding of gliding motility in this important group of human and animal pathogens is not yet complete. 33

34 **Importance**

Gliding motility plays a central role in the life cycle of *T. gondii* and other apicomplexan
parasites. The myosin motor thought to power motility is essential for virulence but distinctly

different from the myosins found in humans. Consequently, an understanding of the 37 mechanism(s) underlying parasite motility and the role played by this unusual myosin may 38 39 reveal points of vulnerability that can be targeted for disease prevention and treatment. We show here that mutations that uncouple the motor from what is thought to be a key structural 40 component of the motility machinery have little impact on parasite motility. This finding runs 41 42 counter to predictions of the current, widely-held "linear motor" model of motility, highlighting the need for further studies to fully understand how apicomplexan parasites generate the forces 43 necessary to move into, out of and between cells of the hosts they infect. 44

45 Introduction

Toxoplasmosis is among the most widespread and common parasitic infections of humans (1).
Acute infection, while typically subclinical and self-limiting, can cause life-threatening disease
in immunocompromised individuals and the developing fetus. The causative agent of
toxoplasmosis is the protozoan parasite, *Toxoplasma gondii*. *T. gondii* and other parasites of the
phylum Apicomplexa, including those that cause malaria and cryptosporidiosis, use an unusual
form of substrate-dependent gliding motility to invade into and egress from host cells, migrate
across biological barriers, and disseminate through the infected host's tissues (2-4).

Gliding motility in apicomplexan parasites is controlled, at least in part, by an unconventional
class XIVa myosin, MyoA (5-15). According to the "linear motor" model of motility that has
dominated the field for the last decade (reviewed in (16); see Fig. 1A), *T. gondii* MyoA
(TgMyoA) and its associated light chains (TgMLC1 and either TgELC1 or TgELC2) are
anchored to the parasite's inner membrane complex (IMC) via the acylated glideosome-

associated protein, TgGAP45. TgGAP45, in turn, binds to the transmembrane proteins TgGAP40 58 and TgGAP50. TgGAP50 is firmly immobilized within the IMC lipid bilayer, potentially serving 59 60 as a fixed anchor against which the motor complex can generate force (17, 18). This large, heterooligomeric protein complex (TgMyoA, its light chains, TgGAP40, TgGAP45 and 61 TgGAP50) is referred to as "the glideosome". In the linear motor model, short actin filaments 62 63 located between the parasite plasma membrane and the IMC are connected to ligands on the substrate through a glideosome-associated connector protein (GAC; (19)) that binds to the 64 cytosolic tails of surface adhesins. Because the motor is anchored into the IMC, when the motor 65 displaces the fixed actin filaments rearward, the parasite moves forward relative to the substrate 66 (Fig. 1A). 67

68 TgMLC1 is thought to play two key roles within the *T. gondii* glideosome. First, TgMLC1 binds 69 to the C-terminal tail of TgMyoA to reinforce the motor's lever arm (10, 13, 20). The lever arm 70 amplifies small motions at the myosin active site into larger movements that are capable of 71 displacing actin filaments (10, 21). Consistent with this proposed function, recombinant 72 TgMyoA is inactive in *in vitro* motility assays in the absence of TgMLC1 ((10) and unpublished 73 data). Second, an interaction between the N-terminal portion of TgMLC1 and the C-terminal 74 portion of TgGAP45 is believed to be the critical link that tethers the motor to the IMC (Fig. 1A; (22, 23). Given these proposed functions, is not surprising that TgMLC1 is an essential protein, 75 and parasites depleted of TgMLC1 are significantly impaired in 3D motility, invasion, and host 76 77 cell egress (24, 25).

While the importance of TgMyoA, TgMLC1 and the other glideosome components in motility is
well established, recent data have called into question whether they are organized and function as
described by the linear motor model and/or whether alternative motility mechanisms exist (24-

29). For example, the ability of apicomplexan parasites to rock back and forth on a substrate along their anterior to posterior axis (30-36) is hard to reconcile with the linear motor model, as is the ability of parasites engineered to lack key components of the glideosome to continue moving ((24-26); see also (37)). Given the central importance of motility in the parasite's life cycle and virulence, it is important to fully understand how these proteins work together to generate the forces required to drive parasite movement.

S-palmitoylation is the reversible covalent attachment of a 16-carbon saturated fatty acid via a 87 thioester linkage to cysteine residues of integral and peripheral membrane proteins (38, 39). This 88 89 widespread post-translational modification of proteins mediates membrane association and can regulate subcellular localization, trafficking, structure, stability and diverse aspects of protein 90 91 function (38, 40-42). Palmitovlation is thought to play an important role in the biology of T. 92 gondii and other apicomplexan parasites (43-54). Recent chemical proteomic studies identified 93 several hundred putatively palmitoylated proteins in T. gondii (282 unique proteins in one study 94 (54) and 401 in another (44)). Surprisingly, these proteins included all components of the glideosome, including TgMLC1 (44, 54). 95

96 TgMLC1 contains five cysteine residues (Fig. 1B), two of which (C8 and C11) are predicted by 97 CSS-Palm 4.0 to be potential sites of palmitoylation. These two cysteines are found within the 98 apicomplexan-specific N-terminal extension of TgMLC1 (Fig. 1B), which is the region of the 99 protein that binds to TgGAP45 ((23); Fig. 1A). Given the important role that TgMLC1 is thought 100 to play in TgMyoA function and motility, we sought to experimentally confirm C8 and/or C11 as 101 the sites of TgMLC1 palmitoylation and to explore the phenotypic consequences of mutations 102 that block this modification.

103 **Results**

104 Identification of the sites of palmitoylation on TgMLC1

To determine whether C8 and/or C11 are sites of palmitoylation on TgMLC1, we replaced the 105 endogenous TgMLC1 gene with mutant alleles that produce either single (C8S, C11S) or double 106 (C[8,11]S) cysteine to serine mutations, rendering these sites non-palmitoylatable. Each mutant 107 protein was also FLAG-tagged at its N-terminus (Fig. S1; see Table S1 for a list of parasite 108 109 strains used in this study and their designations). A fourth parasite line expressing FLAG-tagged wild-type TgMLC1 was similarly generated (WT). To determine the effect (if any) of the 110 111 mutations on TgMLC1 palmitoylation, WT, C8S, C11S and C(8,11)S parasites were grown in 112 the palmitic acid analog, 17-octadecynoic acid (17-ODYA). FLAG-tagged TgMLC1 was then immunoprecipitated and subjected to SDS-PAGE. Because 17-ODYA contains a terminal alkyne 113 114 group, it can be fluorescently tagged with rhodamine-azide through a copper-catalyzed 115 cycloaddition reaction; the amount of rhodamine bound to proteins in the immunoprecipitate can then be visualized by fluorescence scanning (54). The amount of rhodamine fluorescence 116 associated with TgMLC1 (31 kDa) was significantly reduced in both the C8S and C11S mutants 117 compared to WT, with C8S showing a greater reduction than C11S (Fig. 2). In the C(8,11)S 118 119 double mutant, no 17-ODYA TgMLC1 labeling above background was detectable. In a previous study, C8 and/or C11 were speculated to be sites of palmitoylation on TgMLC1, and parasites 120 expressing a second copy of TgMLC1 in which these two cysteines were mutated to alanines 121 were generated (23). To compare our results to theirs, we generated a C(8,11)A allelic 122 123 replacement line and found that, like the C(8,11)S double mutation, the C(8,11)A double

mutation completely blocked 17-ODYA labeling (Fig. 2). Taken together, these data identify C8
and C11 as essential for, and very likely the sites of, palmitoylation on TgMLC1.

126 Subcellular localization of non-palmitoylatable TgMLC1

TgMLC1 normally localizes uniformly around the parasite periphery (55). It was previously
reported that the C(8,11)A double mutation caused TgMLC1 to mislocalize to the cytosol (23). It

was therefore surprising that, in our hands, both the C(8,11)S and C(8,11)A mutant proteins

remained localized at the parasite periphery (Fig. 3). Re-examination of the images shown in

131 Frenal *et al.* (2010) revealed that most of the C(8,11)A mutant protein (named MLC1^{CC-AA} in

that study) was indeed also found at the parasite periphery, although there was a minor amount in

the cytosol (for comparison, see the localization of a different mutant in that same study, MLC1-

134 PGF^{AIA}, which was clearly cytosolic (23)). The fact that we detect little to no cytosolic staining

with the C(8,11)A allele may reflect differences between the two studies in protein expression

136 levels, since our mutant protein was expressed from the endogenous promoter at the endogenous

137 locus whereas the previous study expressed the mutant gene in parasites also expressing the

138 wild-type allele (23). Taken together, these data show that mutations that block TgMLC1

139 palmitoylation do not appreciably alter its localization at the parasite periphery.

140 Blocking palmitoylation of TgMLC1 alters its phase partitioning in Triton X-114

141 Next, we tested whether the mutations that block TgMLC1 palmitoylation within the parasite 142 alter the phase partitioning of the protein in the non-ionic detergent Triton X-114 (TX-114). TX-143 114 efficiently solubilizes most proteins in the parasite at 4°C; when subsequently warmed above 144 the cloud point of the detergent (20°C), intermicellar interactions cause the solution to separate 145 into aqueous and detergent phases, which are enriched in hydrophilic and integral membrane

146	proteins, respectively (56, 57). WT, C8S and C11S TgMLC1 each partition roughly equally into
147	the aqueous and detergent phases, but the C(8,11)S TgMLC1 double mutant is found almost
148	entirely in the aqueous phase (Figs. 4A and S2), suggesting a lack of direct membrane
149	association in the absence of palmitoylation. Similar results were seen with the $C(8,11)A$ double
150	mutant (Fig. 4A). As a control, the same samples were probed for TgGRA8, a dense granule
151	protein (58) unrelated to TgMLC1. As expected, the phase partitioning of TgGRA8 was
152	relatively unaffected by the TgMLC1 mutations (Figs. 4B and S2). These data suggest that the
153	peripheral localization we observed for the C(8,11)S and C(8,11)A TgMLC1 mutants is likely
154	mediated by interaction with other membrane-associated protein(s), rather than by a direct
155	association with the lipid bilayer itself.

156 Effects of TgMLC1 palmitoylation on the composition of the glideosome

In the 17-ODYA labeling experiments, two prominently labeled ~50 kDa proteins were
recovered in the FLAG-WT pulldowns in addition to FLAG-tagged TgMLC1, and these bands
were not present in pulldowns from either the C(8,11)S or C(8,11)A double mutant (Fig. 2,

asterisk). It was previously suggested that proteins of this size copurifying with WT TgMLC1

but not C(8,11)A might be other members of the glideosome complex (23). This hypothesis was

strengthened by our subsequent observation that most, if not all, glideosome components are

palmitoylated (54). We therefore analyzed the FLAG pulldowns of C8S, C11S and C(8,11)S

- 164 parasites by western blot with antibodies against TgGAP45, TgELC1 and TgMyoA. As
- 165 expected, TgGAP45 was recovered in the FLAG pulldown from parasites expressing WT
- 166 TgMLC1; in striking contrast, virtually no TgGAP45 was recovered in FLAG pulldowns from
- 167 parasites expressing C(8,11)S TgMLC1 (Fig. 5A). Pulldowns from parasites expressing the C8S
- and C11S single mutations contain intermediate levels of TgGAP45. Quantification of the

169	western b	olot signals	s confirmed th	hese obser	vations, and	d revealed	that o	concomitant	with t	he
-----	-----------	--------------	----------------	------------	--------------	------------	--------	-------------	--------	----

- decrease in TgGAP45 in the IP of the double mutant, there was a 2-3-fold increase in the amount
- 171 of TgELC1 and TgMyoA recovered (Fig. 5B). Similar results were seen with the C(8,11)A
- 172 mutant (Fig. S3). The lack of TgGAP45 in the IP from the double mutant is not due to changes in
- 173 TgGAP45 expression in this parasite line, as western blots of parasite lysate before
- immunoprecipitation show similar amounts of TgGAP45 (Fig. 5A and S3, "input"). Similarly,
- anti-TgMyoA western blots of whole parasite lysates reveals no changes in the level of
- expression of TgMyoA in either the C(8,11)S or C(8,11)A mutant parasite lines (Fig. S4).
- 177 Blocking TgMLC1 palmitoylation seems to therefore block its ability to interact with TgGAP45,
- 178 while simultaneously increasing its interaction with TgMyoA and TgELC1.

179 Effect of TgMLC1 palmitoylation on parasite motility

180 Given the dramatic effect of the C(8,11)S double mutation on the binding of TgMLC1 to

181 TgGAP45, we expected to see a major impact on parasite motility. However, the motility of the

double mutant parasites was indistinguishable from parasites expressing WT TgMLC1 in terms

183 of motility initiation, mean displacement, mean speed and maximum speed (Fig. 6). Track

length was slightly shorter in the C(8,11)S parasites, but still reached 88% of WT levels. Thus,

parasites in which TgMLC1 has lost its ability to interact with TgGAP45 nevertheless show nearnormal motility.

187 This result was unexpected since, according to the linear motor model of motility, disruption of

- the interaction between TgMLC1 and TgGAP45 should uncouple TgMyoA from the IMC,
- rendering it incapable of generating the force required for movement ((23); Fig. 1A). We
- 190 therefore investigated whether the near normal motility observed in the mutants could be due to

changes in the composition of the glideosome that could functionally compensate for the lack of
TgMLC1-TgGAP45 interaction, such as the association of TgGAP45 with an alternative light
chain/myosin motor, or interaction of either TgMLC1 or TgMyoA with alternative GAP
proteins.

195	First, we asked whether TgGAP45 associates with any new proteins in the absence of its normal
196	interaction with TgMLC1. Parasites expressing either WT or C(8,11)S TgMLC1 were
197	metabolically labeled with ³⁵ S-methionine/cysteine and the labeled proteins that co-
198	immunoprecipitated with TgGAP45 were resolved by SDS-PAGE, transferred to a PVDF
199	membrane and visualized by phosphorimaging. The same membrane used for phosphorimaging
200	was subsequently processed for western blotting with antibodies against TgMyoA, TgGAP45
201	and TgMLC1 to determine which of the ³⁵ S-labeled bands comigrate with which of the
202	glideosome proteins. As expected, both TgMyoA and TgMLC1 co-immunoprecipitate with
203	TgGAP45 from ³⁵ S-labeled WT parasites, whereas neither protein is recovered in TgGAP5
204	pulldowns from C(8,11)S parasites (Fig. 7A), confirming that the motor does not bind to
205	TgGAP45 in the absence of TgMLC1 palmitoylation. No ³⁵ S-labeled bands were detected in the
206	TgGAP45 pulldowns from C(8,11)S parasites that were not also present in the pulldowns from
207	WT parasites (Fig. 7A). TgGAP45 therefore does not appear to interact to any
208	significant/stoichiometric extent with alternate ³⁵ S-labeled myosins or myosin light chains when
209	its interaction with TgMLC1 is disrupted by the $C(8,11)S$ mutation.
210	We did a similar experiment to see if TgMyoA interacts with alternative GAP(s) (23) or other
211	proteins in the $C(8,11)S$ mutant, proteins that might serve to anchor TgMyoA into the IMC in the
212	absence of a normal TgMLC1-TgGAP45 interaction. First, we Ty-tagged TgMyoA at the

endogenous *TgMyoA* locus in both the WT and C(8,11)S backgrounds using CRISPR/Cas9 (Fig.

S5). We then analyzed Ty pulldowns from ³⁵S-labeled WT and C(8,11)S parasites. Ty-tagged 214 TgMyoA and associated TgMLC1 were recovered in the Ty pulldowns from both parasite lines 215 and, as expected, TgGAP45 was only recovered in pulldowns from WT parasites (Fig. 7B). 216 Again, no ³⁵S-labeled proteins were seen to associate with TgMyoA in the C(8,11)S parasites 217 that were not also detected in WT parasites, so there is no evidence that TgMyoA interacts with 218 219 new binding partners in the C(8,11)S double mutant (Fig. 7B). 220 Finally, we tested whether the mutant C(8,11)S TgMLC1 itself might interact with a different 221 IMC-anchored protein(s) that could functionally compensate for its lack of interaction with TgGAP45. Anti-FLAG IPs from ³⁵S-labeled WT and C(8,11)S parasites again confirmed the 222 western blotting results presented in Figs. 5 and S3: compared to WT TgMLC1, C(8,11)S 223 224 TgMLC1 shows both a greatly reduced interaction with TgGAP45 and an increased interaction 225 with TgMyoA (Fig. 7C; quantitative western blot results from the same sample are shown in Fig. 226 S6). However, in this experiment we also saw a marked increase in the amount of an \sim 80kDa 227 kDa³⁵S-labeled protein co-immunoprecipitating with C(8,11)S TgMLC1 compared to WT 228 TgMLC1 (Fig 7C, asterisk). This was intriguing since TgGAP80, a TgGAP45-related protein 229 that normally interacts with TgMyoC, is also reportedly capable of interacting with TgMLC1 230 (59). This raised the possibility that an increased interaction between C(8,11)S TgMLC1 and TgGAP80 might functionally compensate for the loss of interaction between TgMLC1 and 231 TgGAP45 in the mutant parasites. We therefore repeated the FLAG-TgMLC1 pulldowns on a 232 233 preparative scale and determined the identity of each of the major bands recovered by

- 234 LC/MS/MS (Fig. S7 and Tables S1-S10). The ~80kDa band proved to be a truncated form of
- TgMyoA rather than TgGAP80, and the increased levels of this TgMyoA fragment in the
- 236 C(8,11)S pulldown paralleled the increased levels of full-length TgMyoA. Taken together, these

data argue that the near normal motility seen in C(8,11)S parasites cannot be explained by the
binding of either TgGAP45 or components of the motor to alternative proteins that could
functionally compensate for the lack of interaction between TgMLC1 and TgGAP45.

240 **Discussion**

The apicomplexan glideosome plays a critical role in parasite motility, invasion and virulence. 241 Recent palmitome analyses have revealed that all known components of the T. gondii 242 243 glideosome are palmitoylated, including TgMyoA, TgMLC1, TgELC1, TgGAP40, TgGAP45 244 and TgGAP50 (44, 54). Widespread glideosome palmitoylation has also been reported in P. 245 falciparum (51, 60). Two of the T. gondii palmitoyl S-acyl transferases that are essential for 246 parasite survival (TgDHHC2, TgDHHC14) localize to the IMC (61, 62) and are therefore well-247 situated to play a role in glideosome palmitoylation. The function of palmitoylation of one glideosome component, TgGAP45, was established in an elegant set of experiments by Frenal, 248 Soldati-Favre and colleagues (23). Their study showed that C-terminal palmitoylation of 249 250 TgGAP45 anchors its C-terminus in the IMC, while the other end of the protein is anchored in 251 the plasma membrane via N-terminal palmitoylation and myristoylation. Acylation on the two 252 ends of the protein therefore enables TgGAP45 to bridge the gap between the IMC and the 253 plasma membrane; this determines the spacing between the two membranes and maintains the integrity of the parasite pellicle (23). The function of palmitoylation of other glideosome 254 components is not known, and in most cases the specific residues palmitoylated on these other 255 proteins have not been determined. We have focused here on the function of TgMLC1 256 257 palmitoylation.

258	In the linear motor model of motility, TgMLC1 plays two key roles in force generation: it
259	stabilizes the TgMyoA lever arm (10, 13, 20), and it serves as a physical linker connecting the
260	TgMyoA motor to TgGAP45 and the IMC (22, 23). We show here that TgMLC1 is dually
261	palmitoylated, on C8 and C11 (Fig. 2). When we block palmitoylation by mutating these sites to
262	either serine or alanine, TgMLC1 shows reduced association with the membrane fraction in
263	phase-partitioning experiments (Fig. 4) and the mutant TgMLC1 no longer co-
264	immunoprecipitates with TgGAP45 (Figs. 5, S3). Nevertheless, the non-palmitoylated protein
265	continues to localize at the parasite periphery (Figs. 3, S1) and the motility of parasites
266	expressing the mutant protein is in most aspects indistinguishable from wild-type parasites (Fig.
267	6).
268	How does palmitoylation of C8 and C11 affect the ability of TgMLC1 to bind TgGAP45? The
269	detailed mechanism by which the N-terminus of TgMLC1 binds to the C-terminus of TgGAP45
270	(23) is unknown. Direct protein-protein interaction may be involved, as the mutation of two other
271	sets of conserved N-terminal amino acids in TgMLC1 (D26E28 and P36GF38) also interfere
272	with binding to TgGAP45 (23). The presence of the palmitates on C8 and C11 of TgMLC1
273	might help the interacting N-terminal residues of TgMLC1 transition from a disordered state (13,
274	20) into a binding-competent configuration. Alternatively, by inserting into the IMC membrane,
275	the acyl chains could position the relevant N-terminal residues of TgMLC1 favorably for
276	interaction with the C-terminus of TgGAP45, which is itself attached to the IMC membrane via
277	palmitoylation. It is also possible that the acyl chains on TgMLC1 and TgGAP45 themselves
278	interact within the plane of the membrane (20). In any of these cases, blocking TgMLC1
279	palmitoylation would be expected to inhibit TgMLC1-TgGAP45 interaction, as observed. It is
280	unlikely that palmitoylation is necessary for proper folding and stability of TgMLC1, as appears

to be the case with the P. falciparum MLC1 homolog, MTIP (51), since (a) we see no evidence 281 for increased degradation of the C(8,11)S mutant compared to WT TgMLC1 (Fig. S4) and (b) 282 283 the palmitoylation-deficient mutants continue to bind to TgMyoA (e.g., Fig 5). Our data argue against the model that binding to TgGAP45 is what localizes TgMLC1 (and, 284 therefore, TgMyoA) to the parasite periphery and anchors the motor in the IMC membrane. We 285 showed that palmitoylation-deficient TgMLC1 no longer interacts with TgGAP45, yet both 286 TgMLC1 (Figs. 3, S1) and TgMyoA (Fig. S5) continue to localize to the periphery in these 287 288 mutant parasites. Previous studies with parasites expressing mutant TgGAP45 also argue against 289 a model in which the localization of TgMLC1 is determined by TgGAP45: TgGAP45 lacking its C-terminal palmitoylation sites becomes dissociated from the IMC, yet TgMLC1 nevertheless 290 291 remained IMC associated (23). It is not clear how palmitoylated TgMLC1 located within the 292 space between the IMC and plasma membrane would be targeted to the IMC rather than the 293 plasma membrane, if not through TgGAP45. The simplest hypothesis is that it interacts directly 294 with one of the other resident proteins of the IMC, such as the transmembrane proteins TgGAP40 or TgGAP50. Alternatively, insertion of TgMLC1 into the IMC could be a direct 295 296 consequence of binding to (63) and/or palmitoylation by IMC-localized palmitoyl S-acyl 297 transferases (61, 62).

The most unexpected result of this study was that the motility of parasites expressing C(8,11)S TgMLC1 was in most aspects indistinguishable from wild-type parasites (Fig. 6). This observation suggests that the coupling of the motor complex to the IMC via TgGAP45 is unnecessary for force generation by the parasite, and directly contradicts a fundamental tenet of the linear motor model of motility. The near normal motility observed in the mutants does not appear to be due to compensatory changes in glideosome composition in response to the

304	mutations (i.e., TgGAP45 does not associate with alternative myosin light chain(s) or myosin
305	motor(s) in the C[8,11]S mutant, nor does the mutant TgMLC1 or TgMyoA interact with
306	alternative GAP proteins; Fig. 7). It remains formally possible that non-palmitoylatable TgMLC1
307	binds to TgGAP45 in the parasite, with a reduced affinity that is sufficient to maintain its
308	association with the IMC and support motility but insufficient to survive detergent extraction and
309	immunoprecipitation. While it is difficult to experimentally exclude this possibility, most
310	previous studies of glideosome composition and function have utilized a similar nonionic
311	detergent extraction/immunoprecipitation approach, which constitutes the operational definition
312	of the glideosome (17, 18, 23). Furthermore, our phase partitioning experiments independently
313	suggest that the mutant TgMLC1 has indeed lost its association with the IMC membrane.
314	Finally, recent data demonstrate that parasites lacking TgMLC1 altogether have a defect in
315	motility initiation, but those parasites that continue to move do so at normal speeds (25).
316	At a minimum, our data demonstrate that TgMLC1 palmitoylation affects its binding to
317	TgGAP45 but this palmitoylation plays little to no role in parasite motility, as assayed by the
318	most sensitive and quantitative assays currently available. The data also show clearly that the
319	inhibitory effects of the palmitoylation inhibitor 2-bromopalmitate on parasite motility are not
320	due to changes in palmitoylation of TgMLC1, as previously hypothesized, although changes in
321	the palmitoylation of other glideosome components could be involved (64). While the data
322	presented here do not, by themselves, disprove the linear motor model of motility, they add to a
323	growing list of evidence (24-29, 33) suggesting that the mechanisms underlying apicomplexan
324	parasite motility are more complicated than what is currently encapsulated by the linear motor
325	model. How the different motility-associated proteins of the parasite interact and work together

- to generate the forces necessary to drive parasite movement and whether more than one
- 327 underlying mechanism exists remain important open questions for future study.

328 Materials and Methods

329 **Parasite culture**

- 330 *T. gondii* tachyzoites were maintained by serial passage in confluent monolayers of human
- foreskin fibroblasts (HFFs) (ATCC CRL-1634) grown in Dulbecco's Modified Eagle's Medium
- (DMEM), supplemented with 10% (v/v) heat-inactivated fetal bovine serum (FBS) and 10 mM
- HEPES, pH 7.0, as previously described (65). The medium was changed to DMEM
- supplemented with 1% (v/v) heat-inactivated FBS and 10 mM HEPES pH 7.0 prior to infection
- 335 of confluent HFFs with parasites.

336 Generation of TgMLC1 knock-in mutants by allelic replacement

Mutations were introduced into a previously described T_gMLCI allelic replacement plasmid (55) 337 using the Quick Change site-directed mutagenesis kit (Agilent Technologies). E.coli were 338 339 transformed with the mutagenized plasmids and colonies screened by colony PCR and restriction digestion. The entire open reading frame was sequenced to confirm the presence of only the 340 desired mutation(s). The allelic replacement plasmid was linearized with BgIII and PciI and used 341 342 to transfect RH $\Delta ku80\Delta HXGPRT$ parasites. Successful integration of the mutated gene at the endogenous locus yields phleomycin-resistant, FLAG-positive parasites. Parasites were therefore 343 344 subjected to two rounds of phleomycin selection, cloned by limiting dilution and characterized by anti-FLAG immunofluorescence and immunoblotting, as well as diagnostic PCR to confirm 345 correct integration on the chromosome (see Fig. S1). Finally, the presence of the desired 346 mutations in individual clones was confirmed by sequencing of genomic DNA. 347

348 Labeling with 17- ODYA

349 ODYA labeling was performed as described previously (54).

350 Epitope tagging of the *TgMyoA* locus using CRISPR/Cas9

To insert the coding sequence for a Ty epitope tag at the C-terminus of TgMyoA, we constructed 351 352 plasmid pU6-MyoA, which contains the TgMyoA targeting chiRNA under the U6 promoter and Cas9 under the TUB1 promoter (66). First, we synthesized a dsDNA oligo encoding the 353 protospacer sequence used to direct Cas9 to the C-terminal region of TgMyoA. To fuse the 354 TgMyoA protospacer to the chiRNA of the pU6-universal plasmid, forward and reverse oligos 355 corresponding to the TgMvoA 3' region were annealed by combining them (20ul each, 200uM 356 357 stocks) in duplex buffer (100mM potassium acetate; 30mM HEPES pH 7.5), heating them to 100°C for 2 minutes, then slowly cooling them to 25°C and letting them stand overnight to 358 generate double-stranded product. The duplexed oligos were dialyzed against deionized water. 359 360 phosphorylated using T4 polynucleotide kinase, and heat inactivated. Meanwhile, the pU6universal plasmid (5µg) was linearized by digesting with BsaI, dephosphorylated with Antarctic 361 phosphatase, heat inactivated and PCR purified. The phosphorylated, duplexed oligos were then 362 ligated into the pU6-universal plasmid to generate pU6-MyoAPS. Competent E. coli DH5- α 363 were transformed with the pU6-MyoAPS ligation mixture, and individual colonies with the 364 365 desired plasmid identified first by colony PCR, then by diagnostic PCR and sequencing. pU6-MyoAPS was transfected along with duplexed, dialyzed homologous recombination (HR) oligos 366 into WT and C(8,11)S parasites. Ty-positive parasites were identified by immunofluorescence, 367 368 cloned by limiting dilution and confirmed as expressing TgMyoA-Ty from the endogenous

TgMyoA locus by immunofluorescence, diagnostic PCR (see Fig. S5), and sequencing of
genomic DNA.

371 Immunofluorescence

- HFF cells were infected for 15h and fixed with 4% (v/v) paraformaldehyde in PBS (15 min,
- 25° C). Fixed cells were washed and permeabilized with PBS containing 0.25% (v/v) Triton-X-
- 100 for 20 minutes, washed 3 times with PBS and blocked (30 min, 25°C) in Block buffer (PBS
- containing 1% [w/v] BSA). The cells were then incubated for 1hr with primary antibodies
- diluted as follows with Block buffer: mouse monoclonal anti-FLAG (Sigma Aldrich) at 1:500;
- rabbit anti-GAP45 polyclonal serum (a generous gift from Dr. Con Beckers (17)) at 1:1000;
- rabbit anti-MyoA polyclonal serum (67) at 1:20; and rabbit anti-ELC1 polyclonal serum at
- 1:500. Samples were washed 3 times and incubated a further 30 min in goat-anti-rabbit IgG
- conjugated to Alexa fluor 546 (Invitrogen) or goat-anti-mouse IgG conjugated to Alexa fluor 488
- 381 (Invitrogen), each diluted 1:500 in Block buffer. After four final washes in PBS, fluorescence
- 382 was visualized by epifluorescence microscopy.

383 Immunoprecipitation

- For anti-FLAG immunoprecipitations, $2x10^7$ freshly egressed parasites were extracted for 45
- minutes on ice in 3 ml of FLAG lysis buffer (10 mM imidazole pH 7.4, 300 mM NaCl, 1 mM
- 386 EGTA, 5 mM MgCl₂, 1 % (w/v) TX-100, 2 mM DTT, 2mM ATP) containing 1:100 (v/v)
- 387 protease inhibitors (Sigma #P8340). The extract was divided into two equal portions and
- insoluble material was pelleted at 10,000xg (30 min, 4°C). Each ~1.5 ml of supernatant was used
- to resuspend 20 ul of packed anti-FLAG M2 affinity resin (Sigma), then rocked gently overnight
- at 4°C. After three washes with the FLAG wash buffer (FLAG lysis buffer containing 1:500

391	(v/v) protease inhibitors), bound proteins from the pooled washed resin were eluted with 100µg
392	of FLAG peptide (Sigma) in FLAG wash buffer. Eluates were resolved by SDS-PAGE and
393	proteins visualized by immunoblotting. Primary and secondary (IRDye 680-conjugated anti-
394	rabbit IgG and IRDye 800-conjugated anti-mouse IgG) antibodies were diluted for use in
395	Odyssey blocking buffer (LI-COR). The blots were scanned using an Odyssey CLx infrared
396	imager (LI-COR). Images were processed using Image Studio software (LI-COR). Signal
397	intensities of bands being compared were normalized as described in the figure legends.

398 ³⁵S-Metabolic labeling

For 35 S metabolic labeling, confluent HFF cells in a T75 flask were infected with 1×10^7

400 tachyzoites and incubated for 16-20 hours. The infected cells were then incubated in

401 methionine/cysteine-free DMEM (GIBCO) containing 1% (v/v) FBS for 1 hr, followed by 24 hr

402 in DMEM containing 500µCi ³⁵S-Easytag mix (Perkin Elmer). Infected cells were detached from

403 the flask using a cell scraper, washed twice with ice-cold PBS, and lysed in FLAG lysis buffer

404 for anti-FLAG immunoprecipitation, or TX-100 lysis buffer (1% v/v TX-100, 50 mM Tris HCl

405 pH 8.0, 150 mM NaCl, 2 mM EDTA and 1:200 (v/v) protease inhibitors) for anti-Ty and anti-

406 GAP45 immunoprecipitations. Immunoprecipitation was performed as described above except

407 that, after incubation with primary antibody, protein A-Sepharose (Invitrogen) was added and

408 incubated for 1hr with gentle agitation at 4°C to collect the immune complexes. After three

409 washes with either FLAG wash buffer or TX-100 IP wash buffer (1% v/v TX-100, 50 mM Tris,

410 pH 8.0, 150 mM NaCl, 5 mM EDTA and 1:500 protease inhibitors), bound proteins were eluted

411 in SDS-PAGE sample buffer by boiling at 100°C for 5 minutes. Samples were then resolved by

412 SDS-PAGE, and transferred to PVDF membranes for phosphorimaging and immunoblotting.

413 Phase separation of parasite proteins in Triton X-114

The phase separation was performed as previously described (56-58). Briefly, $4x10^8$ tachyzoites 414 415 were extracted in 1 ml extraction buffer (10 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.5% (v/v) precondensed TX-114 (Pierce) and 1:100 [v/v] dilution of protease inhibitors) for 90 minutes on 416 ice. Insoluble material was removed by centrifugation (twice at 13,000xg for 5 min at 4°C). The 417 cleared extract was overlaid onto a 750 μ l prechilled sucrose cushion (6% [w/v] sucrose, 10 mM 418 419 Tris-HCl, pH 7.4, 150 mM NaCl and 0.06% [v/v] precondensed Triton X-114), incubated for 5 minutes at 37°C and centrifuged to separate the detergent and aqueous phases by centrifugation 420 421 (37°C, 3000xg, 5 min). Partitioning was repeated once on each phase and the collected samples were resolved by SDS-PAGE and analyzed by sequential incubations of a single western blot 422 423 with anti-TgMyoA, -TgGAP45, -TgMLC1 and -TgELC1, followed by the appropriate secondary 424 antibodies.

425 Motility assays

426 3D motility assays in Matrigel were performed as previously described (55, 68).

427 Protein identification by mass spectrometry analysis

428 Dried tryptic peptides recovered from excised gel bands (69) were dissolved in $10 \ \mu l \ 0.1\%$

429 formic acid and 2.5% acetonitrile, and 2 ul were analyzed on the Thermo Q-Exactive mass

430 spectrometer coupled to an EASY-nLC system (Thermo Fisher). Peptides were separated on a

- 431 fused silica capillary (12 cm x 100 um I.D) packed with Halo C18 (2.7 um particle size, 90 nm
- 432 pore size, Michrom Bioresources) at a flow rate of 300 nl/min. Peptides were introduced into the
- 433 mass spectrometer via a nanospray ionization source at a spray voltage of 2.2 kV. Mass

434	spectrometry data were acquired in a data-dependent top-10 mode, and the lock mass function
435	was activated (m/z, 371.1012). Full scans were acquired from m/z 350 to 1,600 at 70,000
436	resolution (automatic gain control [AGC] target, 1e6; maximum ion time [max IT], 100 ms;
437	profile mode). Resolution for dd-MS ² spectra was set to 17,500 (AGC target: 1e5) with a
438	maximum ion injection time of 50 ms. The normalized collision energy was 27 eV. A gradient of
439	0 to 40% acetonitrile (0.1% FA) over 55 min was applied. The spectra were searched against the
440	T. gondii protein database (http://www.toxodb.org/toxo/) by Proteome Discoverer (PD) 2.0. The
441	search parameters permitted a 10 ppm precursor MS tolerance and a 0.02 Da MS/MS tolerance.
442	Carboxymethylation of cysteines was set up as fixed modification and Oxidation of methionine
443	(M) was allowed as variable modification. Up to three missed tryptic cleavages of peptides were
444	considered with the false-discovery rate set to 1% at the peptide level.

445 Figure and Table Legends

446 Figure 1. Schematic illustrations of the glideosome and TgMLC1 domain structure. (A) In

the linear motor model of motility (reviewed in (16)), the TgMyoA motor (TgMyoA and its 447 448 associated light chains, TgMLC1 and either TgELC1 or TgELC2) is anchored to the parasite's 449 inner membrane complex (IMC) via the acylated glideosome-associated protein, TgGAP45, and 450 the transmembrane proteins TgGAP40 and TgGAP50. The lumenal portion of GAP50 is thought 451 to interact with GAPM, a protein that spans the inner IMC membrane, and which likely connects 452 the entire glideoeome to the underlying parasite cytoskeleton. Short actin (TgACT1) filaments 453 located between the parasite plasma membrane and the IMC are connected to ligands on the 454 substrate through a linker protein, possibly the glideosome-associated connector protein (GAC), which binds to the cytosolic tails of surface adhesins such as TgMIC2. The TgMyoA motor 455

displaces the actin filaments rearward; because the motor is connected to the IMC and the actin
is connected to the substrate, this causes the parasite to move forward relative to the substrate.
The depiction of a pair of acyl chains on the N-terminus of TgMLC1 (red squiggles) and their
interaction with the IMC membrane is based on results reported here. (B) TgMLC1 consists of a
44-amino acid N-terminal extension, a central disordered region, and four EF hand-like domains,
which interact with the tail of TgMyoA. The positions of the five cysteines in the protein are
shown in blue; CSS-Palm 4.0 predicted C8 and C11 as likely sites of palmitoylation.

463 Figure 2. Cys8 and Cys11 are the likely sites of palmitoylation on TgMLC1. Parasites

464 expressing either wild-type (WT) or mutant FLAG-tagged TgMLC1 were labeled with the

465 palmitic acid analog 17-ODYA, and anti-FLAG resin was then used to pull down FLAG-

466 TgMLC1 and associated proteins. The proteins in the pulldown were resolved by SDS-PAGE

467 and visualized either by rhodamine fluorescence scan (upper panel), to show the position of 17-

468 ODYA in the gel, or by western blotting with anti-TgMLC1 (lower panel). Numbers on the left

indicate molecular mass in kDa; only the \sim 30kDa portion of the western blot is shown. The

470 predominant ~31-kDa ODYA-labeled band comigrates with FLAG-TgMLC1; its labeling

471 intensity is reduced in the C8S and C11S single mutants and abolished completely in the

472 C(8,11)S and C(8,11)A double mutants. The western blot shows similar protein loads in all

473 samples. The asterisk indicates a doublet of ODYA-labeled proteins at ~50kDa that is pulled
474 down with wild-type FLAG-TgMLC1 but not with either of the double mutants – see text for

475 details.

Figure 3. C(8,11)S and C(8,11)A mutations do not affect localization of TgMLC1 to the parasite periphery. Infected HFF cells were fixed, permeabilized and stained for FLAG-tagged TgMLC1 (red) or TgGAP45 (green). The corresponding merged and DIC images are also

479 shown. Upper panels compare the localization of WT *vs*. C(8,11)S TgMLC1; lower panels 480 compare WT *vs*. C(8,11)A TgMLC1. Scale bar = $10 \mu m$.

481 Figure 4. Blocking TgMLC1 palmitoylation causes the protein to shift into the aqueous

482 phase in Triton X-114. WT, C8S, C11S, C(8,11)S and C(8,11)A parasites were extracted at

483 4°C in Triton X-114 and the extracted proteins phase partitioned by shifting the temperature to

484 20°C. The amounts of (A) TgMLC1 and (B) TgGRA8 recovered in the detergent (grey) and

485 aqueous (black) phases from each sample were determined by quantitative western blotting (see

486 Fig. S2 for a representative western blot), and are displayed here as the percentage of the total

TgMLC1 recovered in the two phases combined. The data shown are the means and standard

error of the mean (SEM) from 2 (C8S, C11S) or 4 (WT, C[8,11]S) independent replicates;

489 C(8,11)A parasites were analyzed once.

490 Figure 5. Blocking TgMLC1 palmitoylation alters the composition of the glideosome. (A)

Parasites expressing wild-type or mutant FLAG-tagged TgMLC1 were gently extracted in Triton 491 492 X-100, and the soluble proteins (Input) were used for anti-FLAG immunoprecipitations (FLAG 493 IP). Immunoprecipitated proteins were resolved by SDS-PAGE and analyzed by sequential western blotting with anti-TgMyoA, -TgGAP45, -TgMLC1 and -TgELC1; the fluorescent signal 494 intensity of each immunoreactive band is indicated by the white number below the band (relative 495 fluorescence units). Numbers on the left indicate molecular mass in kDa. (B) The signal 496 intensities of TgGAP45, TgMyoA and TgELC1 immunoprecipitated from the C(8,11)S mutant 497 parasite line is shown relative the corresponding band from the WT line, after normalizing to the 498 amount of TgMLC1 recovered in each sample. Shown are the means and SEM from six 499 independent experiments; differences were assessed using an unpaired two-tailed t-test. 500

501 Figure 6. Mutations that block TgMLC1 palmitoylation and disrupt glideosome

502 **composition have little effect on parasite motility.** The upper panels show maximum intensity

503 projections of the Hoechst 33342-stained WT or C[8,11]S parasites that moved within a 3-

504 dimensional model extracellular matrix (Matrigel) during 60 sec of image capture. Scale bar = 50

 μ m. The table below shows the motility parameters calculated from three independent motility

assays (each consisting of three technical replicates); numbers for each parameter represent the

507 means +/- SEM. The total number of trajectories analyzed for each parasite line is also shown.

508 Differences between WT and C(8,11)S parasites for each motility parameter were assessed using

an unpaired two-tailed t-test and the resulting p values are shown in the righthand column.

510 Figure 7. No changes in glideosome composition that could compensate for the loss of

511 TgGAP45-TgMLC1 interaction are observed in C(8,11)S parasites. Parasites were labeled

for 24 hr in medium containing (^{35}S) - methionine/cysteine and gently extracted in Triton X-100.

513 Soluble proteins were immunoprecipitated as described below, resolved by SDS-PAGE,

transferred to a PVDF membrane and visualized by phosphorimaging (shown here). The same

515 membrane was subsequently used for western blotting, probing with antibodies against

516 TgMyoA, TgGAP45 and TgMLC1 (not shown) to determine which ³⁵S-labeled bands

517 corresponded to which glideosome proteins. Numbers on the left of each panel indicate

518 molecular mass in kDa. (A) To test whether TgGAP45 interacts with any new proteins in

519 C(8,11)S parasites, ³⁵S-labeled proteins from WT and C(8,11)S parasites were

520 immunoprecipitated with anti-TgGAP45, resolved by SDS/PAGE and visualized by

521 phosphorimaging. No bands were detected in the pulldowns from C(8,11)S parasites that were

522 not already present in the pulldowns from WT parasites. The band migrating immediately below

523 TgGAP45 in the WT sample was recovered in some pulldowns but not others and may represent

524	a breakdown product of TgGAPA45 (see Fig. S7). (B) To test whether TgMyoA interacts with
525	any new proteins in the C(8,11)S parasites, ³⁵ S-labeled proteins immunoprecipitated using anti-
526	Ty from WT-MyoATy and C(8,11)S-MyoATy parasites were compared. No bands were
527	detected in the pulldowns from C(8,11)S parasites that were not already present in the pulldowns
528	from WT parasites. (C) To test whether C(8,11)S TgMLC1 interacts with any new proteins
529	compared to WT TgMLC1, ³⁵ S-labeled proteins immunoprecipitated using anti-FLAG from WT
530	and C(8,11)S parasites were compared. Asterisk indicates an ~80K band enriched in the FLAG
531	pulldown of C(8,11)S compared to WT; this protein was shown to be a fragment of TgMyoA
532	(see text). The relative amounts of TgMyoA and TgGAP45 pulled down in Panel C were
533	quantified by western blotting as shown in Fig. S6.
	Table 1: Strains generated and used in this study, with their relevant genotypes
534	Table 1. Strains generated and used in this study, with then relevant genotypes
534 535	Supplementary figure legends and tables
535	Supplementary figure legends and tables
535 536	Supplementary figure legends and tables Figure S1. Generation and characterization of TgMLC1 knock-in parasites. (A) Allelic
535 536 537	Supplementary figure legends and tables Figure S1. Generation and characterization of TgMLC1 knock-in parasites. (A) Allelic replacement strategy. The <i>TgMLC1</i> allele was targeted in <i>RH∆ku80</i> parasites using 5' and 3'
535 536 537 538	Supplementary figure legends and tables Figure S1. Generation and characterization of TgMLC1 knock-in parasites. (A) Allelic replacement strategy. The <i>TgMLC1</i> allele was targeted in <i>RH∆ku80</i> parasites using 5' and 3' <i>TgMLC1</i> homology regions flanking a construct that consisted of cDNA encoding full-length
535 536 537 538 539	Supplementary figure legends and tables Figure S1. Generation and characterization of TgMLC1 knock-in parasites. (A) Allelic replacement strategy. The $TgMLC1$ allele was targeted in $RH\Delta ku80$ parasites using 5' and 3' TgMLC1 homology regions flanking a construct that consisted of cDNA encoding full-length TgMLC1 (wildtype or mutant) with an N-terminal FLAG tag, the 3' untranslated region (UTR)
535 536 537 538 539 540	Supplementary figure legends and tables Figure S1. Generation and characterization of TgMLC1 knock-in parasites. (A) Allelic replacement strategy. The <i>TgMLC1</i> allele was targeted in <i>RHΔku80</i> parasites using 5' and 3' <i>TgMLC1</i> homology regions flanking a construct that consisted of cDNA encoding full-length TgMLC1 (wildtype or mutant) with an N-terminal FLAG tag, the 3' untranslated region (UTR) from <i>DHFR</i> , and a selection cassette consisting of the <i>GRA1</i> promoter, the phleomycin
535 536 537 538 539 540 541	Supplementary figure legends and tables Figure S1. Generation and characterization of TgMLC1 knock-in parasites. (A) Allelic replacement strategy. The $TgMLC1$ allele was targeted in $RH\Delta ku80$ parasites using 5' and 3' TgMLC1 homology regions flanking a construct that consisted of cDNA encoding full-length TgMLC1 (wildtype or mutant) with an N-terminal FLAG tag, the 3' untranslated region (UTR) from $DHFR$, and a selection cassette consisting of the $GRA1$ promoter, the phleomycin resistance gene (<i>ble</i>) and the 3' UTR from <i>SAG1</i> . The binding location of PCR primers P1-P4
535 536 537 538 539 540 541 542	Supplementary figure legends and tables Figure S1. Generation and characterization of TgMLC1 knock-in parasites. (A) Allelic replacement strategy. The $TgMLC1$ allele was targeted in $RH\Delta ku80$ parasites using 5' and 3' TgMLC1 homology regions flanking a construct that consisted of cDNA encoding full-length TgMLC1 (wildtype or mutant) with an N-terminal FLAG tag, the 3' untranslated region (UTR) from $DHFR$, and a selection cassette consisting of the $GRA1$ promoter, the phleomycin resistance gene (<i>ble</i>) and the 3' UTR from <i>SAG1</i> . The binding location of PCR primers P1-P4 (which correspond to Primers 25-28, respectively, in Supplementary Table 11) and the
535 536 537 538 539 540 541 542 543	Supplementary figure legends and tables Figure S1. Generation and characterization of TgMLC1 knock-in parasites. (A) Allelic replacement strategy. The $TgMLC1$ allele was targeted in $RH\Delta ku80$ parasites using 5' and 3' TgMLC1 homology regions flanking a construct that consisted of cDNA encoding full-length TgMLC1 (wildtype or mutant) with an N-terminal FLAG tag, the 3' untranslated region (UTR) from $DHFR$, and a selection cassette consisting of the $GRA1$ promoter, the phleomycin resistance gene (<i>ble</i>) and the 3' UTR from <i>SAG1</i> . The binding location of PCR primers P1-P4 (which correspond to Primers 25-28, respectively, in Supplementary Table 11) and the corresponding expected amplicon sizes are indicated in red. This same strategy was used to

546	line; results for the $C(8,11)S$ parasite line are shown here. (B) PCR results using primer pairs
547	P1+P2 and P3+P4 on parental ($\Delta ku80$) and C(8,11)S parasites after allelic replacement. DNA
548	ladder is shown in the leftmost lane, numbers indicate base pairs. (C) Immunofluorescence
549	staining of C(8,11)S parasites with anti-GAP45 (red) and anti-FLAG (green) confirms
550	expression and proper (peripheral) localization of the FLAG-tagged TgMLC1. Scale bar = 10
551	μ m. (D) Western blot of C(8,11)S parasites stained with anti TgMyoA (green) and anti-FLAG
552	(red) confirms expression and proper size of the FLAG-tagged protein. Numbers on the left
553	indicate molecular mass in kDa. Successful allelic replacement by constructs expressing WT,
554	C8S, C11S and C8A11A TgMLC1 were similarly confirmed by PCR, immunofluorescence and
555	western blot.

556 Figure S2. Triton X-114 phase partitioning of parasites expressing WT vs. palmitoylation-

557 deficient TgMLC1. WT, C8S, C11S and C8SC11S parasites were extracted at 4°C in Triton X-

⁵⁵⁸ 114 and subjected to phase partitioning at 20°C. Proteins present in the lysate before partitioning

559 (Whole lysate) and in the aqueous and detergent phases after partitioning were resolved by SDS-

560 PAGE and visualized either by (A) Western blotting with anti-TgMLC1 (green) and anti-

TgGRA8 (red), or (B) Colloidal Coomassie staining. Numbers on the left of each panel indicate
molecular mass in kDa.

563 Figure S3. Similar changes in the composition of the glideosome are observed in C(8,11)S

and C(8,11)A parasites. (A) Parasites expressing wild-type or mutant FLAG-tagged TgMLC1

565 were gently extracted in Triton X-100, and the soluble proteins (Input) used for anti-FLAG

immunoprecipitations. Proteins that bound to the anti-FLAG affinity resin and those that did not

567 (Bound, Unbound) were recovered and analyzed by SDS-PAGE and sequential western blotting

568	with anti-TgMyoA, -TgGAP45, -TgMLC1 and -TgELC1. The signal intensity of each
569	immunoreactive band was quantified (white number below the band; relative fluorescence units).
570	Numbers on the left indicate molecular mass in kDa. (B) The signal intensities of TgGAP45,
571	TgMyoA and TgELC1 pulled down from each of the parasite lines is shown relative the
572	corresponding band from WT parasites, after normalizing to the amount of TgMLC1 recovered
573	in each sample. Shown are the means and SEM from three independent experiments; data were
574	analyzed using one-way ANOVA.
575	Figure S4. WT, C(8,11)S and C(8,11)A parasites express equivalent amounts of both
575 576	Figure S4. WT, C(8,11)S and C(8,11)A parasites express equivalent amounts of both FLAG-tagged TgMLC1 and TgMyoA. Parasite proteins were extracted in boiling SDS-PAGE
576	FLAG-tagged TgMLC1 and TgMyoA. Parasite proteins were extracted in boiling SDS-PAGE
576 577	FLAG-tagged TgMLC1 and TgMyoA. Parasite proteins were extracted in boiling SDS-PAGE sample buffer, resolved by SDS-PAGE and visualized by western blotting with anti-TgMyoA
576 577 578	FLAG-tagged TgMLC1 and TgMyoA. Parasite proteins were extracted in boiling SDS-PAGE sample buffer, resolved by SDS-PAGE and visualized by western blotting with anti-TgMyoA and anti-TgMLC1 (left panel) or anti-TgIMC1 (right panel) as a loading control. The signal
576 577 578 579	FLAG-tagged TgMLC1 and TgMyoA. Parasite proteins were extracted in boiling SDS-PAGE sample buffer, resolved by SDS-PAGE and visualized by western blotting with anti-TgMyoA and anti-TgMLC1 (left panel) or anti-TgIMC1 (right panel) as a loading control. The signal intensity of each immunoreactive band was quantified (white number below the band; relative

583 sample.

584 Figure S5. Generation and characterization of parasites expressing C-terminally Ty-tagged

TgMyoA. (A) Schematic representation of the *TgMyoA* locus after the insertion of Ty tag at the

586 3' end using CRISPR-Cas9. The binding location of PCR primers P1-P3 and the expected

amplicon sizes are indicated. Primers P1, P2 and P3 correspond to primers 20, 22 and 21,

respectively, in Supplementary Table 11. (B) PCR results using primer pairs P1+P2 and P1+P3

on parental parasites ($\Delta ku80$) and the WT and C(8,11)S lines after Ty tagging the *TgMyoA* locus.

590 DNA ladder is shown in the leftmost lane, numbers indicate base pairs. (C) Immunofluorescence

- staining of WT-MyoATy and C(8,11)S-MyoATy parasites with anti-Ty (red) and anti-GAP45
- 592 (green) confirms expression and proper localization of Ty-tagged TgMyoA in the two lines.
- 593 Scale bar = $10 \mu m$. (D) Western blots of WT-MyoATy and C(8,11)S-MyoATy parasites probed
- with anti-Ty (red) followed by anti-TgMyoA and TgMLC1 (green) confirms similar expression
- levels of TgMyoA in the two lines. Numbers on the left indicate molecular mass in kDa.

596 Figure S6: The western blot signal intensities of (A) TgMyoA and (B) TgGAP45 pulled down

- from WT or C(8,11)S parasites in Fig. 7C, after normalizing for the amount of TgMLC1
- recovered in each sample. Shown are the means and SEM from two independent experiments;
- 599 differences were assessed using an unpaired two-tailed t-test.

600 Figure S7. Preparative SDS-PAGE of anti-FLAG immunoprecipitated proteins from WT

and C(8,11)S parasites. Proteins immunoprecipitated using anti-FLAG from WT and C(8,11)S parasites were resolved by SDS-PAGE and stained with colloidal Coomassie Blue. The major stained bands were excised, digested with trypsin and identified by LC/MS-MS as described in Materials and Methods. Numbers on the left indicate molecular mass in kDa. Labels on the right indicate the major protein identified in the band and the LC/MS-MS data file on which this identification was based (see Table S1 for a summary of the LC/MS-MS results and Tables S2-S10 for the raw data for each band).

608 Supplementary Tables 1-10: Identification of protein bands recovered in the anti-FLAG

609 immunoprecipitates from WT and C(8,11)S parasites. Protein identification data for the nine

610 excised bands shown in Fig. S6 are summarized in Table S1, and the raw LC/MS-MS results for

611 each individual band are provided in Tables S2-S10.

612 Supplementary Table 11. List of oligonucleotides used in this study

613 Acknowledgements

- This work was supported by US Public Health Service grants AI139201 to GEW and GM111703
- to MB. The Vermont Genetics Network Proteomics Facility is supported through NIH grant
- 616 P20GM103449 from the INBRE Program of the National Institute of General Medical Sciences.
- 617 The funders had no role in study design, data collection and interpretation, or the decision to
- 618 submit the work for publication.

619 **References**

- 1. Montoya JG, Liesenfeld O. 2004. Toxoplasmosis. Lancet 363:1965-76.
- Barragan A, Sibley LD. 2002. Transepithelial migration of Toxoplasma gondii is linked to
 parasite motility and virulence. J Exp Med 195:1625-33.
- 3. Harker KS, Ueno N, Lodoen MB. 2015. *Toxoplasma gondii* Dissemination: A Parasite's
 Journey through the Infected Host. Parasite Immunol 37:141-149.
- 4. Sibley LD. 2004. Intracellular parasite invasion strategies. Science 304:248-53.
- 5. Heintzelman MB, Schwartzman JD. 1997. A novel class of unconventional myosins from
 Toxoplasma gondii. J Mol Biol 271:139-46.
- 6. Pinder JC, Fowler RE, Dluzewski AR, Bannister LH, Lavin FM, Mitchell GH, Wilson RJ,
 Gratzer WB. 1998. Actomyosin motor in the merozoite of the malaria parasite, Plasmodium
 falciparum: implications for red cell invasion. J Cell Sci 111 (Pt 13):1831-9.
- 7. Herm-Gotz A, Weiss S, Stratmann R, Fujita-Becker S, Ruff C, Meyhofer E, Soldati T,
 Manstein DJ, Geeves MA, Soldati D. 2002. Toxoplasma gondii myosin A and its light chain:
 a fast, single-headed, plus-end-directed motor. EMBO J 21:2149-58.
- Baum J, Richard D, Healer J, Rug M, Krnajski Z, Gilberger TW, Green JL, Holder AA,
 Cowman AF. 2006. A conserved molecular motor drives cell invasion and gliding motility
 across malaria life cycle stages and other apicomplexan parasites. J Biol Chem 281:5197-208.

637 9. Nebl T, Prieto JH, Kapp E, Smith BJ, Williams MJ, Yates JR, 3rd, Cowman AF, Tonkin CJ.

- 638 2011. Quantitative in vivo analyses reveal calcium-dependent phosphorylation sites and
 639 identifies a novel component of the Toxoplasma invasion motor complex. PLoS Pathog
 640 7:e1002222.
- 10. Bookwalter CS, Kelsen A, Leung JM, Ward GE, Trybus KM. 2014. A Toxoplasma gondii
 class XIV myosin, expressed in Sf9 cells with a parasite co-chaperone, requires two light
 chains for fast motility. J Biol Chem 289:30832-41.
- 644 11. Williams MJ, Alonso H, Enciso M, Egarter S, Sheiner L, Meissner M, Striepen B, Smith BJ,
 645 Tonkin CJ. 2015. Two Essential Light Chains Regulate the MyoA Lever Arm To Promote
 646 *Toxoplasma* Gliding Motility. MBio 6:e00845-15.
- Green JL, Wall RJ, Vahokoski J, Yusuf NA, Ridzuan MAM, Stanway RR, Stock J, Knuepfer
 E, Brady D, Martin SR, Howell SA, Pires IP, Moon RW, Molloy JE, Kursula I, Tewari R,
 Holder AA. 2017. Compositional and expression analyses of the glideosome during the
 Plasmodium life cycle reveal an additional myosin light chain required for maximum motility.
 J Biol Chem 292:17857-17875.
- 13. Powell CJ, Jenkins ML, Parker ML, Ramaswamy R, Kelsen A, Warshaw DM, Ward GE,
 Burke JE, Boulanger MJ. 2017. Dissecting the molecular assembly of the *Toxoplasma gondii*MyoA motility complex. J Biol Chem 292:19469-19477.
- 14. Powell CJ, Ramaswamy R, Kelsen A, Hamelin DJ, Warshaw DM, Bosch J, Burke JE, Ward
 GE, Boulanger MJ. 2018. Structural and mechanistic insights into the function of the
 unconventional class XIV myosin MyoA from Toxoplasma gondii. Proc Natl Acad Sci U S A
 115:E10548-e10555.
- 15. Robert-Paganin J, Robblee JP, Auguin D, Blake TCA, Bookwalter CS, Krementsova EB,
 Moussaoui D, Previs MJ, Jousset G, Baum J, Trybus KM, Houdusse A. 2019. Plasmodium
 myosin A drives parasite invasion by an atypical force generating mechanism. Nat Commun
 10:3286.
- 16. Frenal K, Dubremetz JF, Lebrun M, Soldati-Favre D. 2017. Gliding motility powers invasion
 and egress in Apicomplexa. Nat Rev Microbiol 15:645-660.

- 17. Gaskins E, Gilk S, DeVore N, Mann T, Ward G, Beckers C. 2004. Identification of the
 membrane receptor of a class XIV myosin in Toxoplasma gondii. J Cell Biol 165:383-93.
- 18. Johnson TM, Rajfur Z, Jacobson K, Beckers CJ. 2007. Immobilization of the Type XIV
 Myosin Complex in *Toxoplasma gondii*. Mol Biol Cell 18:3039-3046.
- 19. Jacot D, Tosetti N, Pires I, Stock J, Graindorge A, Hung YF, Han H, Tewari R, Kursula I,
- 670 Soldati-Favre D. 2016. An Apicomplexan Actin-Binding Protein Serves as a Connector and
- Lipid Sensor to Coordinate Motility and Invasion. Cell Host Microbe 20:731-743.
- 20. Pazicky S, Dhamotharan K, Kaszuba K, Mertens H, Gilberger T, Svergun D, Kosinski J,
 Weininger U, Löw C. 2019. Structural role of essential light chains in the apicomplexan
 glideosome. bioRxiv doi:10.1101/867499:867499.
- 21. Warshaw DM. 2004. Lever arms and necks: a common mechanistic theme across the myosin
 superfamily. J Muscle Res Cell Motil 25:467-74.
- 677 22. Bergman LW, Kaiser K, Fujioka H, Coppens I, Daly TM, Fox S, Matuschewski K,
 678 Nussenzweig V, Kappe SH. 2003. Myosin A tail domain interacting protein (MTIP) localizes
 679 to the inner membrane complex of *Plasmodium* sporozoites. J Cell Sci 116:39-49.
- 23. Frenal K, Polonais V, Marq JB, Stratmann R, Limenitakis J, Soldati-Favre D. 2010. Functional
 dissection of the apicomplexan glideosome molecular architecture. Cell Host Microbe 8:34357.
- Egarter S, Andenmatten N, Jackson AJ, Whitelaw JA, Pall G, Black JA, Ferguson DJ, Tardieux
 I, Mogilner A, Meissner M. 2014. The toxoplasma Acto-MyoA motor complex is important
 but not essential for gliding motility and host cell invasion. PLoS One 9:e91819.
- 25. Whitelaw JA, Latorre-Barragan F, Gras S, Pall GS, Leung JM, Heaslip A, Egarter S,
 Andenmatten N, Nelson SR, Warshaw DM, Ward GE, Meissner M. 2017. Surface attachment,
 promoted by the actomyosin system of *Toxoplasma gondii* is important for efficient gliding
 motility and invasion. BMC Biol 15:1.
- 26. Andenmatten N, Egarter S, Jackson AJ, Jullien N, Herman JP, Meissner M. 2013. Conditional
 genome engineering in Toxoplasma gondii uncovers alternative invasion mechanisms. Nat
 Methods 10:125-7.

- 693 27. Meissner M, Ferguson DJ, Frischknecht F. 2013. Invasion factors of apicomplexan parasites:
 694 essential or redundant? Curr Opin Microbiol 16:438-44.
- 28. Pavlou G, Touquet B, Vigetti L, Renesto P, Bougdour A, Debarre D, Balland M, Tardieux I.
 2020. Coupling Polar Adhesion with Traction, Spring and Torque Forces Allows High Speed
- Helical Migration of the Protozoan Parasite Toxoplasma. ACS Nano 14:7121-7139.
- 698 29. Tardieux I, Baum J. 2016. Reassessing the mechanics of parasite motility and host-cell
 699 invasion. J Cell Biol 214:507-15.
- 30. Bane KS, Lepper S, Kehrer J, Sattler JM, Singer M, Reinig M, Klug D, Heiss K, Baum J,
 Mueller AK, Frischknecht F. 2016. The Actin Filament-Binding Protein Coronin Regulates
 Motility in Plasmodium Sporozoites. PLoS Pathog 12:e1005710.
- 31. Kappe S, Bruderer T, Gantt S, Fujioka H, Nussenzweig V, Menard R. 1999. Conservation of
 a gliding motility and cell invasion machinery in apicomplexan parasites. J Cell Biol 147:93744.
- 32. Munter S, Sabass B, Selhuber-Unkel C, Kudryashev M, Hegge S, Engel U, Spatz JP,
 Matuschewski K, Schwarz US, Frischknecht F. 2009. *Plasmodium* sporozoite motility is
 modulated by the turnover of discrete adhesion sites. Cell Host Microbe 6:551-62.
- 33. Quadt KA, Streichfuss M, Moreau CA, Spatz JP, Frischknecht F. 2016. Coupling of
 Retrograde Flow to Force Production During Malaria Parasite Migration. ACS Nano 10:2091102.
- 34. Carey KL, Westwood NJ, Mitchison TJ, Ward GE. 2004. A small-molecule approach to
 studying invasive mechanisms of *Toxoplasma gondii*. Proc Natl Acad Sci U S A 101:7433-8.
- 35. Farrell A, Thirugnanam S, Lorestani A, Dvorin JD, Eidell KP, Ferguson DJ, Anderson-White
 BR, Duraisingh MT, Marth GT, Gubbels MJ. 2012. A DOC2 protein identified by mutational
 profiling is essential for apicomplexan parasite exocytosis. Science 335:218-21.
- 36. Hegge S, Münter S, Steinbüchel M, Heiss K, Engel U, Matuschewski K, Frischknecht F. 2010.
 Multistep adhesion of Plasmodium sporozoites. Faseb J 24:2222-34.
- 37. Drewry LL, Sibley LD. 2015. *Toxoplasma* Actin Is Required for Efficient Host Cell Invasion.
 MBio 6:e00557.

- 38. Linder ME, Deschenes RJ. 2007. Palmitoylation: policing protein stability and traffic. Nat Rev
 Mol Cell Biol 8:74-84.
- 39. Tom CT, Martin BR. 2013. Fat chance! Getting a grip on a slippery modification. ACS ChemBiol 8:46-57.
- 40. Linder ME, Deschenes RJ. 2003. New insights into the mechanisms of protein palmitoylation.
 Biochemistry 42:4311-20.
- 41. Salaun C, Greaves J, Chamberlain LH. 2010. The intracellular dynamic of protein
 palmitoylation. J Cell Biol 191:1229-38.
- 42. Resh MD. 2006. Palmitoylation of ligands, receptors, and intracellular signaling molecules.
 Sci STKE 2006:re14.
- 43. Beck JR, Fung C, Straub KW, Coppens I, Vashisht AA, Wohlschlegel JA, Bradley PJ. 2013.
 A Toxoplasma palmitoyl acyl transferase and the palmitoylated armadillo repeat protein
 TgARO govern apical rhoptry tethering and reveal a critical role for the rhoptries in host cell
 invasion but not egress. PLoS Pathog 9:e1003162.
- 44. Caballero MC, Alonso AM, Deng B, Attias M, de Souza W, Corvi MM. 2016. Identification
 of new palmitoylated proteins in *Toxoplasma gondii*. Biochim Biophys Acta 1864:400-8.
- 45. Child MA, Hall CI, Beck JR, Ofori LO, Albrow VE, Garland M, Bowyer PW, Bradley PJ,
 Powers JC, Boothroyd JC, Weerapana E, Bogyo M. 2013. Small-molecule inhibition of a
 depalmitoylase enhances Toxoplasma host-cell invasion. Nat Chem Biol 9:651-6.
- 46. Corvi MM, Turowski VR. 2019. Palmitoylation in apicomplexan parasites: from established
 regulatory roles to putative new functions. Mol Biochem Parasitol 230:16-23.
- 47. De Napoli MG, de Miguel N, Lebrun M, Moreno SN, Angel SO, Corvi MM. 2013. N-terminal
 palmitoylation is required for Toxoplasma gondii HSP20 inner membrane complex
 localization. Biochim Biophys Acta 1833:1329-37.
- 48. Frenal K, Kemp LE, Soldati-Favre D. 2014. Emerging roles for protein S-palmitoylation in
 Toxoplasma biology. Int J Parasitol 44:121-31.

- 49. Fung C, Beck JR, Robertson SD, Gubbels MJ, Bradley PJ. 2012. *Toxoplasma* ISP4 is a central
- 748 IMC Sub-compartment Protein whose localization depends on palmitoylation but not749 myristoylation. Mol Biochem Parasitol 184:99-108.
- 50. Hopp CS, Balaban AE, Bushell ES, Billker O, Rayner JC, Sinnis P. 2016. Palmitoyl
 transferases have critical roles in the development of mosquito and liver stages of *Plasmodium*.
 Cell Microbiol 18:1625-1641.
- 51. Jones ML, Collins MO, Goulding D, Choudhary JS, Rayner JC. 2012. Analysis of protein
 palmitoylation reveals a pervasive role in Plasmodium development and pathogenesis. Cell
 Host Microbe 12:246-58.
- 756 52. Tremp AZ, Al-Khattaf FS, Dessens JT. 2017. Palmitoylation of *Plasmodium* alveolins
 757 promotes cytoskeletal function. Mol Biochem Parasitol 213:16-21.
- 53. Wetzel J, Herrmann S, Swapna LS, Prusty D, Peter AT, Kono M, Saini S, Nellimarla S, Wong
 TW, Wilcke L, Ramsay O, Cabrera A, Biller L, Heincke D, Mossman K, Spielmann T,
 Ungermann C, Parkinson J, Gilberger TW. 2014. The role of palmitoylation for protein
 recruitment to the inner membrane complex of the malaria parasite. J Biol Chem 290:1712-28.
- 54. Foe IT, Child MA, Majmudar JD, Krishnamurthy S, van der Linden WA, Ward GE, Martin
 BR, Bogyo M. 2015. Global Analysis of Palmitoylated Proteins in Toxoplasma gondii. Cell
 Host Microbe 18:501-11.
- 55. Leung JM, Tran F, Pathak RB, Poupart S, Heaslip AT, Ballif BA, Westwood NJ, Ward GE.
 2014. Identification of T. gondii myosin light chain-1 as a direct target of TachypleginA-2, a
 small-molecule inhibitor of parasite motility and invasion. PLoS One 9:e98056.
- 56. Bordier C. 1981. Phase separation of integral membrane proteins in Triton X-114 solution. J
 Biol Chem 256:1604-7.
- 57. Wichroski MJ, Ward GE. 2003. Biosynthesis of glycosylphosphatidylinositol is essential to
 the survival of the protozoan parasite *Toxoplasma gondii*. Eukaryot Cell 2:1132-6.
- 58. Carey KL, Donahue CG, Ward GE. 2000. Identification and molecular characterization of
 GRA8, a novel, proline-rich, dense granule protein of Toxoplasma gondii. Mol Biochem
 Parasitol 105:25-37.

- 59. Frenal K, Marq JB, Jacot D, Polonais V, Soldati-Favre D. 2014. Plasticity between MyoC- and
 MyoA-glideosomes: an example of functional compensation in Toxoplasma gondii invasion.
 PLoS Pathog 10:e1004504.
- 60. Rees-Channer RR, Martin SR, Green JL, Bowyer PW, Grainger M, Molloy JE, Holder AA.
 2006. Dual acylation of the 45 kDa gliding-associated protein (GAP45) in Plasmodium
 falciparum merozoites. Mol Biochem Parasitol 149:113-6.
- 61. Frenal K, Tay CL, Mueller C, Bushell ES, Jia Y, Graindorge A, Billker O, Rayner JC, SoldatiFavre D. 2013. Global analysis of apicomplexan protein S-acyl transferases reveals an enzyme
 essential for invasion. Traffic 14:895-911.
- 62. Dogga SK, Frenal K. 2020. Two palmitoyl acyltransferases involved sequentially in the
 biogenesis of the inner membrane complex of Toxoplasma gondii. Cell Microbiol April
 23:e13212.
- 787 63. Thomas GM, Hayashi T, Chiu SL, Chen CM, Huganir RL. 2012. Palmitoylation by DHHC5/8
 788 targets GRIP1 to dendritic endosomes to regulate AMPA-R trafficking. Neuron 73:482-96.
- 64. Alonso AM, Coceres VM, De Napoli MG, Nieto Guil AF, Angel SO, Corvi MM. 2012. Protein
 palmitoylation inhibition by 2-bromopalmitate alters gliding, host cell invasion and parasite
 morphology in Toxoplasma gondii. Mol Biochem Parasitol 184:39-43.
- 792 65. Roos DS. 1996. Molecular genetic tools for the identification and analysis of drug targets in
 793 *Toxoplasma gondii*. Curr Top Microbiol Immunol 219:247-59.
- 66. Sidik SM, Hackett CG, Tran F, Westwood NJ, Lourido S. 2014. Efficient genome engineering
 of Toxoplasma gondii using CRISPR/Cas9. PLoS One 9:e100450.
- 67. Tang Q, Andenmatten N, Hortua Triana MA, Deng B, Meissner M, Moreno SNJ, Ballif BA,
 Ward GE. 2014. Calcium-dependent phosphorylation alters Class XIVa myosin function in the
 protozoan parasite *Toxoplasma gondii*. Mol Biol Cell 25:2579-2791.
- 68. Leung JM, Rould MA, Konradt C, Hunter CA, Ward GE. 2014. Disruption of TgPHIL1 alters
 specific parameters of Toxoplasma gondii motility measured in a quantitative, threedimensional live motility assay. PLoS One 9:e85763.

- 802 69. Krishnamurthy S, Deng B, Del Rio R, Buchholz KR, Treeck M, Urban S, Boothroyd J, Lam
- YW, Ward GE. 2016. Not a Simple Tether: Binding of Toxoplasma gondii AMA1 to RON2
- 804 during Invasion Protects AMA1 from Rhomboid-Mediated Cleavage and Leads to
- 805 Dephosphorylation of Its Cytosolic Tail. MBio 7:e00754-16.

806

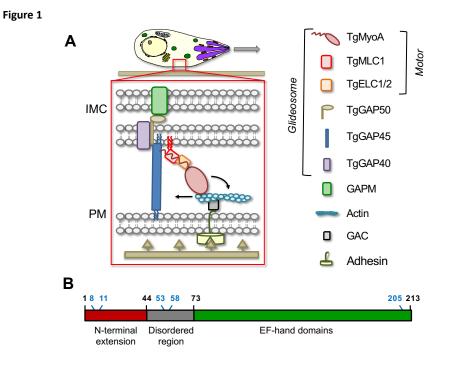
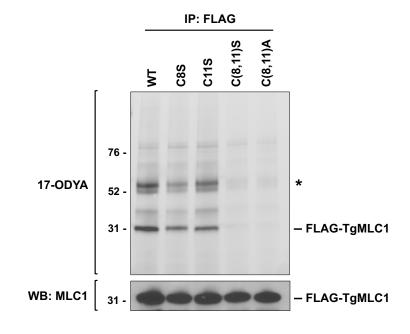
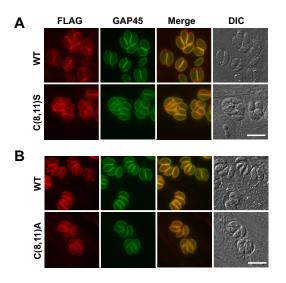
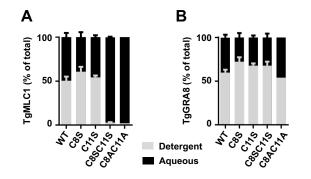
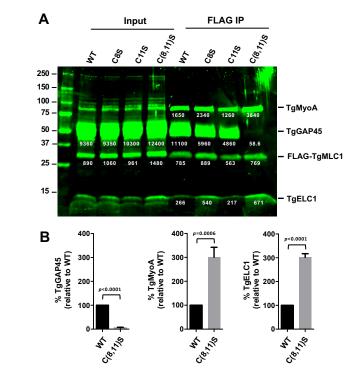



Figure 2

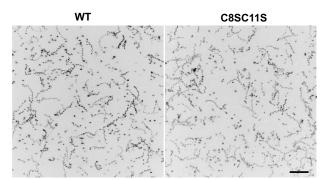
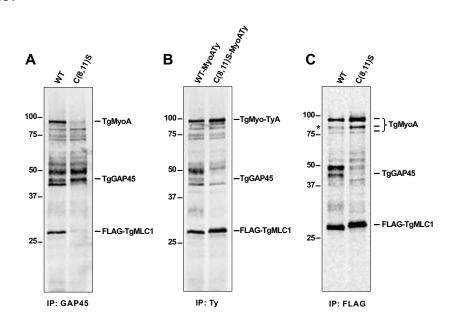
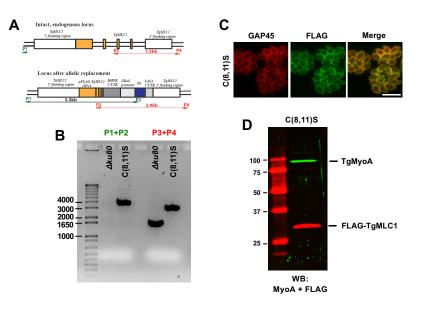

Figure 4

Figure 6

Figure 5

	WT (n = 6)	C8SC11S (n = 6)	р value
Total Trajectories Analysed	1859	1433	
% Moving	25.7 ± 4.52	20.2 ± 1.57	0.27
Mean Track Displacement Length (µm)	19.3 ± 0.59	18.2 ± 1.06	0.40
Mean Track Length (µm)	38.9 ± 0.51	34.2 ± 1.80	0.02
Maximum Track Speed (µm/sec)	2.87 ± 0.12	2.56 ± 0.22	0.25
Mean Track Speed (µm/sec)	0.95 ± 0.08	0.83 ± 0.09	0.34

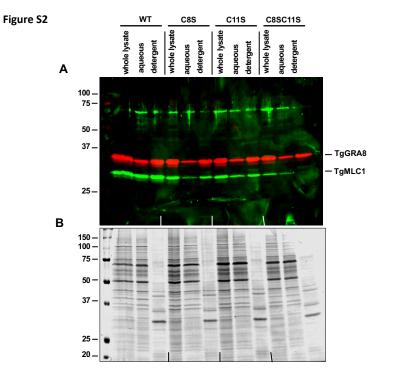

Figure 7

Table 1: Parasite strains used in this study

Strain designation	Relevant genotype
WT	RH∆ku80∆mlc1::Flag-MLC1
C8S	RH∆ku80∆mlc1::Flag-MLC1 ^{C8S}
C11S	RH∆ku80∆mlc1::Flag-MLC1 ^{C11S}
C(8,11)S	RH∆ku80∆mlc1::Flag-MLC1 ^{C8SC11S}
C(8,11)A	RH∆ku80∆mlc1::Flag-MLC1 ^{C8AC11A}
WT-MyoATy	RH∆ku80∆mlc1::Flag-MLC1∆myoA::MYOA-Ty
C(8,11)S-MyoATy	RH∆ku80∆mlc1::Flag-MLC1 ^{C8SC11S} ∆myoA::MYOA-Ty

Figure S1

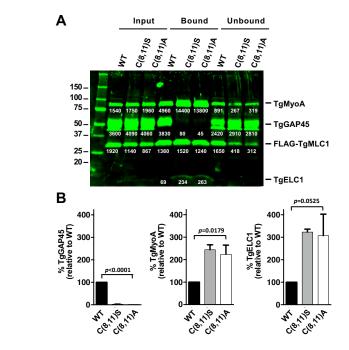
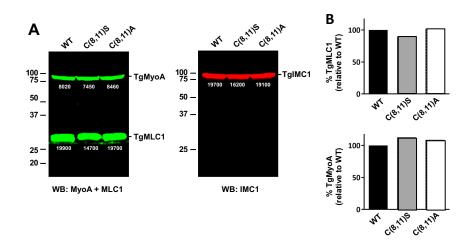



Figure S4

Figure S3

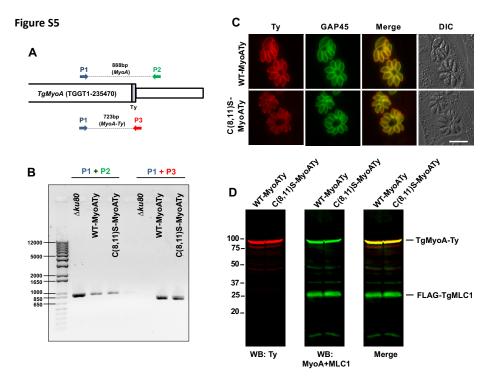
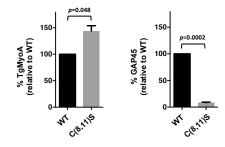
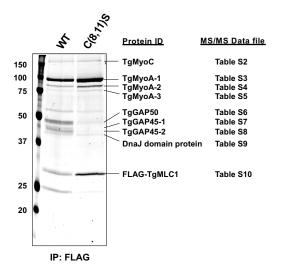




Figure S6

Table S1

Protein name	ToxoDB	Score	Sequence	Unique	Total spectra
	Accession no.		Coverage	Peptides	(#PSMs)
TgMyoC	TGME49_255190	102.7	23.06	27	36
TgMyoA-1	TGME49_235470	529.7	71.36	63	180
TgMyoA-2	TGME49_235470	231.7	58.97	43	81
TgMyoA-3	TGME49_235470	90.4	32.37	22	32
TgGAP50	TGME49_219320	98.9	34.57	13	28
TgGAP45-1	TGME49_223940	161.2	52.24	15	55
TgGAP45-2	TGME49_223940	255.4	54.69	16	81
DnaJ domain protein	TGME49_267430	47.7	25.41	11	20
TgMLC1	TGME49_257680	124.6	81.22	10	43

				# Proteins			# PSMs	# AAs	MW [kDa]		1				
Accession TGME49_255190 ord	Description ganism=Toxoplasma_gondii_ME49 product=myosin C location=TGP	Score 102.76	Coverage 23.06	# Proteins	# Unique Peptides	# Peptides			MW [KDa] 132.6	calc. pI 7.91					
1010249_233190				# Dushalar				-				MU. [D-1	AAA []	RT [min]	# Missed Classes
	A2	Sequence	# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn 0.0000	XCorr 122	Probability	Charge	MH+ [Da] 1791.89701	ΔM [ppm] -0.82		# Missed Cleavages
		RHLEPDSINISPEER SIIYTTAEPLLVAINPFK	2	1		L TGME49_255190 L TGME49_255190		0.0000	4.32 3.80	0.00		1990.12847	-0.82		1
		HLEPDSINISPEER	2	1		TGME49_255190		0.0000	3.77	0.00		1635.80051	1.23		0
		FmmLDVSSHR				1 TGME49_255190	M2(Ouidation): M2(Ouidation)	0.0000	3.57	0.00		1254.56028	-0.28	30.48	0
		ADFEEVLQSLDAmQITGSK	1	-		TGME49_255190	M2(Oxidation); M3(Oxidation) M13(Oxidation)	0.0000	3.54	0.00		2098.00229	-0.28		0
		TPNFGmAATHIHGSLHVVEQEGmYR	1	1		TGME49_255190	M6(Oxidation); M23(Oxidation)	0.0000	3.47	0.00		2814.30752	-0.44	32.57	0
		NFSEFcSHFR	1	1		1 TGME49_255190	C6(Carbamidomethyl)	0.0000	3.22	0.00		1330.56379	0.31	32.24	0
		NQSIIVSGESGAGK	2			TGME49_255190	co(carbanidomethyr)	0.0000	3.12	0.00		1346.69158	0.35	30.26	0
		KNQSIIVSGESGAGK	1			TGME49_255190		0.0000	2.95	0.00		1474.78580	-0.18	29.83	1
		RLEPSGFFLESR	1	1		1 TGME49_255190		0.0000	2.94	0.00		1437.74851	-0.04	33.30	1
	-	STDEGFcGTILR	2	1		TGME49_255190	C7(Carbamidomethyl)	0.0000	2.90	0.00		1355.62663	0.43		0
		FmMLDVSSHR	1	1		1 TGME49_255190	M2(Oxidation)	0.0000	2.84	0.00		1238.56610	0.32		0
		NASKPEmLPPHVFK	2	1		L TGME49_255190	M7(Oxidation)	0.0000	2.83	0.00		1610.83738	0.85	30.68	0
		TmVFVKPDAAK	1	1		TGME49_255190	M2(Oxidation)	0.0000	2.81	0.00	3	1222.64975	-0.28	30.10	0
		EALLSGMERPR	1	1		1 TGME49_255190		0.0000	2.78	0.00		1258.65772	0.32		0
		AALEDLEGYK	2	1		TGME49_255190		0.0000	2.75	0.00	2	1108.55266	0.48	32.07	0
		HFIDVVFDmETK	1	1		L TGME49_255190	M9(Oxidation)	0.0000	2.74	0.00		1496.71259	2.35	33.43	0
		AALEDLEGYKK	1	1		TGME49_255190		0.0000	2.70	0.00	2	1236.64629	-0.66	31.10	1
		VGPQVIEGVR	1	1		TGME49_255190		0.0000	2.66	0.00		1053.60564	0.43		0
	High	VVSQEANER	1	1		TGME49_255190		0.0000	2.62	0.00	2	1031.51299	1.29	28.35	0
		TSVLSLSK	2	1		TGME49_255190		0.0000	2.62	0.00	1	834.49298	-0.19	31.03	0
	High	KSSVVPFGR	1	1		TGME49_255190		0.0000	2.46	0.00	2	976.55785	0.37	30.68	1
	High	RDFSGIVR	1	1		TGME49_255190		0.0000	2.33	0.00	2	949.52196	0.55	30.55	1
	High	KEILVK	1	1		TGME49_255190		0.0000	2.28	0.00	2	729.48717	0.31	28.99	1
	High	SSVVPFGR	2	1		TGME49_255190		0.0000	2.27	0.00	2	848.46318	0.78	31.37	0
	High	FFASASSEVR	1	1		TGME49_255190		0.0000	2.24	0.00	2	1100.53850	1.23	30.92	0
	High	QVGYAYR	1	1		TGME49_255190		0.0000	2.19	0.00	2	856.43120	0.01	29.75	0
	High	KQTQmILGR	1	1		TGME49_255190	M5(Oxidation)	0.0000	2.12	0.00	2	1090.60466	0.79	29.32	1
TGME49_235470 org	ganism=Toxoplasma_gondii_ME49 product=myosin A location=TGP	66.60	24.55	1	14	4 1	4 21	1 831	93.3	8.16					
	A2	Sequence	# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]	ΔM [ppm]	RT [min]	# Missed Cleavages
		VSPNINFLISHTVGDIQYNAEGFLFK	1	1		TGME49_235470		0.0000	5.05	0.00	3	2923.51297	4.79		0
	High	IFmGmLDIFGFEVFK	1	1	-	L TGME49_235470	M3(Oxidation); M5(Oxidation)	0.0000	4.38	0.00	2	1825.89604	3.07	36.56	0
	High	NPVVAQLFAGIVMEK	2	1		L TGME49_235470		0.0000	3.74	0.00	3	1615.88706	-0.41	36.37	0
	High	mLIQLHALSVLEALQLR	1	1		1 TGME49_235470	M1(Oxidation)	0.0000	3.65	0.00		1964.13718	0.49	36.33	0
	High	NNSLEQFFINITNEmLQK	1	1		1 TGME49_235470	M15(Oxidation)	0.0000	3.60	0.00	3	2199.07505	-0.04	36.46	0
		NQIYTTADPLVVAINPFR	1	1		L TGME49_235470		0.0000	3.57	0.00			2.50		0
		NNSVLAALEDQcLAPGGSDEK	1	1		L TGME49_235470	C12(Carbamidomethyl)	0.0000	3.13	0.00		2188.02024	0.67	34.21	0
		AEImEIVQQSK	3	1		TGME49_235470	M4(Oxidation)	0.0000	3.08	0.00		1291.65764	1.04	31.05	0
		YRDTFDLSK	2	1		1 TGME49_235470		0.0000	2.99	0.00		1144.56278	-0.50	30.84	1
	-	ELIFTSNAEVIK	1	1		L TGME49_235470		0.0000	2.93	0.00		1363.74809	0.93		0
		DGGIDDAAAIEGK	2	1		1 TGME49_235470		0.0000	2.88	0.00		1231.57915	-0.83	31.09	0
		LAPHVFYTAR	1	1		L TGME49_235470		0.0000	2.80	0.00		1174.63913	1.99		0
		LPSEEYQLGK	1			1 TGME49_235470		0.0000	2.72	0.00		1163.59453	0.18	30.97	0
		cIVQAGTDK	2	1		TGME49_235470	C1(Carbamidomethyl)	0.0000	2.52	0.00		991.48833	0.58		0
		AEIMEIVQQSK	1	1		1 TGME49_235470		0.0000	2.41	0.00		1275.66130	-0.06	32.57	0
TGME49_233220 org	ganism=Toxoplasma_gondii_ME49 product=hypothetical protein loc			1		-	5		159.6	6.64					
	A2	Sequence	# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]	ΔM [ppm]	RT [min]	# Missed Cleavages
	-	KQNSVLETPDVSQTR	1	1		1 TGME49_233220		0.0000	3.12	0.00		1701.87815	0.87		1
		SGDTPLSVEPPR	1	1		TGME49_233220		0.0000	2.41	0.00		1254.63469	1.73		0
	-	AAFAVDSSSADK	1	1		L TGME49_233220		0.0000	2.39	0.00		1168.54888	0.65		0
		VSSTGNLSK	1	1		1 TGME49_233220		0.0000	2.17	0.00		892.47356	0.10		0
TONEAD DETCOD		LALVLTR	10.00	1		L TGME49_233220		0.0000	2.13	0.00	2	785.52452	0.17	32.52	0
TGME49_257680 org	ganism=Toxoplasma_gondii_ME49 product=myosin light chain MLC1	4.60		1			2	2 213	24.1	4.65					
		Sequence	# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]	ΔM [ppm]	RT [min]	# Missed Cleavages
	A2		# Poins	# Trocento							ana ge				
	High	VSTGDAmILAR SGDNLDYASFQK	# Pons	1		TGME49_257680	M7(Oxidation)	0.0000	2.45	0.00	2	1149.59453 1344.60735	1.06 0.50	30.85	0

Accession	Description	Score	Coverage	# Proteins	# Unique Peptides	# Peptides	# PSMs	# AAs	MW [kDa]	calc. pI					
TGME49_235470	organism=Toxoplasma_gondii_ME49 product=myosin A location=TGM	529.76	71.36	1	. 6	3 64	18		93.3	8.16					
	A2	Sequence	# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]			# Missed Cleavages
	High	VSPNINFLISHTVGDIQYNAEGFLFK	1	3 1		1 TGME49_235470		0.0000	6.79	0.00	2	2923.50420	1.78	36.58	0
		SSDVHAVDHSGNVYK	5	5 1		1 TGME49_235470		0.0000	6.07	0.00		1614.75199	0.78	29.13	0
		RSSDVHAVDHSGNVYK	1	2 1		1 TGME49_235470		0.0000	5.80	0.00		1770.85207	0.13	29.02	1
		ALDNLHAVNKSQTIIVSGESGAGK		2 1		1 TGME49_235470		0.0000	5.38	0.00		2409.27610	1.14	31.52	1
		EcLSSWEPLVSVLEAYYAGR		1 1		1 TGME49_235470	C2(Carbamidomethyl)	0.0000	5.37	0.00		2329.11992	1.26	36.62	0
		SQTIIVSGESGAGKTEATK		2 1		1 TGME49_235470		0.0000	5.01	0.00	3	1863.96750	0.86	29.98	1
		NNSVLAALEDQcLAPGGSDEK	5	5 1		1 TGME49_235470	C12(Carbamidomethyl)	0.0000	4.68	0.00	3	2188.02665	3.60	34.07	0
		KRSsDVHAVDHSGNVYK		2 1		1 TGME49_235470	S4(Phospho)	0.0000	4.65	0.00		1978.91489	0.88	28.97	2
		NQIYTTADPLVVAINPFR		2 1		1 TGME49_235470		0.0000	4.53	0.00		2032.09001	1.84	35.87	(
		GQLIGSQFLSQLQSLmELINSTEPHFIR		2 1		1 TGME49_235470	M16(Oxidation)	0.0000	4.52	0.00		3202.67129	4.57	36.65	0
		NNSLEQFFINITNEmLQK		3 1		1 TGME49_235470	M15(Oxidation)	0.0000	4.49	0.00		2199.07915	1.82	36.43	0
		IFmGmLDIFGFEVFK		2 1		1 TGME49_235470	M3(Oxidation); M5(Oxidation)	0.0000	4.47	0.00		1825.89592	3.00	36.58	(
		GFQIWTDLAPSVKEEPDLmFAK	1	1 1		1 TGME49_235470	M19(Oxidation)	0.0000	4.42	0.00		2538.26108	0.97	35.29	1
		ELIFTSNAEVIKILTAK	1	1 1		1 TGME49_235470		0.0000	4.38	0.00		1890.09323	-0.79	35.57	1
		IQNAIMAANPVLEAFGNAK	1	1 1		1 TGME49_235470		0.0000	4.34	0.00		1972.03415	1.00	35.64	C
		DEGVSSKELIFTSNAEVIK		1 1		1 TGME49_235470		0.0000	4.25	0.00		2066.06357	-0.83	33.32	1
		KAcGLLFLDAER	4	4 1		1 TGME49_235470	C3(Carbamidomethyl)	0.0000	4.24	0.00		1392.73088	0.29	33.41	1
		IFMGmLDIFGFEVFK		2 1		1 TGME49_235470	M5(Oxidation)	0.0000	3.99	0.00		1809.89617	0.35	36.63	(
		mLIQLHALSVLEALQLR		2 1		1 TGME49_235470	M1(Oxidation)	0.0000	3.86	0.00		1964.13542	-0.41	36.21	(
		NPVVAQLFAGIVMEK		2 1		1 TGME49_235470		0.0000	3.83	0.00		1615.89446	4.17	36.21	(
		NPVVAQLFAGIVmEK	2	2 1		1 TGME49_235470	M13(Oxidation)	0.0000	3.77	0.00		1631.88457	1.18	45.73	(
	· - y- ·	DGGIDDAAAIEGK	8	B 1		1 TGME49_235470		0.0000	3.77	0.00		1231.58122	0.86	30.85	(
		GQLIGSQFLSQLQSLMELINSTEPHFIR	1	1 1		1 TGME49_235470		0.0000	3.75	0.00		3186.66836	2.08	36.73	0
		SQTIIVSGESGAGK	8	B 1		1 TGME49_235470		0.0000	3.67	0.00		1333.69390	-1.47	31.25	0
		DGGIDDAAAIEGKNLEVFK	1	1 1		1 TGME49_235470		0.0000	3.61	0.00		1961.98185	0.13	33.58	1
		NPVVAQLFAGIVmEKGK	1	1 1		1 TGME49_235470	M13(Oxidation)	0.0000	3.56	0.00		1817.00022	0.63	35.16	1
		QTGAKELTQIQR	3	2 1		1 TGME49_235470		0.0000	3.53	0.00		1372.75531	0.69	29.96	1
		SYHIFYQMcK	3	3 1		1 TGME49_235470	C9(Carbamidomethyl)	0.0000	3.45	0.00	2	1376.61260	-0.01	32.34	0
		YINPLcLDAPGIDDVAEFHEVcESFR	1	1 1		1 TGME49_235470	C6(Carbamidomethyl); C22(Carbamidomethyl)	0.0000	3.43	0.00	3	3066.40555	2.68	35.37	0
		YRDTFDLSK		2 1		1 TGME49_235470		0.0000	3.40	0.00		1144.56316	-0.17	30.69	1
		IQNAImAANPVLEAFGNAKTIR	1	1 1		1 TGME49_235470	M6(Oxidation)	0.0000	3.37	0.00		2358.25925	-0.30	34.66	1
		LFmWIIAVLNR		2 1		1 TGME49_235470	M3(Oxidation)	0.0000	3.35	0.00		1391.78826	1.00	36.60	0
		TTSEELKTATALK		2 1		1 TGME49_235470		0.0000	3.31	0.00		1392.75812	0.01	30.52	1
		ALDNLHAVNK		2 1		1 TGME49_235470		0.0000	3.31	0.00		1094.59538	0.05	29.67	0
		TmVFLKQTGAK	1	1 1		1 TGME49_235470	M2(Oxidation)	0.0000	3.29	0.00	3	1239.67902	1.92	29.98	1
		SSKLPSEEYQLGK	1	1 1		1 TGME49_235470		0.0000	3.28	0.00	3	1465.75385	0.34	30.71	1
		AEImEIVQQSK	-	5 1		1 TGME49_235470	M4(Oxidation)	0.0000	3.26	0.00		1291.65373	-1.98	30.83	0
	· - y- ·	ELIFTSNAEVIK	4	4 1		1 TGME49_235470		0.0000	3.26	0.00		1363.74797	0.84	33.55	0
		FGSVVAFLLEK	-	2 1		1 TGME49_235470		0.0000	3.22	0.00		1209.68779	-0.05	35.93	0
		RALDNLHAVNK		2 1		1 TGME49_235470		0.0000	3.21	0.00		1250.69611	-0.27	29.62	1
		GFQIWTDLAPSVK	4	4 1		1 TGME49_235470		0.0000	3.08	0.00		1461.77312	-0.41	35.19	0
		FHILPLSEYK		2 1		1 TGME49_235470		0.0000	3.08	0.00		1246.68315	0.07	33.33	0
		AcGLIFLDAER		1 1		1 TGME49_235470	C2(Carbamidomethyl)	0.0000	3.03	0.00		1264.63664	0.90	34.46	0
		KPLDWVPSK	-	3 1		1 TGME49_235470		0.0000	3.02	0.00		1069.60564	1.43	31.41	0
		RPFKEFLFQFK		1 1		1 TGME49_235470		0.0000	2.96	0.00		1486.82352	1.96	33.91	1
		cIVQAGTDK	8	8 1		1 TGME49_235470	C1(Carbamidomethyl)	0.0000	2.93 2.92	0.00		991.48741 1275.66291	-0.34 1.20	29.34 32.59	0
		AEIMEIVQQSK		2 1		1 TGME49_235470		0.0000	2.92	0.00		12/5.66291	0.28	32.59	0
		DLGNTTLDWIVR	-	+ 1		1 TGME49_235470	(2)(0)		2.78	0.00	2	1402.73296	0.28	29.15	0
		RSsDVHAVDHSGNVYK	2	5 1		1 TGME49_235470	S3(Phospho)	0.0000	2.73	0.00	2	1898,99430		33.24	1
		LPSEEYQLGKTmVFLK		1 1		1 TGME49_235470	M12(Oxidation)						0.53		1
		VSYAGNQEIR	-	3 1		1 TGME49_235470		0.0000	2.66	0.00		1136.57097	1.29	29.86	0
		FLSTcKNALK		1 1		1 TGME49_235470	C5(Carbamidomethyl)	0.0000	2.65	0.00		1181.63486	0.09	30.00	1
		TATALK	9	1		1 TGME49_235470		0.0000	2.64	0.00		604.36639	-0.14	22.95	0
		NFVDIVFDR	8	5 1		1 TGME49_235470		0.0000	2.62	0.00		1124.57549	1.73	34.99	0
		VLTQDEQER		1		1 TGME49_235470		0.0000	2.61	0.00		1117.54985	1.26	45.69	0
		FGSVVAFLLEKSR		1 1		1 TGME49_235470		0.0000	2.51	0.00		1452.82276	1.21	35.26	1
		LAPHVFYTAR		1 1		1 TGME49_235470	M2(Ouidables)	0.0000	2.48 2.46	0.00		1174.63666 2454.28141	-0.11	30.99 35.49	0
		FmKNQIYTTADPLVVAINPFR		1 1		1 TGME49_235470	M2(Oxidation)		2.46	0.00	3		-1.50		1
		CIKPNDTK GADAAMK		1 1		1 TGME49_235470	C1(Carbamidomethyl)	0.0000		0.00	2	975.49352 663.31256	-0.80	27.85 18.57	0
				1 1		1 TGME49_235470	1000 1000 1		2.43		1				0
		TmVFLK		1 1		1 TGME49_235470	M2(Oxidation)	0.0000	2.39	0.00		754.41667	-0.19	30.57	0
		TGSMDLR	1	1 1		1 TGME49_235470		0.0000	2.38	0.00		779.37230	0.82	29.38	0
		SsDVHAVDHSGNVYK	4	+ 1		1 TGME49_235470	S2(Phospho)	0.0000	2.36	0.00		1694.71653	-0.31	29.35	0
		TEATKQIMR		2		2 TGME49_235470 ;TGME49_255190		0.0000	2.29	0.00		1077.57219	0.03	29.10	1
				1 1		1 TGME49_235470		0.0000	2.28			1163.59551		30.94	0
		QLGYSYR		1 1		1 TGME49_235470		0.0000	2.28	0.00		886.44206	0.35	30.05	0
		SYHIFYQmcK		د 1 ۱		1 TGME49_235470	M8(Oxidation); C9(Carbamidomethyl)	0.0000	2.25	0.00		1392.60759		30.99	0
		DEGVSSK FMQLDVGR		1 1		1 TGME49_235470 1 TGME49_235470		0.0000	2.21 2.20	0.00		721.33398 965.48821	-3.23 0.87	15.76 32.24	0
		FMQLDVGR TTSFFLK	1	1				0.0000	2.20	0.00		965.48821 807.40862		32.24 28.02	0
	· - y- ·	TATALKK		1		1 TGME49_235470 1 TGME49_235470		0.0000	2.18	0.00		807.40862 732.46141	-1.06	28.02	0
			1	1 1					2.18	0.00					1
TCME40 222220		TMVFLK 6.38	2.51	1		1 TGME49_235470		0.0000	2.18	0.00	2	738.42241	0.69	32.13	0
TGME49_233220	organism=Toxoplasma_gondii_ME49 product=hypothetical protein loc			1		2 × ×					-				
	A2	Sequence	# PSMs	# Proteins		Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]			# Missed Cleavages
		SATVNQGEGQPTEFAIDATDDGHK	1	1 1		1 TGME49_233220		0.0000	3.92	0.00		2488.11875	-1.46	31.74	0
		TVNSmEEFASLVR	1	1 1		1 TGME49_233220	M5(Oxidation)	0.0000	2.46	0.00	2	1498.72075	0.04	33.11	0
TGME49_255190	organism=Toxoplasma_gondii_ME49 product=myosin C location=TGM		1.62	1		1 2		2 1171	132.6	7.91					
	A2	Sequence	# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]			# Missed Cleavages
		VGPOVIEGVR		1 1		1 TGME49 255190		0.0000	2.38	0.00	2	1053.60613	0.90	31.29	0
		TEATKQIMR				2 TGME49_235470 ;TGME49_255190		0.0000	2.29	0.00		1077.57219	0.03	29.10	

Accession	Description	Score	Coverage	# Proteins	# Unique Peptides	# Peptides	# PSMs	# AAs	MW [kDa]	calc. pI	1			
TGME49_235470	organism=Toxoplasma_gondii_ME49 product=myosin A location=TGI		58.97	2	4	3 44	4 81	831	93.3	8.16				
_	A2	Sequence	# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]	ΔM [ppm] RT [min]	# Missed Cleavages
		EcLSSWEPLVSVLEAYYAGR	1	1		1 TGME49_235470	C2(Carbamidomethyl)	0.0000	5.32	0.00	2	2329.12163	1.99 36.69	0
	High	YINPLcLDAPGIDDVAEFHEVcESFR	1	L 1		1 TGME49_235470	C6(Carbamidomethyl); C22(Carbami	0.0000	4.78	0.00	4	3066.39589	-0.46 35.77	0
	High	mLIQLHALSVLEALQLR	3	3 1		1 TGME49_235470	M1(Oxidation)	0.0000	4.60	0.00	3	1964.13736	0.58 36.39	0
	High	SQTIIVSGESGAGKTEATK	1	L 1		1 TGME49_235470		0.0000	4.57	0.00	3	1863.96714	0.66 30.15	1
		NNSLEQFFINITNEmLQK	2	2 1		1 TGME49_235470	M15(Oxidation)	0.0000	4.43	0.00	2	2199.07939	1.94 36.54	0
		IFmGmLDIFGFEVFK	1	L 1		1 TGME49_235470	M3(Oxidation); M5(Oxidation)	0.0000	4.10	0.00	2	1825.89226	1.00 36.64	0
	High	NPVVAQLFAGIVMEK	2	2 1		1 TGME49_235470		0.0000	4.08	0.00	2	1615.88811	0.24 36.41	0
	High	NQIYTTADPLVVAINPFR	1	L 1		1 TGME49_235470		0.0000	4.05	0.00	3	2032.08908	1.38 36.04	0
		NNSVLAALEDQcLAPGGSDEK	3	3 1		1 TGME49_235470	C12(Carbamidomethyl)	0.0000	3.92	0.00	3	2188.02134	1.17 34.22	0
		GQLIGSQFLSQLQSLmELINSTEPHFIR	1	L 1		1 TGME49_235470	M16(Oxidation)	0.0000	3.75	0.00		3202.67063	4.37 36.72	0
		SQTIIVSGESGAGK	4	1 1		1 TGME49_235470		0.0000	3.51	0.00	2		0.36 30.44	0
	High	IQNAIMAANPVLEAFGNAK	1	1		1 TGME49_235470	core have the p	0.0000	3.49	0.00		1972.03305	0.45 35.79	0
		KACGLIFLDAER	2	2 1		1 TGME49_235470	C3(Carbamidomethyl)	0.0000	3.44	0.00	2		1.78 33.72	1
	High	LYRDEGVSSK ELIFTSNAEVIK	1			1 TGME49_235470 1 TGME49_235470		0.0000	3.44 3.41	0.00	2	1153.58440 1363.74748	-0.37 28.92 0.49 33.57	1
		AEImEIVQQSK				1 TGME49_235470	M4(Oxidation)	0.0000	3.34	0.00	2	1291.65679	0.38 31.07	0
	High	DGGIDDAAAIEGK				1 TGME49_235470	(Childhold)	0.0000	3.26	0.00	2	1231.58147	1.05 31.28	0
		ALDNLHAVNK	-	2 1		1 TGME49 235470		0.0000	3.22	0.00	- 3	1094.59375	-1.44 29.86	0
		FGSVVAFLLEK		1 1		1 TGME49_235470		0.0000	3.10	0.00	2	1209.68840	0.46 36.05	0
		LFmWIIAVLNR	1	1		1 TGME49_235470	M3(Oxidation)	0.0000	3.10	0.00	2	1391.78716	0.21 36.69	0
	High	DEGVSSKELIFTSNAEVIK	1	L 1		1 TGME49_235470		0.0000	3.06	0.00	3	2066.05716	-3.93 33.48	1
	High	IFMGmLDIFGFEVFK	2	2 1		1 TGME49_235470	M5(Oxidation)	0.0000	3.04	0.00	2	1809.89861	1.70 36.71	0
	High	ELIFTSNAEVIKILTAK	1	L 1		1 TGME49_235470		0.0000	3.02	0.00	3	1890.09922	2.37 35.72	1
	High	AEIMEIVQQSK	2	2 1		1 TGME49_235470		0.0000	3.00	0.00	2	1275.66130	-0.06 32.73	0
	High	RALDNLHAVNK	2	2 1		1 TGME49_235470		0.0000	2.95	0.00	3	1250.69602	-0.35 29.68	1
		SYHIFYQMcK	2	2 1		1 TGME49_235470	C9(Carbamidomethyl)	0.0000	2.95	0.00	3	1376.61426	1.20 32.49	0
	High	FHILPLSEYK	2	2 1		1 TGME49_235470		0.0000	2.89	0.00	2	1246.68376	0.56 33.59	0
	High	NFVDIVFDR	4	1 1		1 TGME49_235470		0.0000	2.89	0.00	2	1124.57402	0.43 35.15	0
		RPFKEFLFQFK	1	1 1		1 TGME49_235470		0.0000	2.75	0.00	3	1486.82224	1.10 34.11	1
		KPLDWVPSK	1	1		1 TGME49_235470		0.0000	2.74	0.00	2	1069.60222	-1.77 31.57	0
	High	YRDTFDLSK	2	2 1		1 TGME49_235470		0.0000	2.73	0.00	2	1144.56365	0.26 30.93	1
		ALDNLHAVNKSQTIIVSGESGAGK	1	L 1		1 TGME49_235470		0.0000	2.64	0.00	3	2409.27793	1.90 31.86	1
		CIKPNDTK	2	2 1		1 TGME49_235470	C1(Carbamidomethyl)	0.0000	2.61	0.00	2	975.49315	0.32 27.58	0
		SYHIFYQmcK	1	1 1		1 TGME49_235470	M8(Oxidation); C9(Carbamidomethy	0.0000	2.59	0.00		1392.60999	1.77 31.31	0
		NPVVAQLFAGIVmEKGK	1	1 1		1 TGME49_235470	M13(Oxidation)	0.0000	2.55 2.49	0.00	3	1817.00187 1631.88188	1.53 35.38 -0.46 35.90	1
	High	NPVVAQLFAGIVmEK VLTODEOER	1	1		1 TGME49_235470 1 TGME49 235470	M13(Oxidation)	0.0000	2.49	0.00		1631.88188 1117.54973	-0.46 35.90 1.15 28.98	0
		DLGNTTLDWIVR	-	1 1				0.0000	2.46	0.00	2	1402.73345	0.62 35.41	0
		VSPNINFLISHTVGDIQYNAEGFLFK	4			1 TGME49_235470 1 TGME49_235470		0.0000	2.44	0.00	2	2923.50602	2.41 36.52	0
		LPSEEYQLGK				1 TGME49_235470		0.0000	2.41	0.00	2	1163.59551	1.02 31.20	0
	High	TEATKQImR				2 TGME49_235470 ;TGME49_255190	M8(Oxidation)	0.0000	2.35	0.00		1093.56699	-0.08 28.52	1
		RSSDVHAVDHSGNVYK		1 1		1 TGME49_235470	higoxidation	0.0000	2.33	0.00	4	1770.85293	0.61 29.20	1
	High	TmVFLK	1	1		1 TGME49_235470	M2(Oxidation)	0.0000	2.24	0.00	2	754.41637	-0.59 30.88	0
	High	TGSMDLR	2	2 1		1 TGME49 235470		0.0000	2.22	0.00	2	779.37151	-0.20 29.68	0
		LAPHVFYTAR		3 1		1 TGME49_235470		0.0000	2.19	0.00	- 3	1174.63703	0.20 31.46	0
		SRVLTQDEQER	1	1 1		1 TGME49_235470		0.0000	2.16	0.00	3	1360.68354	1.43 29.05	1
	High	TMVFLK	1	L 1		1 TGME49_235470		0.0000	2.16	0.00	2	738.42235	0.61 32.44	0
	High	QEDGDmLK	1	L 1		1 TGME49_235470	M6(Oxidation)	0.0000	2.15	0.00	2	951.40959	0.79 28.25	0
	High	ILTAK	1	ι 2		1 TGME49_235470		0.0000	1.79	0.00	1	545.36597	0.40 28.40	0
TGME49_233220	organism=Toxoplasma_gondii_ME49 product=hypothetical protein loc	c 15.07	5.49	1		6 6	5 6	1476	159.6	6.64				
	A2	Sequence	# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]	ΔM [ppm] RT [min]	# Missed Cleavages
	High	TQLGSLSSSVSTLAPGASVR	1	1 1		1 TGME49_233220		0.0000	2.81	0.00	2	1918.02580	0.90 33.50	0
		AAFAVDSSSADK	1	L 1		1 TGME49_233220		0.0000	2.63	0.00	2	1168.54875	0.54 30.20	0
	High	TAAPIHTQNQAVR	1	1 1		1 TGME49_233220		0.0000	2.62	0.00	3	1406.74967	-0.19 29.43	0
		KQNSVLETPDVSQTR	1	1 1		1 TGME49_233220		0.0000	2.50	0.00	3	1701.87943	1.62 30.81	1
		VSTVSPTTSVSGDR	1	1 1		1 TGME49_233220		0.0000	2.37	0.00	2	1392.69573	-0.61 30.01	0
	High	LALVLTR	1	1		1 TGME49_233220		0.0000	2.13	0.00	2	785.52458	0.24 32.71	0
TGME49_219850	organism=Toxoplasma_gondii_ME49 product=prolyl-tRNA synthetase (13.62	8.80	1		5	5	830	93.4	8.07				
	A2	Sequence	# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]	ΔM [ppm] RT [min]	# Missed Cleavages
		LAAAPAGGANKPNAPAGK	1	1		1 TGME49_219850		0.0000	3.10	0.00	3	1575.86094	0.42 29.41	0
		EAVTDSSmLGVTAK	1	1		1 TGME49_219850	M8(Oxidation)	0.0000	2.75	0.00	2	1424.69292	-0.63 30.59	0
	-	LEELGIGYQLHR	1	1 1		1 TGME49_219850		0.0000	2.71	0.00	3	1427.76468	0.34 32.88	0
	High	IST FDEV m PALNR GIOAAT SHLLGTN FAK	1	1		1 TGME49_219850 1 TGME49_219850	M8(Oxidation)	0.0000	2.60	0.00	2	1508.74199 1628.87894	0.37 32.70 2.08 33.17	0
TGME49_255190	High organism=Toxoplasma_gondii_ME49 product=myosin C location=TGI		2.65	1		1 GHEM9_219000	2 2	0.0000	2.46	0.00	3	1028.8/894	2.08 33.17	0
1 014643 233130					1 D. 1	4	3				<i>a</i>			
	A2	Sequence	# PSMs	# Proteins	# Protein Groups	Protein Group Accessions 2 TGME49_235470 ;TGME49_255190	Modifications	ΔCn 0.0000	XCorr	Probability	Charge	MH+ [Da] 1093.56699	ΔM [ppm] RT [min]	# Missed Cleavages
	High High	TEATKQIMR RLEPSGFFLESR	1	2		2 TGME49_235470 ; TGME49_255190 1 TGME49_255190	M8(Oxidation)	0.0000	2.35	0.00	3	1093.56699	-0.08 28.52	1
	High	VGPQVIEGVR	1			1 TGME49_255190 1 TGME49_255190		0.0000	2.17	0.00	3	1437.74649	2.29 31.52	1
TGME49_266640	organism=Toxoplasma_gondii_ME49 product=Acetyl-coenzyme A synti		3.22			2	2 2	714	79.9	6.89	2	1000,00	-4.9 31.32	U
- Grie 15_200040	A2	Sequence	3.22 # PSMs	# Proteins	# Protein Groups	Protein Group Accessions	2 Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]	ΔM [ppm] RT [min]	# Missed Cleavages
	A2 High	VDDTLNVSGHR	# POP5	# riotens		1 TGME49_266640	nouncduors	0.0000	2.84	0.00	charge	MH+ [La] 1212.59607	-0.20 20.02	r misseu Cledvages
		ASOFYTAPTALR				1 TGME49_266640		0.0000	2.84	0.00	3	1212.59607	-0.59 29.92 0.18 32.40	0
TGME49_249850	organism=Toxoplasma_gondii_ME49 product=GAP40 protein (GAP40)	2.39	2.08			1	1 1	385	43.1	6.62	2	1323.00311	0.10 52.40	0
- Gric (5_275050	organism= roxopiasma_gonoin_me49 product=GAP40 protein (GAP40)	Sequence	# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]	ΔM [ppm] RT [min]	# Missed Cleavages
		LPTWQQIR	# Ports	# muteins		1 TGME49_249850	Piodificacións	0.0000	2.39	Probability 0.00	charge	MH+ [La] 1041.58440	0.35 32.84	# Plissed Cleavages
TGME49_219320	High organism=Toxoplasma_gondii_ME49 product=acid phosphatase GAP50		2.55			1	1	431	2.39	6.95	2	1041.30440	0.35 32.84	U
· GI'IL 75_219520	A2		2.55 # PSMs	# Dentation	# Protoin Comm	Protoin Grave According	Modifications				Charme	MH+ [Da]	ΔM [ppm] RT [min]	# Miccod Classes
		Sequence	# Poms	# Proteins	# Protein Groups	Protein Group Accessions 1 TGME49_219320	Modifications	ΔCn	XCorr 210	Probability	Charge	MH+ [LB]	ΔM [ppm] RT [min]	# Missed Cleavages
TGME49_235402	High organism=Toxoplasma gondii ME49 product=CorA family Mo2+ transi		0.76			1 1 01-1249_219320		0.0000	2.19	0.00	2	1289.74626	-0.12 35.05	0
1 GPTE49_235402				4 0.11	# Destail C	1 Destain Can	1 Mad6				Cha	MU: 79-3	AM (see)	# Minued Character
	A2	Sequence	# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr 217	Probability	Charge	MH+ [Da] 899.53105	ΔM [ppm] RT [min]	# Missed Cleavages
	High	GVATVSLPR	1	1 1		1 TGME49_235402		0.0000	2.17	0.00	2	899.53105	0.12 31.21	0

Accession	Description	Score	Coverage	# Proteins	# Unique Peptides	# Peptides	# PSMs	# AAs	MW [kDa]	calc. pI				
TGME49_235470	organism=Toxoplasma_gondii_ME49 product=myosin A location=TG	90.4	8 32.37	1	2	2 2	2 32	831	93.3	8.16				
	A2	Sequence	# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability Chard	qe MH+ [Da]	ΔM [ppm]	RT [min]	# Missed Cleavages
	High	mLIQLHALSVLEALQLR	1			1 TGME49_235470	M1(Oxidation)	0.0000	4.09	0.00	3 1964.13810	0.95	36.60	0
	High	NNSLEQFFINITNEmLQK	1	1		1 TGME49_235470	M15(Oxidation)	0.0000	3.95	0.00	3 2199.07541	0.13	36.69	0
	High	IFmGmLDIFGFEVFK	1	1		1 TGME49_235470	M3(Oxidation); M5(Oxidation)	0.0000	3.90	0.00	2 1825.89238	1.06	36.79	0
	High	NNSLEQFFINITNEMLQK	1	1		1 TGME49_235470		0.0000	3.89	0.00	3 2183.08261	1.10	36.88	0
	High	NNSVLAALEDQcLAPGGSDEK	3	3 1		1 TGME49_235470	C12(Carbamidomethyl)	0.0000	3.82	0.00	3 2188.02005	0.59	34.44	0
	High	DGGIDDAAAIEGK	3	3 1		1 TGME49_235470		0.0000	3.35	0.00	2 1231.58049	0.26	31.32	0
	High	NPVVAQLFAGIVMEK	2	2 1		1 TGME49_235470		0.0000	3.26	0.00	2 1615.88994	1.37	36.60	0
	High	YRDTFDLSK	2	2 1		1 TGME49_235470		0.0000	3.21	0.00	3 1144.56324	-0.10	31.10	1
	High	RALDNLHAVNK	1	1		1 TGME49_235470		0.0000	3.21	0.00	3 1250.69675	0.24	29.92	1
	High	ELIFTSNAEVIK	1	1		1 TGME49_235470		0.0000	3.13	0.00	2 1363.74687	0.04	33.77	0
	High	AEImEIVQQSK	1	1		1 TGME49_235470	M4(Oxidation)	0.0000	2.96	0.00	2 1291.65715	0.66	31.20	0
	High	LYRDEGVSSK	1	1		1 TGME49_235470		0.0000	2.94	0.00	3 1153.58466	-0.14	29.09	1
	High	LPSEEYQLGK	1	1		1 TGME49_235470		0.0000	2.78	0.00	2 1163.59429	-0.03	31.20	0
	High	FHILPLSEYK	2	2 1		1 TGME49_235470		0.0000	2.67	0.00	3 1246.68372	0.52	33.82	0
	High	IQNAImAANPVLEAFGNAK	1	1		1 TGME49_235470	M6(Oxidation)	0.0000	2.66	0.00	3 1988.02823	0.58	35.10	0
	High	LAPHVFYTAR	2	2 1		1 TGME49_235470		0.0000	2.66	0.00	3 1174.63749	0.59	31.47	0
	High	DLGNTTLDWIVR	1	1		1 TGME49_235470		0.0000	2.66	0.00	2 1402.73320	0.45	35.41	0
	High	SQTIIVSGESGAGK	1	1		1 TGME49_235470		0.0000	2.54	0.00	2 1333.69634	0.36	30.63	0
	High	CIVQAGTDK	1	1		1 TGME49_235470	C1(Carbamidomethyl)	0.0000	2.45	0.00	2 991.48747	-0.28	29.58	0
	High	VSYAGNQEIR	1	1		1 TGME49_235470		0.0000	2.15	0.00	2 1136.57048	0.86	30.20	0
	High	KAcGLLFLDAER	1	1		1 TGME49_235470	C3(Carbamidomethyl)	0.0000	2.09	0.00	2 1392.72991	-0.41	33.97	1
	High	FLSTcK	1	1		1 TGME49_235470	C5(Carbamidomethyl)	0.0000	1.56	0.00	1 755.37537	-0.40	29.52	0
	High	ILTAK	1	1		1 TGME49_235470		0.0000	1.41	0.00	1 545.36621	0.84	28.06	0
TGME49_233220	organism=Toxoplasma_gondii_ME49 product=hypothetical protein lo	c 42.4	4 9.82	1	1	3 1	3 16	1476	159.6	6.64				
	A2	Sequence	# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability Chard	ge MH+ [Da]	ΔM [ppm]	RT [min]	# Missed Cleavages
	A2 High	Sequence TQLGSLSSSVSTLAPGASVR	# PSMs	# Proteins		Protein Group Accessions 1 TGME49_233220	Modifications	ΔCn 0.0000	XCorr 4.12	Probability Charge	ge MH+ [Da] 3 1918.02555	ΔM [ppm] 0.76	RT [min] 33.66	# Missed Cleavages 0
			# PSMs	1			Modifications							# Missed Cleavages 0 1
	High	TQLGSLSSSVSTLAPGASVR	1	1 1		1 TGME49_233220	Modifications	0.0000	4.12	0.00	3 1918.02555	0.76	33.66	# Missed Cleavages 0 1 0 0
	High High	TQLGSLSSSVSTLAPGASVR KTAAPIHTQNQAVR	1	1 1 1 2 1 1 1		1 TGME49_233220 1 TGME49_233220	Modifications	0.0000	4.12 3.59	0.00	3 1918.02555 3 1534.84476	0.76 -0.10	33.66 29.17	# Missed Cleavages 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	High High High	TQLGSLSSSVSTLAPGASVR KTAAPIHTQNQAVR TAAPIHTQNQAVR	1	l 1 2 1 1 1 1 1		1 TGME49_233220 1 TGME49_233220 1 TGME49_233220	Modifications	0.0000 0.0000 0.0000	4.12 3.59 3.26	0.00 0.00 0.00	3 1918.02555 3 1534.84476 3 1406.75058	0.76 -0.10 0.46	33.66 29.17 29.45	# Missed Cleavages 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	High High High High	TQLGSLSSSVSTLAPGASVR KTAAPIHTQNQAVR TAAPIHTQNQAVR VSTVSPTTSVSGDR	1	1 1 2 1 1 1 1 1 1 1		1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220	Modifications	0.0000 0.0000 0.0000 0.0000	4.12 3.59 3.26 2.95	0.00 0.00 0.00 0.00	3 1918.02555 3 1534.84476 3 1406.75058 2 1392.69744	0.76 -0.10 0.46 0.62	33.66 29.17 29.45 30.20	# Missed Cleavages 0 1 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1
	High High High High High	TQLGSLSSSV5TLAPGASVR KTAAPIHTQNQAVR TAAPIHTQNQAVR VSTVSPTTSVSGDR FSAENEAVDKPR	1 2 1 1 1	1 1 2 1 1 1 1 1 1 1 2 1 1		1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220	Modifications	0.0000 0.0000 0.0000 0.0000 0.0000	4.12 3.59 3.26 2.95 2.92	0.00 0.00 0.00 0.00 0.00	3 1918.02555 3 1534.84476 3 1406.75058 2 1392.69744 3 1362.66373	0.76 -0.10 0.46 0.62 -0.85	33.66 29.17 29.45 30.20 29.93	# Missed Cleavages 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
	High High High High High High	TQLGSLSSSVSTLAPGASVR KTAAPIHTQNQAVR TAAPIHTQNQAVR VSTVSPTTSVSGDR PSAENEAVDK/R VSTVSPTTSVSGDRGER TRENSLELPGVAIFDR		L 1 2 1 L		1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220	Modifications	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	4.12 3.59 3.26 2.95 2.92 2.56	0.00 0.00 0.00 0.00 0.00 0.00	3 1918.02555 3 1534.84476 3 1406.75058 2 1392.69744 3 1362.66373 3 1734.86203	0.76 -0.10 0.46 0.62 -0.85 0.16	33.66 29.17 29.45 30.20 29.93 29.89	# Missed Cleavages 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
	High High High High High High High	TQLGSLSSSVSTLAPGASVR KTAAPIHTQNQAVR TAAPIHTQNQAVR VSTVSPTTSVSGDR FSAENEAVDKRR VSTVSPTTSVSGDRGER		L 11 2 11 L 11 L 11 L 11 L 11 L 11		1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220	Modifications	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	4.12 3.59 3.26 2.95 2.92 2.56 2.56	0.00 0.00 0.00 0.00 0.00 0.00 0.00	3 1918.02555 3 1534.84476 3 1406.75058 2 1392.69744 3 1362.66373 3 1734.86203 3 1816.95554	0.76 -0.10 0.46 0.62 -0.85 0.16 0.14	33.66 29.17 29.45 30.20 29.93 29.89 34.99	# Missed Cleavages 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0
	High High High High High High High High	TQLGSLSSSV5TLAPGASVR KTAAPIHTQNQAVR TAAPIHTQNQAVR VSTV9TTSVSGDR FSAENEAVUK/R VSTV9TTSVSGDRGER TRINSLERGVAIFDR KQNSVLETPDVSQTR		L 11 2 11 L 11 L 11 L 11 L 11 L 11		1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220		0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	4.12 3.59 3.26 2.95 2.92 2.56 2.56 2.56 2.47	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3 1918.02555 3 1534.84476 3 1406.75058 2 1392.69744 3 1362.66373 3 1734.86203 3 1816.95554 3 1701.87796	0.76 -0.10 0.46 -0.85 0.16 0.14 0.76	33.66 29.17 29.45 30.20 29.93 29.89 34.99 30.91	# Missed Cleavages 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
	High High High High High High High High	TQLGSLSSSVSTLAPGASVR KTAAPIHTQNQAVR TAAPIHTQNQAVR VSTVSPTTSVSGOR FSAENEAVDK/R VSTVSPTTSVSGORGER TRENSLELRGVAIFDR KQNSVLETPDVSQTR TGmFGVGIPVSQHR		L 11 2 11 L 11 L 11 L 11 L 11 L 11		1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220		0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	4.12 3.59 3.26 2.95 2.92 2.56 2.56 2.56 2.47 2.37	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3 1918.02555 3 1534.84476 3 1406.75058 2 1392.69744 3 1362.66373 3 1734.86203 3 1816.95554 3 1701.87796 3 1565.75479	0.76 -0.10 0.46 0.62 -0.85 0.16 0.14 0.76 1.16	33.66 29.17 29.45 30.20 29.93 29.89 34.99 30.91 32.54	# Missed Cleavages 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
	High High High High High High High High	TQLGSLSSSV5TLAPGASVR KTAAPHTQNQAVR TAAPHTQNQAVR VSTVSPTTSVSGOR FSARIBAVUKKR VSTVSPTTSVSGORGER TRENSLELPGVAIFDR KQNSVLETPOVSQTR TGMFGVGIPVSQHR AAFAVDSSSADK				1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220 1 TGME49_233220	M3(Oxidation)	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	4.12 3.59 3.26 2.95 2.56 2.56 2.47 2.37 2.32	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3 1918.02555 3 1534.8475 3 1406.75058 2 1392.69744 3 1362.66373 3 1734.86203 3 1816.95554 3 1565.75479 2 1168.54680	0.76 -0.10 0.46 0.62 -0.85 0.16 0.14 0.76 1.16 -1.13	33.66 29.17 29.45 30.20 29.93 29.89 34.99 30.91 32.54 30.42	# Missed Cleavages 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
	High High High High High High High High	TQLGSLSSNSTLARGASVR KTAAPHTQNQAVR VSTV9TTSVSGOR SADPAVLKR VSTV9TTSVSGORGER TRBNSLLHVAHFØR KQNSVLETPVSQTR TGmF0XCIPYSQ1R AAFAVDSSSADK VIESmVTDPSVCVHLVK				1 TGH499_23320 1 TGH49_23320 1 TGH49_23320 1 TGH49_23320 1 TGH49_23320 1 TGH49_23320 1 TGH49_23320 1 TGH49_23320 1 TGH49_23320 1 TGH49_23320 1 TGH49_23320	M3(Oxidation)	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	4.12 3.59 3.26 2.95 2.92 2.56 2.56 2.47 2.37 2.32 2.32 2.25	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3 1918.02555 3 1534.84476 3 1406.75058 2 1392.66744 3 154.86203 3 1734.86203 3 1816.95554 3 1701.87796 3 156.575479 2 1566.57640 3 2056.05027	0.76 -0.10 0.46 -0.85 0.16 0.14 0.76 1.16 -1.13 2.35	33.66 29.17 29.45 30.20 29.93 29.89 34.99 30.91 32.54 30.42 33.79	# Missed Cleavages 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
TGME49_311720	High High High High High High High High	TQLGSLSSN/STLAPGASVR KTAAPHTQNQAVR TAAPHTQNQAVR VSTV9TTSVSGOR FSARBAVLXKR VSTV9TTSVSGORGER TRBNSLBYAMFDR KQNSVLETPDVSQTR TGmFOXUBPTSQHR AAFAVDSSADK VIESmVDPDSVCVHLLVK LALVLTR				1 TGME49_233220 1 TGME49_233220	M3(Oxidation)	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	4.12 3.59 3.26 2.95 2.56 2.56 2.47 2.37 2.32 2.25 2.19	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3 1918.02555 3 1534.84476 3 1406.75058 2 1392.69744 3 1362.66373 3 1734.86203 3 1816.95554 3 1701.87966 3 1565.75479 2 1168.54680 3 2056.05027 2 785.52422	0.76 -0.10 0.46 -0.85 0.16 0.14 0.76 1.16 -1.13 2.35 -0.22	33.66 29.17 29.45 30.20 29.93 29.89 30.91 32.54 30.42 33.79 32.85	# Missed Cleavages 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
TGME49_311720	High High High High High High High High	TQLGSLSSNJSTLAPGASVR KTAAPHTQNQAVR VSTV9TTSVSGOR SADPAVLKR VSTV9TTSVSGORGER TRBNSLLRVAIFDR KQNSULETPOVSQTR TGmF0VGIPYSQHR AAFAVDSSSADK VIESmVDFDSVCVHLVK LALVLTR QNSVLETPOVSQTR 20.2	9 13.77			1 TGME49_233220 1 TGME49_233220	M3(Oxidation) M5(Oxidation); C12(Carbamidometh 78	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	4.12 3.59 3.26 2.95 2.92 2.56 2.56 2.47 2.37 2.32 2.25 2.19 2.14 7.32	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3 1918.02555 3 1534.84476 3 1406.75058 2 1392.69744 3 1340.66373 3 1734.86203 3 1734.86203 3 1734.86203 3 1734.86203 3 1734.86203 3 1565.75479 2 1168.54680 3 2055.05027 2 785.52422 2 1573.77995	0.76 -0.10 0.46 0.62 -0.85 0.16 0.14 0.76 1.16 -1.13 2.35 -0.22 -1.11	33.66 29.17 29.45 30.20 29.93 29.89 30.91 32.54 30.42 33.79 32.85 31.41	0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
TGME49_311720	High High High High High High High High	TQLGSSSSTLARGASVR KTAAPIHTQNQAVR VSTV9TTSVSGCR FSANEAVUKR VSTV9TTSVSGCR FSANEAVUKR VSTV9TTSVSGCRER TERNSLEPRVAIPER KQNSVLETPDVSQTR TGmFGVGIPYSQHR AAFAVDSSSACK VIESmVDPDSVCHLVK LALVUTR QNSVLETPDVSQTR 20.2 Sequence		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# Protein Groups	1 TGME49_233220 1 TGME49_233220	M3(Oxidation)	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 668 ΔCn	4.12 3.59 3.26 2.95 2.92 2.56 2.47 2.37 2.32 2.25 2.19 2.14 7.32 7.32 7.32 2.25 2.19 2.14 7.32 7.32	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3 1918.02555 3 1534.8476 3 1406.75058 2 1392.69741 3 1392.69741 3 1392.69743 3 1734.8503 3 1734.8503 3 1701.87796 3 1565.75479 2 1168.5460 3 2056.05027 2 785.52422 2 785.52422 2 785.52422 2 8 1573.77995 3 20 4 10 2 10 2 10 2 10 2 10 2 10 2 10 2	0.76 -0.10 0.46 0.62 -0.85 0.16 -1.13 2.35 -0.22 -1.11 ΔM [ppm]	33.66 29.17 29.45 30.20 29.93 29.89 34.99 30.91 32.54 30.42 33.79 32.85 31.41 RT [min]	# Missed Cleavages 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TGME49_311720	High High High High High High High High	TQLGSLSSNJSTLAPGASVR KTAAPHTQNQAVR VSTV9TTSVSGOR SADPAVLKR VSTV9TTSVSGORGER TRBNSLLRVAIFDR KQNSULETPOVSQTR TGmF0VGIPYSQHR AAFAVDSSSADK VIESmVDFDSVCVHLVK LALVLTR QNSVLETPOVSQTR 20.2	9 13.77 # PSMs	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# Protein Groups	1 FGHE9 23322 1 FGHE9 2332 1 FGHE9 232 1 FGHE9 232 1 FGHE9 23	M3(Oxidation) M5(Oxidation); C12(Carbamidometh 78	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	4.12 3.59 3.26 2.95 2.92 2.56 2.56 2.47 2.37 2.32 2.25 2.19 2.14 7.32	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3 1918.02555 3 1534.4445 3 1466.75958 2 1392.69743 3 1326.264373 3 1745.652594 3 1745.652594 3 1270.157796 3 2056.05027 2 1573.77959 9 MH+[Da] 3 127.979100	0.76 -0.10 0.46 0.62 -0.85 0.16 0.14 0.76 1.16 -1.13 2.35 -0.22 -1.11	33.66 29.17 29.45 30.20 29.93 29.89 30.91 32.54 30.42 33.79 32.85 31.41	0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
TGME49_311720	High High High High High High High High	TQLGSUSSISTLAFGASVR KTAAPHTQNQAVR VSTV9TTSVSGOR FSANDHAVCKR VSTV9TTSVSGORGER TRIBGLLHVAHFDR KQNSULETPVSQTR TGmF0XGUPYSQHR AAFAVDSSSADK VIESmVDPDSVCVHLLVK LALVLTR QNSULETP0X9QTR 2022 Sequence IIINPTAAAIASQLDKK	9 13.77 # PSMs	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# Protein Groups	1 TGME49_233220 1 TGME49_233220	M3(Oxidation) M5(Oxidation); C12(Carbamidometh 78	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 668 <u>ΔCn</u> 0.0000	4.12 3.59 2.95 2.95 2.56 2.47 2.37 2.32 2.25 2.19 2.14 7.32 XCorr 3.04	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3 1918.02555 3 1534.4445 3 1466.75958 2 1392.69743 3 1326.264373 3 1745.652594 3 1745.652594 3 1270.157796 3 2056.05027 2 1573.77959 9 MH+[Da] 3 127.979100	0.76 -0.10 0.46 0.62 -0.85 0.16 0.14 0.76 1.16 -1.13 2.35 -0.22 -1.11 ΔM [ppm] 0.41	33.66 29.17 29.45 30.20 29.93 29.89 30.91 32.54 30.42 33.79 32.85 31.41 RT [min] 33.64	0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
TGME49_311720	High High High High High High High High	TQLGSLSSN/STLAPGASVR KTAAPHTQNQAVR TAAPHTQNQAVR VSTV9TTSVSGOR FSABNAVCK/R VSTV9TTSVSGORGER TRBNSLBN/SAIFDR KQNSVLETPOVSQTR TGmFQVGIP/SQHR AAFAVDSSCAVL USEnVVDFDSVC/HLUK LALVLTR QNSVLETPOVSQTR 20.2 Sequence 1INEPTAAALAYGLDKK LADKIEEDOKK	9 13.77 # PSMs	1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1	# Protein Groups	TGME49_233220	M3(Oxidation) M5(Oxidation); C12(Carbamidometh 78	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	4.12 3.59 3.26 2.95 2.92 2.56 2.47 2.37 2.32 2.25 2.19 2.14 73.2 XCorr 3.04 2.84	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3 1918.02557 3 1534.84476 3 1466.75058 2 1322.6974 3 1362.66373 3 1363.66373 3 1714.846203 3 1710.187796 3 1705.75479 2 1565.75479 3 2056.05027 2 785.52422 2 1573.77995 9 MH+ (Da) 3 1303.057392	0.76 -0.10 0.46 0.62 -0.85 0.16 1.16 1.16 1.13 2.35 -0.22 -1.11 ΔM [ppm] 0.41 -0.11	33.66 29.17 29.45 30.20 29.93 29.88 30.99 30.91 32.54 30.42 33.79 32.85 31.41 RT [min] 33.64 29.15	0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
TGME49_311720	High High High High High High High High	TQLGSSSSTLAFGASVR KTAPHTQNQAVR VSTV9TTSVSGCR FSADRAVCKR VSTV9TTSVSGCR FSADRAVCKR VSTV9TTSVSGCRER TRENSLEJRGVAIFDR KQRSVLETPOVSQTR TGmF0XQIPYSQHR AAFAVDSSSCN VIESmVDPDSVCVHLVK LALVLTR QNSVLETPOVSQTR 20.2 Sequence IINPFTAAJAYQLDKK LADKIEDDKK DKOLLPYEJINK	9 13.77 # PSMs	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# Protein Groups	TGME9_33220 TGME9_31170 TGME9_311720	M3(Oxidation) M5(Oxidation); C12(Carbamidometh 78	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	4.12 3.59 3.26 2.95 2.56 2.56 2.57 2.37 2.37 2.32 2.19 2.14 7.32 XCorr 3.04 2.84 2.78	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3 1918.0255 3 1534.6445 3 1534.6445 2 1352.69474 3 1326.69474 3 1326.69474 3 174.66033 3 1816.95554 3 1201.07796 2 1655.7472 2 785.54422 2 1573.77995 9 M++ [Da] 3 1787.99100 3 1303.67392 3 1406.00066	0.76 -0.10 0.46 0.62 -0.85 0.14 0.74 0.74 -1.13 2.35 -0.22 -1.11 ΔM [ppm] 0.41 -0.74	33.66 29.17 29.45 30.20 29.93 29.89 30.91 32.24 30.42 33.79 32.25 31.41 RT [min] 33.64 29.15 33.87	0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
TGME49_311720	High High High High High High High High	TQLGSLSSN/STLAPGASVR KTAAPHTQNQAVR TAAPHTQNQAVR VSTV97TTSVSGOR FSADRAVLKR VSTV97TTSVSGORGER TRBNSLLHVANFDR KQNSVLETPOVSQTR TGmFCVCIPYSQHR AAFAVDSSSADK VESmVFDVSQTR QNSVLETPOVSQTR QNSVLETPOVSQTR QNSVLETPOVSQTR QNSVLETPOVSQTR QNSVLETPOVSQTR QNSVLETPOVSQTR QNSVLETPOVSQTR QVSLEDADLQKK	9 13.77 # PSMs	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# Protein Groups	TGME9_33220 TGME9_31120 TGME9_31120 TGME9_31120	M3(Oxidation) M5(Oxidation); C12(Carbamidometh 78	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	4.12 3.59 3.26 2.92 2.56 2.47 2.37 2.32 2.25 2.19 2.14 73.2 XCorr 3.04 2.84 2.78 2.63	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3 1918.02555 3 1594.647558 3 1466.75588 2 1392.69743 3 1734.66203 3 1754.86203 3 1774.86203 3 1774.86203 3 1754.86203 3 1755.57479 2 1168.54660 3 2056.65027 2 1573.77995 9 MH+ (Da) 3 1393.67592 3 1460.80059 2 158.60059	0.76 -0.10 0.46 0.62 -0.85 0.16 0.14 0.76 -1.13 2.35 -0.22 -1.11 ΔM [ppm] 0.41 -0.11 0.74 0.41 0.74 0.41	33.66 29.17 29.45 30.20 29.93 29.89 34.99 30.91 32.54 30.42 33.79 32.85 31.41 RT [min] 33.64 29.15 33.84 29.15 33.091	0 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0
TG#E49_311720	High High High High High High High High	TQLGSSSSTLARGASVR KTAPHTQNQAVR VSTV9TTSVSGOR FSANDAVDKR VSTV9TTSVSGOR FSANDAVDKR VSTV9TTSVSGORER TGNSLEP0VSQTR TGNFGVGIPYSQHR AAFAVDSSSAD AAFAVDSSSAD VIESmVDPD0VVHLVK LAUVLTR QNSVLETP0VSQTR 20.2 Soquence IINBPTAAIAYGDKK DKDLPYEIINK QVLEDAUQK AKFEELNSULFQK	9 13.77 # PSMs	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# Protein Groups	1 GM469_233220 1 GM469_311220 1 GM469_311220 1 GM469_311220	M3(Oxidation) M5(Oxidation); C12(Carbamidometh 78	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 668 0.0000 6.0000 0.0000 0.0000 0.0000 0.0000	4.12 3.99 3.26 2.95 2.56 2.47 2.37 2.32 2.25 2.19 2.14 7.32 XCorr 3.04 2.04 2.08 2.04 2.08 2.04	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3 1918.0255 3 154.8445 3 154.8456 2 132.67457 3 132.67437 3 132.67437 3 174.66035 3 174.66035 3 174.66035 3 1206.05027 2 1565.7479 2 1573.77965 9 MH+ [Da] 3 136.036782 3 1469.80066 2 1158.67886	0.76 -0.10 0.46 0.62 -0.85 0.16 0.14 0.76 -1.13 2.35 -0.22 -1.11 ΔM [ppm] 0.41 -0.11 0.74 0.27 1.90	33.66 29.17 29.45 30.20 29.93 34.99 30.91 32.54 30.91 32.54 33.79 32.85 31.41 RT [min] 33.64 29.15 33.87 30.91 33.64 29.15 33.87 30.91 33.31	0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
TGME49_311720	High High High High High High High High	TQLGGLSSN/STLAPGASVR KTAPHITQNQAVR TAPHITQNQAVR VSTV9TTSVSGOR FSAIDAVKR VSTV9TTSVSGORGER TRBNSLBVAXIFVR VSTV9TTSVSGORGER TRBNSLBVAXIFVR KONSULETPOVSQTR TGmPCVGIPYSQHR AAFAVDSSSADK VIESmVDFDSVCVHLVK LALVLTR QNSULETPOVSQTR 20.2 Sequence 100F74AA1/NYCDKK LADKIEDOKK DKGLPVFINK QVLEDADLQK AKFEILNSCIPCK NEATINPTNLFDVK ITPSVAFTDDKK	9 13.77 # PSMs	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# Protein Groups	1 FGHE9 33320 1 FGHE9 33320 1 FGHE9 23320 1 FGHE9 31170 1 FGHE9 311720 1 FGHE9 311720 1 FGHE9 311720	M3(Oxidation) M5(Oxidation); C12(Carbamidometh 78	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	4.12 3.39 3.26 2.25 2.26 2.47 7.22 2.25 2.19 2.14 7.22 2.25 2.14 7.22 2.25 2.25 2.24 7.22 2.25 2.24 2.24 2.26 2.26 2.26 2.20	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3 1918.02555 3 1534.4476 3 1466.75588 2 1322.69747 3 1322.66373 3 1174.65554 3 1274.65554 3 1276.5554 3 1276.54554 3 1276.54590 3 2056.05027 2 1573.79951 3 1278.795100 3 1278.795100 3 1568.3966 2 1563.8986 2 1564.68076 2 1564.68076 2 1563.68056 3 1276.789100 3 1568.7866 2 1564.68076 2 1566.68076 2 1566.68076	0.76 -0.10 0.46 0.62 -0.85 0.16 0.14 0.76 -1.13 2.35 -0.22 -1.11 ΔM [ppn] 0.41 -0.41 0.42 0.42 0.42 0.42 0.45 0.41 0	33.66 29.17 29.45 30.20 29.93 29.89 34.99 30.91 32.54 30.42 33.79 32.85 31.41 RT [min] 33.64 29.15 33.87 30.91 33.31 34.15	0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
	High High High High High High High High	TQLGSSSISTLARGASVR KTAAPIHTQNQAVR VSTV9TTSVSGCR FSADRAVCKR VSTV9TTSVSGCR FSADRAVCKR VSTV9TTSVSGCRER TRENSLEJROVAIFOR KQKNLETPOVSQTR TGRIFGXGIPYSQHR AAFAVCSSSACK VIES/VDPCS/CVHLVK LAUVTR QNSUETPOVSQTR 20.2 Sequence IINEPTAAJAYGDCK LADRIEDCKK KDKLPYEJINK QVLEDALQK AKFELINSLICK NEATIPPTNTFDVK IIPSVAFTDDDRK 5.3	9 13.77 # PSMs	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# Protein Groups	TGME9_33220 TGME9_31720 TGME9_31720 TGME9_31720 TGME9_31720 TGME9_31720 TGME9_31720 TGME9_31720	M3(Oxidation) M5(Oxidation); C12(Carbamidometh 7 8 Modifications 2 2 2 2	0.0000 0.000	4.12 3.39 3.26 2.25 2.25 2.26 2.26 2.26 2.27 2.25 2.29 2.14 7.22 2.25 2.19 2.14 7.22 2.29 2.14 7.22 2.04 2.04 2.04 2.05 2.04 2.04 2.05 2.04 2.04 2.04 2.05 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3 1918.0255 3 1534.84456 3 1466.55058 2 1332.69747 3 1326.64547 3 1326.64547 3 1724.66033 3 1816.95554 3 1721.04756 3 1565.7577 2 785.5422 2 785.5422 2 785.5422 3 1787.9910 3 1303.07392 1466.00066 2 1158.08076 3 1567.5926 3 1567.5926 3 1627.7942	0.76 -0.10 0.46 0.62 -0.85 0.16 0.14 0.76 -1.13 2.35 -0.22 -1.11 ΔM [ppm] 0.41 -0.11 0.74 0.21 1.90 1.90 1.90 1.90 1.91 0.41 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.75 0	33.66 29.17 29.45 30.20 29.98 34.99 30.91 32.54 30.92 32.54 30.42 33.79 32.85 31.41 RT [min] 33.64 29.15 33.87 30.91 33.31 33.31 33.11 34.15 32.27	0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
	High High High High High High High High	TQLGSUSSISTLAPGASVR KTAPHTQNQAVR VSTV9TTSVSGOR SADRHAVCKR VSTV9TTSVSGORGER TRHISLLHQAIFDR KQSVLETPOVSQTR TGmF0XGUPYSQHR AAFAVDSSGACK VIESmVDPDSVCVHLUXK LALVLTR QNSLETPOVSQTR 20.2 Sequence IINPTAALARVGDXK LADKIEBOCKK QVLEDADLQK ALFREIDSCFQK AAFREIDSCFQK AAFREIDSCFQK ASFEIDOVSQTR Sequence 5.3 Sequence 5.3	9 13.77 # PSMs	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# Protein Groups	1 GN4E9_33220 1 GN4E9_31120 1 GN4E9_3120 1 GN4E9_3120 1 GN4E9_3120 1 GN4E9_3120 1 GN4E9_3120 1 GN4E9_3120 1 GN4E9_3120	M3(Oxidation) M5(Oxidation); C12(Carbamidometh 7 8 Modifications	0.0000 0.00000 0.00000 0.000000	4.12 3.39 3.26 2.25 2.25 2.47 7.22 2.25 2.19 2.14 7.22 2.25 2.14 7.22 2.25 2.14 7.22 2.25 2.14 7.22 2.25 2.14 7.22 2.25 2.14 2.20 2.20 2.21 2.21 2.21 2.21 2.21 2.21	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3 1918.02555 3 1534.8476 3 1466.53588 2 1392.6973 3 1734.86203 3 1734.86203 3 1734.86203 3 1734.86203 3 1734.86203 3 1734.86203 3 1737.9100 2 1555.7479 2 1557.77952 9 MH+[Da] 3 1737.79100 3 1737.79100 3 1737.79100 3 1737.79100 3 1737.79100 3 1756.85076 3 1627.79422 9 MH+[Da]	0.76 -0.10 0.46 0.62 -0.85 0.16 0.14 0.76 -1.13 2.35 -0.22 -1.11 ΔM [ppn] 0.41 -0.41 0.42 0.42 0.42 0.42 0.45 0.41 0	33.66 29.17 29.45 30.20 29.93 29.89 34.99 30.91 32.54 30.42 30.42 30.42 30.42 30.42 30.42 30.42 30.41 33.64 29.15 33.66 29.15 33.66 33.69 33.69 33.69 20.55 31.41 83.65 20.55 33.65 20.55 33.65 20.55	0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
	High High High High High High High High	TQLGSSSISTLARGASVR KTAAPIHTQNQAVR VSTV9TTSVSGCR FSADRAVCKR VSTV9TTSVSGCR FSADRAVCKR VSTV9TTSVSGCRER TRENSLEJROVAIFOR KQKNLETPOVSQTR TGRIFGXGIPYSQHR AAFAVCSSSACK VIES/VDPCS/CVHLVK LAUVTR QNSUETPOVSQTR 20.2 Sequence IINEPTAAJAYGDCK LADRIEDCKK KDKLPYEJINK QVLEDALQK AKFELINSLICK NEATIPPTNTFDVK IIPSVAFTDDDRK 5.3	9 13.77 # PSMs	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# Protein Groups	TGME9_33220 TGME9_31720 TGME9_31720 TGME9_31720 TGME9_31720 TGME9_31720 TGME9_31720 TGME9_31720	M3(Oxidation) M5(Oxidation); C12(Carbamidometh 7 8 Modifications 2 2 2 2	0.0000 0.000	4.12 3.39 3.26 2.25 2.25 2.26 2.26 2.26 2.27 2.25 2.29 2.14 7.22 2.25 2.19 2.14 7.22 2.29 2.14 7.22 2.04 2.04 2.04 2.05 2.04 2.04 2.05 2.04 2.04 2.04 2.05 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3 1918.0255 3 1534.84456 3 1466.55058 2 1332.69747 3 1326.64547 3 1326.64547 3 1724.66033 3 1816.95554 3 1721.04756 3 1565.7577 2 785.5422 2 785.5422 2 785.5422 3 1787.9910 3 1303.07392 1466.00066 2 1158.08076 3 1567.5926 3 1567.5926 3 1627.7942	0.76 -0.10 0.46 0.62 -0.85 0.16 0.14 0.76 -1.13 2.35 -0.22 -1.11 ΔM [ppm] 0.41 -0.11 0.74 0.21 1.90 1.90 1.90 1.90 1.91 0.41 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.75 0	33.66 29.17 29.45 30.20 29.98 34.99 30.91 32.54 30.92 32.54 30.42 33.79 32.85 31.41 RT [min] 33.64 29.15 33.87 30.91 33.31 33.31 33.11 34.15 32.27	0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Accession	Description	Score	Coverage	# Proteins	# Unique Peptides	# Peptides	# PSMs	# AAs	MW [kDa]	calc. pI					
TGME49_219320	organism=Toxoplasma gondii ME49 product=acid phosphatase GAP50	98,93		1	13		3 28		46.6	6.95					
	A2	Sequence	# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ACn	XCorr	Probability	Charge	MH+ [Da]	ΔM [ppm]	RT [min]	# Missed Cleavages
ŕ		HSGSLYYAGETGFcLFELTAEGLVTR	2	1		TGME49_219320	C14(Carbamidomethyl)	0.0000	7.22		3	2878.37693	1.81	36.60	0
		LAPADATEAAAAENHGYPK	4	1		TGME49_219320		0.0000	4.49	0.00	4	1896.90981	0.57	31.00	0
	High	GDSmLQYYLQPLLK	2	1	1	TGME49_219320	M4(Oxidation)	0.0000	4.30	0.00	2	1684.86162	0.06	35.45	0
	High	KSIDAFNFVSQLPEVR	2	1	1	TGME49_219320		0.0000	4.01	0.00	3	1849.98282	1.11	35.03	1
	High	SIDAFNFVSQLPEVR	4	1	1	TGME49_219320		0.0000	3.98	0.00	2	1721.88408	-0.99	35.89	0
	High	TELTYAVTSEQIKDGK	1	1	1	TGME49_219320		0.0000	3.80	0.00	3	1782.91330	0.70	31.61	1
	High	LVSGTTGETLYTHKQPLK	2	1	1	TGME49_219320		0.0000	3.58	0.00	4	1973.07290	1.33	30.89	1
	High	ILDYIIVVADR	2	1	1	TGME49_219320		0.0000	3.39	0.00	2	1289.74809	1.30	35.23	0
	High	FVGLGNWGSGSYGQK	2	1	1	TGME49_219320		0.0000	3.20	0.00	2	1556.75127	1.28	33.82	0
	High	LVSGTTGETLYTHK	3	1	1	TGME49_219320		0.0000	3.14	0.00	2	1506.77947	-0.28	30.58	0
	High	TELTYAVTSEQIK	1	1	1	TGME49_219320		0.0000	2.90	0.00	2	1482.76995	0.87	32.74	0
	High	TVADTLK	2	1	1	TGME49_219320		0.0000	2.71	0.00	1	747.42340	-1.78	29.46	0
	High	TLELAPK	1	1	1	TGME49_219320		0.0000	2.01	0.00	1	771.46112	0.00	30.79	0
TGME49_266080	organism=Toxoplasma_gondii_ME49 product=hypothetical protein loc	17.19	9.62	1	6	i	5 6	728	81.1	8.72					
	A2	Sequence	# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]	ΔM [ppm]	RT [min]	# Missed Cleavages
	5	TALFAVEGVHASK	1	1		TGME49_266080		0.0000	3.38	0.00	3	1329.71674	0.41	32.39	0
		VATEDIGVQTR	1	1		TGME49_266080		0.0000	3.09	0.00	2	1188.62248	0.45	30.46	0
	=	SEQETESVSR	1	1		TGME49_266080		0.0000	2.76	0.00	2	1151.51811	0.51	28.55	0
		NVFVAHVTQLR	1	1		TGME49_266080		0.0000	2.75	0.00	3	1283.72303	0.85	32.41	0
		LIVLTHQDTIK	1	1		TGME49_266080		0.0000	2.62	0.00	3	1280.75782	0.39	31.79	0
	=	LVQSQLNEQEVPLR	1	1	1	TGME49_266080		0.0000	2.59	0.00	2	1652.89629	-0.24	32.23	0
TGME49_235470	organism=Toxoplasma_gondii_ME49 product=myosin A location=TGP	10.75	5.90	1	4		4 4	831	93.3	8.16					
	A2	Sequence	# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]	ΔM [ppm]	RT [min]	# Missed Cleavages
		LPSEEYQLGK	1	1	1	TGME49_235470		0.0000	2.82	0.00	2	1163.59441	0.07	31.14	0
	5	NPVVAQLFAGIVmEK	1	1		TGME49_235470	M13(Oxidation)	0.0000	2.65	0.00	3	1631.88517	1.55	36.07	0
	5	DGGIDDAAAIEGK	1	1		TGME49_235470		0.0000	2.64	0.00	2	1231.57610	-3.31	31.01	0
		AEImEIVQQSK	1	1	1	TGME49_235470	M4(Oxidation)	0.0000	2.64	0.00	2	1291.65666	0.28	31.12	0
TGME49_223940	organism=Toxoplasma_gondii_ME49 product=GAP45 location=TGME4	18.56	20.00	1	4		4 6	245	27.3	5.07					
	A2	Sequence	# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]	∆M [ppm]	RT [min]	# Missed Cleavages
		VAEHSSAAVTDR	1	1		TGME49_223940		0.0000	4.75	0.00	3	1242.60724	-0.10	28.61	0
		CGCDLGDQHDENECPICR	1	1		TGME49_223940	C1(Carbamidomethyl); C3(Carbamid	0.0000	3.04	0.00	3	2234.82749	-1.97	30.44	0
	5	NAADKAEAER	1	1		TGME49_223940		0.0000	2.77	0.00	3	1074.51725	-0.23	28.35	1
	High	AEAAAAAER	3	1	1	TGME49_223940		0.0000	2.68	0.00	2	859.42693	0.05	27.99	0

Accession	Description	Score		Coverage	# Proteins	# Unique Peptides	# Peptides	# PSMs	# AAs	MW [kDa]	calc. pI	1				
TGME49_223940	organism=Toxoplasma_gondii_ME49 product=GAP45 location=TGME4		161.21	52.24	1	19				27.3	5.07	1				
	A2	Sequence	-	# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]	ΔM [ppm]	RT [min]	# Missed Cleavages
	High	LASPEDSASETTmATQPQK	_	10115	1		TGME49_223940	M13(Oxidation)	0.0000	4.17	0.00		2007.92009	1.22		0
	High	VAEHSSAAVTDR			5 1		TGME49_223940		0.0000	4.08	0.00		1242.60715	-0.17		0
	High	RKAEAAAAAER		3	3 1		TGME49_223940		0.0000	3.82	0.00	3	1143.62281	-0.14		2
		KAEAEAAEAER			3 1		TGME49_223940		0.0000	3.50	0.00	3	1174.57102	0.93		1
	-	KEAEDLAEKER		1	1		TGME49_223940		0.0000	3.31	0.00	3		0.55		2
		KAEAAAAAER			7 1		TGME49_223940		0.0000	3.28	0.00		987.52202	0.17		1
	-	QmQEALKQEEmSPR		1	1		TGME49_223940	M2(Oxidation); M11(Oxidation)	0.0000	3.19	0.00			0.56		1
		KEAEDLAEK		1	1		TGME49_223940		0.0000	3.14	0.00		1032.52178	0.91		1
	High	AEAEAAEAER		1	1		TGME49_223940		0.0000	3.04	0.00		1046.47600	0.99		0
	High	HIDLSDAPLLN			2 1	1	TGME49_223940		0.0000	3.02	0.00	2	1207.62871	-2.54	33.78	0
		AAAEEAEQR		16	5 1		TGME49_223940		0.0000	2.98	0.00	2	974.45433	0.52		0
		EAEDLAEKER		1	1		TGME49_223940		0.0000	2.75	0.00	3	1189.57056	0.81		1
	High	SVVGYTVTPcDMASIDETAK		1	1		TGME49_223940	C10(Carbamidomethyl)	0.0000	2.73	0.00	3	2143.99198	1.53	32.59	0
		VAEHsSAAVTDR		1	1		TGME49_223940	S5(Phospho)	0.0000	2.72	0.00	3	1322.57224	-1.10		0
	High	AEAAAAAER		9) 1		TGME49_223940		0.0000	2.69	0.00			-0.02		0
	High	NAADKAEAER		1	1		TGME49_223940		0.0000	2.63	0.00	2	1074.51848	0.92		1
TGME49_219320	organism=Toxoplasma_gondii_ME49 product=acid phosphatase GAP50		42.14	31.09	1	10		0 13	431	46.6	6.95					
	A2	Sequence	-	# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]	ΔM [ppm]	RT [min]	# Missed Cleavages
	High	HSGSLYYAGETGFcLFELTAEC	GI VTR	1	1		TGME49_219320	C14(Carbamidomethyl)	0.0000	4.92	0.00	-	2878.37473	1.04		0
		TELTYAVTSEQIKDGK			1		TGME49_219320	(0.0000	3,79	0.00		1782.91239	0.19		1
		LVSGTTGETLYTHK			1		TGME49_219320		0.0000	3.39	0.00		1506.77995	0.04		0
	-	ILDYIIVVADR		1	1		TGME49_219320		0.0000	3.35	0.00	2	1289.74626	-0.12		0
		LAPADATEAAAAENHGYPK			2 1		TGME49_219320		0.0000	3.33	0.00			-1.23		0
		GDSmLQYYLQPLLK			2 1		TGME49_219320	M4(Oxidation)	0.0000	3.04	0.00			0.06		0
		LVSGTTGETLYTHKOPLK		1	1		TGME49_219320		0.0000	2.99	0.00			-0.78		1
	-	SIDAFNFVSQLPEVR			2 1		TGME49_219320		0.0000	2.91	0.00	2		4.04		0
		FVGLGNWGSGSYGQK		1	1		TGME49_219320		0.0000	2.89	0.00	2	1556.75420	3.16		0
	-	TELTYAVTSEQIK		1	1		TGME49_219320		0.0000	2.56	0.00	3	1482.76947	0.55		0
TGME49_235470	organism=Toxoplasma gondii ME49 product=mvosin A location=TG	2	10.96	5.78	1			4	831	93.3	8.16					
_	A2	Sequence		# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]	ΔM [ppm]	RT [min]	# Missed Cleavages
	High	ELIFTSNAEVIK	_		1	1	TGME49_235470		0.0000	2.95	0.00	-	1363.74565	-0.86		0
		AEImEIVQQSK			1		TGME49_235470	M4(Oxidation)	0.0000	2.78	0.00			0.47		0
	-	LPSEEYQLGK		1	1		TGME49_235470		0.0000	2.70	0.00	2		0.60		0
	High	NPVVAQLFAGIVmEK		1	1		TGME49_235470	M13(Oxidation)	0.0000	2.53	0.00	3		1.77		0
TGME49_257680	organism=Toxoplasma_gondii_ME49 product=myosin light chain MLC1		2.90	12.21	1	1		1	213	24.1	4.65					-
	A2	Sequence		# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]	ΔM [ppm]	RT [min]	# Missed Cleavages
	High	FVGTSTHPEDNIEDLVEAFAYF	DV/CK	# 10/13	# Procents		TGME49_257680	Pidanteations	0.0000	2.90	0.00		2930.38053	2.51		# Pilosed Cleavages
TGME49_318230	organism=Toxoplasma_gondii_ME49 product=phosphoglycerate kinase		2.60	3.12	1		1011245_257000	1	417	44.6	6.99		2950.50055	2.51	50.05	0
1011213_310250	A2		2.00	# PSMs	# Proteins	# Protein Groups	Dratain Crown According	Modifications	ΔCn	XCorr	Probability		MH+ [Da]	ΔM [ppm]	DT [min]	# Missod Clampace
		Sequence		# PSMS	# Proteins		Protein Group Accessions	Modifications	-			Charge			RT [min]	# Missed Cleavages
TCME40, 200020	High	LGIQDVGAQLTGK	2.50	2.00	1		TGME49_318230		0.0000	2.60	0.00		1299.72795	0.92	33.52	0
TGME49_209030	organism=Toxoplasma_gondli_ME49 product=actin ACT1 (ACT1) loc		2.59	2.66	1			1	376	41.9	5.16					
	A2	Sequence		# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]	ΔM [ppm]	RT [min]	# Missed Cleavages
	High	AGVAGDDAPR		1	1	1	TGME49_209030		0.0000	2.59	0.00		928.44798	-0.39	28.92	0
TGME49_266080	organism=Toxoplasma_gondii_ME49 product=hypothetical protein loc	c	2.59	1.51	1	1		1 1	728	81.1	8.72					
	A2	Sequence		# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]	ΔM [ppm]	RT [min]	# Missed Cleavages
	High	VATEDIGVQTR			# Troccino		TGME49_266080	Tibalifeacions	0.0000	2.59	0.00		1188.62261	0.55		

Accession	Description	Score		Coverage	# Proteins	# Unique Peptides	# Peptides	# PSMs	# AAs	MW [kDa]	calc. pI	٦				
TGME49_223940	organism=Toxoplasma_gondii_ME49 product=GAP45 location=TGME49_chrX:344		255.45		# PIOLEIIS	# Unique Peptides	# Peptides			27.3	5.07					
	A2	Sequence		# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]	ΔM (ppm)	RT [min]	# Missed Cleavages
	High	CGCDLGDQHDENECPICR			2 1		1 TGME49_223940	C1(Carbamidomethyl); C3(Carbamid	0.0000	5.42	0.00	3	2234.83170	-0.09	30.34	0
		RCGCDLGDQHDENECPICR		1	2 1		1 TGME49_223940	C2(Carbamidomethyl); C4(Carbamid		4.77	0.00) 3		0.59	30.17	1
		LASPEDSASETTmATQPQK		3	8 1		1 TGME49_223940	M13(Oxidation)	0.0000	4.55	0.00	3	2007.91989	1.12	30.11	0
	High	KAEAAAAAER		35	5 1		1 TGME49_223940		0.0000	3.93	0.00	2	987.52251	0.67	26.72	1
	High	KEAEDLAEKER		1	1		1 TGME49_223940		0.0000	3.89	0.00	3	1317.66611	1.18	28.92	2
	High	VAEHSSAAVTDR		٤	8 1		1 TGME49_223940		0.0000	3.87	0.00	3	1242.60797	0.49	28.69	0
	High	KEAEDLAEK		1	1		1 TGME49_223940		0.0000	3.83	0.00) 2	1032.52190	1.02	28.63	1
	High	RKAEAAAAAER		1	1 1		1 TGME49_223940		0.0000	3.53	0.00) 3	1143.62326	0.26	27.66	2
	High	HIDLSDAPLLN		3	8 1		1 TGME49_223940		0.0000	3.39	0.00) 2	1207.63371	1.60		0
		NAADKAEAER		2	2 1		1 TGME49_223940		0.0000	3.20	0.00			1.37		1
		QmQEALKQEEMSPR		1	1		1 TGME49_223940	M2(Oxidation)	0.0000	3.10	0.00			1.37		1
		KAEAEAAEAER		1	1		1 TGME49_223940		0.0000	3.07	0.00			0.22		1
		QmQEALKQEEmSPR		1	1		1 TGME49_223940	M2(Oxidation); M11(Oxidation)	0.0000	2.92	0.00			1.19		1
		AAAEEAEQR		11	1		1 TGME49_223940		0.0000	2.80	0.00			0.77		0
	-	AEAAAAAER			1		1 TGME49_223940	(T(Disculus)	0.0000	2.78	0.00			0.12		U
		VAEHsSAAVTDR EAEDLAEKER		1	1		1 TGME49_223940 1 TGME49_223940	S5(Phospho)	0.0000	2.66	0.00			0.42		0
		LASPEDSASETTMATQPQK			1		1 TGME49_223940 1 TGME49_223940	S3(Phospho); M13(Oxidation)	0.0000	2.38	0.00		2087.88750	1.69		1
		LASPEDSASETTMATQPQK			1		1 TGME49_223940 1 TGME49_223940	SS(Pluspilu), Pl15(Oxidation)	0.0000	2.49	0.00			1.09		0
		AREEAER					1 TGME49_223940		0.0000	2.43	0.00			-1.08		0
TGME49_219320	organism=Toxoplasma_gondii_ME49 product=acid phosphatase GAP50 (GAP50) I	h	20.30	12.99	1		4	4 7	431	46.6	6.95		000.12115	1.00	10.75	-
TOTIC IS_CESSED	A2	Sequence	20.50	# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]	ΔM [ppm]	RT [min]	# Missed Cleavages
		LVSGTTGETLYTHK		# 15015	# PIOLEIIS		1 TGME49_219320	Pidul Icacións	0.0000	3.34	0.00		1506.78119	0.86		# Misseu Cleavages
		TELTYAVTSEQIK		-	1		1 TGME49_219320		0.0000	3.17	0.00		1482.76933	0.45		0
		FVGLGNWGSGSYGQK		- 1	1		1 TGME49_219320		0.0000	2.81	0.00		1556,74834	-0.61		0
		GDSmLQYYLQPLLK		1	1		1 TGME49_219320	M4(Oxidation)	0.0000	2.76	0.00		1684.86174	0.13		0
TGME49_267430	organism=Toxoplasma_gondii_ME49 product=DnaJ domain-containing protein loc		19.23	14.35	1		5 5	5 6	425	48.9	8.82					-
	A2	Sequence		# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]	ΔM (ppm)	RT [min]	# Missed Cleavages
		ASSQRPSQSETKPASATQK		1010	1		1 TGME49_267430	Houncolors	0.0000	3.88	0.00		1989.00052	0.44		0
		VAAAEASGGAVPQRPSGFSK	<	1	1		1 TGME49_267430		0.0000	3.72	0.00		1886.97287	0.46		0
		KAQEVLmSDTR		1	1		1 TGME49_267430	M7(Oxidation)	0.0000	2.97	0.00			0.07		1
		TmGTPSTAAIK		1	1		1 TGME49_267430	M2(Oxidation)	0.0000	2.75	0.00		1093.55754	1.55		0
	High	AQEVLmSDTR		1	. 1		1 TGME49_267430	M6(Oxidation)	0.0000	2.72	0.00	2	1165.55266	0.72	29.64	0
TGME49_235470	organism=Toxoplasma_gondii_ME49 product=myosin A location=TGME49_chrX:	4	16.35	4.09	1		4 4	4 5	831	93.3	8.16	5				
	A2	Sequence		# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]	ΔM [ppm]	RT [min]	# Missed Cleavages
	High	RALDNLHAVNK		1	1		1 TGME49_235470		0.0000	3.61	0.00) 3	1250.69629	-0.13	29.95	1
	High	ALDNLHAVNK		2	2 1		1 TGME49_235470		0.0000	3.45	0.00) 3	1094.59586	0.48	30.14	0
	High	ELIFTSNAEVIK		1	1		1 TGME49_235470		0.0000	3.09	0.00) 2	1363.74614	-0.50	33.64	0
	High	AEImEIVQQSK		1	1		1 TGME49_235470	M4(Oxidation)	0.0000	2.92	0.00) 2	1291.65581	-0.38	31.27	0
TGME49_209030	organism=Toxoplasma_gondii_ME49 product=actin ACT1 (ACT1) location=TGME	E	10.13	11.97	2	2	4 4	4 4	376	41.9	5.16	i				
	A2	Sequence		# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]	ΔM [ppm]	RT [min]	# Missed Cleavages
	High	EEYDESGPSIVHR		1	1		1 TGME49_209030		0.0000	3.21	0.00) 3	1517.68677	0.03		0
	High	SYELPDGNIITVGNER		1	1		1 TGME49_209030		0.0000	2.80	0.00) 2	1776.87724	0.51	33.57	0
		AGVAGDDAPR		1	L 1		1 TGME49_209030		0.0000	2.44	0.00		928.44634	-2.17		0
		GILTLK		1	1 2		1 TGME49_209030		0.0000	1.69	0.00		644.43451	0.52	32.18	0
TGME49_257180	organism=Toxoplasma_gondii_ME49 product=RecF/RecN/SMC N terminal domain-	-	5.33		1		1 1	1 2	1588	181.2	6.65	5				
	A2	Sequence		# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]	ΔM [ppm]	RT [min]	# Missed Cleavages
		RAEEAER		2	2 1		1 TGME49_257180		0.0000	2.58	0.00		860.42095	-1.37	16.47	1
TGME49_300140	organism=Toxoplasma_gondii_ME49 product=elongation factor 1-gamma, putative		3.10		1		1	1 1	394	44.0	6.30					
	A2	Sequence		# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]	ΔM [ppm]	RT [min]	# Missed Cleavages
	High	AAAKPAQSAGDDEEPAK		1	1 1		1 TGME49_300140		0.0000	3.10	0.00) 3	1655.78519	-1.23	28.72	0
TGME49_257680	organism=Toxoplasma_gondii_ME49 product=myosin light chain MLC1 location=		3.04		1		1	1 1	213	24.1	4.65					
	A2	Sequence		# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]	ΔM [ppm]	RT [min]	# Missed Cleavages
		FVGTSTHPEDNIEDLVEAFA		1	1		1 TGME49_257680		0.0000	3.04	0.00		2930.37687	1.26	36.63	0
TGME49_268400	organism=Toxoplasma_gondii_ME49 product=hypothetical protein location=TGM	1	2.88	1.97	1		1	1 1	709	78.2	9.83	1				
	A2	Sequence		# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]	ΔM [ppm]	RT [min]	# Missed Cleavages
		RLEEVASKAEEKVR		1	1 1		1 TGME49_268400		0.0000	2.88	0.00		1643.89577	-7.20	28.59	3
TGME49_266080	organism=Toxoplasma_gondii_ME49 product=hypothetical protein location=TGM	1	2.51		1		1	1 1	728	81.1	8.72	2				
	A2	Sequence		# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]	ΔM [ppm]	RT [min]	# Missed Cleavages
	High	VATEDIGVQTR		1	. 1		1 TGME49_266080		0.0000	2.51	0.00	2	1188.62261	0.55	30.43	0

High KAQPLINGTR I <	AM [gen] 8 T [mi] # Missed Gewages 0.27 28.6
Hgh KAQ2xmSTR 1 1 100H89_3X50 MQDABLING 0.000 3.22 0.00 2 2224,674 Hgh TOQQMHLK 2 1100H89_3X50 0.000 2.89 0.00 2 922,672 Hgh MGLQXFK 3 1 100H89_3X50 0.000 2.89 0.00 2 925,572 Hgh AQELMASTR 1 1 100H89_3X50 0.000 2.89 0.00 2 925,572 Hgh AQELMASTR 1 1 100H89_3X50 0.000 2.89 0.00 2 925,572 Hgh AQELMASTR 1 1 100H89_3X50 0.000 2.49 0.00 2 127,6553 Hgh (VAAASSGAVQPSPSGYSK 1 1 100H89_3X50 0.000 2.46 0.00 2 100,3557 Hgh (MSQ2NRVRASTQK 1 1 100H89_3X50 MQOAdstor) 0.000 2.41 0.00 2.41 0.89,3941 Hgh <td>0.27 29.6 0.25 29.44 1.02 32.06 -0.09 30.75 2.88 30.42 1.39 30.50 0.66 25.83 -0.12 28.72</td>	0.27 29.6 0.25 29.44 1.02 32.06 -0.09 30.75 2.88 30.42 1.39 30.50 0.66 25.83 -0.12 28.72
High TQQQHTKK 2 1 TGME#QXM3 0.0000 2.08 0.000 2.08 0.000 2.08 2.0242,5523 High NELQAYK 3 1 1705469,25430 0.000 2.09 0.00 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 0.000 2.00 0.00 2.0 1.0 1.0 1.0 1.0 1.0 1.0 0.000 2.00 0.00 2.0 1.0 1.0 1.0 1.0 1.0 1.0 0.000 2.00 0.0 2.0 1.0 <td< td=""><td>0.25 2344 1.02 32.08 -0.09 30.75 2.88 30.42 1.39 30.90 0.65 2383 -0.12 28.72 1.57 3447</td></td<>	0.25 2344 1.02 32.08 -0.09 30.75 2.88 30.42 1.39 30.90 0.65 2383 -0.12 28.72 1.57 3447
Image: Part of the	1.02 32.08 -0.09 30.75 2.88 30.42 1.39 30.90 0.66 28.83 -0.12 28.72
High AQEVMSDTA 1 1106H59_25/301 0.0000 2.67 0.000 2.67 10.000 2.67 10.000 2.67 10.000 2.67 10.000 2.67 10.000 2.67 10.000 2.67 10.000 2.67 10.000 2.67 10.000 2.67 10.000 2.67 10.000 2.67 10.000 2.78 10.000 2.78 10.000 2.64 0.000	-0.09 30.75 2.88 30.42 1.39 30.90 0.66 22.83 -0.12 28.72 1.57 34.47
High KAQELWSDR 2 1 TOME#62,3XH30 0.0000 2.49 0.000 2.27 25557 High VARA455CAV VQPSGFS L L 1 TOME#62,3XH30 0.0000 2.64 0.000 <td< td=""><td>2.88 30.42 1.39 30.90 0.66 29.83 -0.12 28.72 1.57 34.47</td></td<>	2.88 30.42 1.39 30.90 0.66 29.83 -0.12 28.72 1.57 34.47
High VAAAB435C3VAQR95GF3K I I ITOME® 2xF30 0.000 2.46 0.000	1.39 30.90 0.66 29.83 -0.12 28.72 1.57 34.47
Independent TimofFYNAK I Independent MOVALING Independent MOVALING	0.66 29.83 -0.12 28.72 1.57 34.47
Hgh ASSQR92SETKMSATQK 1 1 TGME92_85430 0.000 2.41 0.00 4 1988.9994 Hgh mTMEETHEK 1 1 TGME92_85430 M(xokator) 0.000 2.27 0.00 2 4454.330 Hgh TQQQmTHK 3 1 TGME92_85430 M(xokator) 0.000 2.27 0.00 3 12454.330 Hgh TQQQmTHK 3 1 TGME92_85430 M(xokator) 0.000 2.23 0.00 2 1655276 Hgh AQPL_mSDR 1 1 TGME92_85430 M(xokator) 0.000 2.23 0.00 2 1655276	-0.12 28.72 1.57 34.47
High In THEEFINEIX 1 1 100H869_25X90 MULOxidation) 0.0000 2.27 0.00 2 14545000 High TQQQQmTHLK 3 1 110H869_25X90 MULOxidation) 0.0000 2.26 0.00 3 2356.001 High AQPUnsDTR 1 110H869_25X90 ME(Xoxidation) 0.0000 2.28 0.00 2 2185.0521	1.57 34.47
High TQQQQmTHLK 3 1 1TGME%2,85430 M6(Dxidator) 0.000 2.26 0.00 3 1258,6201 High AQEVLmSDTR 1 1 1TGME%2,85430 M6(Dxidator) 0.000 2.23 0.00 2 115555278	
High AQEPLINSDTR 1 1 11(GMEP9_267430 MK(Oxidation) 0.0000 2.23 0.00 2 116555278	0.02 28.37
	0.82 29.76
High mDEVLQR 1 1 1 1TGME49_257430 M1(Oxidation) 0.0000 2.07 0.00 2 906.43466	-0.15 29.59
High VTAYLK 1 1 1 1 104/542,25/300 0.0000 1.93 0.00 1 654.41376	0.48 30.19
High FGDYK 1 1 1 1 TGM/542,25/300 0.0000 1.60 0.00 1 623,29327	0.48 29.47
TGME9-225970 organism=Towoplasma.gond1. ME49 product=myosin A location=TGME94; hr/x:4884161-4898935(+) length=831 sequence, 50=chromesome 50=protel 23.37 8.06 1 7 9 831 93.3 8.16	
A2 Sequence # PSMs # Proteins # Proteins Groups Protein Groups Accessions Modifications & ACn XCorr Probability Charge MH+ (Da) &	ΔM (ppm) RT (min) # Missed Cleavages
High RALDNLHWNK 1 1 1 1 16M549,235470 0.000 3.24 0.00 3 1250.69703	0.46 30.28
High YRDTFDLSK 2 1 17GMEH9.259770 0.0000 3.09 0.00 3 114456461	1.10 31.24
High SQTIIVSGESGAGK 1 1 1 1 TGM/E49_235470 0.000 2.97 0.00 2 1333.69670	0.64 30.60
High ALDNLHAV/NK 2 1 1 TGM/549,235700 0.0000 2.63 0.00 3 109459549	0.15 30.32
Hgh GRQ1WTDLAPSVK 1 1 1 110ME49,235470 0.000 2.26 0.00 2 1461.77349	-0.15 35.66
High LAPH/PTAR 1 1 1 106/45/2,25970 0.000 2.24 0.00 3 11/4.6320	-0.50 31.83
High PH1LPLSEYK 1 1 1 17GME49,235470 0.0000 2.22 0.00 3 1246.66880	-0.21 34.29
TGME96_257580 organism=Toxoplasma.gondi (ME49 product=myosin light chain MLC1 location=TGME96_cht/UIb:3911200-3913932(+) length=213 sequence_50=chromo 28.22 34.27 1 5 5 9 213 24.1 4.65	
A2 Sequence # PSMs # Proteins # Proteins Groups Protein Groups Accessions Modifications ΔCn XCorr Probability Charge MH+ (Da) Δ	ΔM [ppm] RT [min] # Missed Cleavages
High PVGTSTHPEDNLEDLVBAFAYEDVSK 3 1 1 TGMEH2_257680 0.0000 5.66 0.00 3 2330.37870	1.88 36.80
High LPWPADVLGPmDK 2 1 1/T0ME49_257680 M11(Dxidation) 0.0000 3.20 0.00 2 1382.66990	0.28 33.62
High QLGLAPSYADK 1 1 1 176ME49.257680 0.0000 2.25 0.00 2 1162.61431	3.44 31.62
High SGDNLDYASPQK 1 1 1 1 176ME49.257880 0.0000 2.24 0.00 2 1344.66527	-1.05 31.83
High VSTGDAmILAR 1 1 1/TGME49_257680 M7(0xidation) 0.0000 2.19 0.00 2 114959992	0.53 31.17
High VSTGDAMILAR 1 1 1/TOME49_257680 0.0000 2.14 0.00 2 113359990	1.33 32.36
TGME9,22390 organism=Toxiplasma_gondi_ME49 product=GAMS location=TGME96_thrX:340541-341229(-) length=245 sequence_50=chromosome 50=protein_cc 6.59 9.39 1 2 2 2 2 2 2 2 2 2	
A2 Sepance # PSMs # Proteins # Protein Groups Protein Group Accessions Modifications ACn XCorr Probability Charge MH+ (Da) A	ΔM (ppm) RT (min) # Missed Cleavages
High VAEHSSAAVTOR 1 1 1 1/TGMEH9_223940 0.0000 4.03 0.000 3 1242.6061	0.20 28.92
High KAEABAAEAR 1 1 1 1 10/04/59,223940 0.0000 2.56 0.00 2 11/456999	0.05 28.76
TGME99_312990 organism=Toxiplasma_goridi_(ME99 product=05Up)DBAH box ATP-dependent RNA helicase location=TGME99_chx1:3000716-3025702(-) length=559 seq. 1.71 1.23 1 1 1 559 63.8 8.94	
A2 Sequence # PSMs # Proteins # Protein Groups Protein Group Accessions Modifications ACn XCorr Probability Chare MH+ (Da) A	ΔM [ppm] RT [min] # Missed Cleavages
High DVLGAKK 1 1 1 1(TGMEH9_312590 0.0000 1.71 0.00 1 657336788	-0.12 29.20

Accession	Description	Score	Coverage	# Proteins	# Unique Peptides	# Peptides	# PSMs	# AAs	MW [kDa]	calc. pI					
TGME49_257680	organism=Toxoplasma_gondii_ME49 product=myosin light chain MLC1	124.70	81.22	1	1	0 10	43	213	24.1	4.65					
	A2	Sequence	# PSMs	# Proteins	# Protein Groups	Protein Group Accessions	Modifications	ΔCn	XCorr	Probability	Charge	MH+ [Da]	ΔM [ppm]	RT [min]	# Missed Cleavages
	High	FVGTSTHPEDNIEDLVEAFAYFDVSK	3	1		1 TGME49_257680		0.0000	7.15	0.00	3	2930.38053	2.51	36.57	0
	High	SGDNLDYASFQK	2	1		1 TGME49_257680		0.0000	3.70	0.00	2	1344.60820	1.13	31.84	0
	High	ELNYFMWMPGFEWRPEPK	1	1		1 TGME49_257680		0.0000	3.51	0.00	3	2357.09269	1.86	36.53	0
	High	VSTGDAMILAR	6	1		1 TGME49_257680		0.0000	3.33	0.00	2	1133.59978	1.22	32.34	0
	High	KQmGNILmTYGEPLTTEEFNALAAEYF	1	1		1 TGME49_257680	M3(Oxidation); M8(Oxidation)	0.0000	3.27	0.00	3	4091.90659	4.29	36.46	1
	High	VSTGDAmILAR	13	1		1 TGME49_257680	M7(Oxidation)	0.0000	3.18	0.00	2	1149.59477	1.28	31.12	0
	High	LPNPADVLGPmDK	2	1		1 TGME49_257680	M11(Oxidation)	0.0000	3.05	0.00	2	1382.70012	1.16	33.32	0
	High	EGGRPAADEDmQEALEEmVEADEMYA	1	1		1 TGME49_257680	M11(Oxidation); M18(Oxidation)	0.0000	2.64	0.00	3	3074.27085	1.52	33.54	0
	High	QLGLAPSYADK	8	1		1 TGME49_257680		0.0000	2.60	0.00	2	1162.61150	1.02	31.59	0
	High	HGYLTR	4	1		1 TGME49_257680		0.0000	2.23	0.00	2	746.39354	-1.17	29.41	0
	High	LPNPADVLGPMDK	1	1		1 TGME49_257680		0.0000	2.15	0.00	2	1366.70085	-2.01	34.04	0
	High	VGEYDGAcESPScR	1	1		1 TGME49_257680	C8(Carbamidomethyl); C13(Carbami	0.0000	2.05	0.00	2	1586.62053	-0.33	29.59	0

Supplementary Table 11: Oligonucleotides used in this study

S.No	Name of the primer	Oligo sequence
1	TgMLC1C8Arev	5'-tagcacaccgggggctttcttctcgaccttgctcatct-3'
2	TgMLC1C11Afwd	5'-gaagaaatgcccggtggcctaccagaagctgccg-3'
3	TgMLC1C11Arev	5'-cggcagcttctggtaggccaccgggcatttcttc-3'
4	TgMLC1C8C11Afwd	5'-gagcaaggtcgagaagaaagccccggtggcctaccagaagctg-3'
5	TgMLC1C8C11Arev	5'-cagcttctggtaggccaccggggctttcttctcgaccttgctc-3'
6	TgMLC1C8Sfwd	5'-gagcaaggtcgagaagaaaagcccggtgtg-3'
7	TgMLC1C8Srev	5'-cacaccgggcttttcttctcgaccttgctc-3'
8	TgMLC1C11Sfwd	5'-aagaaatgcccggtgagctaccagaagctgc-3'
9	TgMLC1C11Srev	5'-gcagcttctggtagctcaccgggcatttctt-3'
10	TgMLC1C8SC11Sfwd	5'-gcaaggtcgagaagaaaagcccggtgagctaccaga-3'
11	TgMLC1C8SC11Srev	5'-tctggtagctcaccgggcttttcttctcgaccttgc-3'
12	PS235470-TyF	5'-aagttgaaacgaacgtgtctagaacgcg-3'
13	PS235470-TyR	5'-aaaacgcgttctagacacgttcgtttca-3'
14	MyoATy-Fwd	5'-gaaacgaacgtgtctagaacg-3'
15	MyoATy-Rev	5'-ggcggccagaaacaggtcggc-3'
16	MyoATy-Seq	5'-ctgacacatccccttcgtgcg-3'
17	pSS013-Fwd	5'-ccccgacacccgccaacacccg-3'
18	MyoAPS-Rev	5'-gcgttctagacacgttcgtttc-3'
19	MyoAgDNA-seqF	5'-cgtatatagtagcgatgtagg-3'
20	MyoATygDNA-F	5'-ctcgggaagacaatggttttc-3'
21	MyoATygDNA-R	5'-gagtggatcctggttcgtgtg-3'
22	MyoAgDNA-R	5'-gagccacggactgacaccatc-3'
23	HR MyoA-TyF2	5'-aatggatgagaagagttcaaaaggcaaacgaacgtgtctagagtggatcctggttcgtgtgaacttccaggaacgccggctgaacagtcgcggggctgacgttgttgttc-3'
24	HR MyoA-TyR2	5'-ggacaacaacgtcagccccgcgactgttcagccggcgttcctggaagttcacacgaaccaggatccactctagacacgttcgtt
25	P1: TgMLC15'flankupstrFwd	5' -aatgtccgtagcaggcagca-3'
26	P2: GRA1BgIIIRev	5'-gctagccgagatctcttgcttgatttcttcaaag-3'
27	P3: TgMLC1+1587(Exon3Start)Fwd	5'-cacaagtgaccagatcgactacag-3'
28	P4: TgMLC13'flankdownstr+829Rev	5'-cctttcaagtccgttcgcaacct-3'