1	The Nutrient and Energy Pathway Requirements for Surface Motility of Nonpathogenic and
2	Uropathogenic Escherichia coli
3	
4	Sushmita Sudarshan, ^a # Jacob Hogins, ^a Sankalya Ambagaspitiye, ^a Philippe Zimmern, ^b Larry
5	Reitzer ^a
6	
7	^a Department of Biological Sciences, University of Texas at Dallas, Richardson, TX
8	^b Department of Urology, University of Texas Southwestern Medical School, Dallas, TX
9	
10	Running Head: Energy Requirements for E. coli surface motility
11	
12	#Address correspondence to Larry Reitzer, reitzer@utdallas.edu

14 ABSTRACT

Uropathogenic E. coli (UPEC) is the causative pathogen for most uncomplicated urinary 15 16 tract infections. Flagellar-mediated motility is essential for virulence and colonization for ascending urinary tract infections. The appendage requirement for surface motility depends on 17 the strain: nonpathogenic E. coli (NPEC) lab strains use pili, NPEC hypermotile derivatives use 18 19 flagella, and UPEC strains use flagella. E. coli flagella-dependent surface motility had been previously shown to require glucose and amino acids. We examined the nutritional and pathway 20 21 requirements of the NPEC strain W3110 for pili-dependent surface motility, which have not been 22 previously examined. We then compared these requirements to those for two strains with flagella-dependent surface motility: a variant of W3110, W3110-J1, in which the synthesis of the 23 activator of flagella synthesis has been upregulated and the UPEC strain UTI89. The glucose 24 requirement for W3110 was higher than that for either W3110-J1 or UTI89. The pathways 25 required for motility were also different. W3110, but not UTI89, required the Embden-26 27 Meyerhof-Parnas pathway via PfkA; conversely, UTI89, but not W3110, required the Entner-Doudoroff pathway, acetogenesis, and the TCA cycle. Glucose did not control flagella synthesis 28 for W3110-J1 and UTI89. The differing requirements for surface motility are likely to reflect 29 30 major metabolic differences between strains. The metabolic requirements for UTI89 motility suggest a specific adaptation to the urinary tract environment. 31

32 **IMPORTANCE**

Urinary tract infections affect over 50% of women and *E. coli* is the most common
uropathogen. Virulence requires both pili and flagella, and both appendages can contribute to
surface motility. Previous studies of *E. coli* surface motility did not consider the appendage
requirement and the ability to switch the surface appendage. The nutrient and pathway

requirements for surface motility of a non-pathogenic *E. coli* strain with either pili- or flagelladependent surface motility and the uropathogen UTI89 were examined. Pili-dependent surface
motility required glycolysis, while flagella-dependent motility required the TCA cycle and
oxidative phosphorylation and was less dependent on glycolysis. The distinctive nutrient and
pathway requirements for UTI89 motility probably result from metabolic adaptations to the
urinary tract.

43

44 INTRODUCTION

Swarming is flagella-dependent bacterial surface motility (1-3). Swarming cells express 45 virulence genes and show enhanced resistance to both engulfment and antibiotics (4-7). The 46 genetic requirements for *E. coli* swarming were examined for mutants of the Keio collection, 47 which contains deletions in most non-essential genes (8). Swarming motility required flagella, 48 49 but unexpectedly also required pili. The authors suggested that some genes for pili synthesis 50 were required for flagella synthesis which is not consistent with subsequent evidence that pili and flagella synthesis are mutually exclusive (9-11). Our recent results show that surface motility 51 of common *E. coli* lab strains, including the parental strain of the Keio mutants, requires pili, but 52 53 fast variants rapidly appear due to a mutation that increases expression of the master regulator 54 for flagella synthesis (11). In other words, results using Keio collection mutants involved strains 55 that either expressed pili or flagella or both if a flagella-synthesizing variant was generated 56 during the motility assay. The requirements for motility are likely to depend on the appendage 57 and must be reexamined in strains for which the motility appendage is unambiguously known. 58 Urinary tract infections (UTIs) are one of the most common bacterial infections, affecting 59 approximately 150 million people worldwide each year (12). UTIs have produced an increasing

60	burden on the healthcare system because of recurrence and antibiotic resistance (13). Women are
61	more prone to UTIs than men with over 50% of women experiencing at least one infection in
62	their lifetime (13). The most common uropathogen is <i>E. coli</i> (14, 15), which is responsible for
63	about 80-90% of community acquired UTIs and 40-50% of nosocomial acquired UTIs (13). A
64	recent study found that <i>E. coli</i> was present in the urine of 65.5% of 4453 women with UTIs (16).
65	E. coli generally resides in the intestinal tract, but uropathogenic E. coli (UPEC), a
66	pathotype of extra intestinal pathogenic E. coli, can migrate, adapt and colonize the urinary tract
67	and cause a urinary tract infection (UTI) (17). UPEC can infect the urinary tract, kidneys, and
68	bloodstream causing cystitis, pyelonephritis, and sepsis, respectively. Nutrient availability differs
69	between the intestinal and urinary tracts (18, 19). The metabolic pathways required for growth in
70	each environment differ and UPEC metabolism is adapted to the urinary tract. For example,
71	growth of <i>E. coli</i> in the intestinal tract requires multiple carbohydrates, while growth in the
72	urinary tract is proposed to require amino acids and peptides (18, 20, 21).
73	A UTI also requires flagella-mediated movement (22). In a murine model, the UPEC
74	strain CFT073 required flagellin, the <i>fliC</i> product, to ascend to the upper urinary tract (22). 95%
75	of UTIs may be ascending infections meaning that the infection begins by colonization of the
76	periurethral area, followed by movement up the urethra into the bladder, and possibly into the
77	ureters and kidneys (23). The implicit assumption of such studies is that movement only requires
78	flagella. However, the presentation of human UTI varies from localized trigonitis to unlocalized
79	pancystitis (24). The movement required for establishment of a localized UTI may differ from
80	that required for progression to pancystitis and the latter could conceivably involve pili, even
81	though pili are primarily associated with adhesion.

82	Our goals were to examine the nutrient and pathway requirements for surface motility of
83	a non-pathogenic E. coli lab strain with either pili- or flagella-dependent surface motility, and to
84	compare these requirements to those of the UPEC strain UTI89. We then discuss our results in
85	relation to nutrient and pathway requirements for CFT073 infection in a mouse model.

86

87 **RESULTS**

88 Requirement of glucose for surface motility.

We examined the glucose requirement for surface motility for three strains: non-89 pathogenic W3110 which requires pili for surface movement; J1 which is a hypermotile 90 derivative of W3110 that utilizes flagella for surface movement because of an IS5 insertion in 91 the *flhDC* promoter region; and uropathogenic UTI89 which also moves with flagella (11). 92 Electron microscopic images of these strains taken from surface motility plates confirmed their 93 appendage requirement (Fig 1). W3110 moved relatively slow, did not reach the plate's edge 94 95 during the assay, and formed a ring pattern which resembles the swarm pattern of *Proteus* mirabilis (25) (Fig 2). Its movement required 0.5% glucose. J1 and UTI89 movement with 0.5% 96 glucose covered the entire plate with no discernible pattern. J1 moved less well with 0.25% 97 98 glucose, but UTI89 moved normally. J1 and UTI89 did not move with 0.125% glucose. The glucose requirement was different for each strain, and the strains with flagella-dependent surface 99 100 motility had a lower glucose requirement.

101

102 Surface-motility of mutants with defects in glucose transport and pathways of

103 carbohydrate metabolism.

104	We examined surface motility in mutants with defects in glucose transport and the
105	following pathways of central metabolism: the Embden-Meyerhof-Parnas (EMP) pathway,
106	which is the standard glucose-degrading pathway for numerous organisms including E. coli;
107	gluconeogenesis; the oxidative branch of the pentose cycle; the Entner-Doudoroff (ED) pathway,
108	which is an alternate glycolytic pathway that degrades glucose to pyruvate; and acetogenic
109	enzymes that convert pyruvate to acetate. Mutants with defects in these pathways have been
110	examined in mouse models of UTIs (reviewed in (18)). These pathways are important for energy
111	generation and biosynthesis of a variety of intermediates, such as NADPH and ribose-5-
112	phosphate, triose phosphates for the glycerol backbone of phospholipids, 3-phosphoglycerate for
113	serine, glycine, and cysteine synthesis, pyruvate for acetyl-CoA synthesis, and acetyl-CoA for
114	either the TCA cycle or acetate formation.
115	The results of the mutational analysis are shown in Figs 3 and S1 and summarized in
116	Table 1. For W3110, surface motility required a gene for the rate-limiting enzyme of the EMP
117	pathway, <i>pfkA</i> (phosphofructokinase); three genes of the major glucose transport system — <i>ptsG</i> ,
118	ptsH, ptsI; the first gene of the oxidative pentose cycle, zwf (glucose-6-phosphate
119	dehydrogenase); and a gene required for synthesis of the 3-phosphoglycerate family of amino
120	acids, serB (phosphoserine phosphatase). W3110 moved less well with deletions in genes of
121	gluconeogenesis, pck (phosphoenolpyruvate carboxykinase) and the ED pathway, edd
122	(phosphogluconate dehydratase) and eda (KDPG aldolase). Loss of acetogenic genes — pta
123	(phosphotransacetylase) and <i>ackA</i> (acetate kinase) — did not impair movement.
124	J1 surface motility required PfkA, but unlike parental W3110 did not require the
125	oxidative pentose cycle (zwf) or components of the major glucose transport system—ptsG, ptsH,
126	and <i>ptsI</i> .

127 The pathway requirements for pathogenic UTI89 were different from both W3110 and 128 J1. UTI89 movement was not affected by loss of *pfkA*, *ptsG*, and *pck*, and was substantially or 129 completely impaired by loss of *ptsI*, *ptsH*, the ED pathway genes *eda* and *edd*, *zwf*, the 130 acetogenic genes *ackA* and *pta*, and *serB*.

131

132 Factors that affect the glucose requirement

Iron limitation. Iron can modulate the expression of genes of energy metabolism, so we 133 134 examined the effect of supplemental 2,2-bipyridyl (BIP), an iron chelator, on surface motility 135 (26). With BIP (low iron) UTI89 moved with 0.125% glucose (Fig 4), but not without glucose (not shown). Low iron restored movement of J1 with 0.25% glucose and allowed partial 136 movement with 0.125% glucose. W3110 showed some movement with 0.25% glucose but no 137 movement at 0.125% glucose (Fig 4). Surface motility plates with BIP and no glucose did not 138 139 support growth in any of the strains (not shown). Even with low iron, flagella-mediated motility 140 required a lower concentration of glucose than pili-mediated motility. Glycerol, cysteine, and pyruvate. We examined whether glycerol, cysteine, and 141 pyruvate could reduce the glucose requirement for W3110 because: (a) we could not genetically 142 143 test the importance of glycerol-3-P which is required for phospholipid synthesis, (b) a higher than normal level of cysteine has been shown to be a requirement for S. enteric surface motility 144 145 (27, 28), which is consistent with the result that a W3110 \triangle serB mutant failed to move (Fig. S1), 146 and (c) pyruvate is a product of carbohydrate catabolism and is a major branch point of

147 metabolism that can provide energy via the TCA cycle, and generate alanine and acetate.

148 Supplements were added to medium with 0.125% glucose and 100 µM BIP, which does not

support surface motility of W3110 (Fig 4). A combination of 2 mM cysteine, 0.1% glycerol, and

0.1% pyruvate stimulated surface motility (Fig 5). Cysteine omission did not prevent movement
but altered the motility pattern (Fig 5); glycerol omission severely impaired movement (Fig 5);
and pyruvate omission had no effect on movement (Fig 5). Glycerol alone stimulated movement,
but cysteine did not (Fig 5). Glycerol replaced glucose for strains J1 and UTI89 (Fig 6). In
summary, glycerol lowered the glucose requirement, and could replace glucose for the two
strains with flagella-mediated surface motility.

156 **Supplementation with other sugars.** Our results suggest that surface motility requires a 157 carbohydrate (Fig 2). Glucose and glycerol are not abundant in urine, but urine does contain 158 carbohydrates. Single urinary carbohydrates are under 0.4 mM, except for glucuronate (~2 mM in urine), but the total urinary carbohydrate content is substantial (>4 mM) (9). A mixture of 159 glucuronate (5 mM), gluconate (1 mM), glycerol (1 mM), glucose (1 mM), mannitol (1 mM), 160 161 and sorbitol (1 mM) did not support the motility of strain J1 but supported motility of UTI89 weakly after 24 hours (the inner circle in Fig 7A). The appearance of a hypermotile 162 163 uropathogenic variant was apparent after 24 hours, and the variant moved to the edge of the plate after 48 hours (Fig 7B). Cells from the edge of the plate were isolated and shown to move 164 without any carbohydrate (Fig 7C). A possible explanation for enhanced motility is an insertion 165 166 in the promoter region of the *flhDC* operon (11, 29). PCR analysis of this region showed no insertion upstream from the *flhDC* structural genes (not shown). These variants were not further 167 168 characterized. In summary, motility without a carbohydrate is a property of a UTI89 variant, not 169 a property of parental UTI89.

170

171 Glucose is required for type I pili-mediated surface motility

We observed surface motility of W3110 on plates with 0.25% agar, which is used to monitor swimming motility, but only if the medium contained glucose (Fig 8). In the absence of glucose, W3110 swam into plates containing 0.25% agar, and such movement required flagella (FliC) (Fig 8). In the presence of glucose, W3110 moved on the surface, and this movement required pili (FimA) (Fig 8).

177 MG1655 is a nonpathogenic strain of *E. coli* that, like J1, has an IS1 element 106 bases 178 upstream from the *flhDC* transcriptional start site that increases flagella synthesis. MG1655 179 swam into 0.25% agar plates with or without glucose (Fig 8). Without glucose, MG1655 $\Delta fliC$ 180 did not swim, but with glucose this mutant moved on the surface (Fig 8). J1 exhibited the same 181 properties (not shown). The same phenotype for two different strains shows that properties are 182 not strain dependent.

183 Pathogenic UTI89 swam into a plate with 0.25% agar, with or without glucose, and this movement required flagella (Fig 8). Swimming with glucose is unexpected, since glucose should 184 prevent cyclic AMP synthesis which is required for flagella synthesis (30). However, we have 185 186 shown that glucose does not prevent flagella synthesis in several pathogenic E. coli strains, which shows that the absence of a glucose effect is not strain dependent (11). UTI89 $\Delta fliC$, 187 which lacks flagella, moved a little on the surface in the presence of glucose (Fig 8). This surface 188 movement required pili because UTI89 $\Delta fliC \Delta fimA$ failed to move (11). In summary, glucose 189 190 promotes surface movement in strains lacking flagella. 191 We examined surface motility with 0.45% agar for W3110, MG1655, and UTI89 192 derivatives with a deletion of *fliC* which forces these strains to move with pili. ($\Delta fliC \Delta fimA$ double mutants of these strains do not move (11)). All three strains moved well with 0.5% 193 194 glucose, but not with 0.5% glycerol (Fig 9A).

195	The glucose-dependent stimulation of movement predicts that pili-dependent surface
196	motility will not require cyclic-AMP (cAMP), because glucose inhibits cAMP synthesis.
197	Furthermore, CRP-cAMP represses <i>fimB</i> expression, which is part of the complex control of pill
198	synthesis (31). Such control predicts that loss of CRP or cyclic AMP will not affect surface
199	motility. As expected, crp and cya mutants of W3110 still exhibited surface motility, although
200	the pattern of motility was altered (Fig 9B). Electron microscopy verified that the Δcya mutant
201	had pili, but not flagella (Fig 9C).

202

203 The requirement for tryptone and the TCA cycle

Surface motility medium contains 1% tryptone. For all types of strains, 0.75% tryptone supported movement to the same extent as 1% tryptone (Fig 10). For J1 and UTI89, the bacteria on the 0.75% tryptone plate were not as dense as on the 1% tryptone plate, which suggests less growth (not shown). For all strains, 0.5% tryptone supported substantially less motility, and 0.25% tryptone did not support movement (Fig 10). The tryptone requirement does not distinguish between pili-dependent and flagella-dependent strains.

Tryptone is an enzymatic digest of casein that consists mostly of amino acids, which can 210 211 function as energy sources and biosynthetic precursors. Amino acid degradation in complex 212 mixtures is poorly characterized, but if amino acids are energy sources, then their degradation 213 requires the tricarboxylic acid (TCA) cycle, electron transport, and oxidative phosphorylation 214 (32). Deletion of the following genes of W3110 had little or no effect on surface motility: *nuoC*, 215 glpD, glpA, poxB, hyaA, fdhF, and menA (Fig 11). Movement was substantially impaired, but not 216 eliminated, for mutants with deletions of cyoA, ubiF, gltA, acnB, sucC, sucD, sdhA, and sdhB 217 (Fig 11). *lpd*, *sucA*, and *sucB* mutants could not move (Fig 11). The latter three mutants cannot

218	generate succinyl-CoA, which is required for meso-diaminopimelate synthesis, an essential
219	component of peptidoglycan that cannot be synthesized from components in the medium.
220	For the flagella-dependent hypermotile J1 and uropathogenic UTI89, we examined
221	mutants lacking genes for three representative enzymes of the TCA cycle: <i>gltA</i> , <i>sucC</i> , and <i>sdhA</i> .
222	None of the three UTI89 mutants exhibited surface motility (Fig 12), which suggests that
223	flagella-dependent movement requires the TCA cycle and oxidative phosphorylation. Such a
224	result is not unexpected, since flagella rotation requires a proton motive force. In contrast, the J1
225	mutants moved, albeit poorly, and unexpectedly formed a ringed pattern like its parental W3110
226	(Fig 12). Such a pattern is more consistent with the pili-dependent movement of W3110, and
227	electron microscopy showed that these mutants were piliated (Fig 12). These results suggest that
228	a mutational block in the TCA cycle prevents flagella synthesis and results in pili synthesis in
229	strain J1.

230

231 pH of medium after motility assays

The pathway requirements for motility are clearly different between strains. Glycolysis 232 through PfkA is required for motility of W3110 and J1, but not for UTI89. Loss of the TCA 233 234 cycle affects all three strains, but the effect is greatest in UTI89. The motility medium is 235 essentially unbuffered, which means that reliance on different energy-generating pathways will 236 have different effects on medium pH: glycolysis will generate acids, and amino acid degradation 237 via the TCA cycle will alkalinize the medium due to ammonia formation. The pH at the movement edge for W3110, J1, and UTI89 was 4.5-5.0, 5.5-6.0, and 6.0-6.5, respectively (not 238 239 shown). The pH indicates the relative dependence of acid-generating carbohydrate degradation

versus ammonia-generating amino acid degradation for these strains: W3110 is more dependenton glycolysis, whereas UTI89 is more dependent on the TCA cycle.

242

243 **DISCUSSION**

Our goals were to determine the nutrient and pathway requirements for the surface 244 245 motility of non-pathogenic E. coli that used pili or flagella for movement, and to compare these requirements with those of a uropathogen. The strains examined were W3110, which exhibited 246 247 pili-dependent movement, and J1 and UTI89, which showed flagella-dependent movement. J1 is 248 a hypermotile derivative of W3110. The results are summarized in Tables 1 and 2. E. coli pilimediated motility has not been thoroughly characterized, but its requirements differ substantially 249 250 from those for the flagella-dependent strains which confirms that pili-dependent E. coli surface 251 motility is a distinct from flagella-dependent *E. coli* motility.

A potential problem with our analysis is the possibility that P1 transduction, which was 252 253 used to construct the mutants, carried a mutation in a cotransduced gene that caused the phenotype. Complementation is used to address this issue, but control plasmids negatively 254 255 affected motility. Instead, the conclusions are based on deletions of multiple genes in the 256 pathways of glucose transport, glucose catabolism via the oxidative pentose pathway and Entner-Doudoroff pathways, acetogenesis, and the TCA cycle. In all cases, when loss of one enzyme of 257 258 a pathway impaired movement, loss of other enzymes of the same pathway also impaired 259 movement.

260 Energy metabolism during surface motility. Flagella-dependent movement of UTI89
261 and J1 required the TCA cycle. For UTI89, the requirement for the TCA cycle was absolute,
262 while for J1 the requirement appeared to be partial. However, the J1 mutants with TCA cycle

defects used pili for movement. Our interpretation is that J1 flagella-dependent surface motility
absolutely requires the TCA cycle, but under pressure to acquire nutrients can generate variants
that utilize pili for movement.

Based on several observations, flagellar-dependent motility preferentially utilized amino acids degraded via the TCA cycle over carbohydrate degradation via glycolysis. First, movement of the flagella-dependent strains resulted in medium alkalinization, which can only result from deamination of amino acids. Second, both flagella-dependent strains had a lower glucose requirement than the pili-dependent W3110. Finally, J1 required fewer genes of carbohydrate transport and metabolism than parental W3110. Despite the greater reliance on amino acids and the TCA cycle, both J1 and UTI89 still required a carbohydrate.

Pili-dependent motility of W3110 was more dependent on carbohydrate degradation and
less dependent on the TCA cycle, although mutants with defects in the TCA cycle were less
motile. The evidence for this conclusion is (a) greater medium acidification for W3110 than for
J1 and UTI89, and (b) defects in a greater number of glycolytic pathways affected W3110
motility. These results suggest that pili-dependent movement is more dependent on ATP from
carbohydrate catabolism. Perhaps intracellular ATP can control the conformational states of type
pili, which could contribute to a form of motility (33).

In summary, flagella-dependent motility requires the TCA cycle, oxidative phosphorylation, and the proton motive force, while pili-dependent motility has a greater reliance on ATP from glycolysis. This conclusion is consistent with observations on *S. enterica* swarming cells which are morphologically and metabolically distinct with vegetative swimming cells (34). Although swarming cells require glucose, almost all enzymes of glycolysis were lower while several TCA cycle proteins were higher during swarming (34).

Comparison of requirements for the two strains with flagella-dependent movement. 286 The common requirements for J1 and UTI89 were glucose, albeit less glucose than the pili 287 288 dependent W3110, and flagella synthesis in the presence of glucose, which is not a property of frequently studied E. coli lab strains. Despite these similarities, J1 and UTI89 also differed. J1, 289 but not UTI89, required glycolysis through PfkA. In this respect, J1 is like parental W3110. 290 291 Conversely, UTI89, but not J1, was affected by loss of the oxidative branch of the pentose cycle, 292 the ED pathway, and acetogenic enzymes. Given their reduced requirement for glucose 293 compared to W3110, carbohydrate metabolism may be important for one of more biosynthetic 294 intermediate and the particular glycolytic pathway used for synthesis of the intermediate may not be important. For example, the specific pathway that generates triose-phosphates, e.g., the EMP 295 vs ED pathway, may not be important if triose-phosphates are made. Another explanation for the 296 297 differences between J1 and UTI89 is that the pathways used by the latter are an adaptation to the 298 urinary tract milieu.

299 Glucose transport during surface motility. Glucose transport in lab strains of E. coli requires PtsI (enzyme I), PtsH (the Hpr protein), and PtsG (the glucose-specific enzyme IIBC 300 301 component). W3110 motility required all three components. J1 motility did not require any of 302 these components, but still required a carbohydrate. A minor non-PTS glucose uptake system (e.g., GalP (35)) may be sufficient for J1's reduced carbohydrate requirement. UTI89 did not 303 304 require PtsG but at least partially required PtsH and PtsI. An additional glucose transport 305 mechanism could explain the nonessentiality of PtsG in UTI89. PtsG-independent glucose 306 transport could also account for flagella synthesis in the presence of glucose, if such a transport 307 system does not control cyclic AMP synthesis. Glucose-independent flagella synthesis has also 308 been observed for the UPEC strains PNK-004 and PNK-006 (11). PtsG-independent glucose

transport and flagella synthesis in the presence of glucose, may be adaptations to the urinary tractenvironment.

311	Comparing metabolic requirements for surface motility and UTIs. The pathway
312	requirement for UTIs has been extensively studied with the uropathogen CFT073 in a
313	competitive fitness mouse model (18, 36). The EMP pathway was dispensable for bladder
314	infection but was required for kidney infection. On the other hand, CFT073 mutants lacking
315	tricarboxylic acid (TCA) cycle, acetogenesis and gluconeogenesis enzymes were less fit in a
316	murine model (18, 36). Like a CFT073 infection, UTI89 surface motility required the TCA cycle
317	and acetogenesis, and did not require PfkA. However, a major difference is that a CFT073
318	infection requires gluconeogenesis (Pck), but UTI surface motility did not.
319	These and other results led to the conclusions that a CFT073 infection required amino
320	acid catabolism via the TCA cycle, but not carbohydrate catabolism via PfkA (18). However, the
321	requirements for UTI89 motility is consistent with a more complex explanation for CFT073
322	infectivity that accounts for some unusual phenotypes. While not requiring PfkA, UTI89 motility
323	required a carbohydrate. This conclusion is based on failure to move without a carbohydrate and
324	that only a derivative of UTI89 could move without a carbohydrate. Furthermore, some results
325	from study of CFT073 infectivity also suggest that carbohydrate metabolism is important. While
326	a <i>pfkA</i> deletion had no effect on competitive fitness in mice, a <i>pfkA pfkB</i> double mutant
327	outcompeted the parental CFT073 strain in the bladder which suggests that glycolysis via
328	phosphofructokinase is detrimental (37). Howeverm this result implies that carbohydrates are
329	degraded. Furthermore, other evidence suggests that carbohydrate metabolism is important for
330	UTIs (18). For example, genes for lactose and sorbitol catabolism are induced in intracellular
331	bacterial communities during UTIs and their loss reduced UTI89 virulence (38), and loss of the

Vpe carbohydrate permease, which transports an unknown carbohydrate, impaired virulence of 332 333 the uropathogen AL511 (39). We propose that carbohydrate metabolism for both UTI89 and 334 CFT073 occurs via PfkA-independent pathways. For example, loss of ED pathway enzymes results in defective UTI89 motility which implies that the ED pathway contributes to glucose 335 336 metabolism. We note that during a UTI, bacteria will grow in urine, which contains low amounts 337 of numerous carbohydrate that are not degraded via PfkA (18). In summary, the metabolic requirements for UTI89 motility, which can be assessed in a 338 339 defined and controlled environment, can provide insight into metabolism of uropathogens, 340 including CFT073. The requirements for the TCA cycle and acetogenesis and lack of a requirement for PfkA for both UTI89 motility and CFT073 infectivity may suggest a UPEC-341 specific metabolism that is an adaptation to the urinary tract environment. However, UTI89 342 motility, but not CFT073 infectivity, requires the ED pathway, and CFT073 infectivity, but not 343 344 UTI89 motility, required gluconeogenesis. These differences may be a function of either varied 345 requirements for surface motility and infection or strain-specific differences. Strain-specific differences should not be considered surprising, since each UPEC strain must adapt to a different 346 347 urinary tract environment. UPEC are becoming increasingly antibiotic resistant. The 348 identification of UPEC-specific enzymes or processes, that do not show strain-to-strain variations, possibly a UPEC-specific glucose transporter, could be crucial for identification of 349 350 targets for development of antibacterial therapies. 351

352 MATERIAL AND METHODS

353 Bacterial strains

E. coli W3110, hypermotile J1 (derived from W3110), NPEC strain MG1655, and 354 355 uropathogenic UTI89 were used as parental strains. Table 3 lists the derivatives of these strains 356 used in the study. The mutant alleles came from the Keio strain collection and contained deletions in which a kanamycin resistance gene replaced the gene of interest (40). The 357 deletion/insertion was transferred by P1 transduction into the various parental strains (41). 358 359 UTI89 was the uropathogen studied because of the ease of transduction. Other pathogenic strains 360 can be transduced with P1, but the transduction procedure is more complex. 361 The kanamycin resistance gene was left in place, which implies the possibility of 362 polarity. The conclusions of this work do not depend on whether gene expression is polar past 363 the insertion. However, for several reasons, potential effects of polarity are likely to be minor. First, genes downstream from the insertion can be expressed from the resistance gene, although 364 expression may not be the same as in the intact operon. Second, the insertion should not have 365 downstream effects on the following monocistronic genes: acnB, crp, cyaA, fdhF, fliC, glpD, 366 367 gltA, menA, pck, pfkA, ptsG, ubiF, and zwf. Third, insertions in eda, lpd, pta, ptsI, sdhB, and sucD are in the last gene of an operon and should not have a polar effect. Fourth, insertions in 368 cyoA, fimA, glpA, hyaA, and nuoC were intended to eliminate a multiprotein complex: polarity is 369 370 irrelevant. Finally, the insertion of the following genes may affect downstream genes but will 371 only affect genes coding for proteins of the same pathway: ackA of the ackA-pta operon and 372 acetogenesis, edd of the edd-eda operon and the ED pathway, ptsH of the ptsHI operon and 373 carbohydrate transport, and the *suc* and *sdh* genes of their respective operons of the TCA cycle. 374 Media and growth conditions 375 For growth on solid medium, strains were streaked on LB agar plates (10 g/l tryptone, 5

376 g/l yeast extract, 5 g/l NaCl, 15 g/l Difco agar) and incubated at 37°C for 15 h. For liquid

377 cultures, bacteria were grown in LB broth with 25 μ g /ml kanamycin (when appropriate) at 37° C 378 with aeration (250 rpm) for 12 h.

379

380 Motility Assays

Surface motility. Bacterial strains were streaked on an LB agar plate. After overnight 381 382 growth, a single colony was inoculated in 1 ml of swarm medium: 1% tryptone, 0.25% NaCl, and 0.5% glucose and incubated at 37° C for 6 hr with aeration. Surface motility plates (swarm 383 384 medium with 0.45% Eiken agar) were dried at room temperature for 4-5 hr after pouring. 385 Changes to glucose and tryptone concentrations are indicated in the Results section. The motility plates did not contain antibiotics. One microliter from a 6 hr culture was inoculated at the center 386 of the surface motility plate. Plates were placed in a humid incubator set at 33° C for 387 nonpathogenic strains or at 37°C for UPEC strains, and surface motility was documented at 36 388 hours. Assays for the nonpathogenic strains were conducted at 33° C to ensure reproducibility: 389 390 assays at 37° C were highly variable for NPEC strains because cells started moving at different times. Assays at 37° C for W3110 frequently result in generation of hypermotile variants. All 391 assays were performed at least three times. Surface motility was extremely sensitive to 392 393 conditions. Motility of the parental controls depended on the batch of the plates; for example, compare the results for parental W3110 in Figs 2 and 3. Motility of W3110 stopped if plates 394 395 were removed from the incubator and examined for several minutes. 396 Swimming motility. Bacterial strains were streaked on LB, and a single colony was

inoculated into 1 ml of swarm medium and grown for 6 h. Swim plates (1% tryptone, 0.25%
NaCl, 0.25% Eiken agar) were stab inoculated at the center with 1 µl from the 6 hr culture and

incubated at 33° C for 16 hr in a humid incubator. All assays were performed in triplicate.

40	0
----	---

401 Electron microscopy

402	Cells from surface motility plates were collected from the edge of movement and fixed
403	with 2.5% glutaraldehyde. Bacteria were absorbed onto Foamvar carbon-coated copper grids for
404	1 min. Grids were washed with distilled water and stained with 1% phosphotungstic acid for 30
405	s. 500-1000 cells were observed before choosing what to record. Samples were viewed on a
406	JEOL 1200 EX transmission electron microscope at UT Southwestern Medical Center.
407	
408	PCR amplification of the <i>flhDC</i> promoter region
409	The <i>flhDC</i> promoter region was PCR amplified using FlhDp forward and reverse primers
410	as described (42). The PCR product was then subjected to gel electrophoresis in a 0.8% agarose
411	gel at 130 V for 30 minutes.
412	
413	pH of medium after motility.
414	pH paper was placed directly on the plate.
415	
416	ACKNOWLEDGEMENTS
417	This work was supported in part by a UT Dallas Collaborative Biomedical Research Award grant
418	program. The electron microscopy was performed at UT Southwestern which is supported by
419	NIH grant 1S10OD021685-01A1.

421 **REFERENCES**

- Kearns DB. 2010. A field guide to bacterial swarming motility. Nat Rev Microbiol
 8:634-644.
- 424 2. Henrichsen J. 1972. Bacterial surface translocation: a survey and a classification.

425 Bacteriol Rev **36:**478-503.

- 426 3. Harshey RM, Matsuyama T. 1994. Dimorphic transition in *Escherichia coli* and
- 427 *Salmonella typhimurium*: surface-induced differentiation into hyperflagellate swarmer
- 428 cells. Proc Natl Acad Sci U S A **91**:8631-8635.
- 429 4. Allison C, Lai HC, Hughes C. 1992. Co-ordinate expression of virulence genes during
 430 swarm-cell differentiation and population migration of *Proteus mirabilis*. Mol Microbiol

6:1583-1591.

- 432 5. Ammendola A, Geisenberger O, Andersen JB, Givskov M, Schleifer KH, Eberl L.
- 433 1998. Serratia liquefaciens swarm cells exhibit enhanced resistance to predation by
- 434 Tetrahymena sp. FEMS Microbiol Lett **164:**69-75.
- 435 6. Lai S, Tremblay J, Deziel E. 2009. Swarming motility: a multicellular behaviour
 436 conferring antimicrobial resistance. Environ Microbiol 11:126-136.
- 437 7. Kim W, Killam T, Sood V, Surette MG. 2003. Swarm-cell differentiation in
- 438 *Salmonella enterica* serovar Typhimurium results in elevated resistance to multiple
 439 antibiotics. J Bacteriol **185**:3111-3117.
- 440 8. Inoue T, Shingaki R, Hirose S, Waki K, Mori H, Fukui K. 2007. Genome-wide
- screening of genes required for swarming motility in *Escherichia coli* K-12. J Bacteriol **189:**950-957.

443	9.	Lane MC, Simms AN, Mobley HL. 2007. Complex interplay between type 1 fimbrial
444		expression and flagellum-mediated motility of uropathogenic Escherichia coli. J
445		Bacteriol 189:5523-5533.
446	10.	Saini S, Slauch JM, Aldridge PD, Rao CV. 2010. Role of cross talk in regulating the
447		dynamic expression of the flagellar Salmonella pathogenicity island 1 and type 1 fimbrial
448		genes. J Bacteriol 192:5767-5777.
449	11.	Ambagaspitiye S, Sudarshan S, Hogins J, McDill P, De Nisco NJ, Zimmern PE,
450		Reitzer L. 2019. Fimbriae and flagella mediated surface motility and the effect of
451		glucose on nonpathogenic and uropathogenic Escherichia coli BioRxiv
452		https://doiorg/101101/840991.
453	12.	Stamm WE, Norrby SR. 2001. Urinary tract infections: disease panorama and
454		challenges. J Infect Dis 183 Suppl 1:S1-4.
455	13.	Foxman B. 2010. The epidemiology of urinary tract infection. Nat Rev Urol 7:653-660.
456	14.	Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. 2015. Urinary tract
457		infections: epidemiology, mechanisms of infection and treatment options. Nat Rev
458		Microbiol 13: 269-284.
459	15.	Schulz WA. 2011. Uropathogenic bacteria leave a mark. Lab Invest 91:816-818.
460	16.	Miotla P, Romanek-Piva K, Bogusiewicz M, Markut-Miotla E, Adamiak A, Wrobel
461		A, Zebrowska M, Wawrysiuk S, Mendyk K, Rechberger E, Jakubczak A,
462		Rechberger T. 2017. Antimicrobial resistance patterns in women with positive urine
463		culture: does menopausal status make a significant difference? Biomed Res Int
464		2017: 4192908.

465	17.	Wiles TJ, Kulesus RR, Mulvey MA. 2008. Origins and virulence mechanisms of
466		uropathogenic Escherichia coli. Exp Mol Pathol 85:11-19.
467	18.	Reitzer L, Zimmern P. 2020. Rapid growth and metabolism of uropathogenic
468		Escherichia coli in relation to urine composition. Clin Microbiol Rev 33:e00101-00119.
469	19.	Savageau MA. 1983. Escherichia coli habitats, cell types, and molecular mechanisms of
470		gene control. The American Naturalist 122: 732-744.
471	20.	Chang DE, Smalley DJ, Tucker DL, Leatham MP, Norris WE, Stevenson SJ,
472		Anderson AB, Grissom JE, Laux DC, Cohen PS, Conway T. 2004. Carbon nutrition
473		of <i>Escherichia coli</i> in the mouse intestine. Proc Natl Acad Sci U S A 101 :7427-7432.
474	21.	Fabich AJ, Jones SA, Chowdhury FZ, Cernosek A, Anderson A, Smalley D,
475		McHargue JW, Hightower GA, Smith JT, Autieri SM, Leatham MP, Lins JJ, Allen
476		RL, Laux DC, Cohen PS, Conway T. 2008. Comparison of carbon nutrition for
477		pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect Immun
478		76: 1143-1152.
479	22.	Lane MC, Alteri CJ, Smith SN, Mobley HL. 2007. Expression of flagella is coincident
480		with uropathogenic Escherichia coli ascension to the upper urinary tract. Proc Natl Acad
481		Sci U S A 104: 16669-16674.
482	23.	Bacheller CD, Bernstein JM. 1997. Urinary tract infections. Med Clin North Am
483		81: 719-730.
484	24.	Sadeghi Z, MacLennan G, Childs SJ, Zimmern PE. 2019. Is trigonitis a neglected,
485		imprecise, misunderstood, or forgotten diagnosis? Low Urin Tract Symptoms 11:182-
486		188.

487	25.	Rauprich O, Matsushita M, Weijer CJ, Siegert F, Esipov SE, Shapiro JA. 1996.
488		Periodic phenomena in Proteus mirabilis swarm colony development. J Bacteriol
489		178: 6525-6538.
490	26.	Seo SW, Kim D, Latif H, O'Brien EJ, Szubin R, Palsson BO. 2014. Deciphering Fur
491		transcriptional regulatory network highlights its complex role beyond iron metabolism in
492		Escherichia coli. Nat Commun. 5:4910. doi:10.1038/ncomms5910.
493	27.	Turnbull AL, Surette MG. 2008. L-Cysteine is required for induced antibiotic
494		resistance in actively swarming Salmonella enterica serovar Typhimurium. Microbiology
495		154: 3410-3419.
496	28.	Oguri T, Schneider B, Reitzer L. 2012. Cysteine catabolism and cysteine desulfhydrase
497		(CdsH/STM0458) in Salmonella enterica serovar typhimurium. J Bacteriol 194:4366-
498		4376.
499	29.	Barker CS, Pruss BM, Matsumura P. 2004. Increased motility of Escherichia coli by
500		insertion sequence element integration into the regulatory region of the <i>flhD</i> operon. J
501		Bacteriol 186:7529-7537.
502	30.	Yokota T, Gots JS. 1970. Requirement of adenosine 3', 5'-cyclic phosphate for flagella
503		formation in Escherichia coli and Salmonella typhimurium. J Bacteriol 103:513-516.
504	31.	Schwan WR. 2011. Regulation of <i>fim</i> genes in uropathogenic <i>Escherichia coli</i> . World J
505		Clin Infect Dis 1:17-25.
506	32.	Reitzer L. 2005. Catabolism of amino acids and related compounds. EcoSal Plus.
507		1 (2):doi:10.1128/ecosalplus.3.4.7.

508	33.	Hospenthal MK, Waksman G. 2019. The remarkable biomechanical properties of the
509		type 1 chaperone-usher pilus: A structural and molecular perspective. Microbiol Spectr 7.
510		doi:10.1128/microbiolspec.PSIB-0010-2018
511	34.	Kim W, Surette MG. 2004. Metabolic differentiation in actively swarming Salmonella.
512		Mol Microbiol 54: 702-714.
513	35.	Henderson PJ, Giddens RA, Jones-Mortimer MC. 1977. Transport of galactose,
514		glucose and their molecular analogues by <i>Escherichia coli</i> K12. Biochem J 162:309-320.
515	36.	Alteri CJ, Smith SN, Mobley HL. 2009. Fitness of Escherichia coli during urinary tract
516		infection requires gluconeogenesis and the TCA cycle. PLoS Pathog 5:e1000448.
517	37.	Alteri CJ, Himpsl SD, Shea AE, Mobley HLT. 2019. Flexible metabolism and
518		suppression of latent enzymes are important for Escherichia coli adaptation to diverse
519		environments within the host. J Bacteriol 201:e00181-00119.
520	38.	Conover MS, Hadjifrangiskou M, Palermo JJ, Hibbing ME, Dodson KW, Hultgren
521		SJ. 2016. Metabolic requirements of Escherichia coli in intracellular bacterial
522		communities during urinary tract infection pathogenesis. MBio 7:e00104-00116.
523	39.	Martinez-Jehanne V, Pichon C, du Merle L, Poupel O, Cayet N, Bouchier C, Le
524		Bouguenec C. 2012. Role of the Vpe carbohydrate permease in Escherichia coli
525		urovirulence and fitness in vivo. Infect Immun 80:2655-2666.
526	40.	Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita
527		M, Wanner BL, Mori H. 2006. Construction of Escherichia coli K-12 in-frame, single-
528		gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006 0008.
529	41.	Miller JH. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory,
530		Cold Spring Harbor, NY.

531 42. Fahrner KA, Berg HC. 2015. Mutations that stimulate *flhDC* expression in *Escherichia*

532 *coli* K-12. J Bacteriol **197**:3087-3096.

Genotype	Pathway affected	W3110 ^a	J1 ^a	UTI89 ^a	Infection
					model ^b
parental	none	++	++	++	+
$\Delta ptsI$	Glucose transport		++	+	ND
$\Delta ptsH$	Glucose transport		++	+	ND
$\Delta ptsG$	Glucose transport		++	++	ND
ΔpfkA	EMP glycolysis			++	+
Δedd	ED glycolysis	+	++		+
$\Delta e da$	ED glycolysis	+	++	+	ND
Δzwf	Oxidative pentose		++	+	+
	cycle				
Δpta	Acetogenesis	++	++		
∆ackA	Acetogenesis	++	++	+	
Δpck	Gluconeogenesis	+	++	++	
$\Delta serB$	Serine synthesis	—	++		ND
$\Delta gltA$	TCA cycle	+	+		ND
ΔsdhA	TCA cycle	+	+		— c
$\Delta sucC$	TCA cycle	+	+		— c

534

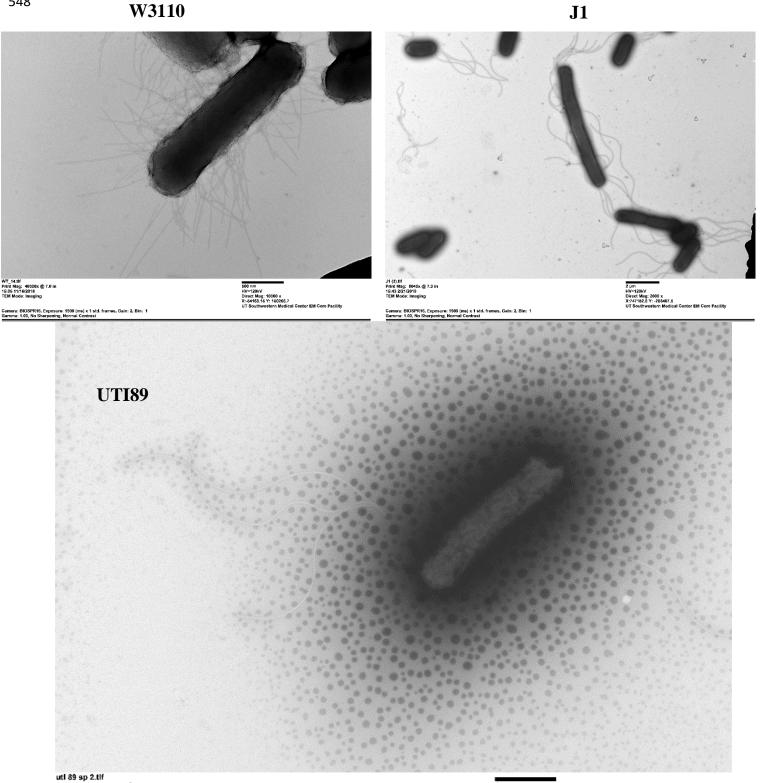
Table 1: Summary of surface motility of mutants with defects in various pathways.

a The scoring is ++ for >> 70% of parental diameter; + for 30-50% of parental diameter; and —

for < 25% of parental diameter. Diameter assessments are qualitative because of variations from

538 batch to batch of motility assay plates.

- b The results from a mouse infection model have been reviewed (18).
- 540 c These exact mutants were not tested in a mouse infection, but a deletion in the same operon
- 541 had the indicated result. ND, not determined.

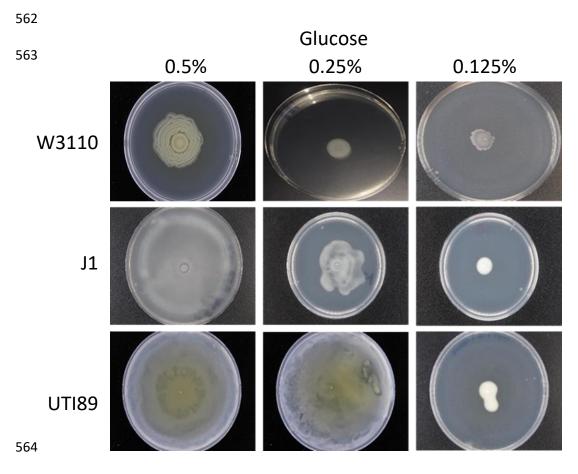

Function or pathway	W3110	J1	UTI89
Glucose transport	PtsG	Not PtsG	Not PtsG
Embden-Meyerhof-	Yes	Yes	No
Parnas (via PfkA)			
Pentose-phosphate (via	Yes	No	Yes
Zwf)			
Entner-Doudoroff	Partial	No	Yes
TCA cycle	Partial	Yes/Partial ^a	Yes

- **Table 2:** Summary of pathway requirements for surface motility.
- a Mutants of J1 lacking TCA cycle enzymes moved partially and had switched from flagella- to
- 545 pili-dependent movement.

Parental Strain	Mutants constructed	Parental source
W3110	$\Delta ackA, \Delta acnB, \Delta crp, \Delta cyaA, \Delta cyoA,$	Lab Strain
	$\Delta eda, \Delta edd, \Delta fdhF, \Delta fimA, \Delta fliC, \Delta fliC$	
	$\Delta fimA$, $\Delta glpA$, $\Delta glpD$, $\Delta gltA$, $\Delta hyaA$,	
	Δlpd , $\Delta menA$, $\Delta nuoC$, Δpck , $\Delta pfkA$,	
	$\Delta poxB$, Δpta , $\Delta ptsG$, $\Delta ptsH$, $\Delta ptsI$,	
	$\Delta sdhA$, $\Delta sdhB$, $\Delta serB$, $\Delta sucA$, $\Delta sucB$,	
	$\Delta sucC, \Delta sucD, \Delta ubiF, \Delta zwf$	
J1	$\Delta ackA, \Delta eda, \Delta edd, \Delta gltA, \Delta pck, \Delta pfkA,$	Lab strain (derived
	$\Delta pta, \Delta ptsG, \Delta ptsH, \Delta ptsI, \Delta serB,$	from W3110)
	$\Delta sdhA, \Delta sucC, \Delta zwf$	
UTI89	$\Delta ackA, \Delta eda, \Delta edd, \Delta fliC, \Delta gltA, \Delta pck,$	Lab strain
	$\Delta pfkA, \Delta pta, \Delta ptsG, \Delta ptsH, \Delta ptsI, \Delta serB,$	
	$\Delta sdhA, \Delta sucC, \Delta zwf$	
MG1655	$\Delta fliC$	Coli Genetic Stock
		Center (Yale Univ)

546

547 **Table 3:** List of bacterial strains

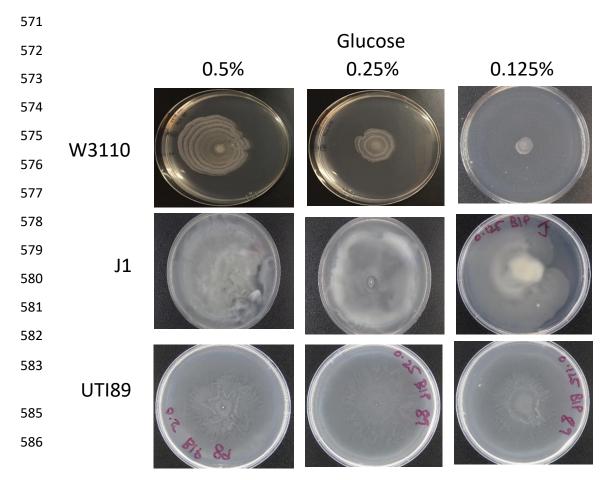

utl 89 sp 2.tlf Print Mag: 16000x @ 7.0 in 15:37 1/23/2019 TEM Mode: Imaging

548

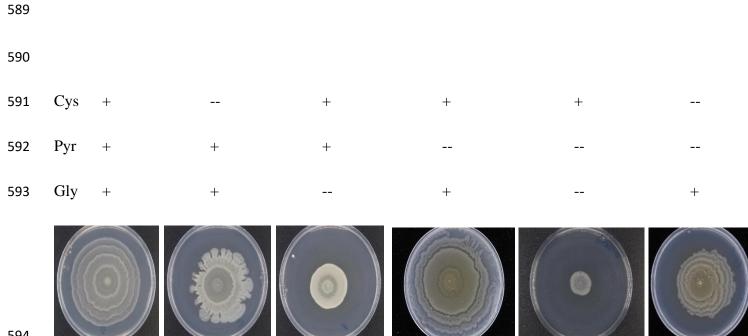
1 μm HV=120kV Direct Mag: 4000 x X:-1026573 Y: -290633.3 UT Southwestern Medical Center EM Core Facility

Camera: BIOSPR16, Exposure: 1500 (ms) x 1 std. frames, Gain: 2, Bin: 1 Gamma: 1.00, No Sharpening, Normal Contrast

- 557 Figure 1: Electron microscopic images of nonpathogenic W3110 and J1, and uropathogenic
- 558 UTI89. UTI89 and J1 possess flagella which are longer than the cell length, while W3110
- possess pili. The dots around UTI89 are typical for EM images of this strain and probably
- indicate the presence of exopolysaccharide. The bars for W3110, J1 and UTI89 are 0.5, 2, and 1
- 561 μ m, respectively.


Figure 2: Concentration requirement of glucose for surface motility.

⁵⁶⁷


Figure 3: Surface motility of mutants with defects in glucose transport and pathways of

569 carbohydrate metabolism.


Figure 4: Surface motility of W3110, J1 and UTI89 with 100 μM BIP and the indicated

588 concentrations of glucose.

- Figure 5: W3110 surface motility with cysteine, pyruvate and glycerol. The medium contained 0.125% glucose and 100 µM BIP.
- Cys, 2 mM cysteine; Pyr, 0.1% pyruvate; Gly, 0.1% glycerol.

Figure 6: Surface motility with 0.5% glycerol instead of 0.5% glucose.

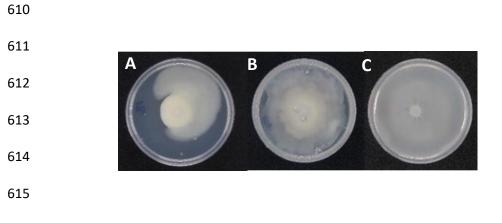
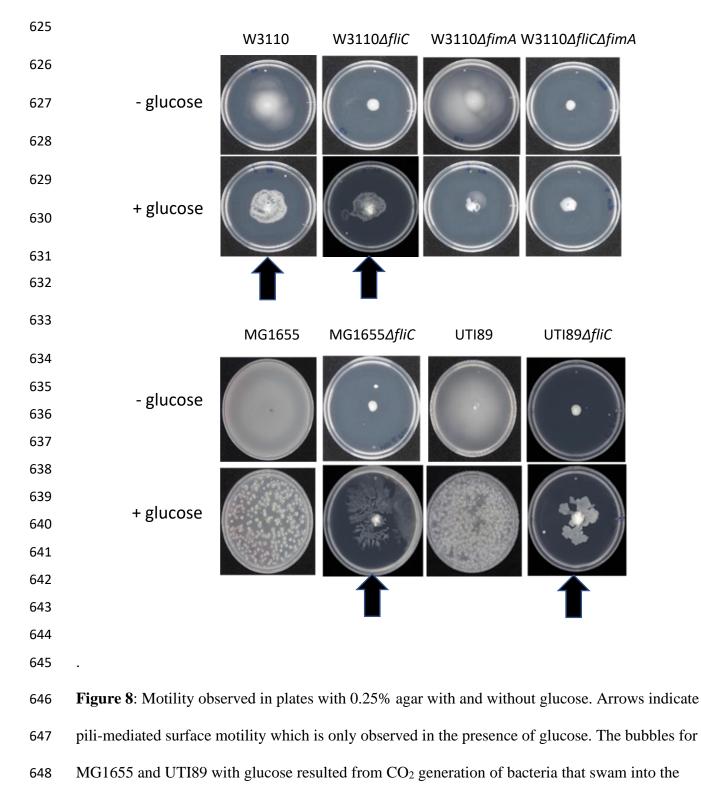
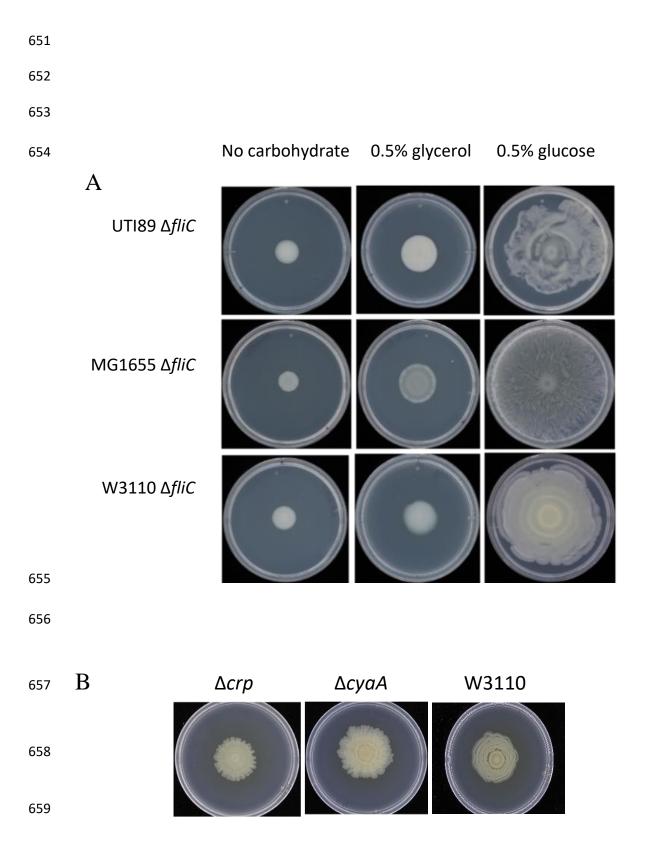
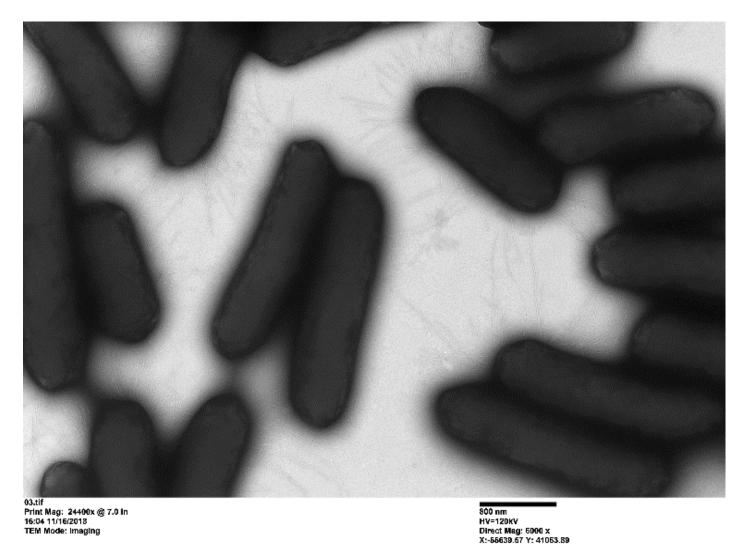
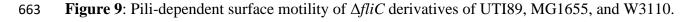




Figure 7: Surface motility of UTI89 with a carbohydrate mixture. The carbohydrate mixture
contained 5 mM glucuronate, 1 mM gluconate, 1 mM glucose, 1 mM glycerol, 1 mM mannitol,
and 1 mM sorbitol. (A) Motility for 24 hours with the carbohydrate mixture. Notice the presence
of faster moving flares. (B) Motility for 48 hours with the carbohydrate mixture. (C) Cells from
edge of plate B were incubated for 15 hours in the absence of any carbohydrate.


623

649 agar.


W3110 *∆cyaA*


```
661
```

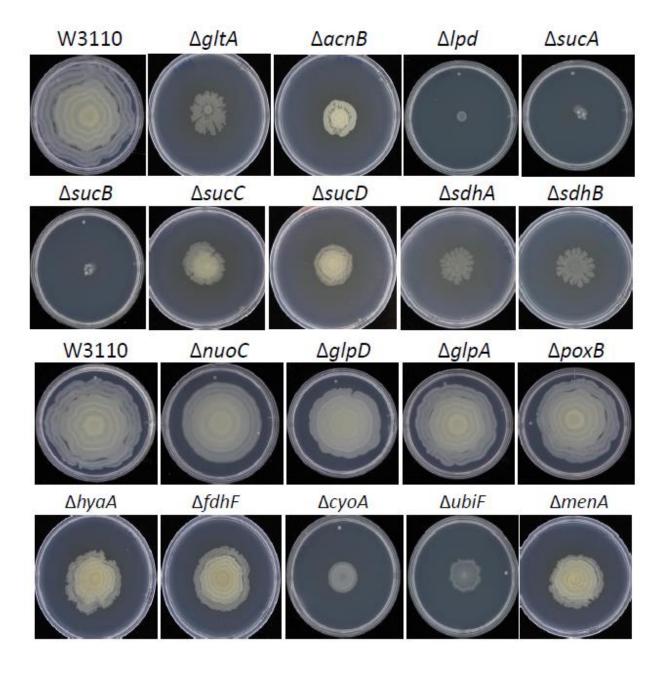
С

662

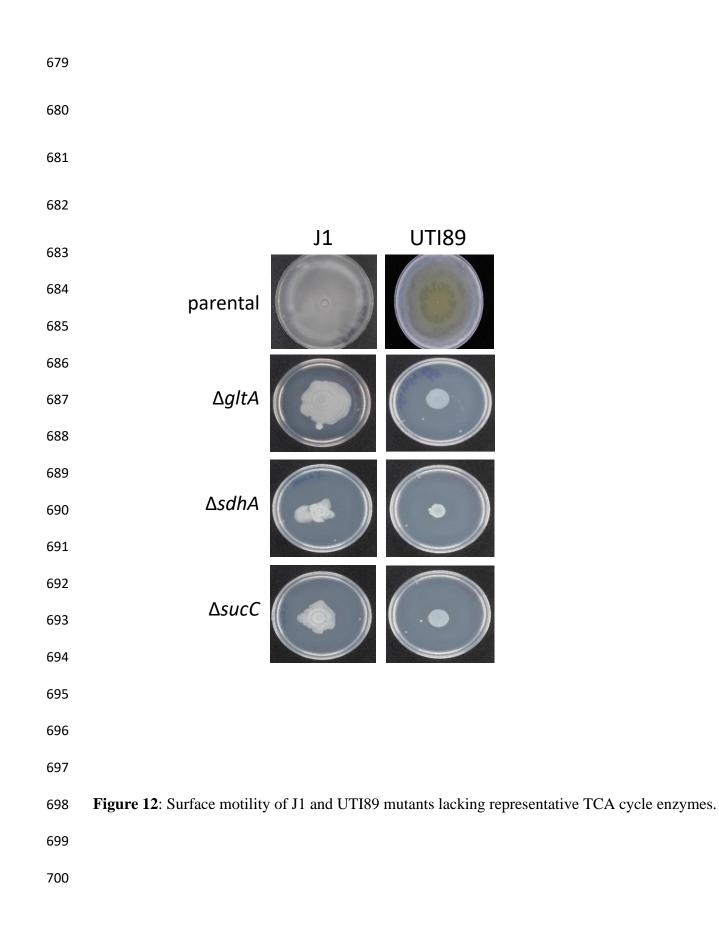
Camera: BIOSPR16, Exposure: 1600 (ms) x 1 std. frames, Gain: 2, Bin: 1

Gamma: 1.00, No Sharpening, Normal Contrast

664 $\Delta fliC$ derivatives of UTI89 and MG1655 use pili in the absence of flagella, since $\Delta fliC \Delta flinA$


- derivatives do not move. W3110 normally uses pili for surface motility. (A) UTI89, MG1655,
- and W3110 mutants lacking flagella ($\Delta fliC$) in medium with the indicated carbohydrate. (B)
- 667 Surface motility of W3110 and Δcrp and $\Delta cyaA$ derivatives in surface motility medium with
- 668 0.5% glucose. (C) Electron microscopy image of the W3110 $\Delta cyaA$ mutant showing piliated
- cells. The pili are in focus, but the bacterial cells are not. The bar indicates 800 nm.

UT Southwestern Medical Center EM Core Facility


W3110 I1

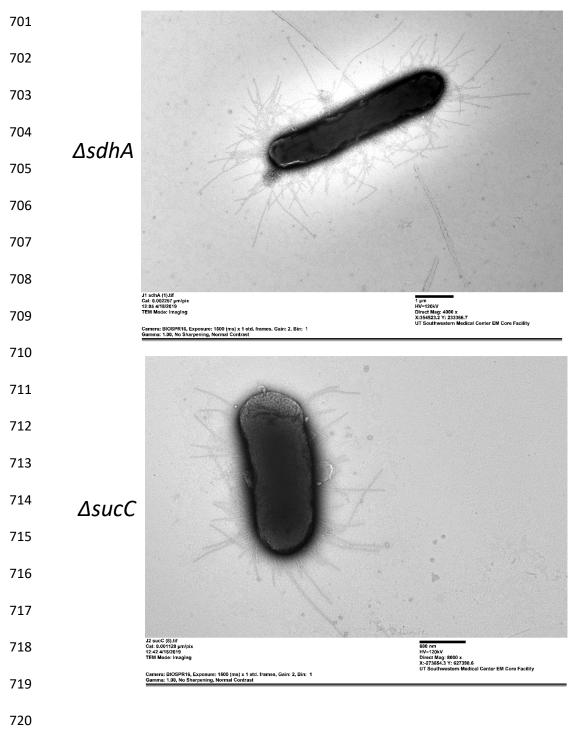

	W3110	J1	UTI89
0.75% tryptone			
0.50% tryptone			
0.25% tryptone			

Figure 10: Tryptone requirement for surface motility.

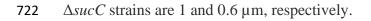


Figure 11: Surface motility of W3110 and derivatives lacking TCA cycle and electron transport chain enzymes.

Figure 13: Electron microscopy images of J1 \triangle *sdhA* and J1 \triangle *sucC*. The bars for \triangle *sdhA* and

