
1 

Gene expression associated with disease resistance and long-term growth in a reef-building coral 1 

 2 

Running title: Predictive gene expression of coral disease resistance and growth 3 

 4 

Emma R. Kelley1, Robin S. Sleith1, Mikhail V. Matz2, and Rachel M. Wright1,2 5 

 6 

1. Smith College, Department of Biological Sciences 7 

2. University of Texas at Austin, Department of Integrative Biology 8 

 9 

Corresponding author: rwright@smith.edu 10 

 11 

Keywords: coral disease, gene expression, Montastraea cavernosa, Flower Garden Banks National 12 

Marine Sanctuary 13 

 14 

ABSTRACT 15 

Rampant coral disease, exacerbated by climate change and other anthropogenic stressors, threatens reefs 16 
worldwide, especially in the Caribbean. Physically isolated yet genetically connected reefs such as Flower 17 
Garden Banks National Marine Sanctuary (FGBNMS) may serve as potential refugia for degraded 18 
Caribbean reefs. However, little is known about the mechanisms and trade-offs of pathogen resistance in 19 
reef-building corals. Here we measure pathogen resistance in Montastraea cavernosa from FGBNMS. 20 
We identified individual colonies that demonstrated resistance or susceptibility to Vibrio spp. in a 21 
controlled laboratory environment. Long-term growth patterns suggest no trade-off between disease 22 
resistance and calcification. Predictive (pre-exposure) gene expression highlights subtle differences 23 
between resistant and susceptible genets, encouraging future coral disease studies to investigate 24 
associations between resistance and replicative age and immune cell populations. Predictive gene 25 
expression associated with long-term growth underscores the role of cation transporters and extracellular 26 
matrix remodelers, contributing to the growing body of knowledge surrounding genes that influence 27 
calcification in reef-building corals. Together these results demonstrate that coral genets from isolated 28 
sanctuaries such as FGBNMS can withstand pathogen challenges and potentially aid restoration efforts in 29 
degraded reefs. Furthermore, gene expression signatures associated with resistance and long-term growth 30 
help inform strategic assessment of coral health parameters. 31 
 32 

  33 
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INTRODUCTION 34 

Infectious diseases cause mass coral mortality worldwide, especially in the Caribbean where Stony Coral 35 

Tissue Loss Disease (SCTLD) has massively reduced live coral cover (Precht et al. 2016; Walton, Hayes, 36 

and Gilliam 2018; Rippe et al. 2019). Several Vibrio species contribute to coral diseases, though the exact 37 

etiological agents for many outbreaks, including SCLTD, are uncharacterized (Weil, Smith, and Gil-38 

Agudelo 2006; Chimetto Tonon et al. 2017). Heterogeneity in disease outcomes exists between and 39 

within coral species. For example, acroporid and pocilloporid coral species appear to be among the most 40 

vulnerable taxa (Hobbs et al. 2015) while massive corals, like Porites, resist bacterial challenge (Fuess et 41 

al. 2017). These species-level differences in disease resistance shape reef communities (Aronson, Precht, 42 

and Macintyre 1998; Williams and Miller 2012). Variation in disease susceptibility observed among 43 

members of a coral species (e.g., Wright et al. 2017, 2019; Libro and Vollmer 2016) may contribute to 44 

reef restoration if resistant genets can repopulate degraded reefs (van Oppen et al. 2017). 45 

At 190 km off the Louisiana–Texas coastline, healthy corals in Flower Garden Banks National 46 

Marine Sanctuary (FGBNMS) produce larvae that can disperse throughout the Caribbean (Davies et al. 47 

2017). This deep and isolated reef environment has maintained >50% coral cover with no documented 48 

disease outbreaks (Johnston et al. 2016). However, a highly localized mortality event occurred in late July 49 

2016, affecting 5.6 ha (2.6% of the area) of the East Flower Garden Bank (FGB) while the West FGB 50 

remained unaffected (Johnston et al. 2019). Diverse invertebrates presented with advancing lesions of 51 

tissue loss that mimic an infectious disease. Studies found that localized hypoxia contributed to this 52 

disease-like mortality rather than a specific bacterial pathogen (Johnston et al. 2019; Kealoha et al. 2020). 53 

Given the importance of this sanctuary as a source population to help restore Caribbean reefs, it is critical 54 

to assess the ability of its coral inhabitants to withstand disease challenges. 55 

Here we measure variation in susceptibility to a bacterial pathogen in the Great Star Coral 56 

Montastraea cavernosa from FGBNMS. Once considered among the most robust Caribbean species 57 

(Pinzón et al. 2014), M. cavernosa have experienced substantial mortality from SCTLD in recent years 58 

(Walton, Hayes, and Gilliam 2018). In addition to assessing susceptibility as the appearance of tissue loss 59 

upon challenge with Vibrio spp., we also measure long-term calcification to account for trade-offs 60 

between growth and resistance. This coral species has demonstrated stable calcification rate under heat 61 

stress (Manzello et al. 2015), but the impacts of disease on coral growth are unknown. 62 

This study also characterizes predictive gene expression to identify molecular markers associated 63 

with long term calcification and resistance to bacterial pathogen invasion. Recent studies have made 64 

progress identifying allelic variation associated with coral thermal tolerance by sequencing hundreds of 65 

corals and often relying on reproductive crosses (Manzello et al. 2015; Jin et al. 2016; Fuller et al. 2020; 66 

Quigley, Bay, and van Oppen 2020). Here we rely on global gene expression, which can be used to 67 
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associate gene expression with complex phenotypes in wild populations (Rose, Seneca, and Palumbi 68 

2016). The genes the expression of which is associated with resistance to  bacterial challenge and 69 

calcification over the subsequent year enhance our understanding of the molecular determinants of 70 

disease resistance and growth in coral. 71 

 72 

METHODS 73 

Coral Collection & Fragmentation 74 

Coral fragments were obtained from the East and West Texas Flower Gardens Banks on 10 November 75 

2014. SCUBA divers retrieved M. cavernosa fragments using hammers and chisels. Fifteen colonies were 76 

sampled from both the East and West banks for a total of 30 colonies. The larger sampled coral fragments 77 

were then divided with a wet saw into control and experimental series (n = 2–3 fragments per genet per 78 

series; mean±SD area = 4.8±1.8 cm2). The replicate fragments recovered in 15-gallon tanks of 32 ppt 79 

artificial seawater (ASW; Instant Ocean). Tanks were maintained at 23°C under 12,000K LED lights on a 80 

12:12 hour light/dark cycle. Corals were fed Coral Frenzy every two days. After two days recovery, 81 

fragments were moved to individual experimental chambers containing 300 mL ASW under the same 82 

lighting and temperature conditions.  83 

 84 

Bacterial Challenge & Survival 85 

Single isolates of Vibrio coralliilyticus or V. shiloi were incubated overnight in Difco Marine Broth-2216 86 

(BD) along with a sterile broth control at 30°C with shaking (150 rpm). Overnight cultures were triple-87 

washed in sterile ASW by centrifugation at 5000�g for ten minutes and resuspension in ASW. Corals 88 

were challenged with either 107 CFU/mL of triple-washed Vibrio (treatment) or the same volume of 89 

triple-washed marine broth (control) on 28 November and subsequently every 24 hours for 17 days. We 90 

challenged the corals with V. shiloi for the first 10 days and V. coralliilyticus for the subsequent week of 91 

bacterial inoculations. The temperature was ramped to 29°C between the 5th and 6th days of inoculation. 92 

The fragments were photographed daily using a Nikon D5100 with a coral health card to monitor lesion 93 

development. Time-of-death was recorded as the day when tissue loss exceeded 50% of the surface area. 94 

After the 17th day of bacterial challenge, surviving genets were placed in 15-gallon aquaria under control 95 

conditions.  96 

 97 

Growth Measurements & Analysis 98 

The number of polyps were counted on each of the surviving fragments in February 2015 and again a year 99 

later, in March 2016. Surviving individuals were weighed in February 2015 and again in February 2016 100 

following the buoyant weight protocol (Rose, Seneca, and Palumbi 2016; Davies and Spencer Davies 101 
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1989). Temperature and lighting conditions remained constant over the long-term monitoring period 102 

(25°C, 12:12 hour light/dark). Surface areas for each fragment were measured using ImageJ (Schneider, 103 

Rasband, and Eliceiri 2012). Skeletal weight and polyp growth were normalized to surface area. 104 

Statistical analyses were conducted in R version 3.6.1 (R Core 2019). The R package MCMCglmm 105 

(Hadfield 2010) was used to fit generalized linear mixed models for tissue and skeletal growth rates 106 

between phenotype (resistant vs. susceptible), treatment (control vs. Vibrio-challenged), and collection 107 

location (East vs. West Bank). 108 

 109 

Predictive Gene Expression  110 

RNA was isolated from two replicate subsamples of each genet before bacterial challenge using the 111 

RNAqueous Total RNA Isolation Kit (Invitrogen). A total of 54 gene expression libraries prepared 112 

following the Tag-Seq protocol (Meyer, Aglyamova, and Matz 2011) were of high enough quality for 113 

Illumina HiSeq 2500 sequencing (SRA: PRJNA355872). Adapter sequences were trimmed and low 114 

quality reads (minimum quality score = 20; minimum percent bases above minimum quality score = 90%) 115 

were filtered using FASTX toolkit (Gordon, Hannon, and Others 2010). Reads were mapped to a 116 

holobiont reference consisting of the M. cavernosa genome (Fuller, Z., Yi, L., and Matz, M., 2020) and 117 

Cladocopium goreaui transcriptome (Davies et al. 2018) using Bowtie 2 (Langmead and Salzberg, 2012). 118 

Reads were converted to counts representing the number of independent observations of a transcript over 119 

all isoforms for each gene.  120 

Isogroups (henceforth called “genes”) with a mean count less than three across all samples were 121 

removed from the analysis. Expression sample outliers were detected using arrayQualityMetrics 122 

(Kauffmann, Gentleman, and Huber 2008). Differentially expressed genes (DEGs) were identified using 123 

DESeq2 (Love, Huber, and Anders 2014). Wald tests were performed to compare phenotype (resistant vs. 124 

susceptible) and collection location (EFGB vs. WFGB) using the model count ~ pheno + bank. Wald tests 125 

were also performed to compare continuous growth phenotypes using the models `count ~ mean 126 

calcification rate` and `count ~ mean polyp generation`. We report Wald statistics (log fold 127 

change/standard error) to represent the magnitude of expression difference between groups or per unit 128 

change of continuous variables. False-discovery rate (FDR) p-values were adjusted using the Benjamini–129 

Hochberg procedure (Benjamini and Hochberg 1995). Gene expression heatmaps were generated using 130 

pheatmap (Kolde 2012) and gene ontology enrichment was performed based on signed adjusted p-values 131 

using GO-MWU (Wright et al. 2015). 132 

 133 

 134 

 135 
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Reference-based 2bRAD Genotyping 136 

We prepared 64 genotyping libraries using the 2bRAD protocol (Wang et al. 2012) and sequenced the 137 

libraries on the Illumina HiSeq 2000 platform at UT Austin Genome Sequencing and Analysis Facility. 138 

We used FASTX toolkit to remove barcodes, deduplicate reads, and apply quality filters such that only 139 

reads in which 90% or more of the bases with a Phread score >= 20 were retained. These reads were 140 

mapped to the M. cavernosa genome (Fuller, Z., Yi, L., and Matz, M., 2020.) using bowtie2 (Langmead 141 

and Salzberg 2013). Genotyping was performed with ANGSD v0.930 (Korneliussen, Albrechtsen, and 142 

Nielsen 2014). Sites were filtered to retain loci with a mapping quality >= 20, base call quality >= 30, and 143 

minor allele frequency >= 0.05 that were sequenced in at least 20 individuals. These sites were used to 144 

calculate pairwise identity-by-state distances between individual samples. Distances <0.15 presumed to 145 

be clones based on similarity detected across genotyping replicates. Only one clone per sample retained 146 

for subsequent population genetic analysis. Library replicates removed as clones, as well as two 147 

additional pairs of clones. The VCFtools subprogram weir-fst-pop calculated fixation index (FST) 148 

estimates. To determine dominant symbiont types, we mapped 2bRAD sequences to a combined 149 

symbiont reference composed of transcriptomes from Symbiodinium “clades” A and B (Bayer et al. 2012) 150 

and “clades” C and D (Ladner, Barshis, and Palumbi 2012) using a custom perl script `zooxtype.pl`. 151 

Custom scripts are hosted within the 2bRAD GitHub repository 152 

(https://github.com/z0on/2bRAD_denovo). 153 

 154 
RESULTS 155 
 156 

2bRAD Genotyping 157 

An average of 71.9% of reads uniquely mapped to the M. cavernosa genome across the 64 2bRAD 158 

libraries and an average of 67.3% of sites were covered at >5× sequencing depth. We identified two pairs 159 

of clones (7/29 and 17/21; Supp. Fig. 1), which are presumably fragments inadvertently sampled from 160 

different parts of the same colony. 161 
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162 
Supplemental Figure1: Sample dendrogram based on identity-by-state including clones and genotyping replicates. 163 

The sample name includes a number denoting the sample identification at the time of sampling and letter indicating 164 

replicate library preparations. Dendrogram color indicates sampling origin: East FGB = blue and West FGB = green. 165 

Asterisks indicate Vibrio resistance. The dashed red line indicates the threshold for calling distinct genets. Distances 166 

<0.15 are presumed clones. 167 

 168 

We identified 11,081 SNPs from 26 unique (non-clonal) samples. PCA based on identity-by-state 169 

demonstrates a lack of genetic structure between sampling sites or resistance phenotype groups (Supp. 170 

Fig. 2). 171 

 172 
Supplemental Figure 2: Principal components analysis based on 11,081 genotype probabilities using ANGSD after 173 

removing library replicates and clones. 174 

 175 
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FST represents the level of genetic differentiation between groups. We calculated weighted FST, which 176 

accounts for differences in the numbers of individuals in each group. We observed no genetic 177 

differentiation between corals grouped by resistance phenotype (FST = 0) and little genetic differentiation 178 

between East and West FGB origin (FST = 0.004). 179 

 180 

Mapping 2bRAD-seq data to symbiont references determined that all corals were dominated by 181 

Cladocopium (Supplemental Figure 3). 182 

 183 
Supplemental Figure 3: Determination of dominant Symbiodiniaceae types based on 2bRAD-seq data. Columns 184 

represent sequencing samples. Colored bars represent the proportion of algal symbiont type according to the legend. 185 

 186 

Bacterial Challenge Survival 187 

Time-of-death was recorded when a coral fragment displayed >50% tissue loss (e.g., Figure 1A). 188 

Bacterial challenge significantly increased mortality (p = 2e-16; Figure 1B). Collection site was not 189 

associated with differential survival (p = 0.13; Figure 1C). 190 

7 
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 191 
Figure 1: (A) Example lesion progression. (B) Survival of coral fragments in the control (grey) or Vibrio-treatment 192 

treatments (red). (C) Survival of coral fragments from East FGB (blue) or West FGB (green). P-values correspond to 193 

the effect of treatment (B) or collection site (C) in a Cox proportional hazards model. The dashed line at day 6 194 

denotes a shift from 23°C to 29°C. The dotted line at day 10 and a shift from Vibrio shiloi to V. coralliilyticus 195 

exposure. 196 

 197 

Long-term Coral Growth 198 

Across all coral fragments, the average (±SD) long-term calcification rate was 135±61 mg cm-2 year-1. We 199 

observed between 0–30 new polyps on each fragment over the year (mean±SD = 10.9±6.7), which ranged 200 

from approximately 0–7 new polyps per cm2 of surface area. Neither annual calcification rate nor annual 201 

polyp generation was significantly associated with collection site, treatment, or resistance phenotype 202 

(Supplemental Figure 4). 203 
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 204 

 205 

Supplemental Figure 4: Calcification rate (mg cm-2 year-1; top) was not associated with collection site (A), treatment 206 

(B), or resistance phenotype (C). Polyp generation (new polyps cm-2; bottom) was not also associated with 207 

collection site (D), treatment (E), or resistance phenotype (F). 208 

 209 

Host Differential Gene Expression  210 

TagSeq yielded an average 319,547 M. cavernosa (coral host) gene counts per sample after filtering lowly 211 

expressed genes (base mean < 3). The contrast between resistant and susceptible genets yielded only one 212 

DEG at FDR = 0.05. This transcript shares substantial homology with a lymphocyte antigen 6H-like gene 213 

identified in Orbicella faveolata (E-value = 2e-141, identity = 87%) and was more highly expressed in 214 

resistant genets (Wald stat = 6.2, FDR = 5.7e-6). No genes were differentially expressed according to 215 

sampling origin and only one unannotated gene was significantly associated with annual increase in polyp 216 

number (Mcavernosa00313, Wald stat = -4.8, FDR = 0.011).  217 

Seventy DEGs were significantly associated with the rate of calcification in the year following 218 

TagSeq library preparation (Supplementary Table 1). Of particular interest, Hairy and Enhancer of Split 1 219 

(Mcavernosa12226, Wald stat = 3.8, FDR = 0.019), Indian hedgehog protein (Mcavernosa00597, Wald 220 

stat = 4.1, FDR = 0.016), and A disintegrin and metalloproteinase with thrombospondin motifs 18-like 221 

(Mcavernosa26186, Wald stat = 3.6, FDR = 0.045) more highly expressed in fast-growing genets. The top 222 

DEGs associated with calcification rate include those encoding a putative vesicular trafficking protein 223 

(TOM1-like protein 2) and several uncharacterized proteins (Figure 2). 224 
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 225 
Figure 2: Gene expression associated with annual calcification rate (FDR < 0.01). Heatmap rows are genes and 226 

columns are samples. Samples are ordered by calcification rate, as indicated by the bar heights. The color scale is in 227 

log2-fold change relative to the gene’s mean. Genes are hierarchically clustered based on Pearson’s correlations 228 

across samples.  229 

 230 

GO enrichment tests yielded 25 biological processes, 22 cellular components, and 5 molecular functions 231 

significantly enriched (adjusted p < 0.05) with genes associated with calcification rate (Supplemental Fig 232 

5). Among these terms, “cation transport” and “vesicle” were enriched with genes showing higher 233 

expression in corals with faster annual calcification rates. 234 
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 235 
Supplemental Figure 5: Biological processes (BP), molecular functions (MF), and cellular components (CC) 236 

enriched by adjusted p-value generated by testing for association with annual calcification rate. The text color 237 

indicates the direction of differential expression according to calcification rate (red = upregulated in faster growing 238 

corals; blue = upregulated in slower growing corals). The text size indicates the significance of the term as indicated 239 

by the inset key. The fraction preceding the term indicates the number of genes within the term that had an adjusted 240 

p-value less than 0.05. Trees indicate gene sharing among gene ontology categories (categories with no branch 241 

length between them are subsets of each other). 242 

 243 

GO enrichment tests between resistant and susceptible corals yielded 8 biological processes, 20 cellular 244 

components, and 5 molecular functions significantly enriched (adjusted p < 0.05) among genes associated 245 

with disease phenotype. Among these terms, several categories related to cell division (e.g., regulation of 246 

mitotic cell cycle, DNA integrity checkpoint, kinetochore microtubule) were enriched with genes showing 247 

higher expression in resistant corals (Figure 3). 248 
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 249 
Figure 3: Biological processes (BP), molecular functions (MF), and cellular components (CC) enriched by adjusted 250 

p-value generated by testing for association with resistance phenotype. The text color indicates the direction of 251 

differential expression between resistant and susceptible genets (red = upregulated in resistant corals; blue = 252 

upregulated in susceptible corals). The text size indicates the significance of the term as indicated by the inset key. 253 

The fraction preceding the term indicates the number of genes within the term that had an adjusted p-value less than 254 

0.05. Trees indicate gene sharing among gene ontology categories (categories with no branch length between them 255 

are subsets of each other). 256 

 257 

Algal Symbiont Gene Expression 258 

TagSeq yielded an average of 9,510 Cladocopium (algal symbiont) counts per sample after filtering lowly 259 

expressed genes (base mean < 3). No symbiont genes were significantly associated with sampling 260 

location, host calcification rate, or host polyp generation (FDR = 0.05). One unannotated gene was 261 

significantly associated with host resistance to bacterial challenge (Wald stat = 4.6, FDR = 0.003). GO 262 

enrichment analyses did not yield any significantly enriched categories for the symbiont genes. 263 

 264 
 265 

12 

n 

ly 
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DISCUSSION 266 
 267 

No Trade-Offs Between Resistance & Coral Growth 268 

Variation in disease resistance can be explained by differential investment in immunity parameters 269 

(Pinzón et al. 2014) that compete for energetic resources with other life-history traits such as growth and 270 

reproduction (Leuzinger, Willis, and Anthony 2012). Here we found no association between long-term 271 

growth (polyp generation or buoyant weight increase) and disease resistance (Supp. Fig. 4C,F). This 272 

result complements previous findings that growth rates in another reef-builder, Acropora millepora, were 273 

not associated with trade-offs in other health parameters, including survival under Vibrio challenge 274 

(Wright et al. 2019). We also found that surviving corals demonstrated similar long-term growth rates 275 

regardless of whether they received sterile media or Vibrio culture during the experimental period (Supp. 276 

Fig. 4B,E). These results suggest that growth rates can remain stable after a disease event if a coral can 277 

survive and recover from an outbreak. However, back-to-back bleaching events (Head et al. 2019) and 278 

multi-year infectious disease outbreaks (Walton, Hayes, and Gilliam 2018) limit the amount of a time a 279 

coral can recover before the next life-threatening challenge. 280 

 281 

Genomic Associations with Disease Resistance 282 

Gene expression analysis revealed subtle differences in pre-exposure transcriptomic states between corals 283 

that subsequently demonstrated resistance or susceptibility to Vibrio challenge. Only one transcript, which 284 

shares extensive homology with a lymphocyte antigen-6 (Ly6) gene,  passed the genome-wide 285 

significance threshold of FDR=0.05; it was upregulated in resistant corals prior to bacterial challenge 286 

(Supplementary Data 1). Genes belonging to the Ly6 family play various roles across metazoans, such as 287 

epithelial barrier formation in Drosophila (Hijazi et al. 2011) and neutrophil migration in mammals (Lee 288 

et al. 2013). In mouse epithelial cells, expression of a Ly6 protein (Lypd8) promotes gut homeostasis and 289 

prevents pathogen attachment (Okumura et al. 2020). Given that many coral diseases are associated with 290 

loss of tissue structure and bacterial infiltration (Ainsworth et al. 2007), future studies should explore the 291 

potential role of this gene family in promoting coral tissue integrity upon bacterial challenge. 292 

Mitotic activity including spindle formation and cell cycle phase regulation were enriched among 293 

upregulated genes in resistant individuals (Fig. 3), possibly indicating an abundance of a specific 294 

population of proliferative cells or higher cell division rates in resistant individuals. To test these 295 

hypotheses, single-cell transcriptomics may reveal differences in activated cell populations between 296 

resistant and susceptible genets. Alternatively, senescence may explain differences in cell growth rates 297 

(Rinkevich and Loya 1986). Colony age can explain differences in disease susceptibility, as has been 298 

reported in Acropora palmata affected with White-Pox disease (Muller and van Woesik 2014). All coral 299 
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cells of a clonal genet have the same age since sexual recruitment (i.e., chronological age), but soft tissues 300 

across the colony have likely experienced different numbers of cell divisions (i.e., replicative age). Across 301 

colonies of the massive reef-builder Porites with an average age of 41 years, the average polyp age was 302 

only 2–3 years (Darke and Barnes 1993). Future investigations of the impacts of aging and age-related 303 

cell turnover rates (Petralia, Mattson, and Yao 2014) on disease susceptibility in corals should evaluate 304 

markers of replicative age, such as telomere length  or somatic mutation accumulation (Barfield, 305 

Aglyamova, and Matz 2016). 306 

The small sample size of this study precludes investigation of the genomic architecture 307 

underlying disease resistance, though in situ disease transmission experiments provide evidence for a 308 

genetic basis to disease resistance in some species of reef-building corals (Vollmer and Kline 2008; Libro 309 

and Vollmer 2016). A recent study that identified dozens of genetic variants associated with resistance to 310 

Vibrio infection in a flatfish used phenotype data from thousands of fish and whole-genome resequencing 311 

for over 500 individuals (Zhou et al. 2019). Conducting experiments at this scale in threatened coral 312 

species presents considerable challenges, though genomic predictors for thermal tolerance in corals have 313 

been possible through low-coverage sequencing from minimally invasive tissue samples from hundreds 314 

of adult colonies in situ (Fuller et al. 2020) and genome-wide SNP analysis of coral larvae produced 315 

through sexual reproduction from experimentally selected parent colonies (Quigley, Bay, and van Oppen 316 

2020). Our estimates of FST between corals from the East and West FGB match previous studies (Studivan 317 

and Voss 2018) and support models of high gene flow through larval dispersal in the region (S. W. 318 

Davies et al. 2017; Goodbody-Gringley, Woollacott, and Giribet 2012). 319 

 320 

Predictive Gene Expression Associated with Long-Term Calcification 321 

Transcripts homologous to Hairy and Enhancer of Split (HES), Indian hedgehog protein (IHH), a 322 

disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) and were more highly 323 

expressed in corals with faster growth rates (Supp. Data 1). HES and IHH regulate bone mass in 324 

mammals (Zanotti, Smerdel-Ramoya, and Canalis 2011; Deng et al. 2018), but their role in coral biology 325 

is currently unclear. ADAMTS enzymes have diverse roles in extracellular matrix remodeling and tissue 326 

morphogenesis (reviewed in Kelwick et al. 2015). Two ADAMTS transcripts were also upregulated in 327 

Stylophora pistillata treated with high calcium concentrations that subsequently increased calcification 328 

rates (Gutner-Hoch et al. 2017). A study examining gene expression patterns predicting growth in 329 

Acropora hyacinthus transplanted to new environments also identified an ADAMTS transcript among 330 

genes upregulated in faster growing corals (Bay and Palumbi 2017). Other similarities in predictive 331 

transcriptomic results between this study and Bay & Palumbi (2017) include the upregulation of TOM1-332 

like protein 2 and lectin in fast-growing corals. Given their association with long-term growth across 333 
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multiple coral species, reefs, and sampling timepoints (Seneca and Palumbi 2015), these genes represent 334 

prime candidates for validation as potential predictive growth biomarkers. 335 

 336 
Conclusions 337 
We demonstrate intraspecific variation in pathogen resistance in a reef-building coral from an isolated 338 

marine sanctuary with no documented instance of coral disease. Understanding the immediate and long-339 

term consequences of bacterial pathogen exposure is especially important given the potential impact of 340 

this sanctuary as a larval source to restore disease-degraded Caribbean coral populations. The presence of 341 

resistant genets and lack of trade-offs between resistance and growth under these laboratory conditions 342 

provide hope that this coral population may be able to withstand some bacterial challenge. However, 343 

ever-worsening ocean conditions threaten marine organisms with multiple concurrent stressors. The 344 

health of coral reefs ultimately relies on global action to mitigate the effects of climate change.  345 
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