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34 Abstract 

35 Coccidioidomycosis, or Valley fever, is caused by two species of dimorphic fungi. Based on 

36 molecular phylogenetic evidence, the genus Coccidioides contains two reciprocally 

37 monophyletic species: C. immitis and C. posadasii. However, phenotypic variation between 

38 species has not been deeply investigated. We therefore explored differences in growth rate 

39 under various conditions. A collection of 39 C. posadasii and 46 C. immitis isolates, 

40 representing the full geographical range of the two species, were screened for mycelial growth 

41 rate at 37ºC and 28ºC on solid media. The radial growth rate was measured over 16 days on 

42 yeast extract agar. A linear mixed effect model was used to compare the growth rate of C. 

43 posadasii and C. immitis at 37ºC and 28ºC respectively. C. posadasii grew significantly faster 

44 at 37ºC, when compared to C. immitis; whereas both species had similar growth rates at 28ºC. 

45 These results indicate thermotolerance differs between these two species. As the ecological 

46 niche has not been well-described for Coccidioides spp., and disease variability between 

47 species has not been shown, the evolutionary pressure underlying the adaptation is unclear. 

48 However, this research reveals the first significant phenotypic difference between the two 

49 species that directly applies to ecological and clinical research.

50 Author Summary 

51 The two species of Coccidioides are genetically distinct. However, phenotypic variation has 

52 not been well-characterized. In this study we identify a significant and reproducible 

53 phenotypic difference between the two species, namely that C. posadasii grows faster at 37°C 

54 than C. immitis on yeast extract agar. This is the first significant phenotypic difference 
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55 documented for multiple strains across the geographic range of Coccidioides. The clinical or 

56 ecological relevance of this observation remains to be elucidated.

57 Introduction

58 Coccidioidomycosis, or Valley fever, is an environmentally acquired disease caused 

59 by inhalation of arthroconidia of dimorphic fungi belonging to the genus Coccidioides. In the 

60 environment, the fungi grow as filamentous mycelia, alternate cells of which autolyze and 

61 become fragile, leaving intact asexual arthroconidia that may disperse via wind or soil 

62 disruption. If inhaled by a susceptible host, an arthroconidium switches to a host-associated 

63 lifecycle and develops into a specialized infectious structure called a spherule. Subsequently, 

64 the host’s immune system either represses spherule replication or the host succumbs to the 

65 illness [1, 2]. It is thought that symptomatic infection occurs in approximately 40% of human 

66 patients, who exhibit a broad spectrum of clinical symptoms, ranging from acute self-limited 

67 pneumonia, fibrocavitary chronic pulmonary infection, or hematogenous spread to  

68 extrapulmonary locations (disseminated infection) [3]. By one estimate, there are 146,000 new 

69 symptomatic U.S. coccidioidal infections each year [4].

70 Coccidioidomycosis is caused by two species, C. immitis and C. posadasii. Genetic 

71 analysis of multiple molecular markers has defined two monophyletic clades [5]. Subsequent 

72 population genetic/genomic studies revealed that C. immitis is composed of at least two 

73 populations in the western U.S., and C. posadasii is composed of three populations widely 

74 dispersed across the American continents [6-9]. Given the high number of autapomorphic 

75 mutations between Coccidioides species and among isolates within species, variation in 

76 phenotypes is predicted [10]. However, minimal work characterizing phenotypic differences 
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77 has been undertaken. A previous study demonstrated that C. immitis in vitro spherules grew 

78 in a synchronous pattern where C. posadasii isolates did not [11]. Differences in pathogenesis 

79 and other disease-associated phenotypic characteristics among strains have been reported, 

80 although only one study had species information [12-17]. The publication that defined the 

81 novel species C. posadasii also found species-specific variance in growth rate on media 

82 containing 0.136M NaCl, suggesting that C. immitis is more salt tolerant than C. posadasii, 

83 but due to overlap in the phenotype, and evaluation of only 10 isolates of each species, it was 

84 not statistically meaningful [5]. These data supported observations published in the 1950s - 

85 60s, which proposed that salinity of the soil may be a factor in determining the distribution of 

86 C. immitis in Californian soil [18-20]. In contrast, a correlation of C. posadasii with saline 

87 soils was not observed in Arizona, where other associations were observed [21-25]. 

88 Importantly, recent modeling analysis predicts the future expansion of Coccidioides species 

89 in response to climate dynamics [26]. Therefore, a robust investigation of abiotic tolerances 

90 that may either limit or enhance distribution of Coccidioides is needed [1, 27, 28].  Such vital 

91 information could provide clues regarding the ecological niche, geographical range limits, or 

92 host-specific adaptations of the two species of Coccidioides. 

93 The division of Coccidioides into two species has been challenged by clinicians 

94 because of the lack of apparent difference in disease manifestation caused by the two 

95 pathogens, but recent work suggests that there might be differences in dissemination patterns 

96 between the species [1, 2, 29]. Unfortunately, diagnosis and treatment of coccidioidomycosis 

97 does not require clinicians to identify to species. The current diagnostic methods; AccuProbe® 

98 [30], CocciDx [31], and CocciENV [32], do not distinguish between the two species. 

99 Molecular-based technologies exist to differentiate the two species, but these have not been 
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100 adapted to clinical use [33, 34]. However, genotyping the causative agent would allow 

101 correlation of clinical presentations and outcomes associated with species. Severe disease and 

102 death typically occurs in high risk group patients; however, seemingly healthy individuals can 

103 succumb as well, without a known host immunologic or pathogen genotypic explanation [35]. 

104 Currently, the range of disease manifestations is suggested to be primarily due to host factors 

105 [36, 37]. There are data supporting variation of virulence among individual isolates, but there 

106 is limited research on the subject [1, 12, 15, 16, 38]. A reasonable hypothesis would 

107 acknowledge that both host and pathogen genetics play a role in disease outcome [39-42]. 

108 Thermotolerance is an intrinsic characteristic of an organism that allows for tolerance 

109 of excessively high temperatures. Heat acclimation can shape natural populations for a wide 

110 range of microorganisms, and is a physiological adaptation to heat stress imposed by the 

111 colonization of new habitats, global climate change and encountering new hosts [43-51]. This 

112 “preadaptation” is particularly important to pathogenic fungi that tolerate growth in high 

113 temperatures, which allows colonization of mammalian tissues [52, 53]. For example, 

114 Coccidioides is adapted to grow at high temperatures in the environment (i.e. North and South 

115 American deserts), and is able to colonize a wide range of endothermic hosts throughout the 

116 Americas [54-58]. C. immitis is endemic to the California Central Valley, whereas C. 

117 posadasii is widely distributed, but has highest prevalence in the Sonoran Desert. The annual 

118 mean temperature varies between the hotspot areas, with the California Central Valley having 

119 more mild temperatures compared to the Sonoran Desert, which led us to hypothesize that C. 

120 posadasii is more thermotolerant than C. immitis. Therefore, we investigated the growth rate 

121 of both species at 37ºC and 28ºC, so that we might elucidate species-specific phenotypic 
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122 variation. Here we demonstrate thermotolerance dissimilarity of the two species by analyzing 

123 growth rates of 85 isolates at these two temperatures. 

124 Results

125 To define variability of one phenotypic trait between two Coccidioides species, we examined 

126 the ability of Coccidioides spp. to grow in filamentous form at 37ºC and 28ºC on yeast extract 

127 (YE) agar. Growth rate differences were observed between C. immitis and C. posadasii, with 

128 the growth of C. immitis significantly reduced (p<0.001) at 37ºC compared to C. posadasii 

129 (Fig 1). In contrast, both strains grew equally well at 28ºC (p-value = 0.072). 

130 Fig 1. Temperature impacts growth ability of C. immitis isolates compared to C. posadasii 

131 on YE media. Seven mm diameter plugs were sub-cultured onto yeast extract plates and radial 

132 growth was documented over 16 days. (A) Radial growth measurements at 37ºC for 46 C. 

133 posadasii and 39 C. immitis isolates in triplicate. (B) Radial growth measurements at 28ºC for 

134 46 C. posadasii and 39 C. immitis isolates in triplicate. (C) Representative samples of 

135 phenotypic variation observed between species on day 16.  

136 Based on these initial observations, we surveyed 85 strains of Coccidioides, representing 

137 isolates from the entire geographical range of Coccidioides, for growth rate differences 

138 between species at 37ºC and 28ºC. Initial investigations occurred at the University of Arizona, 

139 and subsequent studies occurred at Northern Arizona University (Table 1). 

140 Table 1. Strain information

ID Species Geographical 
Origina Source Testing 

Institution 

CA22 C. immitis California
University of Texas 
Health Science Center 
(UTHSC)

NAU
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500 C. posadasii Soil, Tucson, AZ University of Arizona 
(UA)

UA

IL1 C. posadasii Illinois UTHSC NAU
CA23 C. immitis California UTHSC NAU

HS-I-000718 C. posadasii Arizona Flagstaff Medical Center 
(FMC)

NAU

GT164 C. posadasii Texas University of California 
Davis (UCD)

NAU

GT163 C. immitis California UCD NAU
HS-I-000588 C. posadasii Arizona FMC NAU
CA28 C. immitis California UTHSC NAU
TX4 C. posadasii Texas UTHSC NAU
HS-I-000235 C. posadasii Arizona FMC NAU
TX1 C. posadasii Texas UTHSC NAU
HS-I-000778 C. posadasii Arizona FMC NAU
GT147 C. immitis California UCD NAU
HS-I-000234 C. posadasii Texas FMC NAU
CA30 C. immitis California UTHSC NAU
HS-I-000547 C. posadasii Arizona FMC NAU
HS-I-000233 C. posadasii Arizona FMC NAU
GT166 C. posadasii Texas UCD NAU
CA24 C. immitis California UTHSC NAU
CA29 C. immitis California UTHSC NAU

M211 C. posadasii Central Mexico Unidad de Micologia, 
UNAM

NAU

GT158 C. posadasii Arizona UCD NAU
CA15 C. immitis California UTHSC NAU
CA27 C. immitis California UTHSC NAU
TX3 C. posadasii Texas UTHSC NAU
CA20 C. immitis California UTHSC NAU

RS C. immitis California Common Laboratory 
Strain

NAU

Silveira C. posadasii California Common Laboratory 
Strain

NAU

RMSCC2378 C. posadasii Argentina R. Negroni UA
RMSCC2377 C. posadasii Argentina R. Negroni UA
RMSCC2379 C. posadasii Argentina R. Negroni UA

RMSCC3698 C. immitis Barstow, 
California Naval Hospital UA

RMSCC3490 C. posadasii Coahuila, Mexico I. Gutierrez UA
RMSCC3505 C. immitis Coahuila, Mexico I. Gutierrez UA
RMSCC3506 C. posadasii Coahuila, Mexico I. Gutierrez UA

RMSCC3472 C. posadasii Michoacán, 
Mexico I. Gutierrez UA

RMSCC3474 C. immitis Michoacán, 
Mexico I. Gutierrez UA
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RMSCC3475 C. immitis Michoacán, 
Mexico I. Gutierrez UA

RMSCC3476 C. immitis Michoacán, 
Mexico I. Gutierrez UA

RMSCC3478 C. posadasii Michoacán, 
Mexico I. Gutierrez UA

RMSCC3479 C. immitis Michoacán, 
Mexico I. Gutierrez UA

RMSCC3377 C. immitis Monterey, 
California UCD UA

RMSCC2343 C. posadasii Nuevo Leon, 
Mexico R. Diaz UA

RMSCC2346 C. posadasii Nuevo Leon, 
Mexico R. Diaz UA

RMSCC3738 C. posadasii Piaui, Brazil B. Wanke UA
RMSCC3740 C. posadasii Piaui, Brazil B. Wanke UA
RMSCC2127 C. posadasii Texas UTHSC UA
RMSCC2133 C. posadasii Texas UTHSC UA
RMSCC2234 C. posadasii Texas UTHSC UA

RMSCC2102 C. immitis San Diego, 
California

University of California 
San Diego (UCSD) 
Medical Center

UA

RMSCC2394 C. immitis San Diego, 
California UCSD Medical Center UA

RMSCC2395 C. immitis San Diego, 
California UCSD Medical Center UA

RMSCC3693 C. immitis San Diego, 
California Naval Hospital UA

RMSCC3703 C. immitis San Diego, 
California UCSD Medical Center UA

RMSCC3705 C. immitis San Diego, 
California UCSD Medical Center UA

RMSCC3706 C. immitis San Diego, 
California UCSD Medical Center UA

RMSCC2006 C. immitis San Joaquin 
Valley

Kern County Public 
Health (KCPH)

UA

RMSCC2009 C. immitis San Joaquin 
Valley KCPH UA

RMSCC2010 C. immitis San Joaquin 
Valley KCPH UA and 

NAU

RMSCC2011 C. immitis San Joaquin 
Valley KCPH UA

RMSCC2012 C. immitis San Joaquin 
Valley KCPH UA

RMSCC2014 C. immitis San Joaquin 
Valley KCPH UA
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RMSCC2015 C. immitis San Joaquin 
Valley KCPH UA

RMSCC2017 C. immitis San Joaquin 
Valley KCPH UA

RMSCC2268 C. immitis San Joaquin 
Valley KCPH UA

RMSCC2269 C. immitis San Joaquin 
Valley KCPH UA

RMSCC2271 C. immitis San Joaquin 
Valley KCPH UA

RMSCC2273 C. immitis San Joaquin 
Valley KCPH UA

RMSCC2274 C. immitis San Joaquin 
Valley KCPH UA

RMSCC2275 C. immitis San Joaquin 
Valley KCPH UA

RMSCC2276 C. immitis San Joaquin 
Valley KCPH UA

RMSCC2277 C. immitis San Joaquin 
Valley KCPH UA

RMSCC2278 C. immitis San Joaquin 
Valley KCPH UA

RMSCC2279 C. immitis San Joaquin 
Valley KCPH UA

RMSCC2280 C. immitis San Joaquin 
Valley KCPH UA

RMSCC2281 C. immitis San Joaquin 
Valley KCPH UA

RMSCC3480 C. posadasii Sonora, Mexico I. Gutierrez UA
RMSCC3487 C. posadasii Sonora, Mexico I. Gutierrez UA
RMSCC3488 C. posadasii Sonora, Mexico I. Gutierrez UA
RMSCC1040 C. posadasii Tucson, Arizona UA UA
RMSCC1043 C. posadasii Tucson, Arizona UA UA
RMSCC1044 C. posadasii Tucson, Arizona UA UA
RMSCC1045 C. posadasii Tucson, Arizona UA UA
RMSCC3796 C. posadasii Venezuela G. San-Blas

141 aOften patient diagnosis location 
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142 Observations were consistent between testing institutions, therefore data sets were 

143 combined (S1 Fig). Using a mixed effect linear model, we showed a significant species-

144 specific difference for growth of the mycelial phase of the fungus based on temperature (Fig 

145 2 and Table 2). Table 2 summarizes the estimated colony diameter for each predictor (species, 

146 day, species per day), 95% confidence interval (CI), and p-value for each temperature specific 

147 model. The radial growth rates of the two species differed significantly (p<0.001) at 37°C. At 

148 this temperature, C. posadasii strains exhibited greater radial growth, with an increase in 

149 diameter at a rate of 1mm/day, reaching double the diameter of C. immitis by day 16 (Fig 2 

150 and Table 2). This was in contrast to growth at the lower temperature of 28°C, where C. 

151 immitis grew more quickly than C. posadasii, although the difference was not statistically 

152 significant (p-value = 0.072, Table 2). These findings were consistent for all days tested, and 

153 represent differential phenotypes for both species. Thus, our analysis indicates that high 

154 temperature is the important variable between species growth rate on solid media. This 

155 phenotypic difference supports the molecular phylogenetic species designation and may 

156 reflect adaptation of C. immitis to cooler environments, or possibly specific hosts.

157 Fig 2. Radial growth rate of 85 isolates of Coccidioides demonstrates species-specific 

158 response to temperature. Each line represents the mean diameter (y-axis) for each isolate in 

159 triplicate (46 C. immitis and 39 C. posadasii) at a given time point (x-axis). Dark lines 

160 represent mean growth rate of each species. Radial growth was measured at day 5, 7, 9, 12, 

161 14 and 16. There is a significant difference in growth rate (slope) in response to higher 

162 temperature between species of Coccidioides. The radial growth rate of C. immitis is 

163 decreased at a higher temperature 37ºC (slope37 = 0.64 mm/day; 95% C.I. 0.51-0.78) 

164 compared to C. posadasii (slope37 = 1.82 mm/day; 95% C.I. 1.49-2.16). Both species appear 
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2

165 to tolerate 28ºC and grow at a similar rate (C. immitis slope28 = 3.73 mm/day; 95% C.I. 3.53-

166 3.92, C. posadasii, slope28 = 3.47 mm/day; 95% C.I. 2.98-3.90). 

167 Table 2. Temperature Specific Linear Models for Radial Growth Rate at 28ºC or 37ºC.

 Colony Diameter at 28ºC Colony Diameter at 37ºC

Predictors Estimates 95% CI p Estimates 95% CI p

Species C. immitis 6.81 6.45 – 7.17 <0.001 6.11 5.91 – 6.30 <0.001

Species C. posadasii 6.56 6.17 – 6.95 <0.001 6.09 5.88 – 6.30 <0.001

Day 3.73 3.53 – 3.92 <0.001 0.64 0.51 – 0.78 <0.001

Species (C. posadasii x 

Day)

-0.26 0.55 – 0.02 0.072 1.18 0.98 – 1.38 <0.001

Na 85 85

168 Summary of temperature specific linear models, for 28ºC and 37ºC, respectively. Colony 

169 growth estimates for the predictors are species (y- intercept) and day (offset for y- intercept) 

170 and species per day (slope). 95% confidence intervals (CI) for these estimates and p values 

171 were used to compare each predictor. At 28ºC, C. posadasii grows 0.26 mm slower per day 

172 than C. immitis. The difference in slope is not significant (p= 0.072). At 37ºC, C. posadasii 

173 grows 1.18mm faster per day than C. immitis. The difference in slope (CI, 0.98-1.38 mm/day) 

174 is statistically significant (p<0.001). aNumber of individual strains.
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3

175 Discussion 

176 Although many studies have looked at genetic variation among isolates of both species 

177 of Coccidioides, few studies have compared phenotypic differences. Observed genetic 

178 diversity between and within species makes it reasonable to hypothesize that phenotypic 

179 variation exists. We propose that a methodical documentation of phenotypic variation is a 

180 necessary first step to determine the ecological or clinical relevance of these traits. In this 

181 study, we have identified a definitive phenotypic difference with a congruent analysis at two 

182 institutions for a diverse set of isolates. A total of 85 isolates covering the geographic range 

183 of both species show that C. posadasii isolates grow at a significantly faster rate (p<0.001, 

184 Fig 2 and Table 2) than C. immitis isolates in the mycelial form at 37°C on YE agar. 

185 Additionally, C. immitis grows slightly faster than C. posadasii at 28°C on YE agar although 

186 the difference in growth rate is not significant (p-value = 0.072, Fig 2 and Table 2). We note 

187 that growth rate may be influenced by nutrition source, and the results are limited to the media 

188 utilized for the current study.

189 Functionally, this phenotype is similar to a classic temperature sensitive (ts) 

190 conditional mutant, such that C. immitis exhibits normal growth at permissive temperature, 

191 and significantly slower growth under stressful conditions. It is possible that C. immitis could 

192 be restored to normal growth at 37°C by gene replacement with appropriate C. posadasii 

193 alleles if candidate genes were identified. Several genes and pathways have been described in 

194 Aspergillus fumigatus related to thermotolerance [51]. For example, the observed phenotype 

195 could be due to mutations in a heat shock protein (Hsp). Hsps are activated in response to 

196 changes in temperature and regulate cellular processes associated with morphogenesis, 
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197 antifungal resistance, and virulence by triggering a wide array of cellular signaling pathways 

198 [50, 59]. Hsps are activated by a heat shock transcription factor (Hsf) that acts as a 

199 thermosensor, regulating the Hsps at specific growth temperatures [60]. Several studies have 

200 shown that Coccidioides up-regulates heat shock proteins Hsp20 and Hsp9/12 at high 

201 temperature during the parasitic lifecycle while down-regulating Hsp30 and Hsp90 [61-64]. 

202 Further investigation of Hsps and Hsfs in Coccidioides could elucidate mechanisms of the 

203 species-specific thermotolerant behavior observed in this study. Alternatively, many classical 

204 ts mutants occur in genes required for normal cellular growth and are due to single amino acid 

205 changes that affect protein function or stability at the restrictive temperature. For example, a 

206 number of colonial temperature sensitive (cot) mutants have been identified in Neurospora 

207 crassa. The N. crassa cot-1 mutant has been studied in greatest detail, and the ts defect is due 

208 to a SNP causing a single amino acid change in a Ser/Thr protein kinase required for normal 

209 hyphal extension, thus resulting in restricted growth at normally permissive temperatures 

210 above 32°C [65, 66]. Finally, recent work in Saccharomyces indicates that mitochondrial 

211 genotypes are associated with heat tolerance [67]. The mitochondrial genomes of the two 

212 species of Coccidioides are also distinct, and thus mitochondrial function is another potential 

213 mechanism controlling thermotolerance in Coccidioides.

214 The source of the genotypic variation driving the observed phenotype may be 

215 attributable to a stochastic event, such as a founder effect or population bottleneck 10-12 

216 MYA, which is the estimated time the two species have been separated [5, 68]. Alternatively, 

217 the observed pattern may be due to selection pressure from a specific environment, host, or 

218 directly associated with virulence. Thus, the observed differential thermotolerance may relate 

219 to the saprobic phase of the lifecycle and reflect adaptation to specific environments. A pattern 
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220 of alternating wet-dry conditions has been related to Valley fever incidence across the 

221 southwestern U.S. [69-74]. It has been proposed that fungal growth occurs during brief periods 

222 of heavy moisture during monsoon and winter rainy seasons in the Southwest, which are 

223 followed by prolific conidia production when warm temperatures and low rainfall desiccate 

224 soils and increase dispersal via dust (the “grow and blow” hypothesis) [26, 70, 75]. 

225 Additionally, during high temperature periods, it is hypothesized that the surface soil is 

226 partially sterilized and many competitors are removed, but Coccidioides spores remain viable 

227 [25]. Another hypothesis is that C. posadasii may be better adapted to growth in the high soil 

228 temperatures observed in the southwestern deserts compared to the California endemic C. 

229 immitis. Maricopa, Pinal and Pima counties harbor the highest coccidioidomycosis case rates 

230 in Arizona due to C. posadasii, and according to the National Centers for Environmental 

231 Information [76], the annual mean temperature (1901-2000) were 20.7°C, 19.8°C and 19.2°C, 

232 respectively. On the other hand, Fresno, King and Kern counties, which harbor the highest 

233 coccidioidomycosis case rates in California due to C. immitis, had annual mean temperatures 

234 of 12.4°C, 16.9°C and 15.8°C, respectively. The difference in 100-year average annual mean 

235 temperature between highly endemic areas of Arizona and California supports our hypothesis 

236 that C. posadasii is more adapted to higher temperatures compared to C. immitis. 

237 Alternatively, a preferred host species may vary in normal body temperature, in accordance 

238 with the endozoan small mammal reservoir hypothesis proposed by Barker and Taylor [77]. 

239 Interestingly, a decline in mean human body temperature (~1.6%) has recently been reported 

240 [78]. Whether this impacts coccidioidomycosis rates is unknown.

241 Published literature to date suggests that disease outcomes are related primarily to 

242 host-specific factors [36, 37, 79], and certainly, host genetic background can impact disease 
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243 progression. We propose that pathogen-specific variation may also contribute to capricious 

244 disease outcomes in coccidioidomycosis patients. Currently, species-specific virulence is not 

245 well-documented in Coccidioides research, but has been suggested [1, 12]. This is in part due 

246 to the use of a few characterized laboratory strains of Coccidioides for most hypothesis testing, 

247 primarily strains Silveira, C735 and RS [61-64, 81-83]. Therefore, connecting phenotypic 

248 dissimilarity to established genetic variation using genome-wide association studies could 

249 provide insight into unique characteristics of these genetically distinct pathogens.

250 In summary, we have identified a significant phenotypic difference between C. immitis 

251 and C. posadasii. Although growth rate on YE media at two temperatures is the only 

252 characteristic we explicitly tested, there are certain to be more phenotypic differences between 

253 species, and possibly between populations. This, coupled with the recent availability of the 

254 genome sequence of multiple strains for both fungal species, may allow comparative genomic 

255 approaches to elucidate candidate genes for thermotolerance regulation in Coccidioides and 

256 closely related Onygenales [6].

257 Methods

258 Strains and Media. 39 C. posadasii strains and 46 C. immitis strains used in this study are 

259 primarily human patient isolates archived by various institutions, as detailed in Table 1 [5, 7, 

260 27, 84]. These strains represent both the full geographic range of the two species, and the 

261 proposed geographically distinct sub-populations [5, 7]. Strains were grown on 2xGYE media 

262 (2% glucose, 1% yeast extract, 1.5% agar w/v) to supply initial plugs to inoculate plates for 

263 growth analysis. Yeast Extract (YE) media (0.5% yeast extract, 1.5% agar w/v) was used for 
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264 growth experiments. Flagstaff Medical Center isolates were collected under IRB No. 764034 

265 through Northern Arizona Healthcare as part of the Northern Arizona University Biobank.

266 Growth Conditions and Measurements. Colonies were started by spreading approximately 

267 106 arthroconidia over the entire surface of a 2xGYE plate to create a lawn of mycelium to be 

268 transferred to initiate the thermotolerance experiment; this allowed measurement of colonial 

269 growth and not spore germination differences. After five days of growth at 25ºC, 7mm 

270 diameter mycelial plugs were subcultured to the center of YE plates using a transfer tool 

271 (Transfertube® Disposable Harvesters, Spectrum® Laboratories). Three replicates of each 

272 strain were plated for each experiment. All plates (100mm x 15mm BD Falcon 1015) were 

273 sealed with gas permeable seals (labtape form TimeMed Labeling Systems, Inc or Key 

274 Scientific plate seals) for safety. Plates were placed in temperature-controlled incubators at 

275 either 28ºC or 37ºC in the dark under ambient humidity (30-50% RH) and CO2 (0.1%) 

276 conditions. Plate stacks were rotated from top to bottom and repositioned in the incubator with 

277 each measurement timepoint to reduce effects of environmental variation within the 

278 incubators. For measurement of radial growth, the diameter of each colony was measured in 

279 mm at 5, 7, 9, 12, 14, and 16 days post-subculture. The initial experiment proceeded at 

280 University of Arizona (UA) and subsequent testing with a new set of isolates occurred at 

281 Northern Arizona University (NAU). Details for strains tested at each institution are listed in 

282 Table 1 and all raw measurement data are available in S1 File.

283 Statistical Analysis. To estimate the mean growth rate for each species over the two-week 

284 period a mixed effect linear model for each temperature was constructed using the lme4 

285 package in R version 3.6.2 [85, 86]. Initially, data sets were divided by institution and after 

286 concluding that parameters of interest were not impacted by collection site the data sets were 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.08.12.247635doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.12.247635
http://creativecommons.org/licenses/by/4.0/


8

287 combined. In the temperature specific models, the factors “day” and “species” were assumed 

288 to be fixed linear effects, and individual isolate response for each day was considered to be a 

289 normally distributed random effect as appropriate in a longitudinal study. Thus, the response 

290 variable of colony diameter was modeled with fixed effects and a random effect to determine 

291 if growth rates varied between strains at either 28ºC and 37ºC. Shapiro-Wilk test (p-value < 

292 0.001) shows that residuals are not normally distributed. However, the large sample size and 

293 overall residual structure support that a linear model is the most appropriate for this data set. 

294 In addition, bootstrapping using the boot package in R [87, 88] was used to estimate 95% 

295 confidence intervals (CIs) for growth rates and other fixed effects (nsim=2,000). All bootstrap 

296 parameters were similar and support model estimates. A comparison between bootstrapped 

297 CIs and CIs constructed using the linear model can be found in S1 Table and S2 Table. 
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303 Supporting information

304 S1 Fig. Growth of C. immitis and C. posadasii on YE media at NAU and UA. Seven mm 

305 diameter plugs were sub-cultured onto yeast extract plates and radial growth was documented 

306 over sixteen days. (A) Radial growth measurements at 28ºC and 37ºC for 85 isolates in 
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307 triplicate, at both institutions. (B) Representative samples of phenotypic variation observed 

308 between species on day sixteen for both NAU and UA experiments. 

309

310 S1 Table. Comparison of 28ºC Linear Model and Bootstrap Values. Comparison of 28ºC 

311 linear model and bootstrap 95% confidence intervals. Bootstrapping conducted using the boot 

312 package in R.

313

314 S2 Table. Comparison of 37ºC Linear Model and Bootstrap Values. Comparison of 37ºC 

315 linear model and bootstrap 95% confidence intervals. Bootstrapping conducted using the boot 

316 package in R.

317

318 S1 File. Final Raw Data for Temperature Differences at 37 ºC and 28 ºC. Measurements 

319 (diameter in mm) for each isolate on each plate were recorded on days 5, 7, 9, 12, 14, and 16. 

320 Three replicates were completed for each strain for both temperature conditions. Strain details 

321 are listed in Table 1.
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