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ABSTRACT 28 

Numerous studies of relationship between epigenomic features have focused on their 29 

strong correlation across the genome, likely because such relationship can be easily 30 

identified by many established methods for correlation analysis. However, two features 31 

with little correlation may still colocalize at many genomic sites to implement important 32 

functions. There is no bioinformatic tool for researchers to specifically identify such 33 

feature pair. Here, we develop a method to identify feature pair in which two features 34 

have maximal colocalization but minimal correlation (MACMIC) across the genome. By 35 

MACMIC analysis of 3,385 feature pairs in 15 cell types, we reveal a dual role of CTCF 36 

in epigenetic regulation of cell identity genes.  Although super-enhancers are associated 37 

with activation of target genes, only a subset of super-enhancers colocalized with CTCF 38 

regulate cell identity genes. At super-enhancers colocalized with CTCF, the CTCF is 39 

required for the active marker H3K27ac in cell type requiring the activation, and also 40 

required for the repressive marker H3K27me3 in other cell types requiring the repression. 41 

Our work demonstrates the biological utility of the MACMIC analysis and reveals a key 42 

role for CTCF in epigenetic regulation of cell identity. 43 

 44 

Keywords: mutual information, correlation, CTCF, super-enhancer, H3K27ac, 45 
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INTRODUCTION 49 

As DNA sequencing data expands at an unprecedented speed, genomic (including 50 

epigenomic) data such as RNA-seq, ChIP-seq and genome sequencing data can be 51 

conveniently collected from public databases. Each set of sequencing data is typically 52 

collected to investigate a genomic (including epigenomic) feature across the genome, 53 

e.g., RNA-Seq dataset to investigate the expression profile of all genes in a genome, 54 

ChIP-Seq dataset to investigate a histone modification or the binding of a transcription 55 

factor at individual sites across the genome. It is commonly recognized that the function 56 

of a genome cannot be fully understood by studying a single genomic feature. Many 57 

studies showed that analysis of correlation between two genomic features had a strong 58 

potential to identify their regulatory relationship in an important biological process1. For 59 

instance, a strong positive correlation between the binding intensity of a protein near 60 

individual genes and the expression level of these genes might help define the protein to 61 

be an activator of transcription2. By focusing on the correlation between the RNA 62 

expression and a histone modification, the roles of individual histone modifications in the 63 

activation or repression of transcription have also been recognized3,4.  64 

 65 

However, in many aspects of informatics, the representation of knowledge can be more 66 

efficient by using a combination of uncorrelated features5. In other words, highly 67 

correlated features often contain redundant information6. For example, whereas the 68 

dozens of pluripotent factors such as Oct4, Sox2, Klf-4, and c-Myc, are all useful to 69 

predict genes expressed in stem cells 7-9, combining some pluripotent factors with 70 

endothelial lineage factors such as Lmo2 and Erg would add power to also predict genes 71 

expressed in endothelial cells; therefore, it can be more powerful using combined 72 

information from transcription factors with distinct functions, as opposed to an analysis 73 

using the transcription factors with similar effects on a shared set of target genes. More 74 
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importantly, colocalization of low-correlation chromatin features may still happen in a 75 

biologically considerable manner to implement important functions. For instance, the 76 

histone modifications H3K27me3 and H3K4me3 are known to be associated with 77 

repression and activation of transcription in differentiated cells, respectively10. As a result, 78 

they show negative correlation and often occur at different genes in somatic cell types11. 79 

However, these two markers lose the correlation and colocalize at a large set of genes in 80 

embryonic stem cells12. It is well known now that the colocalizations of H3K27me3 and 81 

H3K4me3 in embryonic stem cells define bivalent chromatin domains, which are 82 

functionally distinct from both the repressive domains associated with H3K27me3 and 83 

the active domains associated with H3K4me3. Theses bivalent chromatin domains play 84 

a unique role in embryonic stem cells to maintain a bivalent status of the lineage factors 85 

for individual somatic cell types 13-15. Therefore, analyzing colocalization of two chromatin 86 

features with globally low correlation in a cell has the potential to reveal novel biological 87 

mechanisms. However, little is known yet about the biological implications of such 88 

colocalization for the other chromatin features beyond H3K4me3 and H3K27me3. 89 

Therefore, the community is in need of a robust method to identify and understand the 90 

biologically important colocalization of uncorrelated chromatin features in a cell.  91 

 92 

In this study, we utilized mutual information16 as an indication for general correlation 93 

(relevance) between a pair of genomic features, and mathematically integrated it with 94 

the number of colocalizations between the features to define a score for maximal 95 

colocalization minimal correlation (MACMIC). The MACMIC score allows us to 96 

quantitatively prioritize the feature combinations that have large number of 97 

colocalizations but low correlation. We next performed a systematic analysis of MACMIC 98 

score between chromatin features using 1,522 datasets for histone modifications or the 99 

binding of chromatin proteins from embryonic stem cells as well as somatic cell types. 100 
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Our analysis successfully recaptured the previously discovered bivalent domain in 101 

embryonic stem cells, and further revealed a key role for CCCTC-Binding Factor (CTCF) 102 

in the epigenetic regulation of cell identity genes.  103 

 104 

MATERIAL AND METHODS 105 

Data collection  106 

The RNA-seq, transcript factors and histone modifications ChIP-seq data for human 107 

primary cells, human embryonic stem cells and mouse embryonic stem cells were 108 

downloaded from GEO database and ENCODE project website 109 

(https://www.encodeproject.org/) 17. Processed annotated topologically associating 110 

domains and loops from HUVEC40 were downloaded from GEO. Detailed information of 111 

datasets reanalyzed in this study was listed in Table S1 and Table S2.  112 

 113 

Data processing and analysis 114 

Human reference genome sequence version hg19, mouse reference genome sequence 115 

version mm9 and UCSC Known Genes were downloaded from the UCSC Genome 116 

Browser website 18. TPMs of RNA-seq from ENCODE were directly downloaded from 117 

ENCODE project. For GEO datasets, RNA-seq raw reads were mapped to the human 118 

genome version hg19 using TopHat version 2.1.1 with default parameter values. The 119 

expression value for each gene was determined by the function Cuffdiff in Cufflinks 120 

version 2.2.1 with default parameter values.  121 

 122 

For ChIP-seq data, reads were first mapped to reference genome by Bowtie version 123 

1.1.0. Peak calling and generation of .wig file were performed by DANPOS 2.2.3. Bigwig 124 

was generated using the tool WigToBigWig. The tool WigToBigWig was downloaded 125 

from the ENCODE project website (https://www.encodeproject.org/software/wigtobigwig/) 126 
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17. Then bigwig file was submitted to the UCSC Genome Browser 127 

(https://genome.ucsc.edu) to visualize the ChIP-Seq signal at each base pair 18,19. The 128 

average density plots of epigenetic marks in promoter region around TSS were plotted 129 

using the Profile function in DANPOS version 2.2.3. Heatmap was plotted using 130 

Morpheus (https://software.broadinstitute.org/morpheus). P values of boxplots were 131 

calculated with a two-sided Wilcoxon test. For the regulation network, we used CellNet 132 

method20 to define the network and downloaded the network nodes (genes), edges and 133 

value of closeness between nodes from CellNet website (http://cellnet.hms.harvard.edu/). 134 

As the gene number will affect the percentage and p value of overlap between gene 135 

groups, we used the same number of top genes from each group to avoid this effect. 136 

Because the genes associated with Broad H3K4me3 was reported to be around 500 in 137 

each cell type 21, we used this number of genes for each gene group.  138 

 139 

Integrated analysis of two chromatin features 140 

For individual markers, the ranking of genes was based on the width of individual 141 

markers on the gene promoter region (upstream 3kb of TSS to downstream 10kb of 142 

TSS). For the ranking of genes based on the colocalization of two chromatin features, 143 

the rank product of two individual markers was calculated first. We defined rank product 144 

as �� � �∏ ��,� � ��,��
���  , where the ��,� is the rank of wide for the first marker, the ��,� is 145 

the rank of wide for the second marker. Then if no colocalization of these two chromatin 146 

markers was detected in the gene promoter region, the gene was being removed from 147 

the ranking. A colocalization of two chromatin markers at a specific genomic locus was 148 

defined by requiring at least 1bp overlap. To measure the colocalization level of two 149 

chromatin markers, we calculated the total number of genomic loci that display overlap 150 

of these two chromatin markers across whole genome. Afterward, the genes associated 151 
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with the colocalization of these two chromatin features were ranked based on the rank 152 

product of individual features. For a fair comparison, each group defined by H3K4me3, 153 

H3K27ac, H3K27me3, colocalization of broad H3K4me3 and broad H3K27me3, 154 

colocalization of broad H3K4me3 and broad H3K27ac contained only the top 500 genes. 155 

GO term pathway analysis was performed by the web portal (http://geneontology.org/)22.  156 

 157 

Calculation of MACMIC score 158 

To calculate MACMIC score, we first calculated Mutual information (MI) that is a widely 159 

used measure of the mutual dependence between two variables. More specifically, MI 160 

measures how much does the knowledge of one variable reduces uncertainty of the 161 

other variable. If two chromatin markers have larger MI, these two chromatin markers 162 

share more information and are less independent from each other. Mathematically, 163 

mutual information is calculated by following equations: 164 

 165 

�	
; �
 �  �	

 �  �	�
 � �	
, �
 

 166 

where X and Y represent the peak width from two different chromatin features, I(X;Y) is 167 

the mutual information of X and Y. H(X) and H(Y) are the marginal entropies and H(X,Y) 168 

is the joint entropy of X and Y. Entropies are calculated by the following equation: 169 

 170 

�	

 �  � � �	��
����	��

�

���

 

where n is the total gene number, P(xi) is the probability by which the total signal of a 171 

given genomic marker is xi in the promoter region of gene i. To calculate H(X), we 172 

focused on the promoter region from 3kb upstream to 10kb downstream of transcription 173 

start site. For a promoter that has multiple ChiP-seq peaks, we calculated the total signal 174 
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that is the sum of signals in these peaks. The function Selector in DANPOS was used to 175 

map peaks to promoters. And we used Poisson distribution to calculate the probability of 176 

the observed ChiP-seq signal in a given promoter region 23. To calculate the joint 177 

entropy of two genomic features, we used the following equation: 178 

�	
, �
 �  � � �	�� , ��
����	�� , ��

�

���

, 

where n is the total gene number, P(xi, yi) is the joint probability that the total signals of 179 

the first and second markers are xi and yi in the promoter region of gene i. 180 

 181 

Considering the penalty of high correlation feature pairs, MACMIC score is calculated by 182 

the following equation: 183 

 184 

���� �  ���	
��

 � �
��
��


�
��
��

  

 185 

where C represents the colocalization of two chromatin features which is counted by the 186 

number of overlap events. The p-value for each term tests the null hypothesis that the 187 

residual is equal to zero. A low p-value (<0.05) indicates that for a specific value of MI, 188 

the feature combinations have a significant higher colocalization than the estimated 189 

colocalization on the genome.  190 

 191 

CTCF associated super-enhancers 192 

CTCF ChIP-seq datasets were processed as previously described. Peaks with height 193 

larger than upper quartile of peak height values were defined as high confidence CTCF 194 

peaks. Super-enhancers were defined as previous defined24, and then super-enhancers 195 

were categorized into two categories based on the existence of high confidence CTCF 196 
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peaks within super-enhancers. Super-enhancers with high confidence CTCF peaks were 197 

named as CTCF associated super-enhancers (CSEs). Super-enhancers without high 198 

confidence CTCF peaks were named as CTCF associated super-enhancers (OSEs).  199 

 200 

Simulation of association between CTCF and enhancers 201 

For each group of typical enhancers, each typical enhancer was randomly matched to a 202 

super-enhancer and then typical enhancers were enlarged towards two directions until 203 

they had the same size as super-enhancers. Associations of CTCF and super-204 

enhancers, typical enhancers and enlarged typical enhancers were calculated based on 205 

the overlap events between these two different epigenetic markers. 206 

 207 

RESULTS 208 

Colocalization of globally low-correlation chromatin features reveals unique 209 

functional pathways  210 

We first tested whether the colocalization of two histone modifications could identify 211 

genes that were not effectively identified by each of the two modifications. We performed 212 

the analysis for H3K4me3 and H3K27ac that had strong correlation across the genome 213 

(Fig. S1A) and compared it to the analysis for H3K4me3 and H3K27me3 that had little 214 

correlation across the genome (Fig. S1B) in human stem cell H1. We recently revealed 215 

that the top 500 genes associated with broad H3K4me3 were enriched with tumor 216 

suppressor genes21. For a fair comparison, we retrieved the top 500 genes associated 217 

with broad H3K27ac and the top 500 genes associated with broad H3K27me3. There 218 

were 288 (57.6%) genes associated with both broad H3K4me3 and broad H3K27ac (Fig. 219 

S1C). In contrast, there was no gene associated with both broad H3K4me3 and broad 220 

H3K27me3 (Fig. S1D). To further explore the potential colocalization between H3K4me3 221 

and H3K27me3, we defined the top 500 genes by the rank product of H3K4me3 width 222 
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and H3K27me3 width (H3K4me3&H3K27me3 broad colocalization) (Fig. S1E). We also 223 

defined the top 500 genes by the rank product of H3K4me3 width and H3K27ac width 224 

(H3K4me3&H3K27ac broad colocalization) (Fig. S1E). For the genes associated with 225 

H3K4me3&H3K27ac broad colocalization, only 7 genes were not captured by broad 226 

H3K4me3 or broad H3K27ac (Fig. S1C). However, for the genes associated with 227 

H3K4me3&H3K27me3 broad colocalization, 421 (84.2%) genes were not captured by 228 

broad H3K4me3 or broad H3K27me3 (Fig. S1D). Further, for the 2168 pathways 229 

significantly enriched in genes associated with H3K4me3&H3K27me3 broad 230 

colocalization, 1404 pathways showed no significant enrichment in genes associated 231 

with broad H3K4me3 or broad H3K27me3 (Fig. S1F). These pathways were mainly 232 

related to somatic cell lineage specification (Fig. S1G), which agreed with the reported 233 

role of bivalent domains. These results suggested that colocalization of globally low-234 

correlation features in a cell could be associated with unique biological implications that 235 

were not associated with the localization of each of these features. 236 

 237 

A new method to identify features with maximal colocalization minimal correlation 238 

(MACMIC) 239 

Here, we used mutual information as an indication for correlation because mutual 240 

information is more general than other methods such as linear correlation. A large 241 

mutual information value will indicate strong correlation that can be either positive or 242 

negative, and either linear or nonlinear. Theoretically, two features that have a small 243 

mutual information value tend to have no or a small number of colocalization, whereas a 244 

large number of colocalizations are often associated with large mutual information value. 245 

To develop a simple method to prioritize feature pairs that have minimal correlation but a 246 

maximal number of colocalizations, we first performed a systematic analysis of the 247 

relationship between the mutual information value and the number of colocalizations for 248 
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225 feature pairs derived from 6 chromatin features in 15 cell types (Table S1). We 249 

analyzed 6 features, which formed 15 pairs with each other in each cell type and thus 250 

resulted in 225 feature pairs in 15 cell types (Table S3). Most feature pairs displayed a 251 

positive correlation between the mutual information value and the number of 252 

colocalizations (Spearman correlation coefficient 0.46) (Fig. 1A). Similar results were 253 

observed by replacing mutual information with absolute value of correlation coefficient or 254 

PCA value (Fig. S2). However, there were a few feature pairs that displayed a large 255 

number of colocalizations but small mutual information value (Fig. 1A). We therefore 256 

developed a regression model that employed the mutual information value to determine 257 

an expected number of colocalizations, and next utilized the normalized discrepancy 258 

between the observed and the expected numbers of colocalizations as a measurement 259 

of the MACMIC (Fig. 1B). We calculated the MACMIC scores for the 225 individual 260 

feature pairs and found that the large MACMIC scores effectively prioritized feature pairs 261 

that possessed large number of colocalizations but weak correlations (Fig. 1C). We 262 

further tested our MACMIC analysis method on 3160 feature pairs derived from 80 263 

chromatin features in human ESC H1. Our result again indicated that MACMIC 264 

successfully prioritized the feature pairs with minimal mutual information but substantial 265 

colocalizations (Fig. 1D).  266 

 267 

MACMIC identifies a unique association of CTCF with super-enhancer  268 

To further test whether MACMIC scores could effectively recapture feature pairs with 269 

biological implications, we analyzed MACMIC scores between H3K4me3 and 270 

H3K27me3 in 15 human primary cell types. In agreement with the reported large number 271 

of bivalent domains marked by both H3K4me3 and H3K27me3 in embryonic stem cells, 272 

we observed a large MACMIC score (2.8) in the H1 cell. On the other hand, in 273 

agreement with the reported resolution of bivalent domains to form either repressive 274 
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domains marked by H3K27me3 or active domains marked by H3K4me3, the MACMIC 275 

scores between H3K4me3 and H3K27me3 were low in all the 14 somatic cell types 276 

(from -0.68 to 0.67) (Fig. 2A). Therefore, MACMIC analysis successfully recaptured 277 

bivalent domains that were known to play a key role in embryonic stem cells. 278 

 279 

We next tested whether MACMIC analysis could successfully identify new feature pairs 280 

that possess a large number of functionally important colocalizations but low correlation. 281 

We ranked a set of 79 chromatin features in H1 cells by the MACMIC scores between 282 

the enhancer feature H3K27ac and each of these features (Fig. 2B). The top features 283 

with the large MACMIC scores in the rank included the suppressive histone modification 284 

H3K27me3, consistent with the implication that H3K27ac and H3K27me3 might co-exist 285 

in bivalent domains. Interestingly, master regulators of three-dimensional chromatin 286 

interaction, the CTCF25 and its binding partner RAD2126, topped in the rank list (Fig. 2B). 287 

We further performed analysis in 14 human somatic cell types that each had ChIP-seq 288 

datasets for a set of 6 chromatin features from the ENCODE project17 (Table S1). The 289 

results showed that the MACMIC score between H3K27ac and the binding of CTCF was 290 

significantly larger than MACMIC scores between H3K27ac and the other 4 features 291 

including H3K27me3, H3K4me3, H3K9me3 and H3K79me2 (Fig. 2C). Moreover, 292 

colocalization analysis for CTCF and H3K27ac found that CTCF binding sites had the 293 

largest number of colocalizations with the broadest H3K27ac peaks (super-enhancers) 294 

(Fig. 2D). To test whether this higher frequency of colocalization was simply due to the 295 

longer DNA sequences of super-enhancers, we performed a normalization by 296 

lengthening typical enhancers at the two ends of each enhancer, so that the DNA 297 

sequences assigned to typical enhancers had equivalent sizes to those of super-298 

enhancers. The result showed that the frequency of colocalization with CTCF binding 299 
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sites still tended to be higher for super-enhancers when compared to other enhancers 300 

(Fig. 2D).   301 

 302 

A unique enrichment of CTCF associated super-enhancer in cell identity genes 303 

Since super-enhancers were reported to regulate cell identity genes24, we determined to 304 

investigate the role of CTCF in this regulation. We divided super-enhancers into two 305 

categories, i.e., CTCF associated super-enhancers (CSEs) and other super-enhancers 306 

(OSEs). To study the function of genes marked by CSEs and OSEs, we defined the 307 

genes of which the gene body overlapped with CSEs (or OSEs) for at least 1bp as the 308 

CSEs (or OSEs) marked genes Intriguingly, only the genes marked by CSEs were 309 

significantly enriched in the pathways associated with cell lineage specifications, e.g., 310 

the endothelial cell differentiation pathway (GO:0045601) for CSEs in human umbilical 311 

vein endothelial cells (HUVECs) (Fig. 3A) and the neuron differentiation pathway 312 

(GO:0045664) for CSEs in neural cells (Fig. 3B). Manual inspection of individual known 313 

cell lineage factors in these cell types further confirmed the colocalization of ChIP-seq 314 

signals of H3K27ac and CTCF, e.g., at the gene NR2F227 in endothelial cells and the 315 

gene FOXG128 in neural cells (Fig. 3C, D). In contrast, some other genes, although also 316 

displaying broad enrichment of H3K27ac, were depleted of CTCF binding sites, e.g., at 317 

the gene ARF1 in endothelial cells and the gene PON1 in neural cells (Fig. 3C, D). 318 

Intriguingly, there were typically multiple binding sites of CTCF located within the active 319 

region of each CSE. This colocalization pattern was different from the well-known 320 

function of CTCF binding sites as insulators, which often happened between active 321 

domain and repressive domain. Besides, a significant portion of the genes associated 322 

with CSEs encoded transcription factors, whereas we did not observe this phenomenon 323 

for the genes associated with OSEs (Fig. 3E). Further, the genes associated with CSEs 324 

were connected to a significantly large number of edges in the gene regulatory networks, 325 
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whereas the numbers of connected network edges were similar for genes associated 326 

with OSEs and random control genes (Fig. 3F). The differences between CSEs and 327 

OSEs in their association with genes in cell lineage pathways were highly reproducible in 328 

the other 15 primary cell types that we have analyzed (Fig. 3G). It was reported that the 329 

establishment of cell type specific chromatin loops were important during cell 330 

differentiation29. Consistently, we found that CSEs were enriched near chromatin loops 331 

(Fig. S3A) and the boundaries of topologically associating domains (TADs) (Fig. S3B), 332 

whereas no significant differences in the sizes of the associated TADs were observed 333 

between CSEs and OSEs (Fig. S3C).  334 

 335 

CSE- and OSE-associated genes have similar expression levels and cell type 336 

specificities 337 

To understand how CTCF regulates enhancer activity and in turn regulates cell identity, 338 

we first compared the expression levels of associated genes between CSEs and OSEs. 339 

Intriguingly, similar expression levels were observed between CSE-marked genes and 340 

OSE-marked genes, and this result was highly reproducible in HUVECs (Fig. 4A left 341 

panel) and neural cells (Fig. 4A right panel). Further, CSEs genes and OSEs genes of 342 

HUVECs were both significantly up regulated in HUVECs compared to embryonic stem 343 

cells and neural cells (Fig. 4B left panels). Consistently, CSEs genes and OSEs genes 344 

of neural cells were both significantly up regulated in neural cells compared to embryonic 345 

stem cells and HUVECs (Fig. 4B right panels). These results suggested that CSEs and 346 

OSEs genes of the same cell type had similar expression levels and cell type 347 

specificities.  348 

 349 

We next compared the H3K27ac levels between CSEs and OSEs, as H3K27ac is a 350 

marker for enhancer activation. The result indicated that the H3K27ac levels were similar 351 
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at CSEs and OSEs within HUVECs (Fig. 4C left). Similarly, the H3K27ac levels were 352 

similar at CSEs and OSEs within neural cells (Fig. 4C right). Further, the H3K27ac 353 

levels at HUVEC-specific CSEs and OSEs were higher in HUVECs when compared to 354 

the same regions in embryonic stem cells and neural cells, whereas the H3K27ac levels 355 

at neuron-specific CSEs and OSEs were higher in neural cells compared to the same 356 

regions in HUVECs and embryonic stem cells (Fig. 4D). Therefore, in agreement with 357 

result from the expression analysis, CSEs and OSEs genes of the same cell type had 358 

similar epigenetic states and specificities.  359 

 360 

Of the top 500 HUVEC CSEs, 405 (81%) lost H3K27ac in neural cells and embryonic 361 

stem cells (Fig. 4E top left). In contract, the binding of CTCF in 483 (97%) HUVEC 362 

CSEs were retained in both neural cells and embryonic stem cells (Fig. 4E bottom left). 363 

Similar results were observed for the neural cell CSEs. Of the top 500 neural CSEs, 388 364 

(78%) lost H3K27ac in HUVECs and embryonic stem cells (Fig. 4E top right), while the 365 

binding of CTCF in 462 (92%) neural cell CSEs were retained in both HUVECs and 366 

embryonic stem cells (Fig. 4E bottom right). To further understand the role of CTCF in 367 

CSEs, we next analyzed an RNA-Seq dataset from HeLa cells with CTCF knocked down 368 

or not. The genes associated with CSEs of HeLa cells were significantly enriched in the 369 

genes down regulated but not in the genes up regulated in response to CTCF 370 

knockdown (Fig. 4F). In contrast, the OSEs associated genes showed little enrichment 371 

in the down or up regulated genes induced by knockdown of CTCF (Fig. 4F). Of the top 372 

500 HUVEC OSEs, 331 (66%) lost H3K27ac in neural cells and embryonic stem cells 373 

(Fig. S4 top left). In contract, the binding of CTCF in 492 (98%) HUVEC OSEs were 374 

retained in both neural cells and embryonic stem cells (Fig. S4 bottom left). Similar 375 

results were observed for the neural cell OSEs. Of the top 500 neural OSEs, 347 (69%) 376 

lost H3K27ac in HUVECs and embryonic stem cells (Fig. S4 top right), while the 377 
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binding of CTCF in 476 (96%) neural cell OSEs were retained in both HUVECs and 378 

embryonic stem cells (Fig. S4 bottom right). These results indicated that although the 379 

loss of the activation state of CSEs may not require the loss of CTCF bindings, the 380 

bindings of CTCF were required for the activation of CSEs and their associated genes. 381 

 382 

CSEs of a given cell type display increased repressive modification H3K27me3 in 383 

other cell types 384 

A cell identity gene has two key attributes: 1) it is associated with active chromatin 385 

modifications and thus activated to play an important role in the cell type that requires its 386 

activation; and 2) it is associated repressive chromatin modifications and thus silenced in 387 

most other cell types. Since our results demonstrated that the CSEs of one cell type lost 388 

H3K27ac but retained the binding of CTCF in other cell types, we hypothesized that the 389 

binding of CTCF might be also important for the repressions of these CSEs in the other 390 

cell types.  391 

 392 

We first defined CSEs, OSEs, and a set of random control genes in HUVECs, and 393 

analyzed the pattern of the repressive histone modification H3K27me3 on these 3 gene 394 

sets in each of three cell types including embryonic stem cells, neural cells and also 395 

HUVECs. We found that the H3K27me3 signals in HUVEC showed a similar pattern at 396 

the HUVEC CSEs as at the HUVEC OSEs, but are substantially weaker than at the 397 

random control genes (Fig. 5A top). Intriguingly, only the CSEs of HUVECs, not the 398 

OSEs of HUVECs or the random control genes, were marked by strong H3K27me3 399 

signals in embryonic stem cells (Fig. 5A middle). These trends observed for H3K27me3 400 

in embryonic stem cells were the same for H3K27me3 in neural cells (Fig. 5A bottom). 401 

Similar results were observed when we defined CSEs, OSEs, and a set of random 402 

control genes in neural cells to analyze the pattern of H3K27me3 on these 3 gene sets 403 
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in HUVECs, embryonic stem cells, and neural cells. The H3K27me3 signals in neural 404 

cells showed a similar pattern at the neural CSEs as at the neural OSEs, but are 405 

substantially weaker at the random control genes (Fig. 5B bottom). However, only the 406 

CSEs of neural cells, not the OSEs of neural cells or the random control genes, 407 

possessed strong H3K27me3 signals in embryonic stem cells (Fig. 5B middle). These 408 

trends observed for H3K27me3 in embryonic stem cells were the same for H3K27me3 in 409 

HUVECs (Fig. 5B top).  410 

 411 

We next further expanded our analysis to 15 sets of biosamples that each had ChIP-Seq 412 

data for CTCF, H3K27ac, and H3K27me3. Consistent with the results from HUVECs and 413 

neural cells, CSEs and OSEs showed similar enrichment of H3K27ac (Fig. S5A) and 414 

similar depletion of H3K27me3 (Fig. S5B) in cell types that defined these CSEs and 415 

OSEs. Next, we analyzed these CSEs and OSEs in H3K27ac ChIP-Seq datasets from 416 

84 biosamples and H3K27me3 ChIP-Seq datasets from 125 biosamples from the 417 

ENCODE database. CSEs and OSEs both showed attenuated enrichment of H3K27ac 418 

when the H3K27ac was analyzed in cell types different from the cell types that defined 419 

the CSEs and OSEs (Fig. S5C). However, the CSEs were associated with significant 420 

enrichment of H3K27me3, whereas the OSEs showed little enrichment of H3K27me3, 421 

when the H3K27me3 was analyzed in cell types different from the cell types that defined 422 

these CSEs and OSEs (Fig. S5D). These analyses indicated that the CSEs, but not the 423 

OSEs, were under stringent epigenetic repression by H3K27me3 in cell types different 424 

from the cell types that defined the CSEs and OSEs. Interestingly, CTCF and 425 

H3K27me3 is also among the top feature pairs ranked by MACMIC score in H1 hESC 426 

(Fig. S6). 427 

 428 
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CTCF in a given cell type is required for the repression of genes associated with 429 

the CSEs defined in other cell types 430 

Importantly, auxin-induced degradation of CTCF in embryonic stem cells led to the loss 431 

of CTCF bindings and H3K27me3 signals in embryonic stem cells at the CSEs genes 432 

defined in HUVECs as well as the CSEs genes defined in neural cells. For example, 433 

signals of CTCF bindings and H3K27me3 in embryonic stem cells at known identity 434 

genes of somatic cell types, the NR2F227 of endothelial cells (Fig. 5C left) and the 435 

FOXG128 of neural cells (Fig. 5C right), were substantially attenuated after auxin 436 

induced degradation of CTCF, and recovered after auxin was washed off (Fig. 5C). The 437 

CTCF binding sites in embryonic stem cells at these genes were located within the 438 

broad H3K27me3 modifications. This colocalization of CTCF binding sites and broad 439 

H3K27me3 in embryonic stem cells was similar to the colocalization observed for CTCF 440 

binding sites and super-enhancers in HUVECs, neural cells, heart, fibroblast cell, and 441 

bone marrow macrophage cell. Our further analysis indicated that in parallel with the 442 

loss of CTCF bindings in embryonic stem cells at these genes (Fig. 5D left and Fig. 5E 443 

left), the H3K27me3 signals in embryonic stem cells were reduced dramatically (Fig. 5D, 444 

Fig. 5E, Fig. S7 middle) and the expressions in embryonic stem cells were significantly 445 

up regulated (Fig. 5D, Fig. 5E, Fig. S7 right). Taken together, these results suggested 446 

that the CTCF in a given cell type was required for the repression of genes associated 447 

with the CSEs defined in a different cell type.  448 

 449 

DISCUSSION  450 

Conventional analysis of relationship between chromatin features tends to focus on 451 

strongly positive or negative correlation to identify the associated components within a 452 

specific biological process1. However, genomic features with weak correlation across the 453 

genome may still colocalize at many genomic sites in a biologically important manner. It 454 
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was hard to capture the significance of such colocalizations on the basis of conventional 455 

correlation analysis. In this study, we provide a new method to identify MACMIC, which 456 

effectively prioritize the feature pairs with low genome-wide correlation but substantial 457 

colocalizations. Using the MACMIC, we successfully recapture the reported bivalent 458 

domain in embryonic stem cells, which is composed of both activating histone 459 

modifications, e.g., H3K4me3, and the repressive histone modifications, e.g., H3K27me3. 460 

Activating histone modification and the repressive histone modification possess low 461 

genome-wide correlation in the embryonic stem cell, but the colocalizations of them at 462 

bivalent domains mark important lineage specific regulators.  463 

 464 

As proof of principle, we present a novel relationship identified by MACMIC between the 465 

bindings of CTCF and the enhancer marker H3K27ac. Our analysis demonstrated that 466 

their colocalization is key to both the activation and repression of cell identity genes. 467 

Numerous efforts have been made to understand cell identity regulation20. Somatic cells 468 

such as fibroblasts30, keratinocytes31, peripheral blood cells32, and neural progenitor 469 

cells33, have been sucessfully reprogrammed to induced pluripotent stem cells. Many 470 

transcription factors and epigenetic regulators have been proposed to play important 471 

roles in these dynamic processes. We and several other groups recently discovered that 472 

cell identity genes manifested unique chromatin epigenetic signatures associated with 473 

their distinct transcriptional regulation mechanisms24,34-36. CTCF is well known for its 474 

function as an insulator that binds between active and repressive domains on 475 

chromatin37, as a mediator for promoter-enhancer interaction38, and as a partner of 476 

cohesin in regulating chromatin 3D structure39,40. It further has been proven to be an 477 

essential factor for cell differentiation and development of T cell41, Neuron42, Heart43, and 478 

Limb44.  However, how these functions of CTCF are connected to the regulation of cell 479 

identity genes was not known. 480 
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 481 

In this study, we separate CSEs from OSEs based on the colocalization of CTCF binding 482 

sites with H3K27ac signals in CSEs. Our results suggest that CTCF contributes to the 483 

activations of CSEs in cell types that require the activations, and is involved in the 484 

repression of CSEs in other cell types that require the repressions. Interestingly, only 485 

CSEs showed significantly higher H3K27me3 signals in the cell types that required their 486 

repressions, consistent with the notion that epigenetic repression of cell identity genes of 487 

a given cell type is critical in other somatic cell types (Fig. 5, S3). In response to the loss 488 

of CTCF function in embryonic stem cells, H3K27me3 signals in embryonic stem cells at 489 

the CSEs of somatic cell types were dramatically reduced but restored after recovery of 490 

CTCF function (Fig. 5). Intriguingly, the CTCF binding sites in embryonic stem cells at 491 

somatic cell identity genes were located within the repressive domains of embryonic 492 

stem cells. This colocalization was similar to the colocalization of CTCF binding sites 493 

with super-enhancers observed in somatic cell types. These unique CTCF associated 494 

epigenetic profiles suggested a novel function of CTCF in epigenetic regulation of 495 

transcription.  496 

 497 

Recently, many epigenetic regulators have been proven to interact with CTCF in 498 

different biological processes. For instance, BRD2 has been reported to directly interact 499 

with CTCF during Th17 cell differentiation45. This report suggested that CTCF might be 500 

able to regulate enhancer signals by facilitating the binding of enhancer mediator on the 501 

chromatin46. Interestingly, our result indicated that CTCF played an important role for the 502 

repressive histone modification, H3K27me3. This observation is consistent with recent 503 

reports that depletion of CTCF does not affect the spreading of H3K27me347, indicating 504 

that CTCF might affect H3K27me3 modification by a process other than the spreading. 505 

Considering that CTCF was reported to regulate Igf2 expression by direct interaction 506 
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with Suz12, an important component of Polycomb complexes PRC248, it is possible that 507 

CTCF may serve as a landmark to facilitate the localization of epigenetic regulators. Due 508 

to limited availability of public datasets for human, we defined genes associated with 509 

CSEs and OSEs in human HUVEC and neural cells, and analyzed homolog genes in 510 

mouse ESC (mESC) with CTCF ChIP-seq and H3K27me3 ChIP-seq data under normal 511 

and CTCF-AID conditions. To further validate our results, we used ChIP-Seq data for 512 

CTCF and H3K27ac in three mouse primary samples including heart, embryonic 513 

fibroblast and bone marrow macrophage to define genes associated with CSEs and 514 

OSEs, next analyzed CTCF and H3K27me3 at these genes in mouse ESC (mESC), and 515 

still got a consistent result. 516 

 517 

Interestingly, among the top-ranked feature pairs in H1-hESC, there are many pairs that 518 

each was formed by a factor associated with chromatin structure and a factor associated 519 

with histone modification for transcription activation or repression. For example, the 520 

combination of RBBP5 49 versus RAD21 50 and the combination of KDM4A 50 versus 521 

RAD21. RBBP5 and KDM4A are important regulators of H3K4me3, and RAD21 is a 522 

component of the cohesion complex that regulates chromatin looping. In addition, we 523 

further observed additional combinations that each include a factor associated with 524 

activation of transcription and a factor associated with repression of transcription, such 525 

as CTBP2 51 and H3K27ac. This kind of combination is consistent with the concept of 526 

bivalent domain in the stem cells. Last but not the least, we found high-score 527 

combinations that each include a factor of cohesion complex and a factor associated 528 

with repression of transcription, such as the combination of CTCF and H3K27me3, 529 

which we found later is also very important for the cell identity regulation. 530 

 531 
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Taken together, through MACMIC analysis, we find that CTCF plays an important role in 532 

the epigenetic regulation of cell identity. Further analysis suggests that CTCF is 533 

important for the regulation of both enhancer signals and repressive signals at the CSEs 534 

in a cell-type specific manner. Although our analysis focused on the colocalization of 535 

enhancer signal with the other chromatin features, MACMIC analysis has great potential 536 

to identify many other novel biologically significant colocalizations between chromatin 537 

features that have low global correlation across the genome. With the increased usage 538 

of sequencing technologies, more potential feature pairs can be identified. This will 539 

provide opportunities in the future to further understand the function of chromatin in 540 

transcription, replication, DNA repairs and many other biological processes. 541 

 542 
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Figure 3. CTCF-associated super-enhancers mark cell identity genes. (A-B) Individual
pathways enriched in CSEs or OSEs genes in HUVECs (A) or neural cells (B). (C-D) ChIP-Seq
signals for H3K27ac and CTCF at CSE gene NR2F2 and OSE gene ARF1 in HUVECs (C) and
CSE gene FOXG1 and OSE gene PON1 in neural cells (D). (E-F) The number of transcription
factors within each gene group (E) and the number of network edges within each gene group (F)
in 15 human primary cell types. Error bars indicate the standard deviation across cell types.
Each gene group was defined to have the same number of genes. P values were determined by
Wilcoxon test in comparison to the control group. (G) Heatmap to show -log10 enrichment P
values of cell type related pathways (rows) in CSEs genes (top panel) or OSEs genes (bottom
panel) defined in each cell type (columns).
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Figure 4. CTCF is linked to the activation of enhancers. (A) Box plot to show RNA
expressions of HUVEC (left panel) and neural cell (right panel) CSEs genes and OSEs genes in
cell types that defined them. (B) Box plot to show RNA expressions of CSE genes (top panels)
and OSE genes (bottom panels) in neural cell, HUVEC, and H1-hESC. CSEs and OSEs were
defined in HUVEC (left panels) or neural cells (right panels) (C) H3K27ac signals at HUVEC
(left panel) and neural cell (right panel) CSEs genes, OSEs genes, and control genes in the cell
type that defined these gene groups. (D) H3K27ac signals at CSE genes (top panels) and OSE
genes (bottom panels) in HUVEC, H1-hESC, and neural cells. CSEs and OSEs were defined in
HUVEC (left panels) or neural cells (right panels). (E) Pie charts to show binding status of
CTCF at HUVEC CSEs in neural cells or embryonic stem cells (top left), binding status of
CTCF at neural cell CSEs in HUVEC or embryonic stem cells (top right), H3K27ac status at
HUVEC CSEs in neural cells or embryonic stem cells (bottom left), and H3K27ac status at
neural cell CSEs in HUVEC or embryonic stem cells (bottom right). (F) Barplot to show –log10
enrichment P values of CSE genes or OSE genes in the genes up or down regulated by shCTCF
in HeLa cells. P values were determined by Wilcoxon test (A, B, E, F).
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Figure 5

NR2F2

Control

CTCF KD

Recovery

Control

CTCF KD

Recovery

C
T

C
F

H
3K

27
m

e3

FOXG1

0-200

0-200

0-200

0-180

0-180

0-180

C

HUVEC CSE and OSE

0

2

4

6

-3 0 3 6

0

5

10

15

20

-3 0 3 6
Distance to TSS (kb)

A
H

U
V

E
C

 
H

3K
27

m
e3

N
eu

ra
l c

el
l 

H
3K

27
m

e3

Neural cell CSE and OSE

0

5

10

-3 0 3 6

0

2

4

6

8

-3 0 3 6
Distance to TSS (kb)

B D

H
3K

27
m

e3
 w

id
th

 (
kb

)

co
nt

ro
l

C
T

C
F

 K
D

re
co

ve
ry

500

C
T

C
F

 p
ea

k 
he

ig
ht

HUVEC CSE in ESC

P 5.0 x 1-3

P 0.29

P 1.7 x 1-7

P 0.62

lo
g2

 o
f 

ex
pr

es
si

on

P 6.6 x 1-4

P 0.04

E

H
3K

27
m

e3
 w

id
th

 (
kb

)

Neural cell CSE in ESC

P 2.3 x 1-3

P 0.23

P 2.2 x 1-9

P 0.46

lo
g2

  
ex

pr
es

si
on

P 0.04

P 0.25

C
T

C
F

 p
ea

k 
he

ig
ht

CSE

OSE

Control

0

5

10

15

-3 0 3 6

E
S

C
 H

3K
27

m
e3

0

5

10

15

-3 0 3 6

Figure 5. CTCF regulates cell identity by facilitating the suppressive marker H3K27me3.
(A-B) H3K27me3 signals in H1-hESC, neural cell and HUVECs at CSE genes, OSE genes and
control genes defined in HUVECs (A) and neural cells (B). (C) ChIP-Seq signals for CTCF and
H3K27me3 in mESC at the HUVEC CSE gene NR2F2 (left) and the neural CSE gene FOXG1
(right). (D-E) Box plot to show the heights of CTCF ChIP-Seq enrichment peaks, the widths of
H3K27me3 enrichment domains, and the RNA expressions of CSE genes of HUVECs (D) and
CSE genes of neural cells (E) under different conditions in embryonic stem cells. P values were
determined by Wilcoxon test.
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