1	Title
2	Is there a genetic correlation between movement and
3	immobility in field populations of a beetle?
4	
5	Kentarou Matsumura ¹
6	Takahisa Miyatake ²
7	
8	1. Graduate School of Agriculture, Kagawa University, Kagawa, Japan
9	2. Graduate School of Environmental and Life Science, Okayama University,
10	Okayama, Japan
11	
12	Corresponding author:
13	Kentarou Matsumura
14	E-mail: <u>ag20110@s.okayama-u.ac.jp</u>
15	Tell: +81-80-1796-8803
16	
17	Abstract

18	Genetic correlations among behavioural traits are often controlled by pleiotropic genes.
19	Many studies suggest the existence of genetic correlations among behavioural traits
20	based on artificial selection experiments in the laboratory. However, few studies have
21	examined whether behavioural correlations in the laboratory are maintained in the field,
22	where natural selection works. Artificial selection experiments showed a behavioural
23	correlation among death feigning, walking movement, and locomotor activity in the red
24	flour beetle (Tribolium castaneum). This study investigated whether this behavioural
25	correlation is observed in wild <i>T. castaneum</i> populations. We also collected beetles from
26	various regions in Japan and investigated the geographic variation in these traits. There
27	was geographic variation in the three behavioural traits. However, these behavioural
28	traits were not correlated. The results suggest that the genetic correlations among
29	behavioural traits are not maintained in the field. Therefore, the results derived from
30	laboratory experiments may be overestimated. The same correlation between traits was
31	not believed to arise in the field, as the indoor results may have been caused by
32	unrealistic selection pressures. Further laboratory and field investigations are both
33	needed.

34

35 Keyword: behavioural correlation, genetic correlation, death feigning, moving,

36 locomotor activity, geographic variation

37

38 Introduction

Animal behaviours are often correlated with other behavioural traits due to 39 environmental and genetic factors (Lande, 1979; Lande & Arnold, 1983; Bell, 2005). 40 41 Correlations among behavioural traits by genetic factors (i.e., genetic correlation) are often controlled by pleiotropic genes (Lande, 1979; Lande & Arnold, 1983; Bell, 2005). 42 43 If a correlation among behavioural traits has a genetic basis when natural selection 44 favors a behaviour, other behavioural traits genetically correlated with the behavioural 45 trait may also evolve, even if the correlated behaviours decrease fitness. This may 46 decrease the variation in behavioural traits. That is, a genetic correlation among 47 behavioural traits may maintain the variation in behavioural traits within a population. 48 Therefore, studies of genetic correlations among behavioural traits are important in 49 behavioural ecology. 50 Artificial selection is an experimental method that examines genetic correlations

among behavioural traits (Hill & Caballero, 1992; Garland Jr & Carter, 1994). When behavioural traits respond to artificial selection for another behavioural trait, the relationship among these behavioural traits may be genetic (Falconer & Mackay, 1996).

54	Many artificial selection experiments have examined animal behaviours. For example,
55	risk-taking behaviour in the great tit, Parus major was correlated with artificial
56	selection for exploration behaviour (van Oers, Drent, de Goede, & van Noordwijk,
57	2004). In the adzuki bean beetle, Callosobruchus chinensis, when the duration of
58	death-feigning behaviour, which may be adaptive anti-predator behaviour, is selected
59	artificially, flight activity responds negatively as a correlated trait (Ohno & Miyatake,
60	2007). However, because the pressure due to artificial selection may not occur in the
61	field, these studies may have overestimated the correlations among behavioural traits.
62	Therefore, comparative investigations using wild populations, not only artificial
63	selection, are important to explain the evolution of correlations among behavioural
64	traits.
65	Wild populations may be under many selection pressures compared with
66	populations selected artificially (Mousseau, Sinervo, & Endler, 2000). If the genetic
67	correlation among behavioural traits is controlled by pleiotropic genes, this behavioural
68	correlation may be observed in wild populations. However, few studies have
69	investigated behavioural correlations using both artificial selection and wild populations
70	(but see Ohno & Miyatake, 2007).

71	The intensity and direction of selection pressure may differ among
72	geographically different populations. Geographic variation in morphological and
73	life-history traits has been observed in many species (e.g., Bergmann, 1848;
74	Blanckenhorn & Demont, 2004; Blanckenhorn, Stillwell, Young, Fox, & Ashton, 2006).
75	Furthermore, many studies have reported geographic variation in behavioural traits
76	(e.g., Lankinen, 1986; Foster & Endler, 1999; Mathias, Jacky, Bradshaw, & Holzapfel,
77	2005; Lankinen & Forsman, 2006). Therefore, if the relationship among behavioural
78	traits is genetic, geographic variation may also be observed in the behavioural
79	correlation. However, few studies have investigated behavioural correlations in various
80	wild populations.
80 81	wild populations. In this study, we examined the red flour beetle <i>Tribolium castaneum</i> , a common
81	In this study, we examined the red flour beetle <i>Tribolium castaneum</i> , a common
81 82	In this study, we examined the red flour beetle <i>Tribolium castaneum</i> , a common cereal storage pest worldwide (Sokoloff, 1977). Previous studies induced artificial
81 82 83	In this study, we examined the red flour beetle <i>Tribolium castaneum</i> , a common cereal storage pest worldwide (Sokoloff, 1977). Previous studies induced artificial selection on two behavioural traits in <i>T. castaneum</i> : death-feigning behaviour and
81 82 83 84	In this study, we examined the red flour beetle <i>Tribolium castaneum</i> , a common cereal storage pest worldwide (Sokoloff, 1977). Previous studies induced artificial selection on two behavioural traits in <i>T. castaneum</i> : death-feigning behaviour and moving ability (Miyatake, Katayama, Takeda, Nakashima, Sugita, & Mizumoto, 2004;
81 82 83 84 85	In this study, we examined the red flour beetle <i>Tribolium castaneum</i> , a common cereal storage pest worldwide (Sokoloff, 1977). Previous studies induced artificial selection on two behavioural traits in <i>T. castaneum</i> : death-feigning behaviour and moving ability (Miyatake, Katayama, Takeda, Nakashima, Sugita, & Mizumoto, 2004; Matsumura & Miyatake, 2015). Miyatake, Katayama, Takeda, Nakashima, Sugita, &

89	with the jumping spider, Hasarius adansoni. Moreover, individuals from the LD strain
90	were significantly less mobile than the SD strain (Miyatake, Tabuchi, Sasaki, Okada,
91	Katayama, & Moriya, 2008b). Matsumura and Miyatake (2015) artificially selected
92	moving ability and established higher (HM) and lower (LM) mobility strains.
93	Individuals from the HM strain had significantly shorter death feigning and greater
94	locomotor activity than the LM strain (Matsumura, Sasaki, & Miyatake, 2016). These
95	studies suggested that the relationship among death feigning, moving ability, and
96	locomotor activity is genetic in <i>T. castaneum</i> . The relationship among these behavioural
97	traits was also demonstrated in Tribolium confusum (Nakayama, Nishi, & Miyatake,
98	2010; Nakayama, Sasaki, Matsumura, Lewis, & Miyatake, 2012) and C. chinensis
99	(Ohno & Miyatake, 2007; Nakayama & Miyatake, 2010) in artificial selection
100	experiments. If these three behavioural traits are correlated genetically, such
101	correlations may be observed in wild insect populations and geographic variation might
102	be found in nature. Therefore, in this study, we measured the death feigning, moving
103	ability, and locomotor activity of T. castaneum in wild populations at 36 locations in
104	Japan. To investigate the role of genetic factors in the behavioural correlations, we used
105	wild populations maintained for at least two generations after collection from the field.
106	We investigated whether the behavioural correlation was observed in wild populations.

107

Materials & Methods 108

109 Insect

110	Tribolium castaneum was collected at 36 locations in Japan (Fig. 1). Table S1 shows the
111	latitude and longitude of each. The northernmost is Aomori (40°89 N, 140°46 E) and
112	the southernmost is Okinawa (26°25 N, 127°69 E) (Appendix Table A1). Collection
113	was done in 2016 and 2017. Each beetle was reared in an incubator (Sanyo, Tokyo,

- Japan) maintained 25°C and 16L:8D light cycle (light on at 07:00, off at 23:00). Food is 114
- a mixture of whole meal (Nisshin Seifun, Tokyo, Japan) with brewer's yeast (Asahi 115
- Beer, Tokyo). 116
- 117

118 Measurements of each behavioural trait

We measured frequency and duration of death feigning of T. castaneum, in 119 accordance with Miyatake, Katayama, Takeda, Nakashima, Sugita, & Mizumoto (2004). 120 121 Virgin males and females (21-28 days old) were randomly collected from each wild 122population. When the beetle shows death-feigning behaviour by touching the beetle's 123 abdomen with a stick, we measured the duration with a stopwatch (the duration was 124 defined as the time until detecting its first visible movement). If the beetle did not show

125	death feigning, the stimuli was repeated up to three times. Details of the methods for
126	observation of death feigning are described in Miyatake, Katayama, Takeda,
127	Nakashima, Sugita, & Mizumoto (2004).
128	Walking distance as the moving ability of <i>T. castaneum</i> was measured using an image
129	tracker system (Digimo, Osaka, Japan), in accordance with Matsumura and Miyatake
130	(2015). Virgin beetles (21-28 days old) were collected from each population and
131	measured walking distance. The moving behaviour were recorded for 30 min, and
132	measure the walking distance of each beetle on the recorded image, we used analysis
133	software (2D-PTV Ver. 9.0, Digimo, Osaka, Japan). Details of the methods for
134	measurement of moving ability are described in Matsumura and Miyatake (2015).
135	To measurement of locomotor activity, virgin males and females (21-28 days old)
136	were randomly collected from each wild population, and measured locomotor activity
137	used by an infrared actograph system. When the beetle passed the midpoint of the dish,
	used by an initiated actograph system. When the beete passed the initipoint of the dish,
138	the infrared light between emitter and detector device (E3R-5E4/R2E4DS30E4; Omron,
138 139	
	the infrared light between emitter and detector device (E3R-5E4/R2E4DS30E4; Omron,
139	the infrared light between emitter and detector device (E3R-5E4/R2E4DS30E4; Omron, Kyoto, Japan) was interrupted. We measured the number of interruptions of the infrared

143 Miyatake (2016).

144

145 Statistical analysis

Death-feigning duration (+ 1 s) and moving ability (+ 1 mm) were analyzed using a 146 147generalized linear model (GLM) with gamma distribution, and population, sex, and the 148interaction between population and sex as experimental variables. The frequencies of death feigning and locomotor activity were analyzed by GLMs with binomial and 149 Poisson distributions, respectively. To analyze the relationship between duration of 150 151death feigning and moving ability within individual level, we used GLM with gamma distribution, and duration of death feigning as a dependent variable, and moving ability 152153and population as experimental variables. Because individuals used measurement of 154locomotor activity are differed with individuals used measurement of death feigning and 155 moving ability, we did not analysis of relationship between death feigning and 156locomotor activity, and moving and locomotor activity within individual. To analyze the 157 relationship between death feigning, moving ability, and locomotor activity inter 158 populations, we used Spearman's rank correlation coefficient for mean values of three behavioural traits in each wild population. To analyze the effects of latitude and 159160 longitude on mean values of each behavioural trait, we used analysis of covariance

- 161 (ANCOVA) with population, sex, and the interaction between the two as covariates. All
- analyses were done using R ver. 3.4.3 (R Core Team, 2017).
- 163
- 164 Ethical Note
- The laboratory population of *T. castaneum* used in this study have maintained at Okayama University for over 15 years. This population has been maintained on whole meal flour with yeast (see Miyatake et al. 2004). We reared this population at 25 °C, which resemble natural conditions for this insect. All animals in the study were handled more carefully. The use of these animals conforms to the Animal Ethics Policy of Okayama University.
- 171

172 **Results**

Figure 2 shows the duration and frequency of death-feigning behaviour. Figure 3 shows the moving ability and locomotor activity. Table 1 shows the mean values of each behaviour. Death-feigning duration differed significantly among wild populations, but not the sexes (Fig. 2a, Table 2). The frequency of death feigning also differed significantly among wild populations, and was significantly more frequent in males (Fig. 2b, Table 2). Moving ability differed significantly among wild populations, but not

179	the sexes (Fig. 3a, Table 2). Locomotor activity differed significantly among wild
180	populations, and females were significantly more active than males (Fig. 3b, Table 2).
181	The interaction between wild population and sex was not significant in any behavioural
182	trait (Table 2). Appendix Figure A1 shows the relationship between latitude and each
183	behavioural trait. There were no significant associations between latitude and each
184	behavioural trait (Table 3). Appendix Figure A2 shows the relationship between
185	longitude and each behavioural trait. There were no significant associations between
186	longitude and each behavioural trait (Table 3). Duration of death feigning did not show
187	significantly correlated with moving ability within individual level ($\chi^{2}_{1,1044} = 3.80$, $p =$
188	0.05112). In inter population level, no behaviour was significantly correlated with
189	another (Table 4).

190

191 Discussion

This study found geographic variation in death-feigning, moving ability, and locomotor activity among 36 wild populations collected in Japan (Figs. 2, 3). Because we used each population maintained at the laboratory for at least two generations, these behavioural differences among populations may be caused by genetic factors, rather than environmental or maternal factors. Moreover, the geographic variation suggests

197	that the selection pressures on the three behaviours differ among wild populations.
198	However, although previous studies suggested genetic correlations among the three
199	behaviours in artificial selection experiments, we did not find any correlations among
200	the three behaviours in the wild populations (Fig. 4). This suggests that the intensity of
201	the relationships among these behavioural traits is lower in the field, even if the genetic
202	correlations were shown by artificial selection.
203	First, we discuss the results for the death-feigning behaviour. Prohammer and
204	Wade (1981) reported geographic variation in death-feigning behaviour among
205	populations from Spain, Japan, and USA. Our results are in accord regarding
206	geographic variation in the duration of death feigning (Prohammer & Wade, 1981). We
207	also found that geographic variation in death feigning was seen over a relatively narrow
208	range compared with Prohammer & Wade (1981).
209	We considered three hypotheses to explain the death-feigning behaviour results.
210	The first is the difference in predation pressure on each wild population. Death feigning
211	is an adaptive anti-predator behaviour (Humphreys & Ruxton, 2018). However, the
212	optimum death-feigning duration may be affected by predator type or density. In the
213	great tit Parus major, the egg ejection rate showed geographic variation, and this pattern

214 matched the geographic pattern of parasitism risk (Liang et al., 2016). In *T. castaneum*,

215	individuals with longer death-feigning duration increase their survival rate in encounters
216	with predators (Miyatake, Katayama, Takeda, Nakashima, Sugita, & Mizumoto, 2004).
217	Similarly, the optimum death-feigning duration may be altered by the density of
218	predators. For example, individuals with longer death-feigning duration may increase
219	the survival rate in places under higher predation pressure, whereas individuals with a
220	shorter duration of this behaviour may increase foraging or reproductive success at
221	places with lower predation pressure (Nakayama & Miyatake, 2010a, b). Moreover,
222	differences in the type of predation may affect the evolution of this behaviour (Honma,
223	Oku, & Nishida, 2006). For example, individuals with longer death-feigning duration
224	may increase their survival rate when encountering active-hunting predators, whereas
225	they may decrease the survival rate when encountering sit-and-wait predators (Honma,
226	Oku, & Nishida, 2006). Therefore, in locations with sit-and-wait predators, shorter
227	death-feigning duration may evolve. Populations with longer death-feigning duration
228	might suffer predation pressure by active hunting predators, whereas populations with
229	shorter death feigning might suffer predation pressure by sit-and-wait predators. Ohno
230	& Miyatake (2007) also reported geographic variation in the duration of death feigning
231	in C. chinensis, and suggested that this geographic variation was a result of differences

in predation pressure among these wild populations. Future studies should investigatethe density and type of predators.

234	The second hypothesis is the effects of prey density. In T. castaneum, the
235	optimal death-feigning duration may depend on the conspecific density. Miyatake,
236	Nakayama, Nishi, & Nakajima (2009) reported that beetles with longer death-feigning
237	duration had a higher survival rate in the presence of non-feigners or prey of a different
238	species, compared to when alone, confirming the selfish-prey hypothesis. The prey
239	density might have important effects on death-feigning behaviour. Conspecific or
240	heterospecific density in populations with longer death-feigning durations may be
241	higher, whereas it may be lower in populations with shorter death-feigning durations.
242	Studies need to investigate the effects of population density.
242 243	Studies need to investigate the effects of population density. The third hypothesis is founder effects on the behaviour. The founder effect, <i>i.e.</i> ,
243	The third hypothesis is founder effects on the behaviour. The founder effect, <i>i.e.</i> ,
243 244	The third hypothesis is founder effects on the behaviour. The founder effect, <i>i.e.</i> , the loss of genetic variation when a new population is established by a small number of
243 244 245	The third hypothesis is founder effects on the behaviour. The founder effect, <i>i.e.</i> , the loss of genetic variation when a new population is established by a small number of individuals (Templeton, 1980), is found in animal behaviour (Suarez, Tsutui, Holway,
243 244 245 246	The third hypothesis is founder effects on the behaviour. The founder effect, <i>i.e.</i> , the loss of genetic variation when a new population is established by a small number of individuals (Templeton, 1980), is found in animal behaviour (Suarez, Tsutui, Holway, & Case, 1999). In populations with longer death-feigning duration, populations may

250Campbell, Beeman, Lorenzen, Whitworth, & Sloderbeck, 2012), another suggested that 251 gene flow often occurs over a wide range in T. castaneum (Ridley, Hereward, Daglish, Raghu, Collins, & Walter, 2011). Additional studies should investigate genetic 252differences among wild populations. 253

254 Moving ability and locomotor activity also showed geographic variation among 255wild populations in T. castaneum. A previous study revealed that T. castaneum with 256genetically higher moving ability had a lower survival rate when predators were present (Matsumura & Miyatake, 2015). Similarly, individuals with higher locomotor activity 257 258 are considered at increased risk of predation in many animals (Sih, Bell, & Johnson, 2004; Réale, Reader, Sol, McDougall, & Dingemanse, 2007). Therefore, predation 259260pressure on moving ability and locomotor activity may also differ among wild 261 populations, as with death-feigning behaviour. Moreover, moving ability affects 262reproductive success, and there was a trade-off between survival rate and reproductive 263 success between strains selected for higher and lower moving ability in T. castaneum 264 (Matsumura & Miyatake, 2015, 2018a; Matsumura, Archer, Hosken, & Miyatake, 2652019). Therefore, these behavioural traits may be affected by balancing selection between predation avoidance and reproduction among wild populations. Moving ability 266 267 seems to be similar to locomotor activity and vice versa. Nevertheless, these behaviours

268	were not significantly correlated. These results suggest that these behaviours evolved
269	independently in the field. In the parasitoid wasp Leptopilina heterotoma, geographic
270	variation was found in locomotor activity (Fleury, Allemand, Fouillet, & Boulétreau,
271	1995). Furthermore, some insect studies reported that the circadian rhythm of locomotor
272	activity showed geographic variation, with a clear rhythm at lower latitudes and no
273	rhythmic activity at higher latitudes (e.g., Fleury, Allemand, Fouillet, & Boulétreau,
274	1995; Joshi, 1999). Additional studies should investigate the circadian rhythm of T.
275	castaneum in each wild population.

Although this study revealed geographic variation in three behavioural traits, 276 these behavioural traits did not show latitudinal or longitudinal clines (Appendix Figs. 277 278A1, A2). In the medaka Oryzias latipes complex, courtship behaviour by males and 279 female preference for males showed latitudinal variation such that populations from lower latitudes showed greater intensity of these behaviours (Fujimoto, Miyake, & 280 Yamahira, 2015). These results suggest that because the reproductive season is 281 282 relatively shorter at lower latitudes, a latitudinal cline develops in the operational sex 283ratio among wild populations, which ultimately results in a latitudinal cline in sexual 284 selection pressures (Fujimoto, Miyake, & Yamahira, 2015). Therefore, the intensity or 285direction of selection pressure on the behavioural traits may differ among wild

286	populations from various latitudes. Moreover, some studies reported that individuals
287	had a significantly longer death-feigning duration under lower temperatures than under
288	higher temperatures in other insect species (Holmes, 1906; Miyatake, Okada, & Harano,
289	2008a). However, we did not find a latitudinal or longitudinal cline in death-feigning
290	behaviour. That is, the effects of temperature on death feigning may be relatively
291	smaller in <i>T. castaneum</i> , at least, within the temperature range examined in this study.
292	Furthermore, moving ability and locomotor activity did not show latitudinal or
293	longitudinal clines, which also suggested that environmental factors, such as
294	temperature, do not affect these behavioural traits in this beetle.
295	Although the three behavioural traits showed geographic variation among the
295 296	Although the three behavioural traits showed geographic variation among the wild populations, we did not find a significant correlation among these behaviours (Fig.
296	wild populations, we did not find a significant correlation among these behaviours (Fig.
296 297	wild populations, we did not find a significant correlation among these behaviours (Fig.4). Some artificial selection studies in laboratories suggested a genetic correlation
296 297 298	wild populations, we did not find a significant correlation among these behaviours (Fig.4). Some artificial selection studies in laboratories suggested a genetic correlation among death-feigning, moving ability, and locomotor activity in some insects (Ohno &
296 297 298 299	 wild populations, we did not find a significant correlation among these behaviours (Fig. 4). Some artificial selection studies in laboratories suggested a genetic correlation among death-feigning, moving ability, and locomotor activity in some insects (Ohno & Miyatake, 2007; Miyatake, Tabuchi, Sasaki, Okada, Katayama, & Moriya, 2008b;
296 297 298 299 300	 wild populations, we did not find a significant correlation among these behaviours (Fig. 4). Some artificial selection studies in laboratories suggested a genetic correlation among death-feigning, moving ability, and locomotor activity in some insects (Ohno & Miyatake, 2007; Miyatake, Tabuchi, Sasaki, Okada, Katayama, & Moriya, 2008b; Nakayama & Miyatake, 2010; Nakayama, Nishi, & Miyatake, 2010; Nakayama, Sasaki,

304	these behaviours. The results suggest that the intensity of the genetic correlations among
305	each behaviour may be relatively lower in T. castaneum. Previous studies reported that
306	moving ability and locomotor activity showed correlated responses to artificial selection
307	for death-feigning behaviour for over 10 generations (Ohno & Miyatake, 2007;
308	Miyatake, Tabuchi, Sasaki, Okada, Katayama, & Moriya, 2008b; Nakayama, Nishi, &
309	Miyatake, 2010). Moreover, death-feigning and locomotor activity showed correlated
310	responses to artificial selection for moving ability for more than 15 generations
311	(Matsumura, Fuchikawa, & Miyatake, 2016). If the intensity of the genetic correlations
312	among these behaviours is relatively low, these correlations may be difficult to observe
313	in the field. Alternatively, the artificial selection pressure may be of abnormal intensity
314	compared with the field. For example, although beetles from strains selected artificially
315	for longer death-feigning duration feigned death for up to 1,000 seconds (Miyatake,
316	Katayama, Takeda, Nakashima, Sugita, Mizumoto, & Miyatake, 2004; Matsumura &
317	Miyatake, 2018b), few beetles feigned death this long in the wild populations (Fig. 2a).
318	Another study reported that the duration of death feigning was correlated with flight
319	activity within and among wild populations in C. chinensis (Ohno & Miyatake, 2007).
320	Therefore, the intensity of the relationship between behaviours may differ among
321	behaviours or species. Similar investigations of other behaviours or species are required.

322	In conclusion, a genetic correlation seen in artificial selection experiments in the
323	laboratory among behavioural traits may not always be observed in the field. This is
324	because the selection pressure due to artificial selection may be abnormal. This suggests
325	that artificial selection may lead to overestimation of the results. Therefore, to study the
326	evolution of genetic correlations in behavioural traits, behavioural ecologists should
327	examine the relationships among behavioural traits using both artificial selection and
328	wild populations.
329	
330	Acknowledgement
331	We thanks to Mr. Yusuke Tsushima and Kohei Nakao for collection of T. castaneum in
332	Aomori and Hyogo prefectures. This work was supported by a grant from the Japan
333	Society for the Promotion of Science KAKENHI 26291091, 16K14810, 17H05976 and
334	18H02510 to TM.
335	
336	Reference list
337	1. Bell, A. M. (2005). Behavioral differences between individuals and two populations
338	of stickleback (Gasterosteus aculeatus). Journal of Evolutionary Biology, 18,
339	464-473. doi:10.1111/j.1420-9101.2004.00817.x

340 2. Bergmann, C. (1848). Uber die Verhaltnisse der Warmeokono□mie der Thiere zu

- ihrer Grosse. Gottinger Stud, 1, 595–708.
- 342 3. Blanckenhorn, W. U., Stillwell, R. C., Young, K. A., Fox, C. W., & Ashton, K. G.
- 343 (2006). When rensch meets bergmann: Does sexual size dimorphism change
- 344 systematically with latitude? Evolution, 60, 2004–2011.
- 345 doi:10.1111/j.0014-3820.2006.tb01838.x
- 346 4. Blanckenhorn, W. U., & Demont, M. (2004). Bergmann and converse Bergmann
- 347 latitudinal clines in arthropods: Two ends of a continuum? Integrative and
- Comparative Biology, 44, 413–424. doi:10.1093/icb/44.6.413
- 5. Semeao, A.A., Campbell, J. F., Beeman, R. W., Lorenzen, M. D., Whitworth, R. J.,
- 350 & Sloderbeck, P. E. (2012). Genetic structure of *Tribolium castaneum* (Coleoptera:
- 351 Tenebrionidae) populations in mills. Environmental Entomology, 41, 188–199.
- 352 doi:10.1603/EN11207
- 353 6. Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics.
- 354 4thed. Harlow, Essex: Longman.
- 7. Fleury, F., Allemand, R., Fouillet, P., & Boulétreau, M. (1995). Genetic variation in
- 356 locomotor activity rhythm among populations of Leptopilina heterotoma
- 357 (Hymenoptera: Eucoilidae), a larval parasitoid of Drosophila species. Behavior

358 Genetics, 25, 81-89. doi:10.1007/BF02197245

- 8. Foster, S. A., & Endler, J. A. (1999). Geographic variation in behavior. Oxford
 University Press.
- 361 9. Fujimoto, S., Miyake, T., & Yamahira, K. (2015). Latitudinal variation in male
- 362 competitiveness and female choosiness in a fish: are sexual selection pressures
- 363 stronger at lower latitudes? Evolutionary Biology, 42, 75-87.
- 364 doi:10.1007/s11692-014-9300-9
- 10. Garland, Jr. T., & Carter, P. A. (1994). Evolutionary physiology. Annual Review of
- 366 Physiology, 56, 579-621. doi:10.1146/annurev.ph.56.030194.003051
- 367 11. Hill, W. G., & Caballero, A. (1992). Artificial selection experiments. Annual
- 368 Review of Ecology, Evolution, and Systematics, 23, 287-310.
- 369 doi:10.1146/annurev.es.23.110192.001443
- 12. Holmes, J. S. (1906). Death-feigning in Ranatra. Journal of Comparative
- 371 Neurology and Psychology, 16, 200-216. doi:10.1002/cne.920160305
- 13. Honma, A., Oku, S., & Nishida, T. (2006). Adaptive significance of death feigning
- 373 posture as a specialized inducible defence against gape-limited predators.
- ³⁷⁴ Proceedings of the Royal Society B, 273, 1631-1636. doi:10.1098/rspb.2006.3501
- 375 14. Joshi, D. S. (1999). Latitudinal variation in locomotor activity rhythm in adult

376 Drosophila ananassae. Canadian Journal of Zoology, 77, 865-870. 377 doi:10.1139/z99-051

- 15. Humphreys, R. K., & Ruxton, G. D. (2018). A review of thanatosis (death feigning)
- as an anti-predator behavior. Behavioral Ecology and Sociobiology, 72, 22.
 doi:10.1007/s00265-017-2436-8
- 16. Lande, R. (1979). Quantitative genetic analysis of multivariate evolution, applied to
- 382 brain: body size allometry. Evolution, 33, 402-416.
 383 doi:10.1111/j.1558-5646.1979.tb04694.x
- 384 17. Lande, R., & Arnold, S. (1983). The measurement of selection on correlated

385 characters. Evolution, 37, 1210-1226. doi:10.1111/j.1558-5646.1983.tb00236.x

- 386 18. Lankinen, P. (1986). Geographical variation in circadian eclosion rhythm and
- 387 photoperiodic adult diapause in *Drosophila littoralis*. Journal of Comparative
- 388 Physiology A, 159, 123-142. doi:10.1007/BF00612503
- 19. Lankinen, P. F., & Forsman, P. (2006). Independence of genetic geographical
- 390 variation between photoperiodic diapause, circadian eclosion rhythm, and Thr-Gly
- 391 repeat region of the period gene in *Drosophila littoralis*. Journal of Biological
- 392 Rhythms, 21, 3-12. doi:10.1177/0748730405283418
- 20. Liang, W., Møller, A. P., Stokke, B. G., Yang, C., Kovařík, P., Wang, H., Yao, C. T.,

394		Ding, P., Lu, X., Moksnes, A., Røskaft, E., & Grim, T. (2016). Geographic variation
395		in egg ejection rate by great tits across 2 continents. Behavioral Ecology, 27,
396		1405-1412. doi:10.1093/beheco/arw061
397	21.	Mathias, D., Jacky, L., Bradshaw, W. E., & Holzapfel, C. M. (2005). Geographic
398		and developmental variation in expression of the circadian rhythm gene, timeless,
399		in the pitcher-plant mosquito, Wyeomyia smithii. Journal of Insect Physiology, 51,
400		661-667. doi:10.1016/j.jinsphys.2005.03.011
401	22.	Matsumura, K., Fuchikawa, T., & Miyatake, T. (2017). Decoupling of behavioral
402		trait correlation across life stages in two holometabolous insects. Behavior Genetics,
403		47, 459-467. doi:10.1007/s10519-017-9847-1
404	23.	Matsumura, K., & Miyatake, T. (2015). Differences in attack avoidance and mating
405		success between strains artificially selected for dispersal distance in Tribolium
406		castaneum. PLoS ONE, 10(5), e0127042. doi:10.1371/journal.pone.0127042
407	24.	Matsumura, K., & Miyatake, T. (2018a). Costs of walking: differences in egg size
408		and starvation resistance of females between strains of the red flour beetle
409		(Tribolium castaneum) artificially selected for walking ability. Journal of
410		Evolutionary Biology, 31, 1632-1637. doi:10.1111/jeb.13356
411	25.	Matsumura, K., & Miyatake, T. (2018b). Responses to relaxed and reverse selection

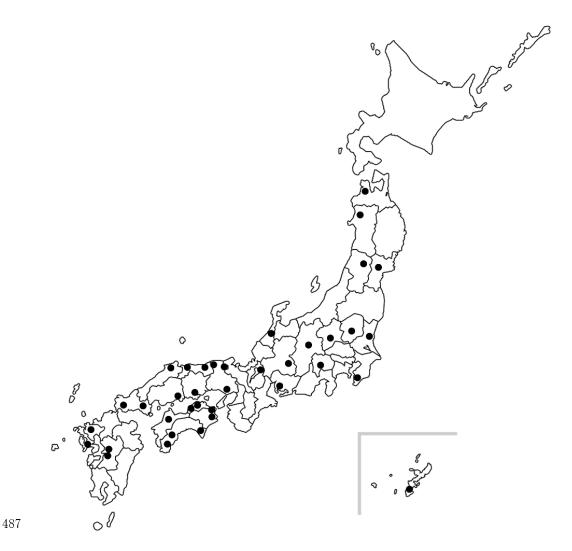
412		in strains artificially selected for duration of death-feigning behavior in the red flour
413		beetle, Tribolium castaneum. Journal of Ethology, 36, 161-168.
414		doi:10.1007/s10164-018-0548-x
415	26.	Matsumura, K., Sasaki, K., & Miyatake, T. (2016). Correlated responses in
416		death-feigning behavior, activity, and brain biogenic amine expression in red flour
417		beetle Tribolium castaneum strains selected for walking distance. Journal of
418		Ethology, 34, 97-105. doi:10.1007/s10164-015-0452-6
419	27.	Matsumura, K., Archer, C. R., Hosken, D. J., & Miyatake, T. (2019). Artificial
420		selection on walking distance suggests a mobility-sperm competitiveness trade-off.
421		Behavioral Ecology, 30, 1522-1529. doi:10.1093/beheco/arz110
422	28.	Miyatake, T. (2001). Diurnal periodicity of death-feigning in Cylas formicarius
423		(Coleoptera: Brentidae). Journal of Insect Behavior, 14, 421-432.
424		doi:10.1023/A:1011196420147
425	29.	Miyatake, T., Katayama, K., Takeda, Y., Nakashima, A., Sugita, A., & Mizumoto,
426		M. (2004). Is death-feigning adaptive? Heritable variation in fitness difference of
427		death-feigning behaviour. Proceedings of the Royal Society B, 271, 2293-2296.
428		doi:10.1098/rspb.2004.2858

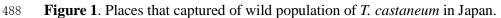
429 30. Miyatake, T., Nakayama, S., Nishi, Y., & Nakajima, S. (2009). Tonically

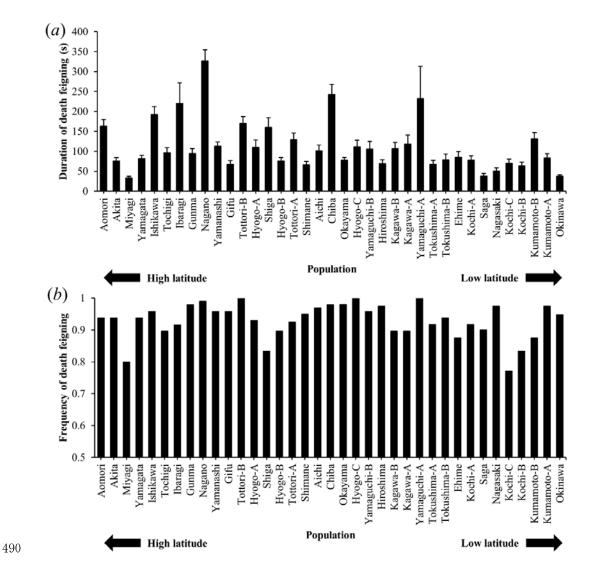
430		immobilized selfish prey can survive by sacrificing others. Proceedings of the
431		Royal Society B, 276, 2763-2767. doi:10.1098/rspb.2009.0558
432	31.	Miyatake, T., Okada, K., & Harano, T. (2008a). Negative relationship between
433		ambient temperature and death-feigning intensity in adult Callosobruchus
434		maculatus and Callosobruchus chinensis. Physiological Entomology, 33, 83-88.
435		doi:10.1111/j.1365-3032.2007.00607.x
436	32.	Miyatake, T., Tabuchi, K., Sasaki, K., Okada, K., Katayama, K., & Moriya, S.
437		(2008b). Pleiotropic antipredator strategies, fleeing and feigning death, correlated
438		with dopamine levels in Tribolium castaneum. Animal Behaviour, 75, 113-121.
439		doi:10.1016/j.anbehav.2007.04.019
440	33.	Mousseau, T. A., Sinervo, B., & Endler, J. A. (2000). Adaptive genetic variation in
441		the wild. Oxford University Press, USA.
442	34.	Nakayama, S., & Miyatake, T. (2010a). A behavioral syndrome in the adzuki bean
443		beetle: genetic correlation among death feigning, activity, and mating behavior.
444		Ethology, 116, 108-112. doi:10.1111/j.1439-0310.2009.01721.x
445	35.	Nakayama, S., & Miyatake, T. (2010b). Genetic trade-off between abilities to avoid
446		attack and to mate: a cost of tonic immobility. Biology Letters, 6, 18-20.
447		doi:10.1098/rsbl.2009.0494

448	36.	Nakayama, S., Nishi, Y., & Miyatake, T. (2010). Genetic correlation between
449		behavioral traits in relation to death-feigning behavior. Population Ecology, 52,
450		329-335. doi:10.1007/s10144-009-0188-7
451	37.	Nakayama, S., Sasaki, K., Matsumura, K., Lewis, Z., & Miyatake, T. (2012).
452		Dopaminergic system as the mechanism underlying personality in a beetle. Journal
453		of Insect Physiology, 58, 750-755. doi:10.1016/j.jinsphys.2012.02.011
454	38.	Ohno, T., & Miyatake, T. (2007). Drop or fly? Negative genetic correlation between
455		death-feigning intensity and flying ability as alternative anti-predator strategies.
456		Proceedings of the Royal Society B, 274, 555-560. doi:10.1098/rspb.2006.3750
457	39.	Prohammer, L. A., & Wade, M. J. (1981). Geographic and genetic variation in
458		death-feigning behavior in the red flour beetle, Tribolium castaneum. Behavior
459		Genetics, 11, 395-401. doi:10.1007/BF01070822
460	40.	R Core Team. (2017). R: A language and environment for statistical computing.
461	41.	Ridley, A. W., Hereward, J. P., Daglish, G. J., Raghu, S., Collins, P. J., & Walter, G.
462		H. (2011). The spatiotemporal dynamics of Tribolium castaneum (Herbst): adult
463		flight and gene flow. Molecular Ecology, 20, 1635-1646.
464		doi:10.1111/j.1365-294X.2011.05049.x
465	42.	Réale, D., Reader, S. M., Sol, D., McDougall, P. T., & Dingemanse, N. J. (2007).

466	Integrating ani	mal temperament	within ecology	and evolution.	Biological Reviews,
-----	-----------------	-----------------	----------------	----------------	---------------------

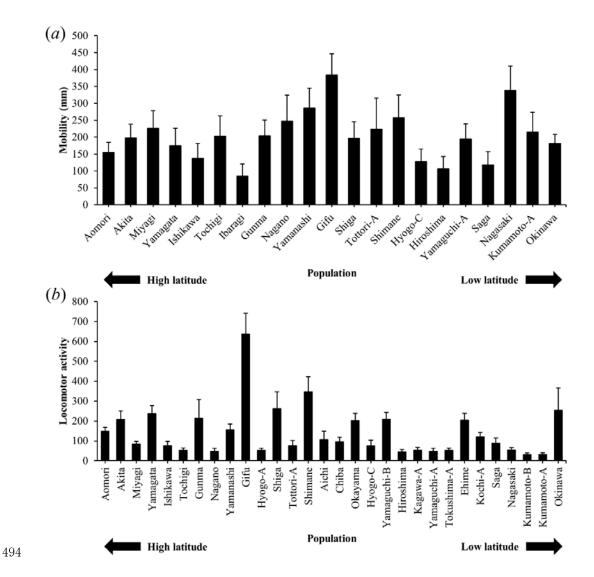

- 467 82, 291-318. doi:10.1111/j.1469-185X.2007.00010.x
- 468 43. Sih, A., Bell, A. M., & Johnson, J. C. (2004). Behavioral syndromes: an ecological
- and evolutionary overview. Trends in Ecology & Evolution, 19, 372-378.
- 470 doi:10.1016/j.tree.2004.04.009
- 471 44. Sokoloff, A. (1977). The biology of *Tribolium* with special emphasis on genetic
- 472 aspects. Volume 3. Clarendon Press, Oxford.
- 473 45. Suarez, A. V. S., Tsutui, N. D., Holway, D. A., & Case, T. J. (1999). Behavioral and
- 474 genetic differentiation between native and introduced populations of the argentine


475 ant. Biological Invasions, 1, 43–53. doi:10.1023/A:1010038413690

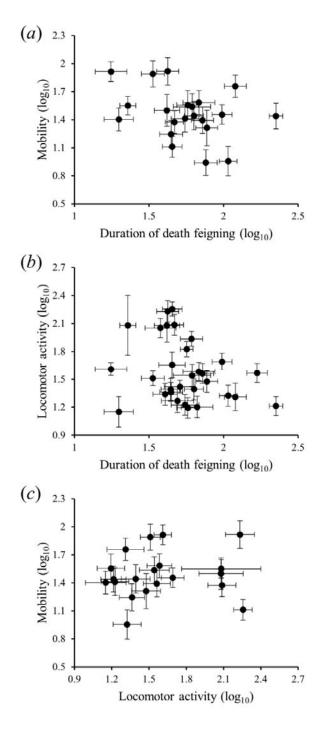

- 476 46. Templeton, A. R. (1980). The theory of speciation via the founder principle.
- 477 Gnetics,
- 478 **47**. **94**, 1011-1038.
- 479 48. van Oers, k., Drent, P. J., de Goede, P., & van Noordwijk, A. J. (2004). Realized
- 480 heritability and repeatability of risk-taking behaviour in relation to avian
- 481 personalities. Proceedings of the Royal Society B, 271, 65–73.
- 482 doi:10.1098/rspb.2003.2518

485 **Figure and Table**

486



491 **Figure 2**. Duration (a) and frequency (b) of death-feigning behaviour in each population.


⁴⁹² Error bars show SE.

495 Figure 3. Mobility (a) and locomotor activity (b) in each population. Error bars show

496 SE.

497

Figure 4. Relationship between duration of death feigning and walking speed or locomotor activity. Each point shows mean value of each population. Error bars show

504 **Table 1**. Mean and SE of each trait.

Trait	Male		Female		
	Mean ± SE	Ν	Mean \pm SE	Ν	
Duration of death feigning (s)	116.35 ± 5.26	1064	120.81 ± 6.31	1022	
Frequency of death feigning	0.94 ± 0.01	1064	0.92 ± 0.01	1022	
Walking distance (mm)	214.11 ± 17.49	533	184.63 ± 14.52	533	
Locomotor activity	95.52 ± 7.09	614	216.62 ± 19.82	605	

505

507 **Table 2**. Results of GLM for effects of population and sex on death feigning, walking

Trait	Factor	d.f.	χ^2	р
Duration of death feigning	Population	36	564.08	< 0.0001
	Sex	1	0.38	0.5368
	Population×sex	35	41.88	0.2308
	Error	2012		
Frequency of death feigning	Population	36	85.88	< 0.0001
	Sex	1	4.88	0.02713
	Population×sex	36	28.09	0.82391
	Error	2012		
Walking distanc	Population	20	31.92	0.04414
	Sex	1	1.39	0.2379
	Population×sex	20	20.37	0.43457
	Error	1025		
Locomotor activity	Population	29	255.60	< 0.0001
	Sex	1	59.84	< 0.0001
	Population×sex	27	30.53	0.2909

508 distance, and locomotor activity.

	Error	1161
509		
510		

511 **Table 3**. Results of mixed ANOVA for effects of latitude, longitude and sex on each

Trait	Factor	<i>d.f.</i>	F	Р
Death feigning	Latitude	1	0.05	0.8199
	Longitude	1	1.87	0.1803
	Sex	1	0.26	0.6128
	Error	2082		
Mobility	Latitude	1	0.01	0.9276
	Longitude	1	0.00	0.9674
	Sex	1	1.74	0.1880
	Error	1062		
Activity	Latitude	1	0.01	0.9143
	Longitude	1	0.15	0.6993
	Sex	1	40.80	< 0.0001
	Error	1217		

512 behavioural traits.

513

515 **Table 4.** Results of Spearman's rank correlation coefficient for mean values in each

516	behavioural trait.	
510	benaviourai trait.	

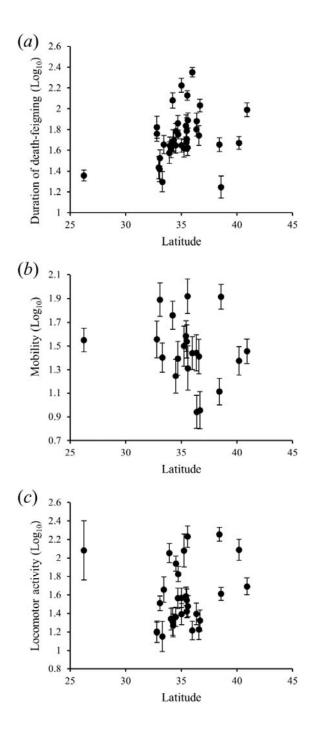
Factors	Ν	ρ	Р
Duration of death feigning & mobility	21	-0.21	0.3630
Duration of death feigning & activity	30	-0.27	0.1521
Mobility & activity	20	0.20	0.4015

517

519 Appendix

520

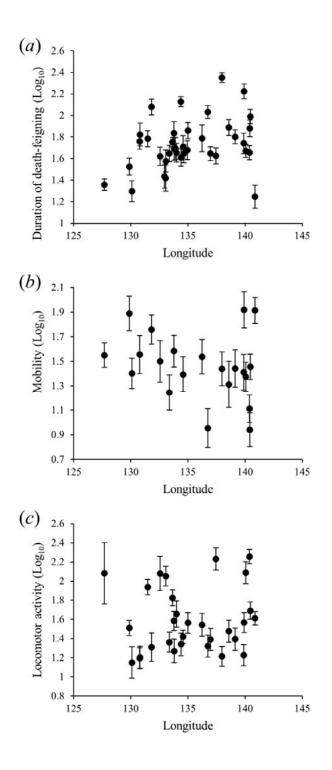
521 **Table A1**. Name, latitude, longitude, and sample size of each behavioural traits of each


522 place th	nat captured of	populations of	T. castaneum.
--------------	-----------------	----------------	---------------

	Latitude	Longitude	Sample size			
Population			Death feigning	Walking speed	Locomotor activity	
Aomori	40.8909	140.4552	80	77	80	
Akita	40.1825	140.0518	80	79	20	
Miyagi	38.5726	140.8723	40	40	64	
Yamagata	38.4264	140.3856	80	78	20	
Ishikawa	36.6707	136.7276	96	48	42	
Tochigi	36.5747	139.8776	48	48	42	
Ibaragi	36.3746	140.4169	95	48	-	
Gunma	36.3546	139.1299	48	48	64	
Nagano	35.9904	137.9795	96	47	44	
Yamanashi	35.5952	138.5768	48	47	64	
Gifu	35.5583	137.4489	48	48	64	
Tottori-B	35.5357	134.3827	48	-	-	

Hyogo-A	35.4942	134.5642	43	-	64
Shiga	35.4862	136.2289	48	48	64
Hyogo-B	35.4649	134.9447	48	-	-
Tottori-A	35.4216	133.7830	40	40	24
Shimane	35.2467	132.5565	40	38	22
Aichi	35.0232	136.9688	96	-	42
Chiba	35.0029	139.9148	48	-	43
Okayama	34.7247	133.6436	100	-	76
Hyogo-C	34.6903	134.9988	40	40	24
Yamaguchi-B	34.5033	131.4720	48	-	64
Hiroshima	34.5006	133.3735	40	40	30
Kagawa-B	34.3208	133.9018	48	-	-
Kagawa-A	34.2553	133.7846	48	-	32
Yamaguchi-A	34.2240	131.8132	40	40	20
Tokushima-A	34.0737	134.3950	48	-	32
Tokushima-B	33.9734	134.6358	48	-	-
Ehime	33.9224	133.0625	48	-	32
Kochi-A	33.4298	133.9903	48	-	32

Saga	33.2845	130.0928	40	40	32
Nagasaki	33.0817	129.8691	40	40	34
Kochi-C	33.0401	133.0547	48	-	-
Kochi-B	32.9847	132.9482	48	-	-
Kumamoto-B	32.8051	130.8083	48	-	20
Kumamoto-A	32.7974	130.7815	40	39	24
Okinawa	26.2459	127.6915	96	93	4


523

525

526 Figure A1. Relationship between latitude and each behavioural trait (a: death-feigning,

527 b: mobility, c: locomotor activity). Error bars show SE.

530 Figure A2. Relationship between longitude and each behavioural trait (a: death-feigning,

531 b: mobility, c: locomotor activity). Error bars show SE.