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Abstract 18 

Understanding and predicting how multiple co-occurring environmental stressors combine to affect 19 

biodiversity and ecosystem services is an on-going grand challenge for ecology. So far progress has 20 

been made through accumulating large numbers of smaller-scale individual studies that are then 21 

investigated by meta-analyses to look for general patterns. In particular there has been an interest in 22 

checking for so-called ecological surprises where stressors interact in a synergistic manner. Recent 23 

reviews suggest that such synergisms do not dominate, but few other generalities have emerged. This 24 

lack of general prediction and understanding may be due in part to a dearth of ecological theory that 25 

can generate clear hypotheses and predictions to tested against empirical data. Here we close this gap 26 

by analysing food web models based upon classical ecological theory and comparing their predictions 27 

to a large (546 interactions) dataset for the effects of pairs of stressors on freshwater communities, 28 

using trophic- and population-level metrics of abundance, density, and biomass as responses. We find 29 

excellent overall agreement between the stochastic version of our models and the experimental data, 30 

and both conclude additive stressor interactions are the most frequent, but that meta-analyses report 31 

antagonistic summary interaction classes. Additionally, we show that the statistical tests used to 32 

classify the interactions are very sensitive to sampling variation. It is therefore likely that current weak 33 

sampling and low sample sizes are masking many non-additive stressor interactions, which our theory 34 

predicts to dominate when sampling variation is removed. This leads us to suspect ecological surprises 35 

may be more common than currently reported. Our results highlight the value of developing theory 36 

in tandem with empirical tests, and the need to examine the robustness of statistical machinery, 37 

especially the widely-used null models, before we can draw strong conclusions about how 38 

environmental drivers combine. 39 

 40 
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Introduction 52 

Ecosystems are being subjected to a wide variety of external stressors (Halpern et al. 2015), acting 53 

across terrestrial, freshwater, and marine biomes (Scheffers et al. 2016). Stressors, also termed 54 

drivers, factors, or perturbations (Orr et al. 2020),  are frequently anthropogenic in origin (Vörösmarty 55 

et al. 2010; Geldmann et al. 2014), but are capable of being abiotic or biotic (Przeslawski et al. 2015), 56 

and are able to act at any scale, from local to global (Ban et al. 2014; França et al. 2020). While 57 

individual stressors, (e.g. climate change, habitat alteration, or pollution), are themselves capable of 58 

inducing changes in biodiversity or ecosystems and their services (Dirzo et al. 2014; Tittensor et al. 59 

2014; Newbold et al. 2015), ecosystems are frequently, if not predominately, acted upon by multiple 60 

stressors simultaneously (Crain et al. 2008).  Despite the negative connotations surrounding the term 61 

stressor, stressors are capable of inducing effects that are either beneficial or detrimental to the 62 

affected ecosystem (Kroeker et al. 2017). Accordingly, one of the grand challenges facing ecologists is 63 

to be able to predict and understand how these different types of ecosystem stressors interact to 64 

affect biodiversity and ecosystem services (Hodgson & Halpern 2018); though these interactions can 65 

be challenging to predict as the observed interactions can substantially deviate from what is 66 

anticipated (Christensen et al. 2006). Ultimately, knowledge of how stressors interact is important in 67 

guiding conservation and management initiatives, and in helping to prevent remediation measures 68 

from being ineffective, or even potentially harming those systems they are intended to preserve 69 

(Brown et al. 2013; Côté et al. 2016). 70 

 71 

Aquatic ecosystems and communities are particularly threatened by multiple stressors (Dirk et al. 72 

2020); for instance, Halpern et al., (2008) describe how every marine area is subjected to human 73 

influence, with 41% of these areas being impacted by multiple stressors. Moreover, freshwaters 74 

represent some of the most at-risk ecosystems and are frequently exposed to a wide range of stressors 75 

(Hecky et al., 2010; Ormerod et al. 2010; Woodward et al., 2010; He et al., 2019), with freshwater 76 
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biodiversity declining at rates exceeding even those of the most impacted terrestrial ecosystems (Sala 77 

et al., 2000), and potentially endangering vital ecosystem services (Malaj et al. 2014). While stressors 78 

often interact to impact freshwater ecosystems (Dirk et al. 2020), their presence in freshwater systems 79 

is not a new phenomenon, with some freshwater bodies having been subjected to stressors for several 80 

centuries (Dudgeon et al., 2006). However, the stressors that freshwater systems are currently facing 81 

has expanded, with the introduction of novel stressors, such as nanomaterials, while existing stressors 82 

are continuing to have severe impacts (Reid et al., 2019). Similarly, the cumulative impact of multiple 83 

stressors has been identified as one of the most pressing and emerging threats to freshwater 84 

biodiversity, but despite this, our current understanding of both how stressors interact, and the 85 

severity of their effects, is poor (Reid et al., 2019).  86 

 87 

The term ecological surprise (sensu Paine et al. 1998) is often used to describe the changes in a variable 88 

that contrast those anticipated when multiple stressors interact (e.g. Christensen et al. 2006; Jackson 89 

et al. 2016). Most often, the term is applied to the interactions of stressors which interact 90 

synergistically; in other words, the observed change in a variable is greater than expected under the 91 

assumption the interaction is equal to the sum of the independent stressor effects. Accordingly, the 92 

synergistic interactions of multiple stressors are important to document, firstly due to their potential 93 

to have a dramatic effect on ecological communities, and secondly because the presence of a 94 

synergistic interaction means management strategies can potentially have a large effect by mitigating 95 

against just one of the interacting stressors (Brown et al. 2013; Côté et al. 2016; Haller-Bull & Bode 96 

2019). Because of their potential impact there has been a great deal of effort in documenting the 97 

frequency of synergy in stressors across different ecosystems and communities (Côté et al. 2016). 98 

However, there is always a danger that an emphasis on their importance could lead to overestimating 99 

the frequency of ecological surprises within the multiple stressor literature and, as highlighted by Côté 100 

et al. (2016), the evidence that most stressors interact in a synergistic manner is far from compelling. 101 
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A pertinent question which has yet to be fully answered is whether synergistic interactions, or other 102 

forms of ecological surprise, really should be expected, or whether the prevalence of these 103 

interactions are skewed in some way by reporting biases, statistical sampling, or both. 104 

However, there is relatively little ecological theory that predicts when and how often the cumulative 105 

effects of pairs of stressors should be synergistic, or indeed any other type of interaction. This is in 106 

contrast to other ecological interactions, such as the effects of multiple predators on prey density and 107 

biomass, where a much richer body of theory that has been able to generate a number of hypotheses 108 

for testing (Sih et al. 1998; Schmitz 2007). Instead, progress on ecosystem stressor interactions has 109 

been made largely by meta-analyses across a number of experiments, realms, trophic levels, 110 

measured traits, taxonomic groups, and stressor types (e.g. Crain et al. 2008; Darling and Côté 2008; 111 

Wu et al. 2011; Przeslawski et al. 2015; Jackson et al. 2016). Within ecological research, the most 112 

popular approach is to use the additive null model where the stressor interaction is predicted to be 113 

simply the sum of their individual effects (e.g. Crain et al. 2008; Darling & Côté 2008; Strain et al. 2014; 114 

Jackson et al. 2016), though the multiplicative null model is also relatively common (e.g. Bancroft et 115 

al. 2008; Gruner et al. 2008; Harvey et al. 2013; Rosenblatt & Schmitz 2014). Predominately, these null 116 

models classify interactions as either being null (the simplest additive or multiplicative effect of 117 

interacting stressors), synergisms, or antagonisms (i.e. the effect of the interacting stressors is less 118 

than expected). While distinctions are increasingly being made for various forms of antagonistic 119 

interactions (e.g. Jackson et al. 2016), there exists a range of other classification schemes (Orr et al. 120 

2020), implemented across a number of studies (e.g. Travers-Trolet et al. 2014; Piggott et al. 2015a). 121 

This can make it difficult to generalise results across different studies, because a ‘synergistic’ or 122 

‘antagonistic’ interaction may have contrasting definitions depending on the scheme being used. 123 

Despite meta-analyses being a powerful tool for investigating multiple stressors, they have to date 124 

highlighted no general covariates capable of explaining of the broad patterns of multiple stressor 125 

interactions, which in turn lead to more general predictions of the consequences of multiple stressors 126 

(Côté et al. 2016). 127 
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Given the lack of consistent generalities from empirical studies, there have been calls for the 128 

development of theory within multiple stressor research. Of primary interest is the generation of 129 

theory which can provide a mechanistic underpinning to the field, and hopefully allow for better 130 

prediction and an increased understanding of multiple stressor interactions, compared to that which 131 

is provided solely by a null model approach (De Laender 2018). For example, using only statistical null 132 

models it is hard to predict, and therefore understand, how an interaction between stressors will 133 

change as one or more stressors changes in intensity. Some theory has been developed for particular 134 

case studies (e.g. Brown et al. 2013; Galic et al. 2018), but only a few studies have so far looked for 135 

more general insights. For example, Haller-Bull and Bode (2019) used three population dynamic 136 

models to investigate how stressors reducing population growth or supressing carry capacity combine 137 

to affect equilibrium population biomass under harvesting. Across all models they found synergy only 138 

occurs if there are several impacts on growth rate, and more generally the interaction behaviour can 139 

be predicted by the relationship between the impacted parameter and the equilibrium population 140 

size; a convex relationship implies antagonism, and a concave relationship implying synergy.  141 

Although population models are easier to analyse, incorporating trophic interactions would seem a 142 

necessary feature for a general dynamical theory for multiple ecosystem stressors since they may act 143 

either directly (e.g. on mortality rate of a given species) or indirectly (e.g. on mortality rate of the prey 144 

of a given species). Indeed, De Laender (2018) has recently argued for the use of resource uptake 145 

theory to make predictions about stressor interactions, and, as an example, showed that in a two-146 

species community, the manner in which stressors interact is dependent on the details of which 147 

species (one, or both) are being directly affected by the stressors. Extending to more diverse ecological 148 

communities, Thompson et al. (2018a) used modified (log-linear) Lotka-Volterra models to investigate 149 

how the effect of multiple stressors on species richness changes with the type of biological interaction 150 

that dominates a community. They found negative biological interactions, (predation, competition), 151 

were more likely to lead to synergistic changes in species richness, whilst stressor interactions were 152 

predominantly additive or slightly antagonistic when biological interactions were positive. These 153 
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models all show much promise for theory to generate predictions, but as yet none have been tested 154 

against data. To compare to data, models need to incorporate stochasticity to mirror the sampling 155 

variation found in the real world. In natural experiments sampling variation occurs in the estimation 156 

of the state variables of interest such population density or biomass (e.g. Graham & Vinebrooke 2009; 157 

Piggott et al. 2015b), or individual growth rates (e.g. Reisinger & Lodge 2016), and this error enters 158 

the estimation of the interaction of the co-occurring stressors with the inevitable result that some 159 

interactions are misclassified due to sampling variation. The simplest way to incorporate sampling 160 

variation in models is via some form of observation error, but De Laender (2018), Haller-Bull and Bode 161 

(2019), and Thompson et al. (2018a) all base their predictions on deterministic models, with 162 

stochasticity only entering the latter in the form of parameter combinations.  163 

Here we build on this theory by developing classical community ecology models based upon Lotka-164 

Volterra consumer-resource dynamics, but including observation error, to generate predictions from 165 

biologically simple food webs. These predictions are tested against an extensive dataset for the effects 166 

of co-occurring stressor interactions on the biomasses and densities of freshwater organisms, taken 167 

from a review of the experimental literature. Using this twin approach, we answer the following 168 

questions: Can dynamical food web theory predict (1) the frequencies of stressor interaction types 169 

across the individual experimental studies, and/or (2) the expected summary effect sizes and summary 170 

interaction type in a meta-analytical framework? In particular we ask if the apparent absence of 171 

ecological surprises in the empirical literature is expected from ecological theory, and in so doing we 172 

also test the robustness of the currently popular additive null model for classifying stressor 173 

interactions to sampling variation. As will be shown below, our results uncover a high level of 174 

agreement between theory and data but also highlight some of the strengths and weaknesses of the 175 

additive null model. 176 

 177 

Materials and Methods 178 
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Theoretical Models 179 

In order to provide a theoretical underpinning for the empirical results, we build food chain models 180 

using the classical Lotka-Volterra consumer resource equations. To increase the robustness of our 181 

conclusions we consider two forms of model; one where (within trophic level) density dependence 182 

affects the death rates of each trophic level, and a second where consumer uptake is density regulated 183 

(Table 1). Both these scenarios were analysed by Heath et al., (2014) to investigate the roles of 184 

different types of density dependence on trophic cascades, and more detail can be found there. In 185 

both models the basal level of the chain describes dynamics of a key nutrient that limits the 186 

productivity of the food chain, and we assume nutrients are added at a constant rate, ω. Each 187 

subsequent equation then describes a different type of consumer. The first level is wholly dependent 188 

on the nutrients and could represent a primary producer such as an algal species that requires a key 189 

mineral such as silica. The second level consumes the first trophic level and is in turn consumed by a 190 

third trophic level, and so on until the apex consumer is reached. In the density dependence model 191 

(Equation 1, Table 1), the consumer i exploits the resource (trophic level i – 1) with a constant 192 

consumption/attack rate, 𝛼𝑖, and the conversion efficiency parameter, 휀𝑖, determines the proportion 193 

of the resource consumed that is converted into new consumers. Under density dependence, the 194 

density of the consumer is self-regulated by the intraspecific density dependence parameter 𝜆𝑖, which 195 

leads to an increase in death rate as the consumer density increases. In contrast, the consumer uptake 196 

regulation model (Equation 2, Table 1), assumes the effect of increasing consumers is to slow down 197 

the consumption of the resource, perhaps due to increased inference. In this case, the parameter ν𝑖, 198 

determines the  consumer density at which the maximum per capita uptake rate is halved, defined as 199 

the density 𝑥𝑖 =1/ν𝑖. 200 

Using these equations, we establish food-chains comprising either three, four, or five trophic levels, 201 

and the equation for each trophic level models how the biomass or density changes over time. For 202 

simplicity we assume all key parameters (nutrient input ω; consumption rates 𝛼𝑖; conversion 203 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.10.243972doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.10.243972


Page 10 of 39 
 

efficiencies 휀𝑖; uptake regulators ν𝑖; density independent 𝛿𝑖, and dependent death rates 𝜆𝑖, for trophic 204 

level i) do not vary over time, and we investigate the effect of stressors on equilibrium 205 

biomasses/densities. The models do not consider any spatial structure in the community which also 206 

remains closed to immigration from outside apart from the constant input of the nutrient. Hence these 207 

models represent the simplest form of community dynamics that could be used to investigate the 208 

effects of multiple stressors and how they interact.  209 

Table 1: Equations used to establish theoretical food-chains. The equations, sets, and a brief 210 

description of the equivalent ecological trophic are shown.  211 

 Equation Type Equation Description 

1a) Density 

Dependence 

𝑑𝑥𝑛

𝑑𝑡
=  𝛼𝑛휀𝑛𝑥𝑛−1𝑥𝑛 −  𝛿𝑛𝑥𝑛 −  𝜆𝑛𝑥𝑛

2 
Change in density of Apex 

Consumer (𝑥𝑛) 

1b) Density 

Dependence 

𝑑𝑥𝑖

𝑑𝑡
=  𝛼𝑖휀𝑖𝑥𝑖−1𝑥𝑖 − 𝛼𝑖+1𝑥𝑖𝑥𝑖+1 − 𝛿𝑖𝑥𝑖 −  𝜆𝑖𝑥𝑖

2 
Change in density of Non-

Apex Consumer (𝑥𝑖) 

1c) Density 

Dependence 

𝑑𝑥0

𝑑𝑡
=  𝜔 − 𝛼1𝑥0𝑥1 

Change in density of 

Nutrients (𝑥0) 

 

2a) Consumer  

Uptake 

Regulation 

𝑑𝑥𝑛

𝑑𝑡
=  

𝛼𝑛휀𝑛𝑥𝑛−1𝑥𝑛

1 +  ν𝑛𝑥𝑛

− 𝛿𝑛𝑥𝑛 Change in density of Apex 

Consumer (𝑥𝑛) 

2b) Consumer  

Uptake 

Regulation 

𝑑𝑥𝑖

𝑑𝑡
=  

𝛼𝑖휀𝑖𝑥𝑖−1𝑥𝑖

1 +  ν𝑖𝑥𝑖

−
𝛼𝑖+1𝑥𝑖𝑥𝑖+1

1 + ν𝑖+1𝑥𝑖+1

−  𝛿𝑖𝑥𝑖 
Change in density of Non-

Apex Consumer (𝑥𝑖) 

2c) Consumer  

Uptake 

Regulation 

𝑑𝑥0

𝑑𝑡
=  𝜔 −

𝛼1𝑥0𝑥1

1 +  ν1𝑥1

 Change in density of 

Nutrients (𝑥0) 
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 212 

Stressors to the food chains are modelled by changing the values for parameters and comparing the 213 

resultant equilibrium densities/biomasses across all trophic levels to the equilibria for a set of baseline 214 

parameter values. Equations 1 and 2 are not mechanistic models for specific stressors, (e.g. pollution, 215 

temperature), but instead capture the net effect of stressors on the vital rates of the food web species. 216 

For simplicity, we assume each stressor has either a positive or negative effect on one vital rate, (i.e. 217 

model parameter), and we investigate how pairs of stressors interact to affect community densities. 218 

Both the baseline parameters and the parameters after perturbation are drawn from uniform 219 

distributions with ranges given in Table 2. So, for a given food chain the baseline parameters for all 220 

trophic levels are independently sampled from the distribution of values given in Table 2. The vital 221 

rate affected by each stressor is randomly selected from the possible candidates, and the intensity of 222 

its effect on the baseline rate is drawn from a uniform distribution with ranges given in Table 2. The 223 

baseline parameter set therefore represents the control community, and as in experimental studies 224 

(e.g. Matthaei et al., 2010; Davis et al., 2018) we manipulate our model communities by investigating 225 

the effect of each stressor acting alone, as well as the stressors acting in combination. From these 226 

cases we then compute the type of stressor interaction and how they combine to the alter the 227 

community biomasses (see below for definitions of how stressor interactions are computed). To do 228 

this we choose one trophic level at random from the entire food chain but excluding the nutrient level. 229 

We focus on this population/trophic level and mirror it in our selection of empirical data (see below). 230 

This also means the species or trophic levels under scrutiny are not always directly affected by the 231 

stressor but could be affected solely due to a trophic cascade effect. It is also important to note that 232 

a stressor could lead to either an increase or a decrease in parameter value relative to the baseline; 233 

and that multiple stressors could act on the same, or different trophic level, but that each stressor 234 

affects only one parameter (and therefore biological process).  235 
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Table 2: Explanation of the different parameters within Equations 1 and 2, with the mechanism they 236 

reflect, alongside the minimum and maximum values for the ranges of baseline and stressed 237 

parameter values. Each parameter is drawn from a uniform distribution U~(a, b) with lower limit, a, 238 

and upper limit, b. 239 

Parameter Ecological Mechanism Baseline Value Range Stressed Value Range 

α 

 

The rate at which a trophic level 

predates upon the trophic level 

directly below. 

αb = U~(0.25, 0.75)         

 

U~(0.01, 0.99) 

Excluding the range: 

(αb–0.025, αb+0.025) 

 

ε 

 

The efficiency at which a trophic level 

can transform consumed matter into 

new individuals. 

εb = U~(0.25, 0.75)         

 

U~(0.01, 0.99) 

Excluding the range:  

(εb–0.025, εb+0.025) 

 

δ 

 

The density independent mortality 

rate of a trophic level. 

δb = U~(0.25, 0.75)         

 

U~(0.01, 0.99) 

Excluding the range:  

(δb–0.025, δb+0.025) 

 

ω 

 

The constant rate at which a resource, 

(𝑥0), is input into the food chain. 

ωb = U~(25, 75) U~(1, 99) 

Excluding the range:  

(ωb–2.5, ωb+2.5) 

 

λ  The density dependent mortality rate 

of a trophic level. 

λ b = U~(0.00625, 0.025) N/A 

ν A limit to the uptake rate of a 

consumer through a trait-mediated 

response, that may be behavioural or 

otherwise. 

ν b = U~(0.05, 0.15)  N/A 

 240 
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Overall, 1,320,000 different combinations, of equations, food-chain lengths, stressors pairs, and 241 

randomly selected baseline values were generated. Equilibrium densities, for each of these 242 

combinations, were calculated using Mathematica 10.4, (Wolfram Research, Inc., 2016), with 243 

equilibria and stability analyses as given in Heath et al., (2014); (for more details see Supplementary 244 

Material 1). We only consider cases where the equilibria are all stable, and feasible (i.e. all densities 245 

were positive), and only equilibrium densities for trophic levels x1 and above are included in the 246 

stressor interaction results i.e. we exclude the nutrient level from our stressor interaction analyses. 247 

Across all 1,320,000 combinations, 79.9% of the parameter sets result in the determination of 248 

equilibrium densities that are both stable and feasible, with the discarded 20.1% parameter sets 249 

resulting in at least one biologically unfeasible density/biomass. From the full set of stable and feasible 250 

communities we select at random 360,000, and for each one randomly select a single trophic level for 251 

the focus of our estimation of the stressor interaction. All subsequent analyses of the theoretical data 252 

are performed on this group of 360,000 theoretical interactions. This subsetting is required as there 253 

is a negative relationship between number of trophic levels and likelihood of the community being 254 

both stable and feasible, which biases the full dataset towards communities with only three trophic 255 

levels. The final 360,000 stressor interactions are selected with weighted probabilities to ensure 256 

approximately one third (i.e. ~120,000) are from each of the three food chain lengths, and that each 257 

model (Table 1) is also approximately equally represented. 258 

Unlike the empirical studies used in the meta-analyses below, the food chain models are purely 259 

deterministic, meaning there were no random fluctuations around the equilibrium densities. In effect, 260 

for any given pair of stressors, there is no sampling error in the theoretical data. Clearly, this differs 261 

from the empirical data where sampling error leads to an estimate of the densities/biomasses under 262 

investigation in the control and treatment replicate communities, and this sampling variation may lead 263 

to some stressor interactions being misclassified. For a better comparison to the empirical data, and 264 

to test the robustness of the additive null model to sampling variation, we modelled observation (or 265 

measurement) error by taking the 360,000 theoretical interactions at equilibrium from our original 266 
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analyses and then multiplying the biomass of each trophic level by a random number drawn from a 267 

Gaussian distribution with mean 1 and standard deviation 𝜎. This process was repeated between three 268 

and six times for each treatment, analogous to the number of replicates per treatment found in our 269 

empirical data (see below). Thus, larger values for 𝜎 lead to larger deviations around the equilibrium 270 

biomasses, and therefore a larger observation error, with an increased likelihood that the stressor 271 

interaction is misclassified. Standard deviations, 𝜎, are from one of 86 different levels, ranging from 272 

1x10-10 to 0.5, in consistent logarithmic increments, (e.g. 8x10-10, 9x10-10, 1x10-9, 2x10-9, etc.). 273 

Supplementary Material 1 details a complete overview of how observation error was incorporated 274 

into the theoretical data.  275 

 276 

Collation of Empirical Data 277 

Through use of Web of Science we searched the primary scientific literature, for papers published 278 

before 1st January 2019, which investigated the impacts of multiple stressors upon freshwater 279 

communities. In order to be incorporated, papers needed to report results where there was a factorial 280 

design, namely; (i) a control (without stressors), (ii) each stressor acting individually, (iii) the stressors 281 

acting simultaneously. Papers needed to report the mean value of the response, number of replicates, 282 

and standard deviation or standard error for each treatment in the factorial design; failure to report 283 

any of this information led to the study being excluded from our analysis. Additionally, papers were 284 

required to report at least one of the following untransformed metrics: biomass, abundance, density, 285 

or chlorophyll-a of one or more groups of organisms within the stressed community. Hence, and in 286 

line with our trophic models, the focus of our effort is directed towards studies that report the effects 287 

of stressors acting at the population and community levels. Papers often report the impacts of 288 

stressors upon multiple different groups of organisms within a community; and for these the 289 

responses of all different groups of organisms were included within the overall dataset. The different 290 

groups of organisms could comprise: populations of a single species, (e.g. Daphnia pulex); a group of 291 
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organisms within the same feeding guild, (e.g. detritivores); a group of taxonomically similar 292 

organisms, (e.g. Ephemeroptera, Plecoptera, and Trichoptera taxa); or a group of similar organisms, 293 

(e.g. macroinvertebrates or algae). 294 

To be collated within our dataset, papers had to investigate communities comprising a minimum of 295 

two different groups of organisms. Studies investigated a wide range of different stressors, though 296 

these were subsequently grouped into broader categories of stressor, such as Temperature, 297 

Contamination, and Habitat Alteration. 298 

Previous analyses have frequently focussed upon collating data for only the greatest single intensity 299 

of a stressor (e.g. Jackson et al., 2016). In contrast, where studies reported the responses of 300 

communities to multiple intensities of different stressors, data for all of the different intensities was 301 

collated. All interactions considering the different intensities of stressors were included in the overall 302 

dataset, although covariation in data due to repeated experiments across different stressor intensities 303 

were accounted for in the final meta-analyses (see section Meta-Analytical Models).  304 

Some studies report multiple different response metrics for the same group of organisms, include the 305 

same species within multiple different groups, or report data for the same experiment over multiple 306 

different time points. Accordingly, in order to reduce correlation/covariance within the overall 307 

dataset, these interactions are removed from our analyses. For instance, interactions measuring 308 

density are prioritised over abundances, which are in turn prioritised over biomasses, or 309 

measurements of chlorophyll-a respectively. Similarly, where papers reported data for interactions 310 

over multiple different time points, only the final time point is used as this best matches our 311 

equilibrium assumption for the theoretical models. 312 

Supplementary Material 2 gives a complete overview of the different search terms used to find 313 

studies, the methodology used to determine whether the data for a study could be collated, the 314 

processes for extracting and collating the data, and the process for removing interactions to prevent 315 

covariance. 316 
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 317 

Determining of Effect Sizes and Classification of Interactions 318 

Across both the theoretical and empirical datasets, we use the same methodology for determining 319 

the classification of an interaction, with this being implemented through use of the effect size metric, 320 

Hedges’ d, (Gurevitch et al., 2000). Hedge’s d is frequently implemented in research investigating the 321 

impacts of multiple stressors due to its ability to estimate the standardised mean difference between 322 

the means of stressed and control samples; whilst also being unbiased by small sample sizes (Hedges 323 

& Olkin, 1985). Hedge’s d is calculated through a comparison of the effect of the interaction to the 324 

sum of the effects of the stressors acting individually; namely, an additive null model. In line with 325 

current methodologies, we invert the sign of the interactions when the expected effect of the additive 326 

null model is negative (Piggott et al., 2015a). Following this methodology allows for interaction effect 327 

sizes to be compared regardless of their directionality. As such, we focus on the classification of the 328 

interaction as opposed to the absolute magnitude/polarity of the effects. Supplementary Material 3 329 

gives a complete breakdown of the equations used for calculating Hedge’s d.   330 

Once Hedge’s d for a given interaction of stressors was calculated, we then classify the interaction into 331 

one of four types as illustrated by Figure 1 and following the convention of Jackson et al., (2016). In 332 

brief, the four interaction classifications are: (i) Additive, where the effect of the additive null model 333 

is statistically indistinguishable from the effect of observed interaction; (ii) Synergistic, where the 334 

observed interaction effect is greater than the effect of the additive null model; (iii) Antagonistic, 335 

where the observed interaction effect is less than the effect of the additive null model, but both effects 336 

have the same polarity; (iv) Reversal, where the observed interaction effect is negative but the effect 337 

of the additive null model is positive. The distinction between antagonistic and reversal interactions 338 

is relatively recent (e.g. Travers-Trolet et al., 2014; Jackson et al., 2016), with most research still using 339 

the appellation of antagonistic to refer to both antagonistic and reversal interactions (e.g. Velasco et 340 

al., 2019; Gomez Isaza et al., 2020). If Hedge’s d is positive the interaction is classed as synergistic. If 341 
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Hedge’s d is negative, the interaction is classed as either an antagonistic or reversal interaction, 342 

though this can only be determined by comparing the effect of the additive null model to the observed 343 

effect (as outlined above). Each value of Hedge’s d has corresponding 95% confidence intervals; if 344 

these confidence intervals incorporate 0 then an interaction is deemed to be additive. The 345 

classification scheme outlined above is one of a number of possible choices (e.g. Crain et al., 2008; 346 

Jackson et al., 2016), and Supplementary Material 4 details a comparison of how these different 347 

schemes to one another.  348 

 349 

Figure 1: Pictorial depiction of interaction types. Additive interactions are shown by the diagonal black 350 

and white dashed line. Yellow denotes the areas occupied by synergistic interactions. Purple denotes 351 

the areas occupied by reversal interactions. Green denotes the area occupied by antagonistic 352 

interactions. Equations for the general classifications are shown for antagonistic, reversal, and 353 

synergistic interactions. C – control, A – Only Stressor A present, B – Only Stressor B present, I – Both 354 

Stressors A and B present. In order for an interaction to be classed as additive, the effect of the 355 

interaction would be equal to the sum of the effects of the individual stressors, ((I-C) = (A-C)+(B-C)).  356 
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 357 

Vote-Counting  358 

Following the classification of all interactions, we implement a vote-counting methodology to 359 

determine the relative proportions of the interaction classes across both the theoretical and empirical 360 

datasets. To consider the effect of different strengths of sampling variation on the ability to detect the 361 

‘true’ stressor interaction in the modelled data, we compute the frequency of interaction types for 362 

both the case with no observation error, and for the full range of observation error levels investigated. 363 

 364 

Meta-Analytical Models 365 

Alongside the vote-counting methodology, we determine the summary interactions class using a 366 

meta-analytical approach to both the theoretical and empirical datasets. The meta-analytical models 367 

are Weighted Multi-Level/Multi-Variate Random-Effect Models, and implemented in the metafor 368 

package (Viechtbauer, 2010) in R. For the empirical dataset random effects are specified as being the 369 

ID of the study group of organisms nested within the ID for study. The random effects are specified in 370 

order to account for both between- and within-study variation. Additionally, some studies consider 371 

multiple intensities of one or more stressors, and as such, calculations of the interaction class for each 372 

intensity of stressor use the same control. To account for any covariance between the different 373 

intensities of a single stressor, we incorporate covariance-variance matrices within the meta-analytical 374 

models. For the empirical dataset, mixed effect models are also conducted with the fixed effects of 375 

stressor pair or organism group (see Supplementary Material 5). The summary effect size for the 376 

theoretical dataset is also determined using a similar process. However, due to computational 377 

limitations caused by the number of interactions under analysis (360,000 interactions at each level of 378 

observation error), meta-analytical models for the theoretical data are fitted using the lm function. 379 
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The models applied to both the theoretical and empirical datasets are explained in further detail 380 

within Supplementary Material 5. 381 

The overall effect from a meta-analysis needs to be checked for consistency among effect sizes, 382 

termed as heterogeneity (Nakagawa et al., 2017). We use the I2 statistic, which is bounded between 383 

0% and 100%, with 25%, 50%, and 75% being suggested as levels for respectively, low, medium, and 384 

high heterogeneity (Higgins et al. 2003). Ecological meta-analyses often report high levels of 385 

heterogeneity (Senior et al., 2016), perhaps due to the variation in study organisms common to the 386 

questions being asked, and we might expect a high value here due to both range of study organism 387 

and range of stressor type. To explore the potential causes of heterogeneity within the empirical meta-388 

analysis, we conduct separate meta-analyses upon two sub-groups of the dataset, a similar process to 389 

running a meta-regression (Nakagawa et al., 2017), using organism group (i.e. producer or consumer) 390 

as the categorical moderators to explore heterogeneity (see Supplementary Material 6). We also 391 

consider publication bias (see Supplementary Material 6); though it should be noted that common 392 

tests for publication bias within meta-analyses can be limited by high heterogeneity (Nakagawa et al., 393 

2017). 394 

 395 

Comparison of Theoretical and Empirical Data 396 

Using the methods outlined above we ask whether the theoretical models are good predictors for (1) 397 

the respective frequencies of the different interaction types; and (2) the summary interaction class 398 

returned from the meta-analyses of the freshwater experimental literature on the effects of co-399 

occurring stressors. Under the assumption that all empirical studies involve some observation 400 

(measurement) error we compare the empirical data to the model generated interactions that include 401 

observation error levels between 1x10-2 and 0.5 (a total of 5,040,000 modelled interactions).  402 

 403 
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Results 404 

Stressor Interactions within Theoretical Data 405 

We find no strong difference between classification of stressor interactions from either form of food 406 

chain model (Table 1), nor between the different length food chains (see Supplementary Material 1), 407 

showing the frequencies of interaction are robust to these details of the models. For the entire 408 

theoretical dataset of 360,000 interactions, (comprising both Consumer Uptake Regulation and 409 

Density Dependence Equations, and across food chains of three, four and five levels), without 410 

observation error, antagonistic and synergistic interactions are the most frequently assigned (0.483 411 

and 0.480 respectively), followed by reversal (0.0288), and finally additive interactions (0.00856). 412 

However, these interaction frequencies are very sensitive to observation error. Increasing observation 413 

error leads to more interactions being classified as additive, (the null model), and at likely realistic 414 

levels, additive interactions are clearly dominant (Figure 2a).  415 

The summary effect size, and summary interactions class as generated from the meta-analytical 416 

framework also shows some sensitivity to observation error, although in these analyses the outcome 417 

is rather different (Figure 2b). For low levels of observation error, the 95% confidence intervals of the 418 

summary effect size overlap zero, indicative of an additive summary interaction class. This occurs 419 

because the frequency and magnitudes of synergistic (positive effect size) and antagonistic/reversal 420 

(negative effect sizes) interactions are approximately equal for low observation error (Figure 2a),  and 421 

although there is a large variance in effect sizes due to low sampling error (See Supplementary 422 

Material 1), the effects sizes for individual interactions are approximately centred on zero. However, 423 

with increasing observation error the summary effect sizes become increasingly more negative, and 424 

confidence intervals for these summary effect sizes do not overlap zero, indicating an 425 

antagonistic/reversal summary interaction class. Further inspection shows an increase in the 426 

proportion of negative effect sizes as observation error increases (Figure 2c), with this being mirrored 427 

by a decreasing summary effect size (Figure 2b). Although not so obvious due to the dominance of 428 
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additive interactions, a similar trend can be observed in the frequencies of interaction types at higher 429 

observation errors, with synergistic interactions heading towards 0 frequency faster than antagonistic 430 

interactions (Figure 2a). Hence, analyses of our model results with varying levels of observation error 431 

suggest synergies in pairs of ecosystem stressors may be under-reported in many empirical studies. 432 

 433 

Theoretical predictions 434 

In summary, our theoretical analyses lead us to predict that at likely levels of sampling variation we 435 

should expect the empirical data to be dominated by additive interactions for individual interactions 436 

(Figure 2a), but in contrast the summary effect sizes computed across a large body of such studies 437 

should indicate a dominant role for antagonistic, or reversal, interactions.  438 
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439 

Figure 2: The effect of sampling variation on the stressor interaction categorisation, and summary 440 

meta-analytic effect sizes in the theoretical data. (Top Panel) Proportions of the different interaction 441 

classes for the 360,000 theoretical interactions at each level of sampling variation. Dotted black line 442 

denotes additive interactions. Green short-dashed line indicates antagonistic interactions. Yellow long-443 

dashed line denotes synergistic interactions. Purple line indicates reversal interactions. (Middle Panel) 444 

Summary effect sizes for the 360,000 theoretical interactions, at each level of sampling variation. Black 445 

lines denote summary effect sizes, and red lines denote 95% confidence intervals. (Bottom Panel) Ratio 446 

of positive to negative summary effect sizes at each level of sampling variation (observation error). 447 
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Stressor Interactions within Freshwater Empirical Data 448 

Our literature search within Web of Science returned 1805 papers that meet our search criteria. Of 449 

these, only 58 meet our criteria for inclusion. They include 546 interactions summarised in Figure 3 to 450 

show the frequency of different interaction classifications and the overall summary effect sizes and 451 

interaction classes. Additive interactions were the most frequent, (0.830), followed by antagonistic, 452 

(0.0989), reversal, (0.0476), and finally synergistic, (0.0238), interactions (Figure 3a).  453 

Additionally, the summary effect size for the entire dataset is negative, (-0.646 ± 0.259), with 454 

confidence intervals that do not overlap zero, indicative of an antagonistic/reversal summary 455 

interaction class (Figure 3b). 456 

Our meta-analysis reports medium-level heterogeneity, (I2 = 47.0%), though this is considerably lower 457 

than the mean heterogeneity, (I2 = 91.7%) found in an analysis of previous ecological meta-analyses 458 

(Senior et al., 2016). Two additional meta-analyses, conducted upon sub-groups of the empirical 459 

dataset, with the categorical moderator of organism group as means of exploring this heterogeneity 460 

(Nakagawa et al., 2017) fail to uncover any source of this heterogeneity (see Supplementary Material 461 

6).  462 

Comparison of Empirical and Theoretical Interaction Classifications 463 

Overall, we find close agreement between our theoretical models with biologically reasonable levels 464 

of observation error and the freshwater empirical data (Figure 3). Summary effect sizes are negative 465 

indicating antagonistic or reversal interactions (Figure 3b); whereas the vote counting results highlight 466 

how individual interactions tend to return an additive classification (Figure 3a), probably due to the 467 

sampling errors, and relatively low sample sizes, in both data sets.  468 
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 469 

Figure 3: a) Proportions of the different interaction classes, and b) summary effect sizes for the 470 

empirical and theoretical dataset. The empirical dataset comprised 546 interactions, while the 471 

theoretical dataset comprised all interactions using sampling variations between 1x10-2 and 0.5. 472 

(5,040,000 interactions). White circles denote additive interactions. Green squares denote antagonistic 473 

interactions. Yellow diamonds denote synergistic interactions. Purple triangles denote reversal 474 

interactions. 475 

 476 

Discussion 477 

There has been much interest in understanding and cataloguing the joint effects of stressors on 478 

ecological communities and ecosystems (Schäfer & Piggott 2018; Thompson et al. 2018b), but to date 479 

there has been relatively little guidance from ecological theory. Here we close this gap by analysing a 480 

food chain model using classical ecological theory and comparing it to a meta-analysis on a large 481 
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dataset for freshwater ecosystems. Our theoretical results show remarkable agreement with the 482 

empirical analyses, for both vote counting results and summary effect sizes, which generate different 483 

interpretations of how stressors are likely to interact (Figures 2, 3). On the one hand, our vote counting 484 

analyses suggest additive interactions to be by far the most dominant stressor interactions in 485 

freshwater communities; but on the other hand our meta-analysis shows antagonism to be the 486 

summary interaction class. Our theoretical model helps to understand why this might be the case, and 487 

highlights deficiencies in the commonly used additive null model that is used to classify the joint 488 

effects of ecosystem stressors. In particular our model results show the additive null model is (a) 489 

sensitive to sampling variation with even realistically small levels leading to very frequent failure to 490 

correctly reject the null model (type II statistical errors); (b) potentially less likely to correctly report 491 

synergistic interactions compared to either antagonistic or reversal interactions in the meta-analytical 492 

framework. We believe that once these statistical aspects are considered, so-called ‘ecological 493 

surprises’ (sensu Paine et al. 1998) may in fact be more prevalent in both our freshwater dataset, and 494 

more widely.  495 

 496 

Theoretical predictions 497 

The agreement between theoretical models and empirical data is remarkable given the biological 498 

simplicity of the model and how it is not tailored to any one type of stressor or community. However, 499 

our approach should be viewed as one that aims to explain the emergent patterns across studies 500 

rather than be used to predict the joint effects of stressors in a particular empirical system, in which 501 

case a more detailed and specific model is more appropriate (e.g. Brown et al. 2013; Galic et al. 2018). 502 

Our food chain models imply that, given adequate sample sizes (see below), we should expect 503 

synergistic and antagonistic interactions to co-dominate at the population and trophic level, whereas 504 

additive interactions and reversals should be relatively rare. These messages appear to be echoed in 505 

the few other theoretical studies on stressor interactions in ecological communities (e.g. Travers-506 
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Trolet et al. 2014; Thompson et al. 2018a; Haller-Bull & Bode 2019). This agreement is despite a variety 507 

of key differences in the model assumptions. In particular, Haller-Bull and Bode (2019) focussed on 508 

populations rather than multispecies communities, but found dominant roles for synergistic and 509 

antagonistic interactions, with additive interactions occurring most frequently for stressors affecting 510 

the carrying capacity. Similar to our model, Thompson et al. (2018a) did focus on multispecies 511 

communities, but they assumed biological interactions were constant, whereas we allow interactions 512 

(consumption and conversion rates) to be modified by stressors, an assumption that seems likely to 513 

be met on a regular basis. For example, stressors have been shown to influence resource competition 514 

(Kroeker et al. 2013); susceptibility to parasitism in oysters (Lenihan et al. 1999); and modify the flow 515 

of energy through aquatic food webs by inducing changes in trophic links (Schrama et al. 2017). 516 

Despite this difference, Thompson et al. (2018a) found additive interactions were most prominent 517 

when species facilitated one another (i.e. positive species interactions), but that synergy or 518 

antagonism in combined stressor effects on species richness or community biomass were more 519 

common when species interactions are negative (competition or resource use).  Finally, Fu et al. (2018) 520 

used four ecosystem models for fisheries to investigate the combined effects of fishing and primary 521 

productivity across a number of modelled real-life fisheries. They also found a reduced role for 522 

additive interactions, with an increased risk of stressor pair synergism at lower trophic levels, whereas 523 

antagonistic interactions (less than additive, but in the same direction as the additive expectation) 524 

where more likely at higher trophic levels.  525 

The apparent rarity of additive interactions in all of these models might appear at odds with the 526 

possible interpretation that two stressors acting on different species within a community could lead 527 

to such a joint effect (Jackson et al. 2016). However, feedbacks in the food web, like those found in 528 

our models, mean that even if a species is unaffected directly by a stressor, it is highly likely that top-529 

down or bottom up effects will lead to indirect interactions for many species, and as a result additive 530 

interactions are extremely hard to generate in the absence of sampling variation (e.g. observation 531 

error). Indeed, we predict that additive interactions might only truly occur in scenarios where species 532 
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in different and very weakly interacting sub-communities are affected by different stressors, or, as 533 

found by Thompson et al. (2018a), where species interactions are predominantly positive. However, 534 

despite a growing body of theoretical predictions we are not aware of any empirical test of the 535 

previous models. Our models have therefore extended earlier results by focussing on changes in 536 

biological interactions caused by the stressors, and also incorporating sampling variation as a 537 

parameter of interest, something that greatly aided the interpretation of the empirical results. We 538 

believe there will be an increasing role of theory in generating hypotheses for the ways in which 539 

stressors interact (De Laender 2018), and the most progress will be made when the theory is 540 

developed so it can be tested directly against the data, much as we have done here. 541 

 542 

Sample size  543 

The choice of null model is hotly debated within ecological stressor research (Schäfer & Piggott 2018), 544 

and it has been argued that null models should be able to accurately predict the combined effects of 545 

stressors (Orr et al. 2020). However, our work does add some cautionary notes to this view since it is 546 

clear that the additive null model for stressor interactions is very sensitive to sampling variation, and 547 

for likely realistic levels of sampling variation it is hard to correctly reject the null model (Figure 2). 548 

Given that most experiments have low sample sizes (a mean of 3.83 with a maximum of 16 per 549 

treatment in our empirical data), we feel it is premature to conclude that most stressor interactions 550 

are truly additive in the freshwater data we collected. This view is reinforced by our meta-analysis that 551 

returned a negative summary effect size implying an overall antagonistic, or reversal, summary 552 

interaction class within in experimental results, a pattern that was mirrored in previous analyses of 553 

freshwater stressor experiments (Jackson et al. 2016; Lange et al. 2018). Also, given that our theory, 554 

in the absence of sampling variation, showed a near equal frequency of synergistic and antagonistic 555 

interactions (Figure 2a), there appears to be a potential trend against detecting synergies in co-556 

occurring stressors in the meta-analytical framework (Figure 2b). The dual effects of this potential 557 
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trend and sensitivity to sampling variation may be key reasons why stressor synergies are not as often 558 

reported as might be expected (Darling and Côté 2008; Côté et al. 2016), although as we discuss below, 559 

other reasons may also contribute, and of course, we cannot rule out that the empirical results do 560 

truly reflect the underlying interactions. However, our finding of sensitivity to sample size is more 561 

general than either our theoretical results, or our freshwater dataset, and we suggest future work 562 

should investigate other null models for their robustness to these (and other) features. For example, 563 

is the additive null model particularly conservative in its detection of synergies, and are there better 564 

alternatives? Such analyses would build on previous descriptions of the null models (e.g. Sih et al. 565 

1998; Folt et al. 1999; Sih et al. 2004) and would be particularly useful if analyses considered the effect 566 

of sample size on statistical power, as this will help guide future empirical studies to improve the 567 

detection rate of non-null stressor interactions. Furthermore, a previous theoretical analysis, 568 

implementing an alternate framework to that used here, found that synergistic interactions only 569 

occurred under specific conditions (Haller-Bull & Bode 2019). Accordingly, future theoretical studies 570 

may wish to investigate the controls that govern the frequency of synergistic interactions, and in doing 571 

so determine whether such patterns are general or more tailored to specific models. Overall, it is 572 

important to note that when comparing observed interactions to a null model we are determining 573 

whether it is possible to reject the null model. Similarly, a failure to reject the null model does not 574 

mean that the stressors interact in an additive manner, only that we are unable to find a statistically 575 

significant difference between what is observed and what is predicted. Ultimately, acknowledging the 576 

difference between these two statements, and the corresponding interpretation of a null model, is 577 

crucial when attempting to further our collective understanding of these statistical tools. 578 

 579 

Lack of generalities across meta-analyses 580 

Very few general patterns have emerged from previous meta-analyses on stressor interactions (Côté 581 

et al. 2016), but there are a number of reasons as to why this is the case (see also Côté et al. 2016). 582 
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Firstly, the studies have been carried out across all the different major realms (marine, terrestrial, and 583 

freshwater) and there could be heterogeneity simply because different stressor interactions might 584 

prevail in the different realms. Secondly, there is both a range of stressors considered, and a naturally 585 

large taxonomic variation in study organisms cutting across a wide range of life histories and trophic 586 

structures. For example, it could be that long-lived and short-lived organisms experience different 587 

effects, or for instance, that trophic level is important to the type of stressor interaction that tends to 588 

occur (Thompson et al. 2018a; see Supplementary Material 5), and that different combinations of 589 

stressors will give rise to different forms of interaction (e.g. Jackson et al. 2016, see Supplementary 590 

Material 5). Thirdly, different meta-analyses have considered different levels of biological 591 

organisation, from individuals, to populations communities and ecosystems (reviewed by Crain et al. 592 

2008 for marine ecosystems), and we can expect different interactions to occur for the same stressor 593 

pair across the levels of organisation (e.g. Galic et al. 2018). Fourthly, there is a profusion of null 594 

models and classification schemes for stressor interactions (Schäfer & Piggott 2018; Orr et al. 2020), 595 

making comparisons between studies very difficult, especially when we do not know the relationships 596 

between different null models. For example, under the same dataset, when should we expect 597 

synergistic and antagonistic interactions to be reclassified when we move from, say, the additive null 598 

model, to the multiplicative null model? Finally, we note that there is variation in the statistical 599 

methodologies implemented across meta-analyses. For instance, the manner in which interactions are 600 

classified can vary between methodologies (e.g. Crain et al. 2008 versus Darling & Côté 2008) which 601 

may potentially result in contrasting frequencies of the different interaction classifications being 602 

reported. We believe the first step to uncovering any generalities across meta-analyses is to eliminate 603 

any roles that methodological differences are playing, and only then can we focus on the more 604 

interesting biological causes (i.e. sources 1-4) for similarities and differences in the ways multiple 605 

stressors combine across different ecological communities. 606 

Mechanistic understanding of multiple stressors 607 
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Here, we sought an to answer to the question of how multiple stressors interact. This approach, when 608 

applied across both theoretical and empirical datasets can allow us to discern what might be expected 609 

across the interactions of multiple stressors. However, future research may seek to answer the 610 

question of why multiple stressors interact in the manner that they do. Undoubtedly, these two 611 

questions are entwinned, with the answers to each of these questions highly likely to be dependent 612 

upon the other. However, while the use of null models is essential in determining the combined effect 613 

of multiple stressors (Thompson et al. 2018b), the adoption of a mechanistic approach to investigating 614 

multiple stressors may provide novel insights which address these joint questions (De Laender 2018; 615 

Schäfer & Piggott 2018). For instance, a mechanistic understanding may allow for responses such as 616 

co-tolerance or co-susceptibility (Todgham & Stillman 2013) to stressors to be more thoroughly 617 

understood from an ecological perspective. Ultimately, such an understanding is likely to require a 618 

large amount of empirical data to fully understand; however, there is ample scope for theoretical 619 

ecology to help fill this gap in our collective understanding of multiple stressors, and to generate 620 

specific hypotheses to be tested. Similarly, a mechanistic understanding of multiple stressor 621 

interactions would prove invaluable when mitigating the effects of stressors or implementing 622 

conservation initiatives.  623 

 624 

Conclusions 625 

Here we have detailed the first empirical test of general theoretical predictions for how multiple 626 

stressors interact across a large number of freshwater community case studies. Our empirical results 627 

suggest that additive interactions are pervasive at the study level, but that meta-analyses reveal a 628 

summary antagonistic, or reversal, interaction class for the entire freshwater community dataset. 629 

However, our theory suggests these results may be reflecting sampling variation rather than any 630 

underlying stressor interaction, and that so-called ecological surprises may be far more common than 631 

empirical analyses are suggesting, with the theoretical results indicating similar frequencies of 632 
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antagonistic and synergistic interactions. Predicting the ways multiple stressors interact is key when 633 

attempting to mitigate their effects, with the class of observed interaction potentially outlining 634 

whether the removal of a stressor will have a beneficial, limited, or detrimental impact to the system 635 

(Brown et al. 2013; Côté et al. 2016). Our results show the value of developing a theoretical framework 636 

for predicting and understanding environmental stressor interactions, and we hope more general 637 

theory that makes specific predictions based upon ecological mechanisms (e.g. De Laender 2018; Fu 638 

et al. 2018; Thompson et al. 2018a) will be developed and tested in the future. However, our results 639 

also highlight the need to better understand the strengths and limitations of the null models that are 640 

used to test classify the cumulative effects of community stressors, and we also believe a unified 641 

approach to the meta-analyses of individual studies will increase our understanding of how 642 

environmental stressors combine. 643 
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