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Abstract  11 

Understanding kinetic control of biological processes is as important as identifying 12 

components that constitute pathways. Insulin-signaling (IS) is central for almost all 13 

metazoans and its perturbations are associated with various diseases and aging. While 14 

temporal phosphorylation changes and kinetic constants have provided some insights, 15 

constant or variable parameters that establish and maintain signal topology are poorly 16 

understood. Our iterative experimental and mathematical simulation-based approaches 17 

reveal novel kinetic parameters that encode concentration and nutrient dependent 18 

information. Further, we find that pulsatile fasting insulin rewires IS akin to memory and in 19 

anticipation of a fed response. Importantly, selective kinetic gating of signals and maximum 20 

connectivity, between metabolic and growth-factor arms under normo-insulinemic states, 21 

maintains network topology. In addition to unraveling kinetic constraints that determine 22 

cascade architecture, our findings will help in identifying novel therapeutic strategies that 23 

conserve coupling between metabolic and growth-factor arms, which is lost in diseases and 24 

conditions of hyperinsulinemia. 25 
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Introduction 26 

Signaling cascades are essential for regulating cellular processes and decades of 27 

work has unraveled molecular and biochemical mechanisms that constitute them. However, 28 

kinetic parameters that define emergent properties of signaling networks and therefore 29 

predict regulatory nodes are poorly understood. While independent experimental and 30 

mathematical approaches have provided valuable insights (Behar et al., 2008; Faro et al., 31 

2017; Kubota et al., 2012; Shinar et al., 2007; Somvanshi et al., 2019; Vinod and Venkatesh, 32 

2009; Wilson et al., 2017), studies that capture dynamics and complexities of signaling 33 

architecture vis-à-vis physiological variations in input strengths are far fewer. Not only 34 

would these reveal fundamental kinetic considerations that determine signal topology but 35 

also inform about reactions/entities that could emerge as therapeutic targets. 36 

Insulin signaling (IS), an evolutionarily conserved mechanism is essential for 37 

cellular/organismal metabolism and growth (Boucher et al., 2014; Haeusler et al., 2018; 38 

Saltiel and Kahn, 2001). Aberrant IS is associated both causally and consequentially with 39 

growth abnormalities, inflammation, accelerated aging and diseases including metabolic 40 

disorders and cancer (Arcidiacono et al., 2012; Guo, 2014; Hill and Milner, 1985; 41 

Shimobayashi et al., 2018; Shoelson et al., 2006; Vigneri et al., 2020). Genetic perturbations 42 

and omics-based studies have elucidated importance of key phosphorylation events in 43 

response to insulin stimulation (Humphrey et al., 2015; Krüger et al., 2008; Schmelzle et al., 44 

2006; Yugi et al., 2014). Recent reports have provided crucial insights into physical protein 45 

interactomes, temporal changes in phospho-proteome and kinetic constants, viz T1/2 and 46 

EC50 (Kubota et al., 2018; Vinayagam et al., 2016). However, kinetic parameters that govern 47 

network properties of IS as a function of normo-insulinemic and hyper-insulinemic states 48 
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that could collectively determine physiological and pathophysiological outcomes is still 49 

lacking. 50 

Our current understanding largely stems from studies, which have used either supra-51 

physiological or static concentrations of insulin. It is important to note that circulating 52 

insulin concentrations vary drastically from being low/pulsatile to high/biphasic in fasted 53 

and fed states respectively (Krishnan et al., 2018; Lu et al., 2012; Pørksen, 2002; Vander 54 

Haar et al., 2007). Moreover, hyper-insulinemia is associated with metabolic disorders such 55 

as diabetes and obesity (Menge et al., 2011; Satin et al., 2015; Schmelzle et al., 2006). These 56 

are key considerations since kinetic criteria that either encode fasted-to-fed transitions or 57 

drive pathological manifestations of IS are unknown. Furthermore, IS can be broadly divided 58 

into metabolic and growth factor arms (Mendoza et al., 2011; Petersen and Shulman, 2018). 59 

In this regard, while biased signaling is implicated in diseases, if/how the flow of information 60 

is stratified and maintained remains to be unraveled. 61 

Mathematical approaches to model cellular signaling have gained traction in the 62 

recent past to understand the dynamics and also to provide predictive parameters that 63 

define topology of signaling network (Cedersund et al., 2008; Dalle Pezze et al., 2016; Di 64 

Camillo et al., 2016; Sedaghat et al., 2002; Sonntag et al., 2012). Earlier such attempts to 65 

determine kinetics of insulin signaling have largely employed “averaged” measures to define 66 

the behavior of the system (Kubota et al., 2018). Importantly, given the fluctuations in 67 

insulin levels and inherent noise in signaling, there are no reports that have computed 68 

kinetic parameters, which capture emergent properties of IS. Specifically, while there have 69 

been simulation based approaches to define dose-to-duration effects and kinetic insulation 70 
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on synthetic signaling networks (Behar et al., 2007), such principles have not been applied 71 

to complex cascades such as insulin signaling.  72 

In this regard, our current study addresses how connectedness among signaling 73 

components as well as overall network topology is maintained under physiological 74 

concentrations of insulin. We further highlight the concentration dependency of barriers in 75 

the signaling cascade which maintain hierarchy. Additionally, our study puts emphasis on 76 

the importance of dynamic range and pulsatility in signaling which generates memory as 77 

well as couples the metabolic and growth factor arms. 78 

 79 

Results 80 

Distinct kinetics of signaling in response to physiological and non-physiological 81 

concentrations of insulin 82 

Although previous reports have attempted to elucidate dynamics of insulin signaling, 83 

kinetic parameters that define signaling architecture in response to physiologically relevant 84 

insulin concentrations remain to be unraveled. This is particularly important since circulating 85 

concentrations of insulin vary between 0.1 nM and 1.0 nM during normal fed-fast cycles. 86 

Moreover, insulin signaling achieves both nutrient uptake and its utilization via anabolic 87 

processes, whose perturbations are associated with diseases and accelerated aging. Thus, 88 

we wanted to assess the kinetics of signaling through nodal kinases in the cascade, which 89 

govern both the metabolic and growth factor arms (Figure 1A). Given the importance of 90 

liver in modulation of insulin action and integration of whole-body physiology, we employed 91 

primary hepatocytes.  Towards this, primary hepatocytes isolated from mice livers were 92 
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treated with different concentrations of insulin as described in Figure 1B. Our paradigm 93 

ensured that the kinetic evaluation did not have any bearing from either residual signals or 94 

nutrient inputs alone, as illustrated in Figure 1B and Figure 1- figure supplement 1, A-D. 95 

As reported by others  (Borisov et al., 2009; Kubota et al., 2012; Kubota et al., 2018; 96 

Noguchi et al., 2013) insulin treatment led to a rapid activation of downstream signaling and 97 

was consistent with a fed response (Figure 1C-E, Figure 1- figure supplement 1E-F and Figure 98 

1- figure supplement 2A-B). Expectedly, overall signal intensities (i.e. area under the curve: 99 

AUC), for all the phosphorylation events scored in our assay, were positively correlated with 100 

insulin concentration (Figure 1- figure supplement 2C). We define true discovery rate as a 101 

statistical measure to compare changes in phosphorylations across time and insulin 102 

concentrations. This parameter further validates the statistical robustness of our 103 

measurements (Figure 1- figure supplement 2D). It was striking to see that the kinetic 104 

behavior of nodal kinases in the cascade, AKT and ERK, was markedly different (Figure 1D-E, 105 

Figure 1- figure supplement 1E-F, 2A-B and 3C), which has not been highlighted in any of the 106 

previous studies. Importantly, we observe non-linear and non-monotonic association of 107 

signal intensities w.r.t insulin concentrations, across the cascade, both in terms of extent of 108 

phosphorylation and temporal behavior.  109 

For example, activation-inactivation kinetics was starkly different for AKT (T308 and 110 

S473) and ERK. In addition to this, while the final intensity of AKT phosphorylation 111 

approached baseline by 120 minutes, ERK phosphorylation showed a distinct second wave 112 

of activation (Figure 1D-E, Figure 1- figure supplement 1E-F, 2A-B and 3C). Similarly, we 113 

found that initial induction of phosphorylation of GSK3β and S6K was phase delayed in 114 

response to 0.1 nM and 1.0 nM insulin treatments and continued to remain elevated long 115 
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after phosphorylation on AKT started to extinguish (Figure 1- figure supplement 1E-F, 2A-B 116 

and 3A-B). 117 

Further, on comparing both fed and fasted insulin concentrations, it was apparent 118 

that maximal phosphorylation and its sustenance varied drastically for nodal kinase AKT, as 119 

can be seen in Figure 1D-E. These clearly indicated that insulin-dependent programming of 120 

signaling kinetics was distinct and prompted us to investigate the kinetic parameters that 121 

defined this behavior. We adopted an iterative experimental-cum-mathematical approach 122 

to gain further insights.  123 

Mathematical modelling of signaling kinetics and predictive assessment of key 124 

phosphorylation-dephosphorylation dynamics 125 

Based on our experimental results, we modeled the signaling cascade using 126 

mathematical methods with an aim to extract kinetic parameters that define the network. 127 

We considered the insulin signaling network as a set of coupled biochemical reactions and 128 

used ordinary differential equations (ODE) to describe the system (Aoki et al., 2013; Arkun, 129 

2016; Borisov et al., 2009; Dalle Pezze et al., 2016; Dalle Pezze et al., 2012; Di Camillo et al., 130 

2016; Ho et al., 2015; Huang et al., 2014; Kubota et al., 2012; Kubota et al., 2018; Noguchi et 131 

al., 2013; Sedaghat et al., 2002; Zhao et al., 2017). Importantly, we set out to not only test 132 

the robustness of our mathematical simulation using experimental results, but also predict 133 

the behavior of components that were not measured experimentally. 134 

As shown in Figure 1F-1G and Figure 1 – figure supplement 3D-F, the simulation results for 135 

pAKTT308, pAKTS73, pGSK3βS9, pS6KT389 and pERKT202/Y204 were consistent and nearly 136 

overlapping with the experimental data, across insulin concentrations. Next, using 137 
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experimentally optimized parameters as input, we simulated the phosphorylation dynamics 138 

of insulin receptor (IR), mTORC1 and mTORC2 (Figure 1 – figure supplement 3G).  139 

While downstream components scaled with insulin concentration, the most upstream event 140 

of insulin receptor phosphorylation was rapid and transient. Intriguingly, kinetics of mTORC1 141 

and mTORC2 were starkly different (Figure 1 – figure supplement 3G). Moreover, even 142 

though mTORC2 is not directly downstream to IR, we found their responsivity to be similar 143 

qualitatively. To our best knowledge this is one of the first attempts that delineates 144 

temporal variations in activation of mTOR complexes. Given that mTORC2 is the primary 145 

kinase for S473 phosphorylation, the discordant dynamics of mTORC2 phosphorylation and 146 

pAKTS473 predicts additional regulatory steps in controlling activation of AKT (Figure 1D and 147 

Figure 1 – figure supplement 3G). 148 

We also used stochastic simulations to provide an alternative approach to validate 149 

our mathematical predictions, which qualitatively resembled the deterministic approach for 150 

quantities as described in Figure 1H. In addition to predicting the response at a population 151 

level, this allowed us to determine the fluctuations in the system and compare it with 152 

signaling topology (see below). 153 

In order to score the robustness of our simulation data, we computed the z-score for 154 

all components assessed in the signaling cascade across concentrations (Figure 1I). It is 155 

important to note that our iterative toggling between computational and experimental 156 

determination of phosphorylation gave highly consistent results. Further, low values of false 157 

discovery rate calculations suggested statistical similarity between simulation and 158 

experimental data (Figure 1 – figure supplement 3H).  159 

AKT-dependent responsivity to insulin is determined by phosphorylation at S473 160 
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Several reports have highlighted the necessity of dual phosphorylation of AKT at T308 161 

and S473 for its activity (Bertuzzi et al., 2016; Manning and Toker, 2017; Sarbassov et al., 162 

2005). Despite this it is still unclear as to which of these provides the gain in terms of signal 163 

strength and responds to dynamic changes in insulin concentrations. Thus, we computed 164 

percentage gain in signal against physiological insulin concentrations of 0.1 and 1 nM for 165 

pAKTT308 and pAKTS473 (Figure 2A). pAKTT308, that is directly downstream to insulin receptor, 166 

showed comparable activation with no change in peak intensity across fasted and fed insulin 167 

concentrations. On the contrary, pAKTS473, which is indirectly dependent on insulin via 168 

mTORC2, displayed dose responsiveness to insulin concentrations and variable kinetics 169 

(Figure 2A-B). This finding posits that while pAKTT308 may serve to prime the signaling, 170 

pAKTS473 determines the extent of overall activation in response to fed insulin doses.   171 

Non-concordant peak and final amplitudes define dynamic range of nodal signaling events 172 

Threshold of activation and dynamic range are key determinants of responsivity in 173 

signaling, especially when the inputs are dynamic, as in the case of IS. We wanted to 174 

determine (a) the relationship between peak intensity and decay kinetics, and (b) dynamic 175 

range and threshold activation, which collectively dictate the physiological output. Phase 176 

diagram depicting peak amplitudes and decay time of phosphorylation events highlighted 177 

non-concordance between these for AKT but not for pGSK3β and pS6K (Figure 2B). 178 

Most experimental approaches in the past have assayed for signaling in response to 179 

very high inputs, which is rarely physiological. Such deterministic evaluation of signaling also 180 

masks threshold kinetics, which is critical to encode biological response. Therefore, on 181 

simulating the phosphorylation events across concentrations from 0.1 nM to 1.0 nM, we 182 

found disparate dynamic ranges for activation (Figure 2C). While AKT phosphorylations 183 
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(both at S473 and T308) displayed large and nearly overlapping dynamic range, pS6KT389 and 184 

pGSK3βS9 reach saturation at lower concentrations of insulin (Figure 2C-D). Taken together 185 

with dose-dependency of pAKTS473 (Figure 2A), these results clearly suggest that while dual 186 

phosphorylation of AKT is important for its activity, pAKTS473 is a crucial regulatory node 187 

during fast to fed transitions. 188 

 Since our simulations predicted non-saturation dynamics for pAKTS473, we wanted to 189 

experimentally verify if this was indeed the case.  We specifically chose 0.3 nM and 0.6 nM, 190 

as the response is linear at 0.3 nM and begins to plateau at 0.6 nM insulin. As shown in 191 

Figure 2 – figure supplement 1A-B, our experimental results were consistent with the 192 

mathematical predictions and clearly indicated that pAKTS473 indeed displayed a large 193 

dynamic range to insulin inputs. 194 

Interestingly, the variability in dynamic range was independent of the final 195 

amplitudes (Figure 2 – figure supplement 1C) as it returned to the same level at 120min, for 196 

all the phosphorylations assessed. Such non-concordance between peak and final 197 

amplitudes across signaling components raised the exciting possibility of existence of (a) 198 

kinetic insulation of signals and (b) memory of fasted insulin inputs, which together would 199 

define the fed insulin response. 200 

Diverse insulin inputs generate differential kinetic gates and signal noise 201 

In a multi-component and multi-step signaling cascade, such as insulin signaling, it is 202 

important to determine parameters that (a) define the topology or the information flow 203 

through the network and (b) those that maintain robustness of the network/topology. 204 

Kinetic insulation has been proposed as one of the key determinants of non-uniform flow of 205 

information. Although inferred by mathematical approaches (Behar et al., 2007; Behar et al., 206 
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2008) on a synthetic cellular signaling cascade, it has not been applied to a dynamic 207 

physiological system such as insulin signaling.  208 

In this context, we used our experimental data and mathematical simulations 209 

(methods) to deduce kinetic gates that define topology of insulin signaling. To reveal kinetic 210 

gating/insulation we computed rate constants for phosphorylation events, which included 211 

known feed-forward and feed-back regulatory inputs (Figure 3- figure supplementary 1A-B). 212 

A simple-minded assumption was that very high or low ratios of KON/KOFF would constitute 213 

kinetic “gates” that determined differential flow of signals. A phase diagram of KON/KOFF 214 

ratios for key phosphorylation events is depicted in Figure 3A, wherein we applied 10+/-1 as 215 

the threshold or barrier.  216 

Interestingly, at insulin concentration of 1 nM, which mimics a physiologically fed state, 217 

most reactions were not gated and were unlike the response to very low and very high 218 

insulin concentrations. For example, AKT activation (reaction 5) was more sensitive at lower 219 

insulin concentration i.e. there was a negative barrier while at 1 and 10 nM there was no 220 

gating. On the contrary, activation of GSK3β (reaction 10) was highly gated at both very low 221 

and very high insulin concentrations. We also observed a peculiar pattern between nodal 222 

priming events {viz. reactions 1 (Ins+IR ⇄ p1IRC), 6 (ppAKT+mTORC1 ⇄ ppAKT+pmTORC1), 223 

10 (ppAKT+GSK3β ⇄ ppAKT+pGSK3β) and 11 (p1IRC+Raf ⇄ p1IRC+Raf*)} and their effector 224 

or downstream phosphorylations {reactions 4 (p1IRC+pAKTS473 ⇄ p1IRC+ppAKT), 5 225 

(pmTORC2+pAKTT308 ⇄ pmTORC2+ppAKT) and 12 (Raf*+ERK ⇄ Raf*+ppERK)} vis-à-vis 226 

kinetic gates specifically at 0.1 nM. Together, it was striking to see that strong negative and 227 

positive barriers were differentially associated with metabolic and growth factor arms of the 228 

cascade in response to fasted, fed and supra-physiological insulin inputs. 229 
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Since phosphorylation of AKT is one of the central events that is used as surrogate 230 

for IS, and given the differential dynamics of pAKTT308 and pAKTS473, we wanted to assess 231 

their individual contributions to functional flexibility. We went ahead to compute noise in 232 

their signaling (fluctuations on mathematically determined concentrations; see methods). 233 

This is relevant as often noise in biology becomes important for mounting a robust response 234 

in addition to generating functional heterogeneity and flexibility especially in a dynamic 235 

system like IS (Bowsher et al., 2013; Silva-Rocha and de Lorenzo, 2010; Thattai and Van 236 

Oudenaarden, 2001). As shown in Figure 3B, we observed that lower concentrations of 237 

insulin generate more noise than higher concentration across time points assessed. While 238 

being in general agreement with similar measurements of other biological parameters, this 239 

also indicated that the differential phosphorylation dynamics of AKTT308 and AKTS473 were 240 

independent of noise. In summary, the results described in this section clearly indicated that 241 

differential insulin inputs mounted diverse kinetic responses, which together could possibly 242 

exert a control over topology of the cascade.  243 

Robust IS topology is achieved at physiological insulin inputs 244 

Topology and robustness of a network is governed by the degree of connectedness 245 

among the network components and is defined by how correlated their responses are. 246 

Therefore, we set out to ask if supra-/physiological inputs of insulin had any bearing on 247 

signaling topology.  248 

Computing Pearson coefficient across time for different insulin concentrations gave 249 

us a correlation matrix comparing each phosphorylation event with the other (Figure 3C). 250 

We observed that maximal correlations are lost under supraphysiological concentration of 251 

10 nM compared to physiological concentrations of insulin. 252 
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Next, we checked if high degree of correlation in response to fed and fasted insulin 253 

inputs had any impact on the topology of the network. For a maximally connected network 254 

of “n” nodes the maximum number of edges would be n(n-1)/2; while the minimum number 255 

of edges would be (n-1). Applying this to a five-component system (as in our case) should 256 

give a maximum of 10 connections, although 34 undirected non-isomorphic graphs can be 257 

realized. We found that when 5 nodes (vertices) corresponding to pAKTS473, pAKTT308, 258 

pS6KT389, pGSK3βS9, pERKT202/Y204 were used, maximum connectivity was obtained at 259 

physiological concentrations of insulin (at 0.1 nM and 1.0 nM) (Figure 3D and Figure 3 - 260 

figure supplement 1C). Distinctively the network broke at 10 nM insulin and the node 261 

corresponding to pERK was disconnected, which indicated decoupling of the metabolic and 262 

growth factor arms with possible pathophysiological implications. 263 

To understand which of the nodes control topology of the network, we substituted 264 

individual nodes of 0.1 and 1 nM insulin network with that of 10 nM while keeping the rest 265 

unperturbed. Perturbation of every component changed network properties with a 266 

reduction in both the number of nodes as well as edges (Figure 3E and Figure 3- figure 267 

supplement 2 and 3A-D). Interestingly, while perturbation of pAKTS473 caused disappearance 268 

of some edges, perturbation of pAKTT308 completely broke the network, bringing the 269 

connections down from 6 to 2 (Figure 3E and F).  270 

Pulsatile fasting insulin rewires response to fed insulin inputs akin to memory  271 

Uniquely, insulin is released in a pulsatile manner during a fasted state (O'Meara et 272 

al., 1993; O'Rahilly et al., 1988), which is followed by a biphasic secretion in response to fed 273 

nutrient inputs. As mentioned earlier, while most studies on signaling dynamics have used 274 

high concentrations of insulin, there are no reports that have investigated kinetics and 275 
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topology vis-à-vis pulsatile fasted insulin inputs. Moreover, if/how a fasted input shapes 276 

signaling architecture in a fed state has not been addressed, thus far.  277 

To this end, we pulsed hepatocytes with 0.1 nM insulin and then subsequently treated with 278 

1 nM insulin as a proxy to physiological dynamics of fasted and fed insulin inputs, as 279 

indicated (Figure 4A). Surprisingly, we found that there was neither sustenance nor an 280 

enhanced response to consequent insulin pulses, for pAKTT308 and S473 (Figure 4B-C and Figure 281 

4 – figure supplement A), which was unanticipated. This striking loss of pAKT signal by the 282 

end of 4th pulse (at 0’) was distinct from a continuous step treatment as described earlier 283 

(Figure 1D-E) and indicated a memory of signaling. This behavior was not seen for pERK 284 

(Figure 4D and Figure 4 – figure supplement B). Interestingly, pAKT levels reached a new 285 

baseline following pulsatile insulin stimulation (Figure 4B-C). This new reset point of pAKT 286 

also changed the kinetics following 1 nM insulin treatment, which was distinct from pERK, 287 

pGSK3β and pS6K phosphorylation (Figure 4D and Figure 4- figure supplement 1B-F). These 288 

results clearly indicated that fasted insulin pulses created a memory to possibly enhance the 289 

response to fed insulin inputs. In support of this hypothesis, network analyses of this 290 

pulsatile adapted fed IS showed more connectedness (as compared to 1 nM alone) (Figure 291 

4E and Figure 4 – figure supplement 1G). Additionally, we also looked at the transcription of 292 

genes downstream of a pulsatile adapted system. In line with the signaling data, the 293 

transcription of target genes was also more robust post adaptation (Figure 4F).  294 

Repeated stimulation by fed insulin abrogates the synergy between the metabolic and 295 

mitogenic arms of signaling  296 

Although continuous exposure to higher levels of circulating insulin is known to 297 

cause resistance and thus metabolic diseases, the kinetic basis for such a signalling has not 298 
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been investigated. In this context, we repeat stimulated hepatocytes with 1 nM insulin, as 299 

indicated in Figure 5A. This led to an anomalous response vis-à-vis both metabolic (pAKT) 300 

and mitogenic (pERK) arms of signalling. While pAKT levels decreased drastically, amplitude 301 

of pERK peaks increased following repeated stimulation (RS1 and 2) of fed insulin inputs 302 

(Figure 5B-D and Figure 5- figure supplement 1A). Network analysis following this paradigm 303 

showed complete loss of connections among signalling components (Figure 5E and Figure 5- 304 

figure supplement 1D). This was also apparent with the dynamics of pGSK3b and pS6K, 305 

which remain upregulated despite a downregulation in AKT signalling (Figure 5- figure 306 

supplement 1A-C). Interestingly, repeated stimulation of fed insulin also led to a loss in 307 

transcriptional robustness (Figure 5F). 308 

 309 

Discussion 310 

Coupling nutrient inputs to cellular metabolism, survival and growth is intrinsically 311 

dependent upon Insulin signalling (IS). Hypo- and hyper- activation of IS leads to various 312 

patho-physiologies including diabetes, accelerated aging and cancer, which are attributed to 313 

under- or over-phosphorylation of certain IS components (Arcidiacono et al., 2012; Guo, 314 

2014; Hill and Milner, 1985; Shimobayashi et al., 2018; Shoelson et al., 2006; Vigneri et al., 315 

2020). Despite this our ability to tweak the cascade to restore balance between metabolic 316 

and mitogenic arms has been limited by paucity of information vis-à-vis parameters that 317 

govern network topology. In this study, using mathematical and experimental approaches, 318 

we have provided fundamental insights into kinetic parameters that dictate emergent 319 

properties of IS and its architecture, under various physiological contexts.  320 
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Given the contribution of the liver in maintaining whole organismal physiology and 321 

insulin action, including development of metabolic diseases, we have specifically utilized 322 

primary hepatocytes for deciphering kinetic constants or determinants that exert a control 323 

over IS. It should be noted that while it is nearly impossible to recreate paradigms that 324 

mirror in-vivo conditions, we have employed insulin treatment regimens that mimic normo- 325 

and hyper-insulinemic states. Moreover, in-vivo complexity of insulin-dependent endocrine 326 

and paracrine networks would severely confound attempts to unveil kinetic determinants. 327 

Our study has revealed novel insights into kinetic control of insulin signalling and also 328 

provides a model to capture such parameters in other cells or tissue types, including by 329 

coupling other endocrine/paracrine inputs.  330 

While genetic, biochemical and pharmacological perturbations have described inter-331 

dependence of IS phosphorylation events, recent phospho-proteomic analyses have 332 

unravelled their temporal behaviour. However, the extent to which phosphorylation 333 

dynamics encode information as a function of insulin concentration and/or time is still 334 

unclear. For example, even though hypo-/hyper-phosphorylations at T308 and S473 are 335 

considered as proxy markers for AKT activity and signalling downstream to insulin, whether 336 

or not their kinetic differentials contribute to insulin responsiveness remains unknown. 337 

Here, we surprisingly found that while the gain and kinetics of pT308 (IR/PDK1 dependent) 338 

was independent of input strength, phosphorylation of S473 (downstream to mTORC2) 339 

correlated with change in ligand concentration and displayed highest gain in signal in 340 

response to a fed insulin input.  341 

Further, in contrast to net gain in specific phosphorylation, dynamic range, which is 342 

undetermined for many signalling networks including IS, has been proposed to be a better 343 
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predictor of cellular response. In this regard, our simulation and experimental data together 344 

revealed a large dynamic range for pAKTT308 and pAKTS473, which was nearly overlapping. 345 

This suggests that both these phosphorylations are equally responsive to relative change in 346 

insulin inputs vis-à-vis physiological fed-fast cycles wherein circulating concentrations vary 347 

between 0.1nM and 1.0 nM. Surprisingly, we also found that pT308 is a key determinant of 348 

network topology, which also highlights distinct properties of AKT phosphorylations in 349 

contributing to flow of information. Taken together these also raise the possibility of pT308 350 

and pS473 acting as low pass and high pass filters with former being a permissive cue, which 351 

was hitherto unknown. 352 

Noise in biology is generally regarded to be beneficial for regulating functional 353 

flexibility and has been well studied in the context of gene transcription. Given limited 354 

knowledge in this regard for signalling cascades (especially for IS), we checked for input 355 

versus variance in signal response for the nodal kinase AKT. It was interesting to note that 356 

noise in signaling was apparent at physiological concentrations of insulin (0.1-1 nM) while it 357 

was substantially diminished in hyper-insulinemic regimes. This hinted towards reduced 358 

flexibility in signaling under hyper-insulinemic states. 359 

Signal stratification is crucial for sustenance of downstream information even upon 360 

input extinction. We discovered that signals are stratified with differential gating, in an 361 

insulin concentration dependent manner, with kinetic barriers/gates emerging at both low 362 

and hyper-insulinemic concentrations. These bring to the fore the need to address 363 

mechanisms that contribute to these kinetic barriers by affecting KON/KOFF ratios of 364 

phosphorylation events, in the future. We propose such components would be very 365 
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attractive candidates for therapeutic interventions to regulate insulin signalling and 366 

maintain network properties.  367 

In addition to differential kinetic gating, connectedness between signalling 368 

components determines topology of the network. Despite several studies on signalling 369 

cascades across biological systems, little is known about if/how these parameters contribute 370 

to topology, except in cases where simulations have been carried out for artificial signalling 371 

systems. Our iterative experimental-simulation approach has revealed that maximum 372 

connectivity between the signalling nodes, which is often used as a measure of network 373 

robustness, is achieved at physiological concentrations of insulin. Conversely, the network 374 

breaks at hyper-insulinemic states. Importantly, we also underscore the significance of each 375 

of the phosphorylations in maintaining the robustness of the topology under normo-376 

insulinemic states. 377 

Others and we have found that metabolic cues under fasting conditions elicit 378 

anticipatory molecular mechanisms to mount an efficient fed response (Chattopadhyay et 379 

al., 2020; Maniyadath et al., 2019; Shaw et al., 2020). Given that fasting insulin (0.1nM) is 380 

pulsatile with a frequency of 10-15min, our findings have shown that this rewires fed IS 381 

dynamics. Strikingly, we found that coupling low pulsatile inputs with 1.0nM insulin 382 

stimulation, as in the case of fasted to fed transition, enhanced net gain in phosphorylation 383 

of some (pAKTT308 and S473 and pGSK3βS9) but not all components, akin to memory or 384 

anticipation. Conversely, insulin resistance is associated with repeated insulin/nutrient 385 

inputs and hyperinsulinemia. Our study also describes kinetic changes in IS dynamics, which 386 

can be either causal or consequential to reduced sensitivity under these conditions. Notably, 387 

we found that repeated stimulation with fed concentrations of insulin damped the AKT 388 
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response while upregulating pERK indicating a disbalance between metabolic and mitogenic 389 

arms. This is important because overactivation of either metabolic and/or the mitogenic 390 

arm has been described in literature as a driver of metabolic diseases and cancer (Altomare 391 

and Testa, 2005; Burotto et al., 2014; De Luca et al., 2012; Shaw and Cantley, 2006). Here, 392 

we would like to specifically highlight that the signaling network is most robust in response 393 

to fed insulin inputs, which is pulse primed by fasting insulin. Our findings posit that 394 

repeated and/or high insulin inputs, including in a clinical setting could lead to perturbed 395 

networks with possible pathological manifestations. 396 

In conclusion, our results unravel hitherto unknown kinetic constraints that exert 397 

control over components of insulin signaling. Notably, we illustrate that these kinetic 398 

parameters are intrinsically linked to insulin concentrations as in normo- and hyper-399 

insulinemic states. Given that a discordant signal flow between metabolic and growth-factor 400 

arms is associated with diseases, our findings provide fundamental insights into factors that 401 

govern this coupling. Our study also raises the possibility of impaired biological outputs in 402 

the context of therapeutic interventions using insulin, which have been largely guided by 403 

glycemic control. We highlight the importance of discovering novel regulatory 404 

parameters/nodes to complete our understanding of signaling cascades under both normal 405 

and pathological conditions. 406 

 407 

Materials and Methods 408 

Animals 409 

2.5-3 month old C57BL/6NCr mice were used for hepatocyte isolation. The animals were 410 

housed under standard animal house conditions with a 12h day and night cycle. All 411 
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procedures were done in accordance with the institute animal ethics committee (IAEC) 412 

guidelines. 413 

Primary Hepatocyte Isolation and culture 414 

Male mice were sedated by giving intraperitoneal Thiopentone (Neon Laboratories Ltd., 415 

Mumbai, India) injection. Liver perfusion was done via inferior vena cava using 30mL Hank’s 416 

Balanced Salt Solution, HBSS (5.33 mM Potassium chloride, 0.44 mM KH2PO4, 4.16 mM 417 

NaHCO3, 137.93 mM NaCl, 0.338 mM Na2HPO4, pH 7.4) containing 5.5 mM Glucose (Sigma-418 

Aldrich G8769), 25mM HEPES pH 7.2 (USB 16926) and 100mM EGTA (Sigma-Aldrich E3889). 419 

Hepatic portal vein was cut at one end in order to drain out the blood. Perfused liver was 420 

digested using collagenase (Sigma-Aldrich C5138) dissolved in 50mL Digestion medium 421 

{DMEM-LG (Sigma-Aldrich D5523), 15mM HEPES pH 7.2 (USB 16926) and Anti-Anti (Sigma-422 

Aldrich A5955)}. Liver was cut into pieces, minced and incubated in Digestion Medium for 423 

5min. The cells were strained using a 70µm cell strainer and centrifuged at 50G for 5min. 424 

Cell pellet was washed twice with DMEM-HG (Sigma-Aldrich D7777) and re-suspended in 425 

DMEM-HG containing 10% FBS (Gibco 16000044) for plating. Trypan blue staining was done 426 

to check cell viability. Cells were plated at a density of 7.5 x 105 cells/60mm plate in collagen 427 

(Sigma-Aldrich C3867) coated plates (5µg/cm2). Cells were grown at 37oC and 5% CO2. 428 

Medium was changed 6h post plating to ensure proper cell adherence. 429 

Insulin Treatments 430 

24h post plating, the hepatocyte medium was changed to 5% FBS containing DMEM-HG for 431 

11h. Medium was changed to Earle’s Balanced Salt Solution, EBSS (Sigma-Aldrich E2888) for 432 

6h to get a baseline (0m) signal. For one step insulin stimulation experiments, 0.1-100nM 433 

Insulin (Sigma-Aldrich I0516) in DMEM-HG was added to the hepatocytes and cells were 434 
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collected at time points as described in the results. For pulsatile insulin treatments and 435 

repeated insulin stimulation, paradigm modifications are mentioned in Figure 4A and 5A. 436 

Every media change was preceded with a PBS wash to remove residual contamination. 437 

Protein Lysate Preparation 438 

Hepatocytes were lysed in RIPA lysis buffer (50mM Tris pH 8.0, 150mM NaCl, 0.1% SDS, 439 

0.5% Sodium deoxycholate, 1% Triton X-100, 0.1% SDS, 1 mM PMSF, Protease inhibitor 440 

cocktail and phosphatase inhibitor- Sigma-Roche 4906845001) for 30min. Cell debris were 441 

pelleted by centrifuging at 12,000rpm at 4oC for 15min. BCA assay kit (Sigma-Aldrich 9643) 442 

was used for protein estimation. Protein samples were boiled in a loading buffer (8% SDS, 443 

40% glycerol, 240mM Tris pH 6.8, 0.2g bromophenol blue and 3.05g DTT) and stored at -444 

20oC.  445 

Western Blotting 446 

50µg of protein was loaded onto SDS gel and run at 90V for stacking and 120V for resolving. 447 

Gels were transferred to ethanol activated PVDF membranes (Merck IPVH00010-IN) at 90V 448 

for 2h. Protein blotted membranes were blocked in 5% skimmed milk. Blots were cut 449 

according to protein molecular weight as indicated by pre-stained ladder (Abcam ab116028) 450 

and incubated overnight with the respective primary antibodies: AKT (CST 9272), pAKTS473 451 

(CST 4060), pAKTT308 (CST 13038), ERK1/2 (CST 4695), pERK1/2T202/Y204 (CST 4376), GSK3β 452 

(CST 12456), pGSK3βS9 (CST 5558), pS6KT389 (CST 9234) and S6K (CST 2708). Blots were 453 

incubated with appropriate secondary antibodies (Anti-Rabbit IgG- Peroxidase Sigma-Aldrich 454 

A0545 and Anti-Mouse IgG- Peroxidase Sigma-Aldrich A9044) and imaged using GE 455 

Amersham Imager 600.  456 
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RNA extraction, cDNA synthesis and RT-PCR 457 

RNA extraction, cDNA synthesis and real time PCR was performed as per manufacturer's 458 

instructions. Briefly, total RNA was extracted from hepatocytes using TRIzol reagent 459 

(Ambion-Invitrogen 15596-018) and 1ug of RNA was used to make cDNA using SuperScript 460 

IV RT Kit (Invitrogen 18090010). Quantitative PCR was done using KAPA SYBR® FAST 461 

Universal 2X qPCR Master Mix (KAPA Biosystems KK4601) and LightCycler 96 instrument 462 

(Roche). The list of primers used are depicted in the table below: 463 

Gene Name Forward Primer Reverse Primer 

FOS GTCAACACACAGGACTTTTG AGATAGCTGCTCTACTTTCA 

EGR1 CACTGACATTTTTCCTGAGC TAGTGGATAGTGGAGTGAGC 

c-JUN TACACGACTACAAACTCCTG GGGGGTAAAAGTACTGTCCC 

SRF GAGCCAGATCTCACCTACCAG CTGACACTAGCAGACACTG 

ChREBP CATCTCCAGCCTCGTCTTC CTTGGTCTTAGGGTCTTCAGG 

LPK CTTGCTCTACCGTGAGCCTC ACCACAATCACCAGATCACC 

GLUT2 GTCACTATGCTCTGGTCTCTG CAAGAGGGCTCCAGTCAATG 

PEPCK GTTCCCAGGGTGCATGAAAG AGGGCGAGTCTGTCAGTTCAA 

PPARG AGGGCGATCTTGACAGGAAA TCTCCCATCATTAAGGAATTCATG 

SCD1 CTGACCTGAAAGCCGAGAAG AGAAGGTGCTAACGAACAGG 

ACC AAGGCTATGTGAAGGATGTGG CTGTCTGAAGAGGTTAGGGAAG 

CPT1A ACTCCGCTCGCTCATTCCG CACACCCACCACCACGATAA 

GCK CAACTGGACCAAGGGCTTCAA TGTGGCCACCGTGTCATTC 

GLUT1 CCCCCCAGAAGGTTATTGAG CCAACAGGTTCATCATCAGC 
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LDHA ACAGTTGTTGGGGTTGGTGC CGCAGTTACACAGTAGTCTTTG 

Aldolase A GCTATCAACAAGTGCCCCCT GCTGCCTTCAGGTTCTCCTT 

DGAT2 CTGTGCTCTACTTCACCTGGCT CTGGATGGGAAAGTAGTCTCGG 

ACLY AGGAAGTGCCACCTCCAACAGT CGCTCATCACAGATGCTGGTCA 

LXRa CTGAAGCGGCAAGAAGAGGA CTGTGGCAGGACTTGAGGAG 

18S TTTCGAGGCCCTGTAATTGG CCCAAGATCCAACTACGAGC 

 464 

Data Processing 465 

Intensity measurements from the blots were done using Fiji-ImageJ software with 466 

corresponding background correction. 467 

Network Analysis 468 

Network construction, visualization and analysis was performed using Cytoscape (version 469 

3.7.2) using Pearson correlation data obtained from GraphPad Prism (version 8). 470 

Quantitation and Statistical Analysis 471 

Data are expressed as means ± standard error of means (SEM). Statistical analyses were 472 

performed using Microsoft Excel (2013) and GraphPad Prism (version 8). Statistical 473 

significance was determined by the Student’s t test. A value of p ≤ 0.05 was considered 474 

statistically significant. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001. 475 

Calculation of z-score and true/false discovery rate (TDR/FDR) 476 

Z-score was calculated by computing the difference between experimental and simulation 477 

for each time point. Like in a paired t-test or z-test, we computed the z-value by calculating 478 

the mean of the differences and dividing by the standard deviation. If z < 1.96, the null 479 
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hypothesis — that the experimental and simulation mean values are statistically the same 480 

was accepted. For computing FDR, difference between experimental and simulation data 481 

was divided by standard errors for different insulin concentrations and z-values were 482 

calculated. z > 1.96 it is was rejected and counted as false discovery and further averaged to 483 

obtain the false discovery rate. For two different insulin concentrations, we define a true 484 

discovery rate, which is calculated by taking difference between mean values and dividing by root of 485 

sum of square of standard errors. If z > 1.96, the null hypothesis is rejected and counted as true 486 

discovery and averaged to obtain the true discovery rate. 487 

Estimation of Parameters for Deterministic Simulations 488 

The proposed pathway of insulin signaling is modelled in terms of ordinary differential 489 

equations by using mass action kinetics (Alon, 2019; Klipp et al., 2016) . The set of equations 490 

that is used to define the insulin signaling network, which is considered both single (denoted 491 

by ‘p’) and double phosphorylation (denoted by ‘pp’) events and feedback inhibitions, are 492 

depicted in Figure S3.  We have solved these sets of ordinary differential equations using 493 

MatLab version R2015b, Math Works. The parameters of the model (rate constants of 494 

reactions and initial amounts of proteins) were decided such that the model fitted with the 495 

experimental data. The constrained nonlinear optimization technique was implemented 496 

using the ‘fmincon’ function in MatLab to provide parameters that fit best with the available 497 

data. That is, we optimized (minimized) the function:  498 

S=∑i,j[E(i,j)−S(i,j)]2 499 

where, E(i, j) and S(i, j) are the experimental and simulation data, respectively, for the ith 500 

protein component at jth time point. The function essentially measures the deviation of the 501 

experimental data, and is defined as the sum of the squares of the differences between 502 
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experimental measurements and simulated trajectories over all the measured proteins. We 503 

took 100 independent runs of the program to estimate these parameters. We choose the 504 

parameters that correspond to a minimum objective function value resulting in a good fit. 505 

All parameters were obtained for different insulin concentrations.  506 

Parameters used in Stochastic Simulations 507 

This reaction network is simulated by using the kinetic Monte Carlo based Doob-Gillespie 508 

Algorithm (Doob, 1942, 1945; Gillespie, 1976, 1977). The rate constants of respective 509 

reactions are taken from the deterministic model proposed earlier. These rate constants are 510 

converted to stochastic framework by using appropriate conversion factors. For 511 

unimolecular reactions, the deterministic rate constants (kj) and stochastic rate constants 512 

(cj) are numerically equal. For bimolecular reactions, when two reactants correspond to 513 

different proteins, the stochastic rate constants (cj ) are equal to kj/V, where V is the system 514 

volume (Gillespie, 1976, 1977). The concentration of proteins from a deterministic regime 515 

are converted to the number of proteins per cell by multiplying the concentrations by Na × 516 

V, where Na is the Avogadro’s number and V = 3×10−12 liters is the estimated volume of a 517 

cell. During the simulation, in any particular iteration from a given reaction network a single 518 

bio-chemical reaction and the subsequent time step is chosen randomly. In this way, a single 519 

stochastic trajectory is generated by running the simulation for a desired time. Further, 520 

many more realizations of this trajectory are generated to compute different moments (e.g. 521 

mean, standard deviation) of the probability distributions. 522 

Estimation of Insulin Molecules: To estimate the number of insulin molecules from 523 

concentration, we assumed a spherical shell (around the cell membrane) of 20nm size and 524 

computed the corresponding volume.  Assuming a spherical cell of volume V = 3×10−12 litres 525 
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the volume of this shell is ∆V = 0.0199×10−12 litres. Hence the number of insulin molecules 526 

are estimated by calculating Na × ∆V, where Na is the Avogadro’s number.  527 

(i) For 0.1 nM Insulin: the number of insulin molecules are found to be 528 

1.1985 molecules per spherical shell (1 insulin per spherical shell) 529 

(ii) For 1 nM Insulin: the number of insulin molecules are found to be 530 

11.9857 molecules per spherical shell (12 insulin molecules per spherical shell) 531 

(iii) For 10 nM Insulin: the number of insulin molecules are found to be 532 

119.8577 molecules per spherical shell (120 insulin molecules per spherical shell) 533 

Calculation of decay rate   534 

Decay times are calculated for dynamic protein concentrations measured and simulated in 535 

our studies by fitting an exponential function (e-kt) from the time point at which peak 536 

intensity is maximum to the final time point at which the intensity falls down.  537 

Calculation of parameters in kinetic gating 538 

The kinetic gating in the signaling cascade is studied by taking the ratio of phosphorylation 539 

rate constant (KON) and the de-phosphorylation rate constant (KOFF) of each biochemical 540 

reaction. In case of the degradation reactions, their rate constants are incorporated by 541 

averaging with the rate constants of appropriate reactions.  542 
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Figure Legends 723 

Figure 1: Iterative experimental-mathematical approach reveals distinct insulin signaling 724 

kinetics  725 

(A) Schematic of the insulin/IGF signaling pathway. Components involved in metabolic and 726 

mitogenic arms are shown in blue and green, respectively. Phosphorylations measured in 727 

this study are highlighted in red. (B) Experimental paradigm and workflow for assaying 728 

signaling in response to one step stimulation. (C) Representative blots for levels of 729 

pAKTT308 and pAKTS473 following insulin stimulation, as indicated. Total AKT and actin were 730 

used for normalization. See more in Figure 1- figure supplement 1E-F and 2A-B. (D) and 731 

(E)  Quantitation for temporal changes in pAKTS473 (D) and pAKTT308 (E) from experimental 732 

data shown in C. Fold changes for each concentration are with respective to their own 0m 733 

time point. Data presented is mean ± s.e.m. (N=4, n=4). (F) and (G) Quantitation for 734 

temporal changes in pAKTS473 (F) and pAKTT308 (G) from mathematical simulations using 735 

differential equations. (H) Kinetic behavior of phosphorylated pAKTT308 and 736 

pAKTS473 molecules at 1 nM insulin from stochastic simulations. The band represents 737 

standard deviation. (I) z-score giving degree of concordance between simulated and 738 

experimental data.   739 

Figure 2: Continuous variable parameters and high/low pass filters determine 740 

concentration dependent insulin response 741 

(A) Extent of change in phosphorylation at pAKTT308 and pAKTS473 across time points 742 

between 0.1 and 1 nM insulin. (B) Phase diagram depicting relationship between 743 

peak intensity and decay time from simulated data. (C) Estimated peak amplitude for 744 
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signaling components as a function of varying insulin concentrations depicts dynamic range. 745 

(D) Dynamic range for signaling components computed from (C), as labeled. 746 

Figure 3: Kinetic gates and maximum connectedness is associated with robust topology 747 

under normo-insulinemic states 748 

(A) KON/KOFF ratios for phosphorylations across the signaling cascade. Insulin concentrations 749 

of 0.1-10 nM are depicted separately. Numbers on the x-axis represent phosphorylation 750 

events as detailed in Figure 3 – figure supplement 1A. Yellow band refers to the kinetic 751 

barrier applied between 0.1-10, representing a 10-fold change. (B) Noise in signal for 752 

phosphorylation at pAKTT308 and pAKTS473 in response to different insulin concentrations, as 753 

indicated. (C) Correlation matrix depicts degree of relatedness between phosphorylation 754 

events and their evolution with increasing insulin concentration. (D) Network analysis 755 

depicting degree of connectedness across insulin concentrations, as indicated. Dashed line 756 

represents negative correlation. Significance in correlation: White (p<0.05) <Blue (p<0.005) 757 

<Green (p<0.0005) <Yellow (p<0.00001) as observed by Student’s t-test. (E) Number of 758 

edges and nodes in a 1 nM network substituted with 10 nM values, as indicated. (F) 759 

Network maps of 1 nM insulin perturbed with 10 nM pAKTT308 (a) and pAKTS473 (b)  760 

Figure 4: Pulsatile fasting insulin rewires response to fed insulin inputs akin to memory 761 

(A) Experimental paradigm for mimicking fasted and fed insulin stimulation. P1-P4 indicate 762 

0.1 nM insulin pulses. (B-D) Quantitation for temporal changes in phosphorylations at 763 

pAKTT308 (B), pAKTS473 (C) and pERKT202/Y204 (D) following insulin treatment as in A. Fold 764 

changes for each concentration are with respective to their own 0m time point. Data 765 

presented is mean ± s.e.m. (N=4). (E) Network analysis showing connectivity among 766 

signaling components after treatment with 1 nM insulin following fasted insulin inputs, as in 767 

A. Dashed line represents negative correlation. Significance in correlation: White (p<0.05) 768 
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<Blue (p<0.005) <Green (p<0.0005) <Yellow (p<0.00001) as observed by Student’s t-test. (F) 769 

Heat maps for changes in gene expression downstream to insulin signaling in response to 770 

constant 0.1 nM and 1 nM, and 1 nM insulin following fasted insulin inputs (1 nM adapted, 771 

as in A) (N=2, n=3)   772 

Figure 5: Repeated stimulation by fed insulin abrogates the synergy between the 773 

metabolic and mitogenic arms of signaling  774 

(A) Experimental paradigm for repeated stimulation with 1nM insulin. (B-D) Quantitation for 775 

temporal changes in phosphorylations at pAKTT308 (B), pAKTS473 (C) and pERKT202/Y204 (D) 776 

following repeated insulin stimulation. Fold changes for each concentration are with 777 

respective to their own 0m time point. Data presented is mean ± s.e.m. (N=4). (E) Network 778 

analysis showing connectivity among signaling components after repeated insulin 779 

stimulation, as in A. Dashed line represents negative correlation. Significance in correlation: 780 

White (p<0.05) <Blue (p<0.005) <Green (p<0.0005) <Yellow (p<0.00001) as observed by 781 

Student’s t-test. (F) Heat maps for changes in gene expression downstream to insulin 782 

signaling in response to repeated insulin stimulation (N=2, n=3)  783 

Figure 1 – figure supplement 1: 784 

(A-B) Normalization controls to correct for baseline signal. Representative samples were 785 

loaded to ensure that zero-minute time points across experiments were similar. (B) was 786 

over-exposed to get signal at zero minute. (C) Control for experimental paradigm to score 787 

for insulin inputs. Treatment with only high/low glucose and amino acid containing culture 788 

medium does not activate AKT signaling and indicates that the changes in phosphorylation 789 

are insulin dependent. (D) Quantitation for temporal changes in phosphorylations for C. (E 790 

and F) Representative blots for levels of pERKT202/Y204, pS6KT389 and pGSK3βS9 following 791 
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insulin stimulation of 0.1 and 1 nM, as indicated. Respective total proteins and actin were 792 

used for normalization  793 

Figure 1 – figure supplement 2  794 

(A and B) Representative blots for levels of pERKT202/Y204, pS6KT389 and pGSK3βS9 following 795 

insulin stimulation of 10 and 100 nM, as indicated. Respective total proteins and actin were 796 

used for normalization. (C) Comparison of area under the curve (AUC) with increasing insulin 797 

concentration. Asterisk depicts p values (*p<0.05, **p<0.005 and ***p<0.0005) as observed 798 

by Student’s t-test. (D) True discovery rates computed across insulin concentrations, see 799 

methods.  800 

Figure 1 – figure supplement 3  801 

(A-C) Quantitation for temporal changes in pGSK3βS9(A), pS6KT389 (B) and pERKT202/Y204 (C) 802 

from experimental data shown in Figure 1 – figure supplement 1E-F and 2A-B. Fold changes 803 

for each concentration are with respective to their own 0m time point. Data presented is 804 

mean ± s.e.m. (N=4, n=4). (D-F) Quantitation for temporal changes in pGSK3βS9 (D), 805 

pS6KT389 (E) and pERKT202/Y204 (F) from mathematical simulations using differential equations. 806 

(G) Simulated temporal changes in pIR, pmTORC1 and pmTORC2 following insulin 807 

stimulation, as indicated. (H) False discovery rates giving degree of concordance between 808 

simulated and experimental data, see methods 809 

Figure 2 – figure supplement 1  810 

(A) Representative blots for level of pAKTS473 kinetics under insulin concentrations of 0.3 and 811 

0.6 nM. Total AKT and actin were used for normalization. (B) Concordance between 812 

experimental and simulated data for extent of phosphorylation at pAKTS473 following 813 

stimulation by intermediate insulin concentrations. (C) Estimated final amplitude for 814 

signaling components at 120m as a function of varying insulin concentrations  815 
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Figure 3 – figure supplement 1  816 

(A) Reactions corresponding to numbers on y-axis in Figure 3A. (B) Ordinary differential 817 

equations corresponding to reactions mentioned in A. (C) Pearson r and corresponding p 818 

values used for computing networks in Figure 3D. and Figure 3- figure supplement 2 819 

Figure 3 – figure supplement 2 820 

Pearson r and corresponding p values used for computing networks in Figure 3F and Figure 821 

3- figure supplement 3 822 

Figure 3 – figure supplement 3 823 

(A) Network maps of 1 nM insulin perturbed with 10 nM pAKTT308 and S473 (a), pERKT202/Y204 (b), 824 

pGSK3bS9 (c) and pS6KT389 (d). (B) Number of edges and nodes in a 0.1 nM network 825 

substituted with 10 nM values, as indicated. (C) Network maps of 0.1 nM insulin perturbed 826 

with 10 nM pAKTT308 (a) and pAKTS473 (b). (D) Network maps of 0.1 nM insulin perturbed 827 

with 10 nM pAKTT308 and S473 (a), pERKT202/Y204 (b), pGSK3bS9 (c) and pS6KT389 (d). 828 

Figure 4 – figure supplement 1  829 

(A-D) Representative blots for levels of pAKTT308 (A), pAKTS473 (A), pERKT202/Y204 (B), 830 

pS6KT389 (C) and pGSK3βS9 (D) following pulsatile insulin stimulation, as indicated in Figure 831 

4A. Respective total proteins and actin were used for normalization kinetics. (E and F) 832 

Quantitation for temporal changes in phosphorylations at pGSK3βS9 (E) and pS6KT389 (F) 833 

following insulin pulses. Fold changes for each concentration are with respective to their 834 

own 0m time point. Data presented is mean ± s.e.m. (N=4)  835 

Figure 5 – figure supplement 1  836 

(A-D) Representative blots for levels of pAKTT308 (A), pAKTS473 (A), pERKT202/Y204 (B), 837 

pS6KT389 (C) and pGSK3βS9 (D) following repeated insulin stimulation, as indicated in Figure 838 

5A. Respective total proteins and actin were used for normalization kinetics. (E and F) 839 
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Quantitation for temporal changes in phosphorylations at pGSK3βS9 (E) and pS6KT389 (F) 840 

following repeated insulin stimulation. Fold changes for each concentration are with 841 

respective to their own 0m time point. Data presented is mean ± s.e.m. (N=4).  842 
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42 
 

Source Data 843 

Figure 1 – source data 1: Blot intensity and quantitation for pAKTS473 and pAKTT308 844 

Figure 1 – source data 2: Values for pAKTS473 and pAKTT308 from deterministic simulations 845 

used for plotting Figure 1F-G  846 

Figure 1 – source data 3: Values for pAKTS473 from stochastic simulations used for plotting 847 

Figure 1H 848 

Figure 1 – source data 4: z-score computation for concordance between simulated and 849 

experimental data 850 

Figure 1 – figure supplement 1 – source data 1: Blot intensity and quantitation for Figure 1 - 851 

figure supplement 1C-D 852 

Figure 1 – figure supplement 2 – source data 1: Calculations for computing area under the 853 

curve 854 

Figure 1 – figure supplement 2 – source data 2: TDR computation for comparison across 855 

insulin concentration 856 

Figure 1 – figure supplement 3 – source data 1: Blot intensity and quantitation for 857 

pGSK3βS9, pS6KT389 and pERKT202/Y204 used for plotting Figure 1 – figure supplement 3A-C 858 

Figure 1 – figure supplement 3 – source data 2: Values for pGSK3βS9, pS6KT389 and 859 

pERKT202/Y204 from deterministic simulations used for plotting Figure 1 – figure supplement 860 

3D-F 861 

Figure 1 – figure supplement 3 – source data 3: Values for pIR, pmTORC1 and pmTORC2 862 

from deterministic simulations used for plotting Figure 1 – figure supplement 3G 863 

Figure 1 – figure supplement 3 – source data 4: FDR calculations for degree of concordance 864 

between simulated and experimental data 865 

Figure 2 – source data 1: Percentage gain computation w.r.t. Figure 2A 866 
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43 
 

Figure 2 – source data 2: Values for peak intensity and decay time used for plotting Figure 867 

2B 868 

Figure 2 – source data 3: Values for peak intensity used to plot Figure 2C 869 

Figure 2 – source data 4: Computation of dynamic range for Figure 2D 870 

Figure 2 – figure supplement 1 – source data 1: Blot intensity and quantitation for extent of 871 

phosphorylation at pAKTS473 following stimulation by intermediate insulin concentrations in 872 

Figure 2- figure supplement 1A-B 873 

Figure 2 – figure supplement 1 – source data 2: Values for final intensity at 120min. used to 874 

plot Figure 2- figure supplement 1C 875 

Figure 3 – source data 1: KON/KOFF used for plotting Figure 3A 876 

Figure 3 – source data 2: Coefficient of variation used for plotting Figure 3B 877 

Figure 3 – source data 3: Computations for Pearson r and statistical significance used to 878 

construct Figure 3C 879 

Figure 3 – source data 4: Values for edges and nodes corresponding to Figure 3E and 880 

Figure3- figure supplement 3B 881 

Figure 3 – figure supplement 1 – source data 1: Rate constants corresponding to equations 882 

in Figure 3- figure supplement  883 

Figure 4 – source data 1: Blot intensity and quantitation for extent of phosphorylation at 884 

pAKTS473, pAKTT308 and pERKT202/Y204 corresponding to Figure 4B-D 885 

Figure 4 – source data 2: Computations for Pearson r and statistical significance used to 886 

construct Figure 4E 887 

 888 

Figure 4 – source data 3: Ct values for changes in gene expression corresponding to Figure 889 

4F 890 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.10.243675doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.10.243675
http://creativecommons.org/licenses/by/4.0/


44 
 

Figure 4 – figure supplement 1 – source data 1: Blot intensity and quantitation for extent of 891 

phosphorylation at pGSK3βS9 and pS6KT389 corresponding to Figure 4- figure supplement 1E-892 

F 893 

Figure 5 – source data 1: Blot intensity and quantitation for extent of phosphorylation at 894 

pAKTS473, pAKTT308 and pERKT202/Y204 corresponding to Figure 5B-D 895 

Figure 5 – source data 2: Computations for Pearson r and statistical significance used to 896 

construct Figure 5E 897 

Figure 5 – source data 3: Ct values for changes in gene expression corresponding to Figure 898 

5F 899 

Figure 5 – figure supplement 1 – source data 1: Blot intensity and quantitation for extent of 900 

phosphorylation at pGSK3βS9 and pS6KT389 corresponding to Figure 5- figure supplement 1B-901 

C 902 
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A B

C

0.1nM 1nM 10nM
Source Target Interaction Pearson r p value Source Target Interaction Pearson r p value Source Target Interaction Pearson r p value
pAKTS473 pAKTT308 pc 0.8732 0.0001 pAKTS473 pAKTT308 pc 0.8408 0.0001 pAKTS473 pAKTT308 pc 0.8451 0.0001
pAKTS473 pS6KT389 pc 0.5068 0.0115 pAKTS473 pS6KT389 pc 0.3085 0.1425 pAKTS473 pS6KT389 pc 0.1315 0.5403

pAKTS473 pGSK3bS9 pc 0.4997 0.0129 pAKTS473 pGSK3bS9 pc 0.3549 0.0888 pAKTS473 pGSK3bS9 pc 0.4332 0.0345

pAKTS473 pERKT202/Y204 pc -0.1768 0.4086 pAKTS473 pERKT202/Y204 pc -0.125 0.5607 pAKTS473 pERKT202/Y204 pc 0.001001 0.9963

pAKTT308 pS6KT389 pc 0.3899 0.0596 pAKTT308 pS6KT389 pc 0.4316 0.0352 pAKTT308 pS6KT389 pc -0.3187 0.1291

pAKTT308 pGSK3bS9 pc 0.2441 0.2503 pAKTT308 pGSK3bS9 pc 0.4546 0.0256 pAKTT308 pGSK3bS9 pc 0.0665 0.7575

pAKTT308 pERKT202/Y204 pc -0.2486 0.2415 pAKTT308 pERKT202/Y204 pc -0.3916 0.0584 pAKTT308 pERKT202/Y204 pc 0.1014 0.6375

pS6KT389 pGSK3bS9 pc 0.6607 0.0004 pS6KT389 pGSK3bS9 pc 0.9363 0.0001 pS6KT389 pGSK3bS9 pc 0.747 <0.0001

pS6KT389 pERKT202/Y204 pc 0.588 0.0025 pS6KT389 pERKT202/Y204 pc 0.1423 0.5072 pS6KT389 pERKT202/Y204 pc 0.0102 0.9623

pGSK3bS9 pERKT202/Y204 pc 0.2302 0.2791 pGSK3bS9 pERKT202/Y204 pc 0.2495 0.2397 pGSK3bS9 pERKT202/Y204 pc 0.3045 0.148
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pAKTT308 pAKTS473 pGSK3bS9

Source Target Interaction Pearson r p value Source Target Interaction Pearson r p value Source Target Interaction Pearson r p value
pAKTS473 pAKTT308 pc 0.4041 0.0502 pAKTS473 pAKTT308 pc 0.6505 0.0006 pAKTS473 pAKTT308 pc 0.8408 <0.0001

pAKTS473 pS6KT389 pc 0.3085 0.1425 pAKTS473 pS6KT389 pc -0.03638 0.866 pAKTS473 pS6KT389 pc 0.3085 0.1425

pAKTS473 pGSK3bS9 pc 0.3549 0.0888 pAKTS473 pGSK3bS9 pc -0.0008821 0.9967 pAKTS473 pGSK3bS9 pc 0.4986 0.0131

pAKTS473 pERKT202/Y204 pc -0.125 0.5607 pAKTS473 pERKT202/Y204 pc -0.3459 0.0978 pAKTS473 pERKT202/Y204 pc -0.125 0.5607

pAKTT308 pS6KT389 pc -0.3638 0.0805 pAKTT308 pS6KT389 pc 0.4316 0.0352 pAKTT308 pS6KT389 pc 0.4316 0.0352

pAKTT308 pGSK3bS9 pc -0.3708 0.0745 pAKTT308 pGSK3bS9 pc 0.4546 0.0256 pAKTT308 pGSK3bS9 pc 0.3738 0.0719

pAKTT308 pERKT202/Y204 pc -0.5323 0.0074 pAKTT308 pERKT202/Y204 pc -0.3916 0.0584 pAKTT308 pERKT202/Y204 pc -0.3916 0.0584

pS6KT389 pGSK3bS9 pc 0.9363 <0.0001 pS6KT389 pGSK3bS9 pc 0.9363 <0.0001 pS6KT389 pGSK3bS9 pc 0.4214 0.0403

pS6KT389 pERKT202/Y204 pc 0.1423 0.5072 pS6KT389 pERKT202/Y204 pc 0.1423 0.5072 pS6KT389 pERKT202/Y204 pc 0.1423 0.5072

pGSK3bS9 pERKT202/Y204 pc 0.2495 0.2397 pGSK3bS9 pERKT202/Y204 pc 0.2495 0.2397 pGSK3bS9 pERKT202/Y204 pc 0.5389 0.0066

pS6KT389 pERKT202/Y204 pAKTT308 and S473

Source Target Interaction Pearson r p value Source Target Interaction Pearson r p value Source Target Interaction Pearson r p value
pAKTS473 pAKTT308 pc 0.8408 <0.0001 pAKTS473 pAKTT308 pc 0.8408 <0.0001 pAKTS473 pAKTT308 pc 0.8451 <0.0001

pAKTS473 pS6KT389 pc 0.3303 0.115 pAKTS473 pS6KT389 pc 0.3085 0.1425 pAKTS473 pS6KT389 pc -0.03638 0.866

pAKTS473 pGSK3bS9 pc 0.3549 0.0888 pAKTS473 pGSK3bS9 pc 0.3549 0.0888 pAKTS473 pGSK3bS9 pc -0.0008821 0.9967

pAKTS473 pERKT202/Y204 pc -0.125 0.5607 pAKTS473 pERKT202/Y204 pc -0.07615 0.7236 pAKTS473 pERKT202/Y204 pc -0.3459 0.0978

pAKTT308 pS6KT389 pc 0.2266 0.2871 pAKTT308 pS6KT389 pc 0.4316 0.0352 pAKTT308 pS6KT389 pc -0.3638 0.0805

pAKTT308 pGSK3bS9 pc 0.4546 0.0256 pAKTT308 pGSK3bS9 pc 0.4546 0.0256 pAKTT308 pGSK3bS9 pc -0.3708 0.0745

pAKTT308 pERKT202/Y204 pc -0.3916 0.0584 pAKTT308 pERKT202/Y204 pc -0.2724 0.1979 pAKTT308 pERKT202/Y204 pc -0.5323 0.0074

pS6KT389 pGSK3bS9 pc 0.7648 <0.0001 pS6KT389 pGSK3bS9 pc 0.9363 <0.0001 pS6KT389 pGSK3bS9 pc 0.9363 <0.0001

pS6KT389 pERKT202/Y204 pc 0.4734 0.0195 pS6KT389 pERKT202/Y204 pc -0.0742 0.7304 pS6KT389 pERKT202/Y204 pc 0.1423 0.5072

pGSK3bS9 pERKT202/Y204 pc 0.2495 0.2397 pGSK3bS9 pERKT202/Y204 pc -0.05353 0.8038 pGSK3bS9 pERKT202/Y204 pc 0.2495 0.2397

1 nM to 10 nM

0.1 nM to 10 nM
pAKTT308 pAKTS473 pGSK3bS9

Source Target Interaction Pearson r p value Source Target Interaction Pearson r p value Source Target Interaction Pearson r p value
pAKTS473 pAKTT308 pc 0.1104 0.6074 pAKTS473 pAKTT308 pc 0.5919 0.0023 pAKTS473 pAKTT308 pc 0.8732 <0.0001

pAKTS473 pS6KT389 pc 0.5068 0.0115 pAKTS473 pS6KT389 pc 0.04006 0.8526 pAKTS473 pS6KT389 pc 0.5068 0.0115

pAKTS473 pGSK3bS9 pc 0.4997 0.0129 pAKTS473 pGSK3bS9 pc -0.1941 0.3633 pAKTS473 pGSK3bS9 pc 0.2465 0.2456

pAKTS473 pERKT202/Y204 pc -0.1768 0.4086 pAKTS473 pERKT202/Y204 pc -0.4395 0.0317 pAKTS473 pERKT202/Y204 pc -0.1768 0.4086

pAKTT308 pS6KT389 pc -0.3745 0.0714 pAKTT308 pS6KT389 pc 0.3899 0.0596 pAKTT308 pS6KT389 pc 0.3899 0.0596

pAKTT308 pGSK3bS9 pc -0.3197 0.1278 pAKTT308 pGSK3bS9 pc 0.2441 0.2503 pAKTT308 pGSK3bS9 pc 0.3001 0.1542

pAKTT308 pERKT202/Y204 pc -0.7063 0.0001 pAKTT308 pERKT202/Y204 pc -0.2486 0.2415 pAKTT308 pERKT202/Y204 pc -0.2486 0.2415

pS6KT389 pGSK3bS9 pc 0.6607 0.0004 pS6KT389 pGSK3bS9 pc 0.6607 0.0004 pS6KT389 pGSK3bS9 pc 0.6221 0.0012

pS6KT389 pERKT202/Y204 pc 0.588 0.0025 pS6KT389 pERKT202/Y204 pc 0.588 0.0025 pS6KT389 pERKT202/Y204 pc 0.588 0.0025

pGSK3bS9 pERKT202/Y204 pc 0.2302 0.2791 pGSK3bS9 pERKT202/Y204 pc 0.2302 0.2791 pGSK3bS9 pERKT202/Y204 pc 0.4621 0.023

pS6KT389 pERKT202/Y204 pAKTT308 and S473

Source Target Interaction Pearson r p value Source Target Interaction Pearson r p value Source Target Interaction Pearson r p value
pAKTS473 pAKTT308 pc 0.8732 <0.0001 pAKTS473 pAKTT308 pc 0.8732 <0.0001 pAKTS473 pAKTT308 pc 0.8451 <0.0001

pAKTS473 pS6KT389 pc 0.3486 0.095 pAKTS473 pS6KT389 pc 0.5068 0.0115 pAKTS473 pS6KT389 pc 0.04006 0.8526

pAKTS473 pGSK3bS9 pc 0.4997 0.0129 pAKTS473 pGSK3bS9 pc 0.4997 0.0129 pAKTS473 pGSK3bS9 pc -0.1941 0.3633

pAKTS473 pERKT202/Y204 pc -0.1768 0.4086 pAKTS473 pERKT202/Y204 pc -0.3829 0.0648 pAKTS473 pERKT202/Y204 pc -0.4395 0.0317

pAKTT308 pS6KT389 pc 0.3439 0.0998 pAKTT308 pS6KT389 pc 0.3899 0.0596 pAKTT308 pS6KT389 pc -0.3745 0.0714

pAKTT308 pGSK3bS9 pc 0.2441 0.2503 pAKTT308 pGSK3bS9 pc 0.2441 0.2503 pAKTT308 pGSK3bS9 pc -0.3197 0.1278

pAKTT308 pERKT202/Y204 pc -0.2486 -0.2486 pAKTT308 pERKT202/Y204 pc -0.3417 0.1022 pAKTT308 pERKT202/Y204 pc -0.7063 0.0001

pS6KT389 pGSK3bS9 pc 0.3532 0.0904 pS6KT389 pGSK3bS9 pc 0.6607 0.0004 pS6KT389 pGSK3bS9 pc 0.6607 0.0004

pS6KT389 pERKT202/Y204 pc 0.6653 0.0004 pS6KT389 pERKT202/Y204 pc -0.06901 0.7486 pS6KT389 pERKT202/Y204 pc 0.588 0.0025

pGSK3bS9 pERKT202/Y204 pc 0.2302 0.2791 pGSK3bS9 pERKT202/Y204 pc 0.04658 0.8289 pGSK3bS9 pERKT202/Y204 pc 0.2302 0.2791
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