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SUMMARY 

The prevalence of Parkinson's disease (PD) is increasing but the development of novel 

treatment strategies and therapeutics altering the course of the disease would benefit from 

specific, sensitive and non-invasive biomarkers to detect PD early. Here, we describe a 

scalable and sensitive mass spectrometry (MS)-based proteomic workflow for urinary 

proteome profiling. Our workflow enabled the reproducible quantification of more than 

2,000 proteins in more than 200 urine samples using minimal volumes from two independent 

patient cohorts. The urinary proteome was significantly different between PD patients and 

healthy controls, as well as between LRRK2 G2019S carriers and non-carriers in both 

cohorts. Interestingly, our data revealed lysosomal dysregulation in individuals with the 

LRRK2 G2019S mutation. When combined with machine learning, the urinary proteome 

data alone was sufficient to classify mutation status and disease manifestation in mutation 

carriers remarkably well, identifying VGF, ENPEP and other PD-associated proteins as the 

most discriminating features. Taken together, our results validate urinary proteomics as a 

valuable strategy for biomarker discovery and patient stratification in PD.  
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INTRODUCTION 

 

With a population prevalence of 0.2%, 

Parkinson’s disease (PD) is the second most 

common neurodegenerative disorder after 

Alzheimer’s disease [1]. It is characterized by 

the progressive loss of dopaminergic neurons 

and accumulation of -synuclein-containing 

protein aggregates called Lewy bodies in the 

cytoplasm of the remaining neurons. As a 

result of dopaminergic neuron loss, PD 

manifests with motor signs and symptoms 

including bradykinesia, tremor and rigidity, 

and these characteristics are used for 

diagnosing the disease [1-3].  

 

PD is a genetically complex disorder. Most 

patients do not carry a single pathogenic 

variant linked to PD, but a subset of about 

10% of patients carry an identifiable 

pathogenic variant in genes such as SNCA, 

PRKN, LRRK2 or GBA. For these 

individuals, the risk of developing the disease 

increases to 2 to 5% [2]. Among these genes, 

LRRK2 is relatively common and causes PD 

in an autosomal dominant with incomplete 

penetrance fashion. How LRRK2 mutations 

cause PD is unknown, however, several 

studies have indicated that disease-linked 

LRRK2 mutations elevate its kinase activity 

and contribute to PD pathogenesis [4]. We 

have previously identified multiple Rab 

GTPases as endogenous targets of mutant 

LRRK2 [5-7]. Furthermore, inhibitors of this 

kinase have emerged as promising 

therapeutics for PD and clinical trials have 

already passed phase 1[8]. Although 

idiopathic forms of PD presumably represent 

a heterogeneous collection of pathogenic 

mechanisms, LRRK2-associated PD and 

idiopathic PD (iPD) show a similar 

phenotype in terms of disease symptoms and 

response to levodopa. The interest in LRRK2 

as a therapeutic target is also fueled by the 

association between common variants in 

LRRK2 and sporadic PD [9] and the 

observation that LRRK2 activity is increased 

in autopsied brain tissue from iPD patients 

without a known pathogenic mutation [10]. 

Thus, it will be important to conduct studies 

on ante-mortem biospecimens to gain 

insights into LRRK2 mutation-induced 

changes and thereby identify iPD patients 

who could benefit from LRRK2-targeted 

therapies. 

 

Current treatments, including levodopa - the 

most effective PD medication, mainly 

alleviate the motor symptoms rather than 

slow disease progression or reverse the 

pathology. Given the growing number of PD 

patients worldwide, and escalating economic 

and societal implications, there is an urgent 

need for disease-modifying therapeutics. The 

development of new therapeutic strategies 

requires better insights into the 

pathophysiologic mechanisms of PD as well 

as biomarkers to detect the earliest stages of 

PD before severe motor impairment is 

evident and irreversible brain damage has 

already occurred. Although cerebrospinal 

fluid (CSF) has been frequently used for 

biomarker studies of brain disorders, recent 

studies indicate that urine offers another 

promising clinically viable matrix for PD 

since it can be frequently and non-invasively 

collected in large volumes [11]. Importantly, 

urine contains not only kidney and urinary 

tract proteins but also filtered plasma proteins 

originating from distal organs, including the 
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brain [12, 13]. Therefore, urine protein 

analysis may provide diagnostic and 

prognostic opportunities for both urogenital 

and non-renal diseases [14-26]. Recent 

technical advances in fast and high-

throughput sample preparation methods in 

conjunction with improvements in high-

accuracy mass spectrometry (MS)-based 

proteomics have enabled characterization of 

the urinary proteome [27-30]. However, to 

what extent neurodegenerative disorders 

including PD affect the urinary proteome 

remains unknown. 

 

Our group has recently employed state-of-

the-art MS-based proteomics to obtain 

proteome profiles of the two body fluids, 

plasma and CSF, in multiple disease 

conditions [31-35]. Here, we extend this 

technology to urinary proteome profiling and 

provide first evidence that this approach can 

be used for PD biomarker discovery. More 

specifically, we focused our analysis on two 

large patient cohorts, both including healthy 

control subject, non-manifesting carriers of 

the frequently found LRRK2 G2019S 

mutation, manifesting patients with the same 

mutational signature, and PD patients 

without the LRRK2 mutation. The 

composition of the cohorts, quality of the 

data and the depth of proteome coverage 

allowed us to identify pathogenic LRRK2-

regulated lysosomal protein signatures that 

could serve as biomarkers to stratify subjects 

with pathogenic LRRK2. Taken together, our 

study offers evidence that quantitative MS-

based proteomics represents a clinically 

useful strategy for non-invasive monitoring 

of disease progression and treatment 

response as well as patient stratification in 

PD. 

 

RESULTS  

 

Overview of PD cohorts for urinary 

proteomics 

Here, we employ a recently described 

‘rectangular’ biomarker discovery strategy in 

which as many proteins as possible are 

measured using shotgun MS-based 

proteomics for all the individuals in both 

discovery and validation cohorts [33, 36]. To 

map proteome changes between individuals 

with different mutation status and 

manifestation of disease, we analyzed 235 

urine samples from two independent cross-

sectional cohorts each comprised of four 

subject groups: (1) healthy controls (HC, 

LRRK2-/PD-); (2) non-manifesting carriers 

(NMC) harboring the LRRK2 G2019S 

mutation (LRRK2+/PD-); (3) idiopathic PD 

patients (iPD, LRRK2-/PD+); and (4) 

manifesting PD patients with LRRK2 

G2019S (LRRK2 PD, LRRK2+/PD+) 

(Figure 1A & Table 1). 

 

The first cohort was recruited at Columbia 

University Irving Medical Center 

(hereinafter referred to as ‘Columbia cohort’ 

and color-coded with orange) [11, 37]. 

Participants in the Columbia cohort included 

35 HC, 16 NMC, 40 iPD, 28 LRRK2 PD 

individuals, and one PD patient with an 

unknown LRRK2 status. The cohort included 

52 female sex and 68 male sex individuals 

(Figure 1A and Table 1). The GBA (gene 

that encodes for lysosomal acid 

glucosylceramidase (GCase)) mutation status 
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was also available for all individuals, with 22 

of them harboring a GBA variant and 98 the 

wild type allele. PD+ and PD- subjects were 

frequency-matched by age with means of 

67.0±9.3 and 64.1±12.0 (± SD) years, 

respectively (Supplementary Figure 1A). 

Their motor skills were assessed using the 

Unified Parkinson’s Disease Rating Scale 

part III (UPDRS-III) and cognitive 

functioning with the Montreal Cognitive 

Assessment (MoCA) test (Supplementary 

Figure 1B-C). Genotyping for LRRK2 

G2019S mutation was conducted  as 

previously described [38]. 

 

To confirm findings from the Columbia 

cohort, we additionally analyzed a subset of 

biobanked urine samples from the Michael J. 

Fox Foundation for Parkinson’s Research 

(MJFF)-funded LRRK2 Cohort Consortium 

(LCC) (hereinafter referred to as ‘LCC 

cohort’ and color-coded with blue). We 

determined urine proteomes for 26 HC, 37 

NMC, 29 iPD, and 23 LRRK2 PD individuals 

(53 female and 62 male) (Figure 1A and 

Table 1). In the LCC cohort, individuals in 

the non-diseased group were somewhat 

younger (53.8±13.9) than PD patients 

(67±7.6) (means ± SD) years 

(Supplementary Figure 1D). In addition, 

LCC sample collection protocols were less 

stringent than in the Columbia cohort and 

UPDRS-III and MoCA scores were not 

available, indicating that the Columbia 

cohort is more powerful for our analyses. 

Both studies were approved by local 

institutional review boards, and each 

participant signed an informed consent (See 

Supplementary Table 1 for a detailed 

overview).        

Proteomic characterization of urine 

samples  

For the proteomic profiling of individual 

urine samples, we developed a high-

throughput proteomics workflow building on 

the PVDF-based sample processing method 

MStern blotting by the Steen group [27] 

combined with data-independent acquisition 

(DIA) LC-MS/MS [39, 40] (Figure 1A). To 

maximize proteome depth, we generated two 

cohort-specific hybrid spectral libraries by 

merging three sub-libraries: (1) a library 

constructed by data-dependent acquisition 

(DDA) consisting of 24 fractions of pooled 

neat urine samples; (2) a DDA library 

consisting of 8 fractions of extracellular 

vesicles isolated from pooled neat urine 

samples; and (3) a direct-DIA library 

generated from the DIA analysis of all 

analyzed samples (see Methods). In these 

hybrid libraries, we identified a total of 4,564 

and 5,725 protein groups for the Columbia 

and LCC cohorts, respectively 

(Supplementary Figure 1E). Applying this 

robust workflow, we quantified on average 

2,026 (Columbia) and 2,162 (LCC) protein 

groups per neat urine sample, in single runs 

of 45 minutes and using less than 100 μl of 

starting material (Supplementary Table 2). 

Three outlier samples were excluded from 

further analysis due to low proteome depth 

(Fig 1B and 1C, Supplementary Table 1). 

The quantified protein intensities spanned 

five orders of magnitude in both cohorts and 

the top ten most abundant proteins 

contributed about half to the total urinary 

proteome signal (Fig 1D and 1E). As 

observed before [17], the molecular weight 

distribution spanned a wide range with many 

proteins exceeding 100 kDa. More than 2,000 
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proteins were in common between the two 

cohorts. To best of our knowledge, this study 

presents the deepest urinary proteome 

coverage for single-run analysis to date, a 

promising basis for the discovery of 

biomarkers. 

 

Data from repeated measurements of 

individual samples revealed a high 

reproducibility with more than 90% of 

proteins having an intra- and inter-plate 

coefficient of variation (CV) below 50% in 

both studies and about 60% of proteins with 

a CV below 20% (Figure 1G, 1H, 

Supplementary Figure 2). The intra- and 

inter-plate variability within each cohort was 

even lower (Supplementary Figure 2C and 

2I), while the inter-individual variability was 

much larger with no protein having a CV 

below 20% (Supplementary Figure 2F and 

2L). Thus, our proteomic quantification 

accuracy greatly exceeds the biological 

variability that we seek to measure.   

 

 

 

 

Table 1. Demographics of all participants 

Columbia cohort 
HC (LRRK2‐/PD‐) 

(n = 35) 

NMC 

(LRRK2+/PD‐) 

(n = 16) 

iPD (LRRK2‐

/PD+) 

(n = 40) 

LLRK2 PD 

(LRRK2+/PD+) 

(n = 28) 

Age at collection, mean 

(SD) 
67.5 (10.3) 56.8 (12.7) 64.9 (9.2) 70.7 (8.7) 

Age at onset, mean (SD) n/a n/a 57.8 (11) 57.9 (11.3) 

Sex (female/male) 17/18 8/8 15/25 11/17 

GBA (mut/WT) 7/28 1/15 11/29 3/25 

MoCA 27.5 (2) 28.7 (1.1) 26.9 (1.6) 26.3 (4.5) 

UPDRS-III 1.1 (1.5) 0.8 (1.1) 17.7 (10) 20.6 (8) 

     

LCC cohort 
HC (LRRK2‐/PD‐) 

(n = 26) 

NMC 

(LRRK2+/PD‐) 

(n = 37) 

iPD (LRRK2‐

/PD+) 

(n = 29) 

LLRK2 PD 

(LRRK2+/PD+) 

(n = 23) 

Age at collection, mean 

(SD) 
56.1 (16) 52.1 (12.1) 65 (9.1) 68.4 (5) 

Age at onset, mean (SD) n/a n/a 58.4 (9.1) 57.7 (7.6) 

Sex (female/male) 15/11 16/21 9/20 13/10 
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Figure 1. MS-based proteomic analysis of two independent urinary PD cohorts has high 

depth and precision 

A) Overview of the two cohorts and the proteomic workflow. Urine samples comprised of four 

subject groups ((HC, iPD, NMC and LRRK2 PD) were prepared using MStern blotting and 

analyzed by LC-MS/MS using data-independent acquisition (DIA). The sex and total number of 

subjects per cohort group is shown.  

B-C) Number of proteins identified and quantified with a 1% false discovery rate (FDR) in each 

sample in the Columbia (B) and LCC (C) cohorts. Bars indicate mean and standard deviation. 
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Arrows point at one subject from the Columbia and two subjects from the LCC cohort that were 

excluded from further analysis due to low proteome depth.  

D-E) Proteins identified in the Columbia (D) and LCC (E) cohort were ranked according to their 

MS signals, which covered more than five orders of magnitude. The top ten most abundant 

Parkinson-related proteins (green) and Rab GTPases (red) are labeled. 

F-G) Quantification precision assessed by calculating the intra-plate (F) and inter-plate (G) 

coefficients of variation (CVs) for the Columbia and LCC cohorts. Proteins with a CV below 20% 

and 50% in both cohorts are highlighted in light and dark red, respectively and the fractions of 

proteins above and below these CV thresholds are shown. A total of 2,051 proteins were 

consistently quantified in both cohorts. 

 

 

Quality assessment of urine samples 

Pre-analytical variation caused by 

inconsistent sample processing and 

contaminations during sample collection can 

have a strong impact on the results and may 

cause the reporting of incorrect biomarkers 

[34]. To ensure that the observed proteome 

changes are not caused by artifacts related to 

sample handling and processing, we assessed 

each sample for potential quality issues. To 

this end, we used a previously reported 

quality marker panel to determine the degree 

of contamination with erythrocytes [34] 

(Figure 2A-Band Supplementary Table 3). 

Insufficient removal of cells and cellular 

debris from urine leads to an increased 

detection of intracellular proteins with a high 

sample-to-sample variability compared to 

regularly secreted urinary proteins [41]. We 

therefore generated a second urine-specific 

quality marker panel to assess the degree of 

contamination with cells and cellular debris 

that could originate from aged, inflamed or 

damaged tissue of the kidneys, bladder or the 

urinary tract (see Methods). Although urine 

samples from both cohorts were cleared by 

centrifugation following collection to avoid 

this systematic bias, our procedure flagged 

four samples from the Columbia cohort for 

potential contamination with cellular 

components (Figure 2A-B). Taken together, 

6 samples from the Columbia cohort and 4 

samples from the LCC cohort showed 

increased intensities of contamination 

markers and were thus excluded from further 

analyses. In addition, we further excluded 

one sample from the Columbia cohort, as it 

clustered far away from all other samples in 

a principal component analysis (PCA), likely 

indicating pre-analytical variation.  

 

Next, we generated a global correlation map 

of the urinary proteome to identify clusters of 

functional co-regulation as previously 

reported for plasma proteome profiling [31]. 

The global correlation map contains pairwise 

relations of all urinary proteins across 112 

samples from the Columbia cohort. 

Unsupervised hierarchical clustering of the 

pairwise Pearson correlation coefficients 

revealed four main and several small clusters 

of co-regulated proteins (Figure 2C). The 

largest of these clusters was chiefly enriched 

for proteins with the Gene ontology (GO)-

term ‘extracellular exosome’ as well as other 

significant terms (Supplementary Table 4). 
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We also identified a cluster of highly 

correlated proteins that was enriched for the 

GO-terms ‘immunoglobulin’ and ‘B-cell 

receptor’, suggesting that these proteins 

originate from immune cells. The two further 

main clusters were enriched for proteins 

originating from sex-specific tissues such as 

the prostate and vagina (Figure 2C) [42]. 

This shows that sex-dependent anatomical 

differences strongly affect the urinary 

proteome and thus should be considered as 

confounding factors. Indeed, a principal 

component analysis indicated sex as the 

strongest contributor to the inter-individual 

variance of the urinary proteome (Figure 2D 

and 2E).  
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Figure 2. The large majority of urine samples has high quality and shows sex-specific protein 

expression 

A-B) Histograms of log2 transformed ratios of the summed intensity of the proteins in the 

respective quality marker panel and the summed intensity of all proteins in Columbia (A) and LCC 

(B) cohorts. A sample was flagged for potential contamination and removed from further analysis 

if the ratio differed more than two standard deviations from the mean of all samples within the 

cohort. The proteins in each quality marker panel are listed in Supplementary Table 3. 

C) Global correlation map of proteins generated by clustering the Pearson correlation coefficients 

of all pairwise protein comparisons for the Columbia cohort.  

D-E) Principal component analysis (PCA) of all subjects based on their urinary proteome profiles. 

Female subjects are shown in purple and males in green.  

 

  

Detection of PD-related proteome 

alterations in urine  

Although PD primarily manifests in the 

central nervous system and is characterized 

by motor impairments, it is known to affect 

and potentially initiate in peripheral tissues 

and is associated with non-motor symptoms 

[43, 44]. Thus, we asked if the disease also 

causes changes of the urinary proteome, 

which reflects proteins from both central and 

peripheral organs.  To establish PD-

associated changes in urine proteome, we 

first determined which proteins are 

differentially present in the urine of PD 

patients compared to the controls, 

irrespective of their LRRK2 status (HC and 

NMC). To control for confounders, we 

performed an analysis of covariance 

(ANCOVA) considering sex, age at sample 

collection, LRRK2 status and GBA status 

(only available for the Columbia cohort) as 

confounding factors. Applying a 5% false 

discovery rate (FDR) cut off, we identified 

361 proteins that displayed significantly 

different levels in PD patients when 

compared to controls (HC and NMC) (298 in 

Columbia cohort and 73 in LCC cohort)  

 

(Supplementary Table 5). The smaller 

number of significantly different proteins in 

the LCC cohort as well as the relatively small 

overlap between the cohorts could be 

explained by a less stringent sample 

collection protocol and worse age-matching 

in the LCC cohort. The log2 fold-changes 

between PD patients and non-diseased 

individuals show a good correlation between 

the two cohorts (Pearson r = 0.65) (Figure 

3A), reflecting both reproducibility of the 

applied proteomic workflow and 

pathobiological consistency. The mean fold-

changes of the 330 PD-associated proteins 

that were quantified in both cohorts were 

larger for the Columbia cohort (Columbia: 

1.43 (up) & 0.49 (down) vs. LCC: 1.27 (up) 

& 0.75 (down)). Furthermore, 90% of the 

PD-associated proteins were detected with at 

least two peptides and quantified with CVs 

below 50% (Supplementary Figure 3A).  

 

Protein misfolding is known to be involved in 

many neurodegenerative conditions 

including PD [45]. Interestingly, some of the 

proteins exhibiting the largest differential 

levels between the urine of controls vs. PD 
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patients include proteins assisting other 

proteins in folding, such as peptidyl-prolyl 

cis-trans isomerase B (PPIB) and T-complex 

protein 1 subunit gamma (CCT3) (Figure 

3A). We also identified two of the eight 

human canonical ribonucleases (RNASE1 

and RNASE2) to be PD-associated in both 

cohorts (Figure 3A). The levels of the four 

apolipoproteins APOA1, APOA2, APOA4 

and APOC1 were also elevated in PD patients 

(Figure 3A). While they show a similar trend 

in both cohorts, they reached statistical 

significance only in the Columbia cohort, 

corroborating that this cohort has greater 

power to detect PD-associated changes.  

 

Next, we analyzed if any GO-terms assigned 

to the 361 PD-associated proteins were 

significantly enriched compared to the 

urinary proteome (Figure 3B). This analysis 

examines if PD affects individual cellular 

compartments and particular biological 

signaling networks in urine. The term ‘bone 

development’ was significantly enriched, in 

line with previous findings that PD patients 

are at increased risk for osteoporosis and 

osteopenia [46]. In summary, we observed 

disease-associated protein signatures with a 

high correlation between the two independent 

cohorts and identified promising candidates 

that could serve as biomarkers for PD and 

provide mechanistic insights into disease 

pathogenesis.   

 

 

 
 

 

Figure 3. PD affects the urinary proteome 

A) Correlations of mean fold-changes of the proteins changing PD-dependently in the Columbia 

and LCC cohorts. Only proteins quantified in both cohorts are shown (n=330). The colors match 
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to the GO terms shown in (B). Proteins overlapping between the two cohorts are labeled with their 

name. 

B) Fisher exact test to identify significantly enriched GO-terms in the PD-associated proteins in 

urine. All GO-terms that were significant in both cohorts are displayed (FDR < 5%). 

 

 

Pathogenic LRRK2-dependent changes are 

linked to lysosomes and glycosphingolipid 

metabolism 

Encouraged by the observation of disease-

dependent proteome changes in urine, we 

next asked if the urinary proteome is altered 

by the presence of the LRRK2 G2019S 

mutation. We again applied an ANCOVA 

analysis with sex, age at sample collection, 

PD status and GBA status (only available for 

the Columbia cohort) as confounding factors 

and compared the proteomes between 

G2019S and wild type allele carriers. 

Applying an FDR of 5%, the mutation altered 

the abundance of 237 proteins (FDR < 5%, 

Columbia: 166, LCC: 104) (Figure 4A and 

Supplementary Table 5). A subset of 33 

proteins differed significantly in G2019S 

carriers in both cohorts and all these proteins 

were upregulated in pathogenic LRRK2 

carriers. A pairwise comparison of the four 

subject groups (HC, NMC, iPD and LRRK2 

PD) using a student’s t-test confirmed that the 

abundance of the overlapping proteins 

changed in a G2019S-dependent manner but 

was unaffected by the PD status (Figure 4B).  

 

In total, 227 LRRK2-status associated 

proteins were quantified in both cohorts and 

the fold-changes of these were similar 

between the two cohorts (Figure 4C), 

although the effect sizes were slightly larger 

for the Columbia cohort (Columbia: 1.43 (up) 

& 0.76 (down) vs. LCC: 1.39 (up) & 0.89  

 

(down)). Interestingly, one of the proteins 

exhibiting the largest increase in LRRK2 

G2019S carriers in both cohorts was a 

phosphatase, the Intestinal-type Alkaline 

Phosphatase (ALPI). As for the proteins that 

changed dependent on PD disease status, 

most LRRK2-status associated proteins were 

detected with at least two peptides and 

quantified with CVs below 50% 

(Supplementary Figure 3B).  

 

A GO-term analysis revealed strong 

enrichment of proteins associated with 

lysosome-related terms such as 

’autolysosome’, ‘lysosome’, ‘lysosomal 

lumen’, ‘azurophil granule lumen’ and 

‘lysosomal membrane’ as well as 

‘glycosphingolipid metabolic processes’ in 

LRRK2 G2019S carriers in both cohorts 

(Figure 4D). Among the proteins associated 

with the lysosome-related GO-terms were 

multiple members of the cathepsin family 

including cathepsins A, B, C, D, H, L, O, S, 

and Z. The widely used lysosomal marker 

proteins, LAMP1 and LAMP2, were also 

significantly altered in LRRK2 carriers in the 

LCC cohort, while LAMP3 was significantly 

changed in the Columbia cohort. In total, 13 

proteins were associated with the GO term 

‘sphingolipid metabolic process’, most of 

them upregulated in LRRK2 G2019S carriers. 

Among them were multiple lysosomal 

enzymes including GCase (encoded by 

GBA), galactocerebrosidase (GALC), 
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sphingomyelin phosphodiesterase (SMPD1), 

and the beta-hexosaminidase subunits alpha 

and beta (HEXA and HEXB).  

 

Heterozygous pathogenic mutations in GBA 

are one of the most common PD risk factors 

while homozygous loss of function mutations 

of the same protein cause the lysosomal 

storage disorder (LSD) Gaucher’s disease. 

Past  studies have described increased GCase 

activity in LRRK2 deficient mice, and 

decreased GBA activity in LRRK2 G2019S 

carrier neurons [47, 48]. Additionally, it has 

been reported that PD patients with mutations 

in both proteins develop symptoms at a 

younger age compared to patients with only 

one affected gene [49-51]. However, despite 

these reports, it remained unclear whether 

mutations in GBA and LRRK2 contribute to 

the pathogenesis of PD via common 

pathways. Participants in the Columbia 

cohort were sequenced for mutations in GBA 

[38] and 22 individuals were found to carry a 

pathogenic mutation in this locus. To 

determine which proteins were changed 

specifically in carriers of GBA variants, we 

performed an ANCOVA analysis with sex, 

age at sample collection, PD status and 

LRRK2 status as confounding factors. Using 

an FDR of 5%, we found that levels of 74 

proteins were affected by GBA (Figure 4E 

and Supplementary Table 5). Interestingly, 

only Intercellular adhesion molecule 1 

(ICAM1), Adenosylhomocysteinase 

(AHCY) and Stomatin (STOM) were 

affected by pathogenic mutations in both 

LRRK2 and GBA, suggesting that the two 

mutations largely affect distinct pathways. 

Furthermore, the GBA- and LRRK2-

dependent protein fold-changes were poorly 

correlated (Pearson r = 0.21) (Figure 4F) but 

future well-powered studies on GBA cohorts 

are needed to firm up the data. Of note, most 

proteins associated with the GO term 

‘glycosphingolipid metabolic process’ were 

increased in LRRK2 G2019S carriers but 

decreased in pathogenic GBA carriers, most 

notably GM2 activator (GM2A). 

Together, we identified pathogenic mutant 

LRRK2-dependent protein signatures with a 

high correlation between the two independent 

cohorts. The LRRK2 mutational status-

dependent changes of the urinary proteome 

include lysosomal proteins that could serve 

as biomarkers to stratify subjects with 

pathogenic LRRK2.  
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Figure 4. Pathogenic LRRK2-dependent lysosomal dysregulation is reflected in the urinary 

proteome and distinct from pathogenic GBA-induced alterations 

A) Proteins that differ significantly differ between pathogenic LRRK2 carriers and controls using 

an ANCOVA analysis with sex, age, PD status and GBA status as confounders and an FDR of 5%. 

B) Mean fold-changes for each of the 33 proteins that were LRRK2-dependently regulated in both 

cohorts using a pairwise t-test comparing the four subgroups (HC, NMC, iPD and LRRK2 PD).  

C) Correlation of mean fold-changes of the proteins changing LRRK2-dependently in the 

Columbia and LCC cohorts. Only proteins identified in both cohorts are shown (n=227). The 
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colors match to the GO terms shown in (D). Proteins overlapping between the two cohorts are 

labeled with their name. 

D) Fisher exact test was performed to identify significantly enriched GO-terms in the LRRK2-

dependently regulated proteins in urine. All GO-terms that were significant in either cohort are 

displayed (FDR < 5%). 

E) Proteins that differ significantly between pathogenic GBA carriers and controls or pathogenic 

LRRK2 carriers and controls using an ANCOVA analysis with sex, age, PD status and 

LRRK2/GBA status as confounders and an FDR of 5%. In total, 237 proteins were differentially 

expressed in these two comparisons with 166 and 74 regulated proteins in the LRRK2 carriers and 

GBA carriers, respectively, only three of which were common between both mutations. 

F) Correlation of mean fold-changes of the proteins changing LRRK2-dependently and GBA-

dependently (n=237) in the Columbia cohort. Carriers of pathogenic variants in both GBA and 

LRRK2 were excluded from the analysis. The colors match to the GO terms shown in (D).  

 

 

Correlation of proteome profiles with 

clinical parameters 

Given that clinical parameters, including 

disease severity scores, were available for the 

Columbia cohort, we were interested in 

exploring whether any of these clinical 

parameters correlate with proteomic changes 

we detected. We were especially interested in 

the cognitive capabilities of the participants 

as evaluated using the Montreal Cognitive 

Assessment (MoCA) test, and the motor 

performance as assessed using the Unified 

Parkinson’s Disease Rating Scale part III 

(UPDRS-III). Within the Columbia cohort, 

MoCA scores ranged from 8 to 30, on a scale 

from 0, for severe cognitive impairment, to 

30, for no measurable cognitive impairment. 

We observed that two proteins, Tenascin-R 

(TNR) and Furin (FURIN), showed a strong 

negative correlation with the MoCA score in 

PD patients (TNR Pearson r: -0.66; FURIN r: 

-0.65; p < 10-7 for both), mainly driven by 

LRRK2 G2019S carriers (TNR r: -0.77;  

 

FURIN r: -0.78; p < 10-5 for both) (Figure 

5A). When similar type of analysis was done 

with UPDRS-III scores, which ranged from 0 

to 38 in the Columbia cohort (on a scale from 

0 assigned for normal to 56 for severely 

affected motor function), we observed that 

immunoglobulin kappa variable 6-21 

(IGKV6-21), was the highest correlated 

protein in PD patients (r: 0.54, p < 10-5) 

(Figure 5C). This protein also exhibited one 

the highest fold-change in abundance when 

comparing urine of PD patients with non-

diseased individuals (Figure 3B). Of note, 

the correlation between UPDRS-III scores 

and levels of IGKV6-12 was mainly driven 

by iPD patients (r: 0.68; p < 10-5) and much 

weaker in LRRK2 G2019S PD patients (r: 

0.36; not significant) (Figure 5C). 

Collectively, this analysis suggests that iPD 

and LRRK2 G2019S patients could be 

stratified based on the differences between 

MoCA and UPDRS-III score correlations 

with different urine proteins. 
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Figure 5. Correlations with clinical parameters 

A) Pearson correlation scores and associated p-values [-log10] of all protein intensities with the 

MoCA total score. Either all PD patients (left), iPD patients (middle) or LRRK2 PD patients (right) 

were included in the analysis. 

B) Pearson correlation scores and associated p-values [-log10] of all protein intensities with the 

UPDRS-III score. Either all PD patients (left), iPD patients (middle) or LRRK2 PD patients (right) 

were included. 
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Machine learning-based classification of 

urinary proteomes 

Finally, we assessed how well machine 

learning models can discriminate between 

PD patients and non-diseased individuals, 

between LRRK2 G2019S and wildtype allele 

carriers, and between NMC individuals and 

LRRK2 G2019S patients based on the 

acquired urinary proteome profiles. Since the 

accuracy of the model largely depends on the 

number of samples, we combined all samples 

from the Columbia and LCC cohorts for these 

analyses. We first selected and ranked which 

protein features to use in the machine 

learning model by employing a decision tree. 

To classify individuals as having PD or not, 

the decision tree selected the 15 most 

important features of the PD- vs. PD+ urinary 

proteomes, with the intensity of PPIB, one of 

the proteins that displayed the largest 

difference in abundance when PD samples 

were compared to the controls (Figure 3A), 

being on top of the list (Supplementary 

Figure 5A). Using these proteins, we trained 

an XGBoost model, a commonly applied 

algorithm for gradient boosting, a machine 

learning technique that is used to build robust 

predictive models based on ensembles of 

weaker predictions, such as decision trees. 

Samples were cross-validated by applying a 

stratified 4-fold split. This was repeated 

(n=15) with shuffling the dataset to have a 

total of 60 train/test-splits to achieve a robust 

estimate of model performance. Each time, 

we determined a receiver operating 

characteristic (ROC) curve and found the 

mean area under the curve (AUC), which is 

often used to assess the performance of a 

model, to be 0.84±0.05 (Figure 6A). On 

average, we correctly classified 91 out of 117 

PD patients and 77 out of 106 controls in the 

test sets (Figure 6B). Accordingly, the 

machine learning model reached a sensitivity 

of 78% and a specificity of 73%. When we 

trained the model on the one cohort and tested 

it on the other cohort, we obtained AUCs of 

0.86 or 0.72, further demonstrating the 

robustness of the model (Figure 6C). 

 

We next used the same machine learning 

methods to classify G2019S and wildtype 

LRRK2 carriers using the same strategy as 

described above. The decision tree selected 

the 15 most important features, with the 

intensity of ENPEP being the most important 

one (Figure 4A; Supplementary Figure 

5B). Using these proteins and the XGBoost 

algorithm, we obtained a mean AUC of the 

ROC curves of 0.87±0.04 (Figure 6D). For 

the test sets, we could correctly classify 73 

out of the 99 LRRK2 G2019S carriers and 103 

out of the 123 wildtype allele carriers, 

corresponding to a 74% sensitivity and 84% 

specificity (Figure 6E). When we trained the 

model on one of the cohorts and tested it on 

the other, we obtained AUCs of 0.76 or 0.80 

(Figure 6F). Additionally, we trained the 

model on all individuals with a known 

LRRK2 status and classified the sample from 

the Columbia cohort with an unknown 

LRRK2 status with an 87% probability to be 

wild type LRRK2. After we had finished this 

machine learning modelling, the mutational 

status of this individual was determined as 

wild type LRRK2, further verifying the 

machine learning model.  

 

Encouraged by these results, we wanted to 

see how well machine learning can 

discriminate LRRK2+ PD patients from 
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NMCs that also carry a LRRK2 mutation and 

are at increased risk of developing the 

disease. Using a decision tree, we selected 

seven proteins for training the model 

(Supplementary Figure 5C). Interestingly, 

VGF, a neurotrophic factor, was identified as 

the most important feature. When using these 

features to train a classifier with our cross-

validation scheme, the obtained mean AUC 

of the ROC curve was 0.94±0.05 and the 

obtained sensitivity and specificity were both 

88% (Figure 6G/H). Using samples from 

only one cohort as a training set and applying 

the model to the other cohort resulted in 

AUCs of 0.93 and 0.74 (Figure 6I). Taken 

together, machine learning allowed us to 

classify the PD and LRRK2 states with high 

specificities and sensitivities. 
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Figure 6. Machine learning-based classification of PD and LRRK2 status 

A) Receiver operating characteristic (ROC) curve for the XGBoost-based model to classify PD+ 

vs. PD- individuals. Random performance is indicated by the dotted diagonal line. The gray area 

represents the standard deviation from the mean ROC curve. The blue lines show the values for a 

total of 15 repeats with four stratified train-test splits. 

B) Confusion matrix showing the model performance for classifying PD+ vs. PD- individuals. 

Numbers represent the mean number from 15 repeats of cross-validation with four stratified train-

test splits. 

C) ROC curve for the XGBoost-based model when trained on one cohort and tested on the other 

cohort. Random performance is indicated by the dotted diagonal line. 

D) Same as A) but for classification of LRRK2 G2019S vs. LRRK2 WT carriers. 

E) Same as B but for classification of LRRK2 G2019S vs. LRRK2 WT carriers. 

F) Same as C) but for classification of LRRK2 G2019S vs. LRRK2 WT carriers. 

G) Same as A) but for classification of PD+ vs. PD- in LRRK2 G2019S carriers. 

H) Same as B) but for classification of PD+ vs. PD- in LRRK2 G2019S carriers. 

I) Same as C) but for classification of PD+ vs. PD- in LRRK2 G2019S carriers. 

 

 

DISCUSSION  

 

The pathophysiology of PD leads to 

progressive decline of motor function and 

results in numerous quality of life issues for 

patients and their families, and inevitably 

leads to death within 7 to 14 years from the 

initial diagnosis. The majority of previous PD 

biomarker discovery and validation efforts 

have focused on CSF, serum and blood [52]. 

Additional strategies included targeted 

monitoring of -synuclein levels, given the 

known relationship between -synuclein 

accumulation and PD progression [53]. To 

address this problem, we developed a 

shotgun proteomics workflow for urinary 

proteome profiling. We chose to focus on 

urine given the non-invasive nature of 

obtaining clinical samples, which is a major 

advantage when developing a strategy that 

can be used not only for diagnostic and 

prognostic purposes, but for long-term 

disease progression and treatment response 

monitoring. Additionally, instead of focusing 

on a single biomarker and/or a subset of 

molecular entities, our shotgun proteomic 

approach provides a multiparameter global 

map of the disease state. We previously 

showed that this strategy can yield powerful, 

data-driven descriptors of a disease [33, 35, 

54], and we now confirm, for the first time, 

that this also works for urinary proteome 

analysis in the context of a complex 

neurodegenerative disease, such as PD.  

 

Our quantitative shotgun proteomic 

workflow represents a sensitive and scalable 

approach for rapid analysis of a large number 

of samples. Applying this workflow to more 

than 200 urine samples from two independent 

cohorts allowed us to precisely quantify on 

average more than 2,000 proteins per sample 

while using minimal sample amounts of less 

than 100 μl. Our approach successfully 
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determined proteins with abundances that 

varied over more than five orders of 

magnitude, and quantified more than 1,200 

proteins with a CV below 20% across the two 

cohorts, highlighting the high depth and 

precision of our study. Moreover, the 

observed variability between samples was 

much smaller than the biological variability 

between subjects, further illustrating the 

quantitative robustness of our workflow.  

 

Another factor contributing to the quality of 

the urinary proteome dataset reported here, is 

the composition of the cohorts we analyzed.  

The cohorts included two types of controls, 

the healthy controls as well as asymptomatic 

individuals that are carriers of PD-associated 

mutation G2019S LRRK2. The cohorts also 

included PD patients with and without the 

mutation, and patients of both sexes, thus 

allowing for different types of comparisons.  

For example, the global correlation map and 

PCA analysis showed that the sex of an 

individual has a dominant effect on the 

urinary proteome. This is in line with basic 

physiology and previous reports [55] but 

highlights the importance of incorporating 

sex as a confounding factor for statistical 

analyses. This is further illustrated by the fact 

that 42 and 12% of the proteins with 

differential abundance in PD patients vs. 

controls,  as well as 35 and 14% of the 

proteins that exhibit different abundance in a 

LRRK2 mutational status dependent manner  

also significantly differed between the sexes 

in the Columbia and LCC cohorts, 

respectively. 

 

Applying our ‘rectangular’ strategy for 

biomarker discovery [36], we discovered 361 

and 237 significantly altered proteins in PD 

patients and pathogenic LRRK2 carriers, 

respectively. The observed overlap of 

proteins exhibiting significantly perturbed 

levels in the two independent cohorts 

confirms that valuable information can be 

inferred from the urinary proteome for 

neurodegenerative diseases. We note the 

scalability of our workflow, which will allow 

its application to larger cohorts with more 

comprehensive genetic and clinical 

information. This extension of our work will 

be important to further validate our results 

and to discover additional biomarker 

candidates with improved statistical power.   

 

Our data analysis led to several interesting 

observations that might suggest opportunities 

for follow up. Here, we will briefly discuss 

only a small number of such examples. For 

those interested in more in depth data mining, 

we made our datasets available via publicly 

accessible depository (see Materials and 

Methods for accession numbers). An 

interesting insight that emerged from the GO-

term analysis of PD patient vs. control 

proteomes identified the GO-term ‘bone 

development’ as significantly enriched. The 

enzyme PPIB was significantly upregulated 

in PD patients in both cohorts. This 

cyclophilin assists the folding of type I 

collagen and can protect cells against MPP+-

induced cell death in a PD cell culture model 

[56]. Inhibitors of the closely related family 

member cylophilin D (CypD) are considered 

as therapeutic agents against several 

neurodegenerative diseases including PD 

[57]. Most other proteins associated with the 

GO-term ‘bone development’ were 

downregulated in PD patients, in line with 
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recent findings that PD patients frequently 

suffer from osteoporosis and osteopenia [46, 

58]. Going forward, it would be important to 

examine the relationship between PD 

profession and bone health more closely, as 

this connection is currently underexplored. 

 

Another enriched term was ‘growth factor 

activity’, although none of the proteins 

associated with this term was significantly 

regulated in both cohorts. Growth factors and 

particularly neurotrophic factors have gained 

strong interest as therapeutic agents in 

Parkinson’s disease but so far have not 

produced convincing clinical benefits [59]. 

The neurosecretory protein VGF was 

strongly decreased in PD patients in both 

cohorts (Columbia: 0.24, LCC: 0.54) but only 

reached statistical significance in the better-

controlled Columbia cohort. VGF is 

synthesized as a prohormone and 

proteolytically processed to various 

biologically active peptides. In this study, we 

identified peptides covering most of the VGF 

sequence, including sequences contained in 

the neuroendocrine regulatory peptide-1. 

However, the applied tryptic digestion 

complicates a direct link to the endogenous 

hormone peptides. VGF is exclusively 

synthesized and secreted by neuronal and 

neuroendocrine tissues. In the CNS, VGF 

promotes neurite growth and exhibits 

neuroprotective activity, while it also 

regulates energy homeostasis in peripheral 

tissues. Gene expression of VGF  in the 

cortex [60] and peptides derived from this 

gene are reduced in post-mortem parietal 

brain cortex and plasma from PD patients 

[61, 62]. Furthermore, VGF has been 

suggested as a biomarker in CSF for 

Alzheimer’s Disease (AD) and Amyotrophic 

lateral sclerosis (ALS) and its expression was 

reduced in the CSF of AD and ALS patients 

compared to controls [63, 64].  

 

We also identified several apolipoproteins - 

the major proteinaceous constituent of 

lipoproteins - to be significantly upregulated 

in PD patients in the Columbia cohort. They 

have been linked to neurodegenerative 

disorders including Alzheimer disease, 

including in our recent proteomic study of 

CSF [54].  APOE variants were shown to 

exhibit neuroprotective activity (reviewed in 

[65]). APOA1 is the major protein 

component of plasma high-density 

lipoprotein and its low levels in CSF and 

plasma have been reported as a potential PD 

biomarker [66-68]. While APOE and ApoA1 

are the most abundant apolipoproteins in the 

CSF and highly enriched in the brain [69, 70], 

APOC1 - a less-abundant brain 

apolipoprotein- was implicated in Alzheimer 

disease although its regulation and possible 

role is poorly understood [71]. 

 

In another illustrative example, we analyzed 

proteomic differences between patients with 

and without a major inherited mutation 

associated with familial PD, LRRK2 G2019S. 

Lysosomal dysregulation and associated α-

synuclein aggregation appear to be a central 

event in the pathogenesis of PD [72] and 

LRRK2, through its regulation of the 

endolysosomal pathways, is a key player in 

this mechanism [73, 74]. Interestingly, the 

LRRK2-dependent signature in the urinary 

proteome seemed to be more consistent than 

the PD-dependent signature, as indicated by 

the larger overlap of 33 vs. 10 proteins 
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between the two cohorts. This suggests that 

the genetic mutation of LRRK2 not only 

manifests in the central nervous systems but 

also dysregulates multiple pathways in distal 

organs such as the bladder and kidney, where 

LRRK2 is actually highly expressed [75]. 

Our results demonstrate that urine of 

pathogenic LRRK2 carriers strongly reflects 

lysosomal dysregulation associated with 

increase in LRRK2 activity [72] [72, 73]. 

This suggests that the genetic mutation of 

LRRK2 not only manifests in the central 

nervous systems but also dysregulates 

multiple pathways in distal organs such as the 

bladder and kidney, where LRRK2 is highly 

expressed [75]. Additionally, one of the 

strongest upregulated proteins in LRRK2 

G2019S carriers was the alkaline 

phosphatase ALPI. We suggest that this 

enzyme may counteract the hyperactive 

kinase by as yet undiscovered feedback 

mechanisms. Interestingly, knockdown of 

ALPI has been shown to decrease both 

LRRK2 levels and activity in cells [76]. We 

also found several lysosomal proteins 

including α- and β-subunit of β-

hexosaminidase A (HEXA and HEXB), 

GM2A and GCase, whose genes are 

associated with LSDs, to be upregulated in 

LRRK2 G2019S carriers in both cohorts. 

Mutations in many LSD genes have been 

associated with PD, suggesting common 

pathogenic mechanisms underly both 

diseases. The GO-term ‘glycosphingolipid 

metabolic process’ was enriched among 

LRRK2-regulated proteins, in agreement with 

increased interest in understanding how 

sphingolipids contribute to PD that stems 

from the fact that several PD-associated 

genes including GBA are linked to their 

metabolism [77, 78]. Ceramide levels are 

increased in LRRK2-deficient mouse brains 

and this decrease is regulated by GBA [48]. It 

still remains unclear how the disruption of 

sphingolipid metabolism may result in PD-

associated neurodegeneration or if LRRK2 

directly or indirectly regulates this process. 

Our data suggest that pathogenic mutations in 

GBA and LRRK2 mainly affect distinct 

regulatory networks, as only three proteins 

were significantly altered in common by 

mutations in both genes. However, further 

studies on larger GBA cohorts are needed to 

confirm and extend our findings. 

 

One of the cohorts we analyzed (Columbia) 

included information on clinical scores of 

cognitive and motor performances. This 

allowed us to correlate proteomic changes to 

clinical score, thus revealing that TNR and 

FURIN levels were strongly correlated with 

higher cognitive impairment. FURIN is a 

protease and is involved in NMDA-induced 

neuronal injury [79]. Furthermore, its 

homologue in the fruit fly, Furin1, has been 

reported to be a translational target of 

pathogenic LRRK2 and to be involved in 

neurotoxicity [80]. TNR is a neural 

extracellular matrix protein exclusively 

expressed in the brain. It is involved in 

neurogenesis [81] and extracellular matrix 

aggregates in the brain called perineural nets 

[82]. Of note, rare TNR variants have also 

been associated with familial PD [83]. 

Interestingly, IGKV6-21 was highly 

upregulated in PD patients and also strongly 

correlated with the UPDRS-III score. 

Although the underlying biology is unclear, 

the association with both PD risk and severity 
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make this V region a promising biomarker 

candidate to pursue in future studies.   

 

To extend utility of our datasets, we 

developed a machine learning model for 

stratifying PD patients and LRRK2 G2019S 

carriers with high sensitivities and 

specificities. Importantly, the machine 

learning model excelled in classifying the PD 

status in LRRK2 G2019S carriers. This is of 

high interest, because although these carriers 

are at an increased risk of developing PD, 

there is no predictive marker to determine 

whether or not and when a mutation carrier 

develops the disease. Given the performance 

of the machine learning model, VGF, LTF, 

CELA3A, TUBB4B, and SOD2 are 

promising candidates as predictive markers 

to early indicate disease development.      

 

In summary, we have demonstrated that a 

distal body fluid like urine contains brain-

specific proteins and can inform about the 

disease and mutation status in a 

neurodegenerative disease. Our urinary 

proteomics workflow is relatively 

straightforward, readily scalable and thus 

easily applicable to larger and more powerful 

cohorts. It would be important to also apply 

it to longitudinal data to confirm increased 

levels of PPIB and IGKV6-21 in PD patients 

and VGF as a potential indicator for disease 

manifestation in LRRK2 G2019S carriers but 

also identify new biomarkers for PD risk and 

disease progression in idiopathic and genetic 

forms of PD. Our results demonstrate that 

urinary proteome profiling enables the 

discovery of better biomarkers, which could 

have a major impact on important aspects of 

disease management: (i) a diagnostic 

biomarker will enable early and objective 

diagnosis of PD, (ii) a prognostic biomarker 

will provide information about the 

progression of the disease, and (iii) predictive 

and treatment response biomarkers will allow 

to monitor whether and how the patients 

respond to a therapy. Reliable biomarkers 

assessing LRRK2 activity can also aid with 

monitoring compliance of LRRK2 kinase 

inhibitors and treatment efficacy, early 

detection of non-manifesting carriers to 

prevent disease onset and stratify idiopathic 

PD patients who could benefit from LRRK2-

based therapies. 
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SUPPLEMENTARY FIGURES AND LEGENDS 

 

 

 
 

Supplementary Figure 1. Clinical information and library depth 

A) Age of subjects at the time of sample collection for all participants of the Columbia cohort. 

Bars represent mean and standard deviation in all panels. 

B-C) Clinical scores from MoCA (B) and UPDRS-III (C) for all individuals of the Columbia 

cohort.  

D) Age of subjects at the time of sample collection for all participants of the LCC cohort. 

E) Number of proteins and peptides identified in each cohort-specific hybrid library.  
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Supplementary Figure 2. Validation of quantification precision 

A) Graphical overview of the experiment to determine coefficients of variation (CVs) for the 

analysis of the Columbia cohort. 

B) Number of proteins identified in samples of CV determination experiment for the Columbia 

cohort.  

C) Median intra- and inter-plate CV values for the Columbia cohort.  

D-E) Median intra-plate (D) and inter-plate (E) CVs for each protein quantified in the Columbia 

cohort. Proteins were ranked according to their abundance and proteins with a median CV below 

20% are highlighted in pink. Numbers of proteins above and below this CV threshold are given. 

F) Inter-individual CVs were calculated from the analysis of every individual in the Columbia 

cohort. Proteins with a CV below 50% are highlighted in pink.  

G) Graphical overview of the experiment to determine coefficients of variation (CVs) for the 

analysis of the LCC cohort. 

H) Number of proteins identified in samples of CV determination experiment for the LCC cohort. 

I) Median intra- and inter-plate CV values for the LCC cohort. 

J-K) Median intra-plate (D) and inter-plate (E) CVs for each protein quantified in the LCC cohort. 

Proteins were ranked according to their abundance and proteins with a median CV below 20% are 

highlighted in pink. Numbers of proteins above and below this CV threshold are given. 

L) Inter-individual CVs were calculated from the analysis of every individual in the LCC cohort. 

Proteins with a CV below 50% are highlighted in pink.  
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Supplementary Figure 3. Quality assessment of urine samples 

A-B) The quantification precision shown as intra- or inter-plate CVs for the Columbia and LCC 

cohorts for (A) PD-regulated proteins and (B) LRRK2-regulated proteins. 
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Supplementary Figure 4. Correlation analysis 

A) Pearson correlation scores and associated p-values [-log10] of all protein intensities with the 

MoCA total score. The subset of individuals included in the analyses is shown on top. 

B) Pearson correlation scores and associated p-values [-log10] of all protein intensities with the 

UPDRS-III score. The subset of individuals included in the analyses is shown on top. 
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Supplementary Figure 6. Decision-tree-based feature selection for machine learning  

A) Top15 most important features according to a decision tree-based feature selection to classify 

PD+ vs. PD- individuals. 

B) Top15 most important features according to a decision tree-based feature selection to classify 

LRRK2 G2019S vs. LRRK2 WT carriers. 

C) Top7 most important features according to a decision tree-based feature selection to classify 

PD+ vs. PD- in LRRK2 G2019S carriers. 

 

 

SUPPLEMENTARY TABLES 

Supplementary Table 1. Clinical information on cohort subjects 

Supplementary Table 2. All proteins quantified in two cohorts 

Supplementary Table 3. Contamination markers 

Supplementary Table 4. GO-terms and associated proteins 

Supplementary Table 5. Significantly regulated proteins  

 

 

MATERIALS and METHODS 

 

Study cohorts 

In this study, urine samples from two 

independent cross- sectional cohorts were 

analyzed. Both studies were approved by 

local institutional review boards, and each 

participant signed an informed consent.  

 

The first cohort was recruited at Columbia 

University Irving Medical Center (Columbia 

cohort) and its participants donated urine 

under a MJFF-funded LRRK2 biomarker 

project from March 2016 to April 2017. This 

cohort contained 35 healthy individuals 

without pathogenic LRRK2 mutation (HC), 

16 non-manifesting carriers of the LRRK2 

G2019S mutation (NMC), 40 idiopathic PD 

patients without pathogenic LRRK2 

mutation (iPD) and 28 PD patients with the 

pathogenic LRRK2 G2019S mutation 

(LRRK2 PD) and 1 PD patient with an 

unknown mutation status of LRRK2. Motor 

performance was evaluated using the Unified 

Parkinson’s Disease Rating Scale part III 

(UPDRS-III), and cognitive functioning was 
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assessed using the Montreal Cognitive 

Assessment (MoCA) test. Genotyping for 

LRRK2 G2019S and GBA mutations was 

conducted as previously described [38]. 

 

To confirm findings from the Columbia 

cohort, urine from a second cohort consisting 

of 115 bio-banked urine samples from the 

Michael J. Fox Foundation for Parkinson’s 

Research (MJFF)-funded LRRK2 Cohort 

Consortium (LCC) was analyzed. The cohort 

used in this study was an exploratory subset 

of a larger cohort and contained 26 healthy 

individuals without pathogenic LRRK2 

mutation (HC), 37 non-manifesting carriers 

of the LRRK2 G2019S mutation (NMC), 29 

idiopathic PD patients without pathogenic 

LRRK2 mutation (iPD) and 23 PD patients 

with the pathogenic LRRK2 G2019S 

mutation. UPDRS-III and MoCA scores were 

not available for subjects from the LCC 

cohort.  

 

Quality assessment 

To generate the urine-specific quality marker 

panel, we recruited three volunteers from 

within the Department of Proteomics and 

Signal Transduction at the Max Planck 

Institute of Biochemistry who kindly donated 

10 ml of urine at three different time points 

during a day and provided a written informed 

consent, with prior approval of the ethics 

committee of the Max Planck Society.  

 

Following the collection, urinary samples 

were centrifuged at 2000g for 10 minutes, 

supernatants were harvested and pellets were 

resuspended in 100 μl of Urea sample 

solution. 100 μl of each supernatant and the 

entire 100 μl of the resuspended pellets were 

used for sample preparation as described 

below. A sample was flagged for potential 

contamination if the summed intensity of all 

proteins in the respective quality marker 

panel differed more than 2 standard 

deviations from the mean of all samples 

within the cohort. 

 

Sample Preparation 

The undiluted neat urine as well as the 

cleared and pelleted urine samples for the 

urine-specific quality marker panel were 

prepared using MStern Blot protocol as 

described previously [27]. Briefly, 100 μl of 

urine was first diluted in 300 μl of Urea 

sample solution (8 M urea in 50 mM 

ammonium bicarbonate (ABC)) and 

subsequently mixed with 30 μl of 150 mM 

dithiothreitol (DTT) solution (150 mM DTT, 

8 M urea, 50 mM ABC) in a 96-well plate. 

The resulting solution was incubated for 20 

min at room temperature. Reduced cysteine 

side chains were alkylated by adding 30 μL 

of iodoacetamide (IAA) solution (700 mM 

IAA, 8 M urea, 50 mM ABC) and incubated 

for 20 min in the dark. During incubation, 

each well of the 96-well PVDF membrane 

plates (MSIPS4510, Merck Millipore) was 

activated and equilibrated with 150 μl of 70% 

ethanol/water and urea sample solution, 

respectively. The urine samples were 

transferred through the PVDF membranes 

using a vacuum manifold (MSVMHTS00, 

Merck Millipore). Adsorbed proteins were 

washed two times with 150 μl of 50 mm 

ABC. Digestion was performed at 37°C for 2 

hours by adding 100 μl digestion buffer (5% 

v/v acetonitrile (ACN)/50 mm ABC) 

containing 0.35 μg per well of each protease 

trypsin and LysC. After incubation in a 
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humidified incubator, the resulting peptides 

were collected by applying vacuum and 

remaining peptides were eluted twice with 75 

μl of 40%/0.1%/59.9% (v/v) 

acetonitrile/formic acid/water. The pooled 

peptide solutions were dried in a vacuum 

centrifuge.  

 

Peptides resuspended in 0.1% trifluoroacetic 

acid (TFA) were desalted on C18 StageTips 

as described in [29]. The StageTips were 

centrifuged at 1,000g for washing with 0.1% 

TFA and elution with 80% ACN/0.1% TFA. 

The eluate was evaporated to dryness using a 

vacuum centrifuge and peptides were 

resuspended in 10µl buffer A* (2% 

ACN/0.1% TFA and stored at -20°C. 

Samples were thawed shortly before mass 

spectrometric analysis and shaken for 2 

minutes at 2000rpm (thermomixer C, 

Eppendorf). Peptide concentrations were 

measured optically at 280nm (Nanodrop 

2000, Thermo Scientific) and subsequently 

equalized using buffer A*. 500ng peptide 

was subjected to LC-MS/MS analysis.  

 

Cohort-specific libraries for data-

independent analyses were generated by 

pooling of 25 randomly selected samples of 

each cohort. Sample pools were fractionated 

into 24 fractions each by high pH (pH 10) 

reversed-phase chromatography as described 

earlier [84]. Fractions were concatenated 

automatically by shifting the collection tube 

every 120 seconds and subsequently dried in 

a vacuum centrifuge and resuspended in 

buffer A*.  

 

To increase the depth of each library, 

extracellular vesicles (EV) were isolated 

from pooled urine samples of each cohort by 

ultra-centrifugation as described earlier (Add 

Andy West paper here). Briefly, 8.5 ml of 6 

urine samples per group (LRRK2-/PD-, 

LRRK2+/PD-, LRRK2-/PD+ and 

LRRK2+/PD+) were pooled were centrifuged 

at 10,000g for 30 min at 4 °C and supernatant 

was transferred and then centrifuged again at 

100,000g for 1h at 4 °C. Supernatants were 

discarded and pellets were washed by adding 

30 mL PBS and centrifugation at 100,000g 

for 1 h at 4 °C. Supernatant was discarded 

and pellets were resuspended in100 µl of a 

sodium deoxycholate-based lysis buffer 

containing chloroacetamide (PreOmics 

GmbH) and heated to 95°C for 10 min for 

reduction and alkylation. After cooling to 

room temperature, 0.75 µg of each protease 

trypsin and 0 LysC were added to each 

sample and digestion was performed at 37°C 

overnight. Peptides were desalted with SDB-

RPS (styrenedivinylbenzene- reverse phase 

sulfonate) StageTips. Samples were mixed 

with 5 volumes of 1% TFA/isopropanol for 

loading on StageTips and subsequently 

washed once with 1%TFA/isopropanol and 

once with 0.2% TFA as described earlier 

[29]. Peptides were eluted 80%/5% 

ACN/ammonium hydroxide. The eluate was 

completely dried using a vacuum centrifuge 

and resuspended in 0.1% formic acid. 

Peptides were then separated into 8 fractions 

by high pH reversed-phase chromatography 

as described above for the libraries. 

 

To determine coefficients of variation for the 

Columbia cohort, urine from five donors in 

triplicates on one plate were subjected to 

sample preparation (intra-plate) and this was 

repeated on three different plates (inter-
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plate). For the LCC cohort, urine from three 

donors in duplicates on one plate were 

subjected to sample preparation (intra-plate). 

Urine form nine other subjects were prepared 

on two different plates (inter-plate). 

 

LC-MS/MS analysis 

LC-MS/MS analysis was performed on an 

EASY-nLC 1200 coupled to a Q Exactive 

HF-X Orbitrap mass spectrometer via a nano-

electrospray ion source (all Thermo Fisher 

Scientific). Purified peptides were separated 

at 60 °C on 50cm columns with an inner 

diameter of 75µm packed in-house with 

ReproSil-Pur C18-AQ 1.9µm resin 

(Dr.Maisch GmbH). Mobile phases A and B 

were 99.9/0.1% water/formic acid (v/v) and 

80/20/0.1% acetonitrile/water/formic acid 

(v/v/v). For the LCC cohort, the flow rate was 

constant at 300 nl/min and the initial 

concentration of 5% B was linearly increased 

to 30% B within 36 minutes, and then 

increased further to 95% within 6 min with a 

3 min plateau at the end. For the Columbia 

cohort, the flow rate was constant at 350 

nl/min and the initial concentration of 5% B 

was linearly increased to 30% B within 35 

minutes, and then increased further to 95% 

within 5 min with a 5 min plateau at the end. 

 

MS data was acquired in the data-

independent acquisition (DIA) scan mode for 

single-shot patient samples, using the 

MaxQuant Live software and spectral 

processing with phase-constrained spectrum 

deconvolution (phi-SDM) [85, 86]. Full MS 

scans were acquired in the range of m/z 300–

1,650 at a resolution of 60,000 at m/z 200 and 

the automatic gain control (AGC) set to 3e6. 

For the Columbia cohort, additionally two 

BoxCar scans with 12 isolation windows 

each and a resolution of 60,000 at m/z 200 

were acquired [87] . Full MS events were 

followed by 33 MS/MS windows (LCC 

cohort) or 58 MS/MS windows (Columbia 

cohort) per cycle in the range of m/z 300–

1,650 at a resolution of 15,000 at m/z 200. 

For the LCC cohort, higher-energy 

collisional dissociation MS/MS scans were 

acquired with a stepped normalized collision 

energy of 25/27.5/30 and ions were 

accumulated to reach an AGC target value of 

3e6 or for a maximum of 30 ms. For the 

Columbia cohort, higher-energy collisional 

dissociation MS/MS scans were acquired 

with a normalized collision energy of 27 and 

ions were accumulated to reach an AGC 

target value of 3e6 or for a maximum of 22 

ms. 

 

All fractionated samples including EV 

fractions were acquired with a top12 data-

dependent acquisition (DDA) scan mode. 

Full MS scans were acquired in the range of 

m/z 300–1,650 at a resolution of 60,000 

(Columbia cohort) or 120,000 (LCC cohort) 

at m/z 200. The automatic gain control 

(AGC) target was set to 3e6. Higher-energy 

collisional dissociation MS/MS scans were 

acquired with a normalized collision energy 

of 27 at a resolution of 15,000 at m/z 200. 

Precursor ions with charge states of 2-7 were 

isolated in a 1.4 Th window and accumulated 

to reach an AGC target value of 1e5 or for a 

maximum of 60 ms. Precursors were 

dynamically excluded for 20 s after the first 

fragmentation event.  

Mass spectrometry data processing 
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The MS data of the fractionated pools (DDA 

MS data, 24 neat pool urine and 8 EV 

fractions) and the single shot subject samples 

(DIA MS data, 165 and 132 samples in 

Columbia and LCC, respectively) were used 

to generate a DDA-library and direct-DIA-

library, respectively, which were 

computationally merged into two cohort-

specific hybrid libraries using Spectronaut 

version 13.9.191106.43655 (Biognosys AG). 

For all experiments except the machine 

learning, the two cohorts were quantified 

separately in Spectronaut. A minimum of 3 

and a maximum of 10 fragments was required 

for each peptide in the library. The hybrid 

spectral libraries were subsequently used to 

search the MS data of the single shot patient 

samples in the Spectronaut software. All 

searches were performed against the human 

SwissProt reference proteome of canonical 

and isoform sequences with 42,431 entries 

downloaded in July 2019. Searches used 

carbamidomethylation as fixed modification 

and acetylation of the protein N-terminus and 

oxidation of methionines as variable 

modifications. Trypsin/P proteolytic 

cleavage rule was used, permitting a 

maximum of 2 missed cleavages and a 

minimum peptide length of 7 amino acids. 

The Q-value cutoffs for both library 

generation and DIA analyses were set to 0.01. 

For generation of the global correlation map, 

the individual protein correlations with 

clinical parameters, and the machine 

learning, the Q-value data filtering setting in 

Spectronaut was set to ‘Qvalue’ to use every 

peptide passing the Q-value threshold for the 

protein group quantification. For all other 

analyses, the setting was set to ‘Qvalue 

percentile’ with a cutoff of 25%, to use only 

those peptides for the protein quantification 

that passed the Q-value threshold in at least 

25% of all analyzed samples. The ‘Qvalue 

percentile’ setting results in a complete data 

matrix with no missing values, as the noise is 

quantified and reported if the peptide did not 

pass the Qvalue threshold. 

 

Bioinformatics data analysis 

The Perseus software package versions 

1.6.0.7 and 1.6.1.3 and  GraphPad Prism 

version 7.03 were used for the data analysis 

[88]. Protein intensities were log2-

transformed for further analysis apart from 

correlation and coefficient of variation 

analysis. Coefficients of variation (CVs) 

were calculated in Perseus for all inter-plate 

and intra-plate combinations of samples, the 

median values were reported as overall 

coefficient of variation. The protein CVs of 

the main study were calculated likewise 

within cohorts individually. The protein 

abundance levels were cross-correlated to 

generate a matrix of correlation coefficients. 

Unsupervised hierarchical clustering was 

performed using Perseus and proteins were 

clustered based on Pearson correlation 

scores. For generation of the abundance 

curves, median protein abundances across all 

samples within a proteome were used. 

ANCOVA analysis was performed in python 

(version 3.7.6) using the pandas (version 

1.0.1), numpy (version 1.18.1) and pingouin 

(version 0.3.4) packages. For the ANCOVA 

analysis, age at sample collection, LRRK2 

status (only in PD+ vs. PD-), GBA status 

(only Columbia cohort LRRK2+ vs. LRRK2-

), and PD status (only LRRK2+ vs. LRRK2-

) were set as confounding factors. The FDR 

was set to 5% after Benjamini-Hochberg 
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correction. GO annotations were matched to 

the proteome data based on Uniprot and 

Ensemble identifiers. Annotation term 

enrichment was performed with Fisher exact 

test in Perseus separately for each cohort. 

Annotation terms were filtered for terms with 

an FDR of 5% after Benjamini-Hochberg 

correction in each cohort.  Calculation of 

Pearson correlation scores and associated p-

values of protein intensities to UPDRS-III 

and MoCA scores was performed in Perseus. 

 

Machine learning 

Data processing and machine learning was 

performed in Python (Version 3.7.3). 

Missing values were not imputed and protein 

intensities were normalized using the 

ScandardScaler method from the scikit-learn 

package (0.21.3). The XGBoost package 

(Version 0.90) was used to classify the 

samples and results were plotted using the 

bokeh library (2.1.1). Features were selected 

using a decision tree. Samples from both 

Columbia and LCC cohorts were used for the 

model and cross-validated using four 

stratified training/test splits and 15 repeats 

were applied. To assess sensitivity and 

specificity of the model, the results of the test 

sets were summed and averaged from 15 

repeats. 
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