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Abstract

Objective and Impact Statement: Segmentation of blood vessels from two-photon
microscopy (2PM) angiograms of brains has important applications in hemodynamic analysis
and disease diagnosis. Here we develop a generalizable deep-learning technique for accurate
2PM vascular segmentation of sizable regions in mouse brains acquired from multiple 2PM
setups. In addition, the technique is computationally efficient, making it ideal for large-scale
neurovascular analysis.

Introduction: Vascular segmentation from 2PM angiograms is usually an important first
step in hemodynamic modeling of brain vasculature. Existing state-of-the-art segmentation
methods based on deep-learning either lack the ability to generalize to data from various
imaging systems, or are computationally infeasible for large-scale angiograms. In this work,
we present a method which improves upon both these limitations by being generalizable to
various imaging systems, and also being able to segment very large-scale angiograms.

Methods: We employ a computationally efficient deep-learning framework based on a
semi-supervised learning strategy, whose effectiveness we demonstrate on experimentally ac-
quired in-vivo angiograms from mouse brains of dimensions up to 808×808×702 µm.

Results: After training on data from only one 2PM microscope, we perform vascular
segmentation on data from another microscope without any network tuning. Our method
demonstrates 10× faster computation in terms of voxels-segmented-per-second and 3× larger
depth compared to the state-of-the-art.

Conclusion: Our work provides a generalizable and computationally efficient anatomical
modeling framework for the brain vasculature, which consists of deep-learning based vascular
segmentation followed by graphing. It paves the way for future modeling and analysis of
hemodynamic response at much greater scales that were inaccessible before.

Keywords— Vessel segmentation, deep learning, two-photon microscopy, vascular anatomical model-
ing, hemodynamic analysis, graph extraction

1 Introduction

The hemodynamic response to neural activation has become a vital tool in understanding brain function
and pathologies [1]. In particular, measuring vascular dynamics has proved to be important for early
diagnosis of critical cerebrovascular and neurological disorders, such as stroke and Alzheimer’s disease [2].
Existing tools for the measurement of cerebral vascular dynamics rely on functional imaging techniques, for
example functional magnetic resonance imaging (fMRI), positive emission tomography (PET), and optical
imaging [1, 3]. Importantly, mathematical models have been proposed for these neuroimaging methods,
which provide valuable insight into the relation between the measured signals, and the underlying physio-
logical parameters, such as cerebral blood flow, oxygen consumption, and rate of metabolism [4–7]. These
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mathematical models often require a topological representation of the blood vessels as a graph of spatially
distributed nodes, connected via edges [5,7]. These vascular graphs are usually estimated from two-photon
microscopy (2PM) angiograms of the mouse brain [5], and segmentation of blood vessels is generally the
first step in this process [8]. Vascular segmentation from cerebral 2PM angiograms, however, is a chal-
lenging task, especially for in-vivo imaging. Current state-of-the-art methods for this task [9, 10] suffer
from limited computational speed, restricting their usefulness to only small-scale volumetric regions of the
brain. Furthermore, due to rapid deterioration of measurement contrast with imaging depth in 2PM, these
methods have been unable to demonstrate effective segmentation for vasculature deep beneath the brain
surface. In this work, we address these limitations, and present a computationally efficient framework for
2PM vascular segmentation that allows us to effectively process much larger regions of the mouse brain
compared to existing methods at significantly faster computation speed in terms of voxels segmented per
second. Our method also demonstrates accurate segmentation for significantly deeper vasculature com-
pared to the state-of-the-art.

Vascular segmentation involves assigning a binary label to each voxel of the input angiogram to indicate
whether or not it is part of a blood vessel. This task is challenging, especially when dealing with 2PM
angiograms, as the measurement contrast decreases sharply with imaging depth due to multiple scattering
and background fluorescence [11]. Additional sources of measurement noise include motion artifact cor-
ruption during in-vivo imaging, large pial vessels on the cortical surface, and densely packed vasculature,
making the segmentation task nontrivial. In the presence of these challenges, a number of techniques
have been employed for vascular segmentation, including methods based on the Hessian matrix [12, 13],
tracing [14], optimally oriented flux [15], and geometric flow [16]. However, in practice, these methods
demonstrate limited segmentation quality [8].

In recent years, techniques based on deep learning have shown significant improvement over tradi-
tional methods for 2PM vascular segmentation [8–10, 17]. One of the first works in this line was done
by Teikari et. al. [17], who presented a hybrid 2D/3D deep neural network (DNN) for the segmentation
task. Their method utilized angiograms with shallow imaging depths (less than 100 µm), and were limited
by computation speed. The segmentation quality was improved upon by Haft et. al. [10] by using an
end-to-end 3D segmentation DNN. This model, however, similar to Teikari et. al., was also limited by slow
computation, and required about one month to train on a dataset consisting of one annotated angiogram
of dimensions 292 × 292 × 200 µm. Damseh et. al. [18] improved upon this limitation, and were able
to process much larger datasets with faster computation speed in terms of voxels segmented per second.
Their framework used a DNN based on the DenseNet architecture [19], which processed the 3D angiograms
by segmenting 2D slices one-by-one, and demonstrated better segmentation quality compared to previous
methods. However, this DNN did not generalize with respect to various imaging setups, i.e. it performed
good segmentation only for 2PM angiograms acquired on the same setup as the training data. Ideally,
one would like to be able to segment angiograms from any 2PM microscope once the network has been
trained. In order to overcome this limitation, Gur et. al. [9] recently proposed an unsupervised DNN based
on the active contours method, and demonstrated improved generalization capability compared to super-
vised models [10,17,18], with faster segmentation speed. However, this method still suffers from excessive
training and inference times, and high computational cost. Furthermore, lack of “supervised” information
makes it difficult to segment deep vasculature, as severe noise corruption makes the task very challenging,
even when using active contours [20]. These challenges limited its effectiveness to small-scale angiograms,
with up to 200 µm imaging depth. In this work, we develop a new DNN model, based on semi-supervised
learning, that achieves state-of-the-art 3D segmentation accuracy while simultaneously providing superior
generalization capability and low computational cost.

Our semi-supervised learning method combines the “supervised” information from training data ac-
quired on a single imaging setup, and an “unsupervised” regularization term to enable generalization to
different imaging setups, without the need of excessive training data, transfer learning [21], or domain
transfer [22]. The unsupervised regularization incorporates vasculature-specific prior information into the
loss function while training the DNN model. Specifically, the prior we use enforces piece-wise continuity
of the vasculature by using the total-variation (TV) penalty [23]. We show that introducing a TV penalty
decreases noise in the segmentation, and improves the prediction both qualitatively and quantitatively. We
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demonstrate significant improvements in terms of segmentation quality, achievable depth, and robustness
to variations from new experimental setups using our semi-supervised approach.

Our DNN model is built on a light-weight 3D architecture, which allows us to practically perform high-
quality vascular segmentation over much larger volumes compared to existing techniques with much reduced
computational cost and time. In particular, we demonstrate 10× faster computation compared to the
current state-of-the-art [9] in terms of number of voxels processed per second, and accurate segmentation
for about 3× deeper vasculature. Thus, our framework allows us to perform segmentation on sizable
regions in several mouse brains, enabling large-scale in-vivo neurovascular analysis. To illustrate this
unique capability, we demonstrate segmentation on a 808×808×702 µm volume in less than 2.5 seconds.

Following vascular segmentation from our DNN model, we perform graph extraction on the binary
segmentation map using a recently developed method based on the Laplacian flow dynamics [18]. Impor-
tantly, we show that our segmentation results in better graph modeling of the vasculature across large
volumes compared to other segmentation techniques.

Overall, our work provides a new high-speed and computationally efficient anatomical modeling frame-
work for the brain vasculature, which consists of deep learning based vascular segmentation followed by
graphing. It paves the way for future modeling and analysis of hemodynamic response at much greater
scales that were inaccessible before. To facilitate further advancements in this field of research, we have
made our DNN architecture, dataset, and trained models publicly available at https://github.com/

waleedt/2PMVascSeg.

2 Results

System Framework. The deep learning based vasculature anatomical modeling pipeline is shown in
Figure 1(A). This modular framework takes 2PM angiograms of live mouse brain as the input, performs
segmentation of blood vessels using a novel 3D DNN, and finally extracts a vascular graph from the
network’s prediction. The DNN [Fig. 1(B), S5], detailed in section 4.1, is of critical importance in this
pipeline and is our primary contribution. This network is first trained to minimize the discrepancy between
manually annotated ground truth segmentation, and it’s own prediction [Fig.1(B)]. During this training
process, the network is exposed to challenging regions in 2PM angiograms in order to improve its ves-
sel recovery from poor quality images. Some examples of such regions include deep 2PM measurements
with low signal contrast [Fig.2(A)], and pial vessel occlusions[Fig.2(A), red circle]. In addition, we use
large input angiogram patches of size 128 × 128 × 128 voxels, in conjunction with a network optimized
for computation speed, allowing us faster segmentation on significantly larger angiograms compared to
state-of-the-art methods [9, 10]. Once trained, this network provides segmentation of 2PM angiograms in
a feed-forward manner [Fig.1(C)] that outperforms the state-of-the-art methods as detailed below.

Segmentation Performance Analysis. To evaluate our segmentation approach, we first visually
compared the predicted vessel segmentation from our DNN with the ground truth, a traditional Hessian
matrix approach [13], and a recently developed DNN model [8] in Figure 3. With increasing depth, our
prediction result maintains greater overlap of the prediction and ground truth compared to other methods,
out to 606µm [Fig. 3(B)-(D)]. These results indicate a 3× depth improvement using our approach over the
current state-of-the-art methods. Since these large imaging depths also exhibit poor signal-to-background
ratios (SBR) [Fig. 2], our DNN model also provides visually superior performance under low signal contrast
imaging conditions. As discussed below, we quantify these improvements using a comprehensive set of
metrics to holistically evaluate the vascular segmentation performance.

Overlap-based metrics are the most widely used metrics to evaluate vessel segmentation algorithms,
which are computed based on analyzing the voxel overlap between the ground truth and the prediction. For
example, sensitivity and specificity represent the respective percentage of the foreground and background
voxels that are correctly recovered in the prediction. The Jaccard index computes the intersection over the
union of the prediction and the ground truth, representing similarity based on percentage overlap. The
Dice index is very similar to the Jaccard index and the two are strongly positively correlated. Generally,
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Figure 1: Framework for vascular modeling. (A) Two-photon microscopy (2PM) is used
to acquire cerebral angiographic data on a live specimen via in-vivo imaging. This is followed by
binary vascular segmentation of the 2PM angiogram. Finally, the 3D graph of the vasculature
is computed from the segmentation map. In this paper, we present the segmentation method in
detail, which is able to process large-scale 2PM angiograms. (B) A deep neural network (DNN)
is used for segmentation which is first trained using annotated angiograms under semi-supervised
learning. During this process, the network weights are iteratively adjusted for accurate vessel
segmentation. (C) After training is complete, the optimized network can be used in a feed-forward
manner for segmentation on unseen angiograms.

Figure 2: Deterioration of two-photon microscopy signal with imaging depth. (A)
Visual contrast decreases for deeper vasculature due to loss of illumination focus with increased
imaging depth, and higher background fluorescence due to increased laser power. Large pial vessels
on the surface cast shadows underneath, as shown by the encircled region, making vessel detection
challenging. (B) The signal to background ratio (SBR) of the angiogram decreases rapidly going
deeper into the brain tissue.
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Figure 3: Large-scale 2PM vascular segmentation. (A) 3D renderings of segmentation on
the test angiogram. (B-D) Maximum intensity projections (MIPs) of binary segmentation overlaid
on 2PM measurement. Each MIP represents 40 µm physical depth, and 20 discrete slices along
the z-axis. MIPs for three different depths ranges are presented to show the effect of axial depth
on segmentation performance. We demonstrate good segmentation for vasculature up to 606µm,
despite significant increase in background noise associated with 2PM.

such metrics only compare the physical overlap between the ground truth and the predicted segmentation
without considering the underlying morphological shapes of the object [24]. This factor makes overlap-
based metrics ill-suited for delimiting complex boundaries like blood vessels, since they will preferentially
correct larger vessels occupying more of the volume while ignoring the smaller, yet important capillaries in
the vasculature. In addition, these metrics suffer from inherent biases towards one segmentation class or the
other. For example, the Jaccard index, the Dice coefficient, and sensitivity are insensitive to true negative
predictions, making them primarily indicative of positive class performance. On the other hand, specificity
is insensitive to true positive predictions, thus primarily indicative of negative class performance. Accuracy
is subject to class imbalance, i.e. when one type of class labels are significantly more abundant than the
rest, accuracy becomes more indicative of the abundant class. This problem is particularly prevalent in
vascular segmentation [25]. As an example, our manually segmented 2PM angiograms contain more than
96% background tissue voxels and less than 4% foreground vessel voxels, indicating an imbalance ratio of
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Figure 4: Quantitative evaluation of segmentation performance. (A) While we do
present traditional metrics for segmentation comparison, e.g. sensitivity, specificity, Jaccard in-
dex, F1 score and accuracy; we also include other metrics arguably better suited for vascular
segmentation including Matthew’s correlation coefficient (MCC), Hausdorff distance (HD), and
length correlation (LC). Our method provides best overall performance on the test dataset, sup-
porting the qualitative results in Fig.3. (B) Here we compare the slice-wise modified Hausdorff
distance (MHD) between the methods of interest. Our method outperforms other techniques with
considerably smaller mean and standard deviation of the slice-wise MHD. (C) In terms of num-
ber of voxels segmented per second, our method is about 10x faster than the state-of-the-art [9],
making it suitable for large scale and real-time applications.

more than 24.

To overcome these shortcomings, we further quantify our DNN performance using the correlation-based
Matthew’s correlation coefficient (MCC) metric, two morphological similarity based metrics, namely Haus-
dorff distance (HD), and Modified Hausdorff distance (MHD), and a graph-based metric length correlation
(LC). MCC is particularly suited for highly imbalanced data [26] since it is unbiased towards any class and
gives the same value between -1 and 1, even when negative and positive classes are swapped. A score of
1 means perfect correlation, 0 means uncorrelated and the classifier is akin to random guessing, -1 means
perfect negative correlation. HD measures the extent of morphological similarity between the prediction
and ground truth, i.e. how visually similar their shapes are. This metric is suitable for data involving
complex contours e.g. blood vessels [24]. MHD is a variant of HD, and is more robust to outliers and noise.
LC is a graph-based metric, which we derive from the length metric in [27], and is specifically suitable for
vascular segmentation. It measures the degree of coincidence between the predicted and the ground truth
segmentations in terms of the total length. Since accurate graph extraction is the eventual goal for our
segmentation pipeline, LC is a particularly well suited metric for comparison.

Quantitative evaluation of our DNN segmentation on (unseen) testing data is presented in Fig.4(A,B).
Our method demonstrates the best overall segmentation, especially with respect to non-overlap-based
metrics. In addition to providing both qualitatively and quantitatively improved vessel segmentation, our
method also provides ≈ 10× faster voxel-per-second segmentation than the current state-of-the-art [9] as
shown in Fig.4(C). Faster computation speed played an important role in enabling our DNN to train on
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our large-scale dataset within a reasonable time, and has potential applications for real-time segmentation.

Figure 5: Generalization capability of our segmentation method. Our DNN is optimized
for robustness to inter-microscope variability. We train our DNN on data from one 2PM setup
and test on an angiogram acquired on a different setup, demonstrating good segmentation quality.
(A) 3D renderings of the segmentation maps. (B-D) Maximum intensity projections (MIPs) of
vascular segmentation overlaid on 2PM measurement, shown for lateral x-y cross sections. Each
MIP represents 20 discrete slices along the z-axis. Our method has good qualitative performance
with well connected vasculature and apt segmentation for both large and small vessels, demon-
strating its ability to generalize to other 2PM imaging setups without retraining. For comparison,
the supervised learning method by Damseh et al. [8] is unable to generalize well. (E) MIPs for
longitudinal x-z cross sections, each representing 20 discrete slices along the y-axis. Our method
computes comparatively better segmentation in the challenging region below the large pial-vessel
where image contrast is low due to occlusion.

Generalization to a new 2PM imaging system. Existing segmentation methods based on su-
pervised learning [8, 10, 17] have not demonstrated the ability to generalize across various 2PM imaging
setups, and the same setup is used to acquire both the training and testing data. In some cases, even the
same 3D angiogram is divided into both training and testing sets [10]. Training a DNN with the ability
to generalize over different setups is challenging due to inter-microscope variability. However, it is highly
desirable to have a segmentation method which is independent of the acquisition hardware. One possible
solution is to train a supervised DNN with annotated data from various imaging setups, because having
such diversity in the training set is known to improve generalization performance. This however is difficult
to achieve, since manually annotating ground truth for many large-scale angiograms from various setups is
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impractical due to the prohibitive labor cost. This is also why very few such large-scale annotated datasets
are publicly available. Limited data availability makes it difficult to effectively train a purely supervised
learning model. Supervised methods are also susceptible to possible mis-annotations, e.g. due to human
error, and this problem is particularly amplified for large-scale datasets [28]. Another possible approach
for achieving generalization is to train an unsupervised DNN, as by Gur et. al [9]. However, unsupervised
methods discard annotated data altogether, and this may be detrimental in challenging regions of low
contrast like deep vasculature, and areas under large pial vessels, where ground-truth annotations might
be able to guide the training process. Here we demonstrate a DNN based on semi-supervised learning,
which combines the benefits of both supervised and unsupervised learning with state-of-the-art general-
ization performance. Our method is not as susceptible to over fitting or mis-annotations as supervised
methods. In addition, unlike unsupervised methods, our network is able to incorporate expert annotated
data for training, which is especially beneficial for low contrast and high noise regions in deep vasculature.
After being trained on data from only one imaging setup, we demonstrate that our network is able to
demonstrate good segmentation on data from another 2PM microscope without any retraining or network
fine tuning [Fig.5].

Figure 6: Graph extraction from the 3D segmentation map. The mathematical graph of
the vasculature was computed from the segmentation, comprising of nodes connected via edges.
(A) 3D view of the graphs, depicted as vascular center lines in the volume. (B-D) MIPs of
graphs overlaid on 2PM measurement, each MIP representing 20 discreet slices along z-axis. (E)
Longitudinal x-z MIP overlays, each MIP representing 20 discreet slices along y-axis. Graph
extraction from our segmentation is qualitatively better compared to other methods, especially
at increased depth, and below the large pial vessel where measurement contrast is low. We thus
demonstrate that our method is suitable for large-scale vascular modeling and graph extraction.

8

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.09.243394doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.09.243394
http://creativecommons.org/licenses/by-nc/4.0/


Graph-based modeling of cerebral vasculature. Vascular segmentation enables many important
applications. Here, we are interested in graph-based modeling for brain vasculature [5,29–31]. In this work,
we propose a pipeline for graph extraction [Fig.1(A)], where we first compute the 3D segmentation using
the method presented in this paper, followed by graph extraction using the framework recently proposed
by Damseh et. al [18]. We present the qualitative results for graph-extraction in Fig.6, and empirically
demonstrate satisfactory performance up to a depth of 600µm.

3 Discussion

We propose and experimentally demonstrate a novel method for segmentation of 2PM angiograms, with
the goal of large-scale cerebrovascular modeling. This new strategy enables processing of much larger
angiograms compared to existing methods with significantly faster computation speed, by leveraging re-
cent advances in deep learning. In addition, our deep neural network is able to segment angiograms from
multiple 2PM imaging systems without retraining, and this flexibility shows its potential to be used as
a general 3D segmentation tool for large-scale angiograms obtained using any 2PM imaging setup. In
light of our goal of graph-based modeling of cerebral vasculature, we compute vascular graphs from bi-
nary segmentation, using a technique recently developed by one of our co-authors [18]. We observe that
improved segmentation using our method led to better vascular graphs for large 2PM angiograms. This
has important implication since existing graph extraction pipelines do not demonstrate adequate accuracy,
and have to be followed up by significant manual correction as a post-processing step [31]. This human
annotation can quickly become infeasible as the angiograms scale to greater sizes and quantities. It is
therefore desirable to have a method for accurate graph computation which can minimize, if not com-
pletely eliminate, the use of manual correction. Towards this end, we have presented a modular approach
for graph computation, where the challenging 2PM vascular segmentation has been decoupled from graph
extraction. This gives us the ability to optimize each of these two steps independently.

While our method was able to demonstrate significantly deeper segmentation compared to existing
techniques, it still has several limitations. Our method was unable to accurately segment vasculature
beyond 600µm within the brain tissue. This is partly due to the limitation of 2PM to capture angiograms
with sufficient SBRs much beyond this depth, and also due to the unavailability of accurate ground truth
for deeper angiograms. Effective segmentation for deeper vasculature might be achieved by employing
ground-truth data with greater depth, coupled with more intelligent semi-supervised learning, involving
e.g. active contours [32], in addition to the TV regularization used in our work. Another limitation is that
angiograms from different setups have to undergo manual histogram equalization before being segmented
by our network. This involves linear scaling to make the voxel distribution of new angiograms similar
to those on which the network has been trained. Further work may look to automate the process. In
general, more advanced domain adaptation techniques [33, 34] may be incorporated to further improve
the generalizability. Although we demonstrate improved segmentation performance in the low-contrast
region under large pial vessels compared to existing methods, the segmentation still suffers from artifacts
and obvious false negatives. Further work may look to improve the performance in such regions, either
on the acquisition end by employing better fluorophores, or by using a pre-processing method to enhance
the contrast of the vasculature under pial vessels, prior to segmentation. Despite these limitations, we
demonstrate state-of-the-art performance for vascular segmentation of large-scale 2PM angiograms. We
believe that this work paves the way towards large-scale cerebrovascular modeling and analysis.

4 Materials and method

4.1 Data preparation

2PM angiograms were acquired on two different imaging systems for various mice specimen (n = 5 for
system 1, and n = 1 for system 2). For training and quantitative evaluation, we used data only from
the first imaging setup, while data from the second setup was used for qualitative demonstration of the
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generalizability of our approach.

The dataset from imaging system 1 has been previously published by Gagnon et. al. [5, 31], and
it’s preparation is detailed as follows. All experimental procedures were approved by the Massachusetts
General Hospital Subcommittee on Research Animal Care. C57BL/6 mice (male, 25–30 g, n = 5) were
anesthetized by isoflurane (1–2% in a mixture of O2 and air) under constant temperature (37◦C). A
cranial window with the dura removed was sealed with a 150-m-thick microscope cover-slip. During the
experiments, a catheter was used in the femoral artery to monitor the systemic blood pressure and blood
gases and to administer the two-photon dyes. During the measurement period, mice breathed a mixture
of O2, and air under the 0.7–1.2% isoflurane anesthesia. Structural imaging of the cortical vasculature was
performed using a custom built two-photon microscope [35] after labeling the blood plasma with dextran-
conjugated fluorescein (FITC) at 500 nM concentration. Image stacks of the vasculature were acquired
with 1.2× 1.2× 2.0 µm voxel sizes under a 20× Olympus objective (NA= 0.95). Data was digitized with
a 16 bit depth. A total of five angiograms were acquired on this setup, each from a distinct specimen
Fig.S1(A-E), and were divided into training and testing angiograms in a ratio of 80-20% respectively,
i.e. four angiograms were used for training [Fig.S1(B-E)], while one was used for testing and evaluation
[Fig.S1(B-E)]. The ground-truth segmentation was prepared by human annotators using custom software.

For imaging system 2, the dataset has a similar preparation process for the live specimen, however, it
was acquired on a different imaging system and different mouse whose details are as follows. All experi-
mental procedures were approved by the BU IACUC. We anesthetized a C57BL/6J mouse by isoflurane
(1–2% in a mixture of O2 and air) under constant temperature (37◦C). A cranial window with the dura
intact was sealed with a 150-m-thick microscope cover-slip. During the measurement period, mice breathed
a mixture of O2 , and air under the 0.7–1.2% isoflurane anesthesia. The blood plasma was labeled using
dextranconjugated fluorescein (FITC) at 500 nM concentration. Imaging was performed using a Bruker
two-photon microscope using a 16× objective (NA=0.8) with voxel size 1.58 × 1.58 × 2.0 µm. Data was
digitized with 12 bit depth. One angiogram was acquired on this setup Fig. S1(F), and was used as test
data the generalization capability of our network.

4.2 Data preprocessing

Adequate pre-processing on test-data was found to be critical for good network generalization. Since our
two imaging setups have different detector bit-depths, their respective angiograms also differed with re-
spect to the scale of voxel-intensities Fig.S2(A,C). Since our DNN learns a maximum likelihood function
for mapping the input angiograms to the desired 3D segmentation maps, given the training data, it is
important that the test angiogram from any imaging system is on a similar intensity scale as the training
data. We therefore perform linear scaling on data from setup 2 by multiplying it with a constant factor,
empirically chosen in our case to be 16, such that the intensity histogram of the angiogram becomes similar
in scale to data from setup 1 as shown in Fig.S2(B,D).

A well-known challenge inherent to 2PM is the degradation of signal with imaging depth [Fig.S3(A)].
Segmentation on such an angiogram using our trained DNN has significant artifacts, even after linear
scaling. Here we propose a simple yet effective method to reduce this depth-dependent noise. We subtracted
from each 2D image in a 2PM 3D stack, it’s median value. This visibly improved the signal quality
by suppressing the background noise, especially in deeper layers [Fig.S3(B)]. The angiogram was further
improved by applying 3D median filter with a kernel of size 3 voxels [Fig.S3(C)]. This pre-processing method
improved the segmentation of the deep vasculature, and made individual vessels more distinguishable
[Fig.S4]. However, this method was observed to decrease segmentation quality in the shadowed region
under large pial vessels where the measurement contrast is comparatively weak. A locally adaptive pre-
processing method that could overcome this limitation may be a potential direction of future work.
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4.3 Deep neural network design and implementation

Our DNN architecture is based on the well-known V-net [36], however we significantly modified the original
framework for large-scale 2PM vascular segmentation [Fig.S5]. The network is end-to-end 3D for fast
computation, as opposed to 2D slice-wise techniques, and consequently also takes into account the 3D
context for improved segmentation. It has an encoder-decoder framework for learning vascular features
at various size-scales, and high resolution feature forwarding to retain high-frequency information. We
incorporate batch-normalization after each convolution-layer to improve generalization performance and
convergence speed. Our network processes 3D input patches with outputs of the same size. Patch based
processing enables the segmentation of arbitrarily large volumes. Our large patch-size compared to existing
methods, coupled with a lightweight network, help to significantly accelerate computation speed. For the
training process, the training data is divided into patches of 128 × 128 × 128 voxels, with an overlap of
64 voxels along all axes. Each training iteration processes a batch of 4 patches chosen randomly from the
training data. We use Adam optimizer to train our network with a learning rate of 10−4 for about 100
epochs, which takes approximately 4 hours on a TitanXp GPU. For testing, the angiogram is divided into
patches of 128 × 128 × 128 voxels and segmentation is performed on each patch separately, after which
they are stitched together to get the final segmented angiogram. The division of the acquired data into
training and testing datasets has been described in Section 4.2.

4.4 Semi-supervised learning

During the training process of a DNN, a loss function is optimized via gradient descent or any of its variants.
The loss itself is a function of the network output, and is chosen by the user to impart desired characteristics
to the DNN output by guiding the training process. In this problem, we initially experimented with
binary cross entropy (BCE) loss, as it is known to promote sparsity in the output [37], which is desirable
for vascular segmentation. However, severe class-imbalance in our data rendered BCE ineffective. Class-
imbalance is the situation when one class significantly outnumbers the others in the training data, causing a
preferential treatment by the learning algorithm towards the abundant class. In our case, the negative class
consisting of background-voxels was significantly more abundant than the positive class, and constituted
96% of the total voxels in the training data. This resulted in a significant number false negatives in the
DNN predictions. In order to overcome this challenge, we incorporated a variant of BCE loss with class
balancing [25,38], E , defined as

E(W) = −β
∑
iεY+

log P(yi = 1|X;W)− (1− β)
∑
iεY−

log P(yi = 0|X;W), (1)

where P is the probability of obtaining the label yi for the ith voxel, given data X and network weights

W. β and (1 − β) are the class weighting multipliers, defined as β =
|Y−|
|Y | , (1 − β) =

|Y+|
|Y | , where Y+ is

the set of positive (vessel) labels, and Y− is the set of negative (background tissue) labels, Y being the set
of all voxels, both vessel and background. In this loss, we essentially weigh down the negative class, and
give a greater weight to the positive class, and the assigned weight depends on the fractions of vessel and
background voxels in the volume, respectively. This balanced BCE loss significantly improved training in
the presence of severe class imbalance.

Purely supervised learning using balanced BCE loss was unable to provide satisfactory generalization
performance. One way to improve generalizability is to use training data from various different imaging
setups. However, manually annotating many large-scale angiograms for this purpose would have been
prohibitive due to the associated time and cost. We therefore took a different approach and employed
semi-supervised learning which is known to improve generalization in the presence of limited and noisy
training data [39]. For this purpose, we added an unsupervised term to the loss function, which is the
total variation (TV) of the network output [23]. Our TV-loss, T V, is defined as

T V(W) =
∑
iεY

|∇XP(yi;W)|+ |∇Y P(yi;W)|+ |∇ZP(yi;W)|, (2)

where ∇X , ∇Y , and ∇Z are 3D Sobel operators for computing TV [40]. T V when added to the bal-
anced BCE loss, decreases the model dependence on the ground truth data, helping generalization. TV is
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known to promote sparsity and piece-wise continuity in solutions, which are suitable priors for vascular seg-
mentation. TV also imparted it’s de-noising property to the network [Fig.S6] and hence no post-processing
was required on the outputs after segmentation from our network. Incorporating TV for semi-supervised
learning significantly improved the generalization performance of our network .

Finally, we also regularize our loss function by adding a penalty on the l2-norm of the network weights
W. This is known to encourage the network to learn smooth mappings from the input angiogram to
the output segmentations, reducing over-fitting and improving generalization. The final form of our loss
function L is thus

L(W) = E(W) + αT V(W) + γ‖W‖l2 , (3)

where α and γ are tunable parameters, whose values were empirically found to be 5 × 10−9 and 0.01
respectively for best performance using grid search.

4.5 Segmentation evaluation metrics

Accuracy = TP + TN/(TP + TN + FP + FN), Jaccard index = TP/(TP + FP + FN), Dice coefficient
= 2TP/(2TP + FP + FN), Specificity = TN/(FP + TN), and Sensitivity = TP/(TP + FN). Here, TP
(True Positive) is the number of correctly classified vessel voxels, TN (True Negative) is the number of
correctly classified background voxels, FP (False Positive) is the number of background voxels incorrectly
labeled as vessels, and FN (False Negative) is the number of vessel voxels incorrectly labeled as background.

MCC = TP × TN − FP × FN/
√

(TP + FP )(TP + FN)(TN + FP )(TN + FN), which measures
the linear correlation between the ground truth and predicted labels and is a special case of the Pearson
correlation coefficient.

HD among two finite point sets can be defined as HD(A,B) = max(h(A,B), h(B,A)), where h(A,B) =
max
aεA

min
bεB
||a− b||, ||.|| being any norm e.g. Euclidean norm.

LC is defined as LC(S, SG) = #((g(S)∩SG)∪ (S ∩ g(SG)))/#(g(S)∪ g(SG)), where S and SG are the
predicted and ground truth segmentation, respectively, g(.) is an operator that computes the 3D vascular
skeleton from an input segmentation in the form of a graph of nodes and edges, using the method in [18],
and #(.) measures the cardinality of an input set in terms of number of voxels.
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6 Supplementary material

Figure S1: Training and testing data used in our experimentation. (A-E) 2PM measure-
ments and annotated ground truth segmentation pairs for 5 angiograms from setup 1. (F) 2PM
measurement from setup 2.
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Figure S2: Data pre-processing: intensity scaling. (A) Histogram for the angiogram from
setup 2. (B) Histogram in (A) after linear scaling. Scaling is performed on data by multiplying
the angiogram with a constant factor to make the intensity scale similar to data from setup 1. (C)
Histogram for the test mouse from setup 1. The intensity scale is significantly different from (A)
due to difference in bit-depth of camera between setups 1 and 2. (D) Overlay of (B) and (C). The
intensity scales between data from setup 1 and 2 become similar after linear scaling on data from
setup 2.
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Figure S3: Data pre-processing: denoising. (A) 2PM inherently suffers from signal degrada-
tion with imaging depth. (B) Subtracting from each 2D image in the 3D stack, it’s median value,
visibly improved the quality of the angiogram. (C) 3D median filtering on the angiogram with a
3 × 3 × 3 window significantly reduced background noise.

Figure S4: Effect of data pre-processing on segmentation performance. In this figure
we compare the segmentation of angiogram from setup 2, with and without the pre-processing
described in Fig.S3. Significant noise in the angiogram before pre-processing results in overesti-
mation of vascular boundaries and makes it difficult to distinguish thin vessels from each other,
especially at increased imaging depth. This problem is mitigated by the pre-processing. How-
ever, it is observed that pre-processing adversely affects vascular segmentation in the region of low
contrast under the large surface pial vessel.
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Figure S5: Deep neural network architecture. Our network is designed to be fast and
generalizable with good segmentation accuracy. The network is end-to-end 3D taking into account
3D context. Skipped connections forward high-resolution features. Batch normalization improves
generalizability and convergence speed, and the number of layers and weights are chosen so as to
minimize processing time and over fitting, while maintaining segmentation accuracy.

Figure S6: Effect of total variation (TV) regularization. (A) Adding a TV-penalty on
the network output results in improved segmentation as it encourages smooth and piece-wise
continuous solutions. (B) Incorporation of TV regularization also results in better quantitative
segmentation performance as well.
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[3] P. S. Özbay, G. Warnock, C. Rossi, F. Kuhn, B. Akin, K. P. Pruessmann, and D. Nanz, “Probing
neuronal activation by functional quantitative susceptibility mapping under a visual paradigm: A
group level comparison with bold fmri and pet,” Neuroimage, vol. 137, pp. 52–60, 2016.

[4] D. A. Boas, S. R. Jones, A. Devor, T. J. Huppert, and A. M. Dale, “A vascular anatomical network
model of the spatio-temporal response to brain activation,” Neuroimage, vol. 40, no. 3, pp. 1116–1129,
2008.
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