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Abstract 
 

Oscillatory neural activity is dynamically controlled to coordinate perceptual, attentional and 

cognitive processes. On the macroscopic scale, this control is reflected in the U-shaped 

deviations of EEG spectral-power dynamics from stochastic dynamics, characterized by 

disproportionately elevated occurrences of the lowest and highest ranges of power. To 

understand the mechanisms that generate these low- and high-power states, we fit a simple 

mathematical model of synchronization of oscillatory activity to human EEG data. The results 

consistently indicated that the majority (~95%) of synchronization dynamics is controlled by 

slowly adjusting the probability of synchronization while maintaining maximum entropy within the 

timescale of a few seconds. This strategy appears to be universal as the results generalized 

across oscillation frequencies, EEG current sources, and participants (N = 52) whether they 

rested with their eyes closed, rested with their eyes open in a darkened room, or viewed a silent 

nature video. Given that precisely coordinated behavior requires tightly controlled oscillatory 

dynamics, the current results suggest that the large-scale spatial synchronization of oscillatory 

activity is controlled by the relatively slow, entropy-maximizing adjustments of synchronization 

probability (demonstrated here) in combination with temporally precise phase adjustments (e.g., 

phase resetting generated by sensorimotor interactions). Interestingly, we observed a modest 

but consistent spatial pattern of deviations from the maximum-entropy rule, potentially 

suggesting that the mid-central-posterior region serves as an “entropy dump” to facilitate the 

temporally precise control of spectral-power dynamics in the surrounding regions. 

 

 

 

 

 

 
 
 
 
 
 
  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.09.243295doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.09.243295
http://creativecommons.org/licenses/by-nc/4.0/


Menceloglu et al.  3 

Introduction 
 

A great deal of evidence suggests that the coordination of oscillatory activity contributes to 

controlling neural communications that are necessary for effective operations of perception, 

attention, memory, and cognition (e.g., Fries, 2005; Palva et al., 2005; Palva & Palva, 2007; 

2012; Busch & VanRullen, 2010; Engel & Fries, 2010; Duzel et al., 2010; Mathewson et al., 

2011; 2010; Voytek et al., 2010; Donner & Siegel, 2011; Arnal & Giraud, 2012; Hipp et al., 2012; 

Klimesch, 2012; Spaak et al., 2012; Bonnefond & Jensen, 2015; Michalareas et al., 2016; Müller 

et al., 2016). While fine-tuned coordination likely involves controlling the phases of oscillatory 

activity across frequency bands, the impact of oscillatory activity also depends on the size of 

synchronized neural population. For large-scale neural activity detected by scalp-recorded 

electroencephalography (EEG), the spectral power obtained at an EEG current source reflects 

the size of synchronously oscillating population within its spatial resolution. EEG spectral power 

fluctuates at each current source reflecting the dynamic changes in large-scale synchronization 

of oscillatory activity. The goal of the current study was to elucidate the mechanisms that control 

these large-scale synchronization dynamics. 

One way to investigate dynamic control is to compare spectral-power dynamics between 

EEG and their phase-scrambled controls. Phase scrambling randomizes cross-frequency phase 

relations, thus destroying temporal structures that depend on cross-frequency phase alignment, 

rendering spectral-power dynamics stochastic (memory free) while preserving time-averaged 

power spectra. Because stochastic dynamics reflect a Poisson process (see below), phase-

scrambled spectral-power dynamics are characterized by exponential power distributions. Real 

EEG spectral-power dynamics deviate from exponential profiles in a characteristic U-shaped 

manner with disproportionately elevated occurrences of the lowest and highest ranges of power 

(see below). This indicates that real spectral-power dynamics exhibit intermittent bursts of 

extensive oscillatory synchronization separated by periods of sparse synchronization (compared 

with stochastic dynamics). How are these periods of extensive and sparse synchronization 

generated?   

On the one hand, the brain neural network may actively boost large-scale synchronization or 

inhibit it in precise temporal coordination with behavioral demands. On the other hand, the 

network may indirectly influence large-scale synchronization by increasing or decreasing the 

probability of synchronization on a relatively slow timescale while generally maintaining 

maximum entropy for energy efficiency. As described in the results section, these possibilities 

can be evaluated in a relatively simple manner. 
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Methods 
 

1. Participants  

Fifty-two Northwestern University students (35 women, 1 non-binary; ages 18 to 29 years, M 

= 20.75, SD = 2.52) gave informed consent to participate for monetary compensation ($10/hr). 

All were right-handed, had normal hearing and normal or corrected-to-normal vision, and had no 

history of concussion. They were tested individually in a dimly lit or dark room. The study 

protocol was approved by the Northwestern University Institutional Review Board. Participants 

p1-p7 and p12-p28 (N = 24) participated in the rest-with-the-eyes-closed condition where their 

EEG was recorded for ~5 min while they rested with their eyes closed and freely engaged in 

spontaneous thoughts. This condition was always run first for those who also participated in the 

nature-video condition. Participants p8-p28 (N = 21) also participated in the nature-video 

condition where their EEG was recorded for ~5 min while they viewed a silent nature video. To 

evaluate the test-retest reliability, the nature-video condition was run twice (20-30 min apart), 

labeled as earlier viewing and later viewing in the analyses. A generic nature video was 

presented on a 13-inch, 2017 MacBook Pro, 2880(H)-by-1800(V)-pixel-resolution screen with 

normal brightness and contrast settings, placed 100 cm away from participants, subtending 

16°(H)-by-10°(V) of visual angle. Participants p29-p52 (N = 24) participated in the replication of 

the rest-with-the-eyes-closed condition and the rest-with-the-eyes-open-in-dark condition which 

was the same as the former except that the room was darkened and participants kept their eyes 

open while blinking naturally. 

 

2. EEG recording and pre-processing 
While participants rested with their eyes closed, rested with their eyes open in dark, or 

viewed a silent nature video for approximately 5 min, EEG was recorded from 60 scalp 

electrodes (although we used a 64-electrode montage, we excluded signals from noise-prone 

electrodes, Fpz, Iz, T9, and T10, from analyses) at a sampling rate of 512 Hz using a BioSemi 

ActiveTwo system (see www.biosemi.com for details). Electrooculographic (EOG) activity was 

monitored using four face electrodes, one placed lateral to each eye and one placed beneath 

each eye. Two additional electrodes were placed on the left and right mastoid area. The EEG 

data were preprocessed using EEGLAB and ERPLAB toolboxes for MATLAB (Delorme & 

Makeig, 2004; Lopez-Calderon & Luck, 2014). The data were re-referenced offline to the 

average of the two mastoid electrodes, bandpass-filtered at 0.01 Hz-80 Hz, and notch-filtered at 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.09.243295doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.09.243295
http://creativecommons.org/licenses/by-nc/4.0/


Menceloglu et al.  5 

60 Hz (to remove power-line noise that affected the EEG signals from some participants). For 

the EEG signals recorded while participants rested with the eyes open in dark or while they 

viewed a silent nature video, an Independent Component Analysis (ICA) was conducted using 

EEGLABs’ runica function (Makeig et al., 1996; 2000) to remove components reflecting blinks. 

To reduce effects of volume conduction (to within adjacent sites; e.g., Cohen, 2014), to virtually 

eliminate the effects of reference electrode choices, as well as to facilitate data-driven 

determinations of EEG current sources, we applied the surface-Laplacian transform to all EEG 

data (Hjorth, 1980; Kayser and Tenke, 2006; Tenke and Kayser, 2012), using the Perrin and 

colleagues’ method (e.g., Perrin et al., 1987; Perrin et al., 1989a; 1989b) with a typical set of 

parameter values (Cohen, 2014). We refer to the surface-Laplacian transformed EEG signals 

that represent the current sources under the 60 scalp sites simply as EEG signals. 

 

3. EEG analysis 
3.1. EEG temporal derivative. An example 1 sec EEG waveform at a central site FCz from 

one participant (at rest with the eyes closed) is shown in Figure 1A (black curve). The mean 

spectral-amplitude profile of the full length (~5 min) version of the same data, with the fast 

Fourier transform (FFT) computed on each consecutive 5 sec waveform and then averaged, is 

shown in Figure 1B (black curve; the shaded area represents ±1 standard error of the mean). 

The general linear decrease in the spectral amplitude for higher frequencies with a slope of 

approximately 1 (in log-log scale) reflects the 1/f background profile largely explained by the 

neuronal Ornstein-Uhlenbeck process that exhibits a random-walk type behavior (e.g., Koch, 

1999; Mazzoni et al., 2008; see He, 2014 for a review of the various factors that contribute to 

the 1/f b spectral background; see Gao et al., 2017 for contributions of the excitatory and 

inhibitory dynamics). The spectral “bumps” seen around 10 Hz, 20 Hz, and 30 Hz indicate the 

characteristic bands of oscillation frequencies that the neural population reflected at this site for 

this person may utilize for communication and/or information processing. Taking the temporal 

derivative of EEG (∆""#
∆$

, where Dt is the temporal resolution, i.e., 1/512 sec) (see the black curve 

in Figure 1C) largely removes the 1/f background (due to trigonometric properties) to highlight 

the oscillatory activity (see the black curve in Figure 1D). While Figure 1D shows an example at 

one site from one participant, we confirmed that taking the temporal derivative generally 

flattened the background spectral-amplitude profiles across sites and participants. Thus, to 

highlight the dynamics of oscillatory activity (over and above the general 1/f spectral 

background) with a simple continuous mathematical operation that macroscopically estimates 
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the underlying electrical currents (without having to estimate 1/f b in sliding time windows to 

discount their influences), we used the EEG temporal derivative, which we call EEGd. 

3.2. Computing spectral power as a function of time. The spectral-amplitude profiles 

shown in Figure 1B and 1D are time-averaged (standard fast Fourier transforms). To investigate 

how spectral power (amplitude squared) fluctuated, we used a Morlet wavelet-convolution 

method (e.g., Cohen, 2014) to extract spectral amplitudes as a function of time. Each EEGd 

waveform was decomposed into a time series of spectral power using Morlet wavelets with 

twenty center frequencies fc’s between 6 Hz and 50 Hz, encompassing the q, a, b, and g bands. 

The fc’s were logarithmically spaced as neural temporal-frequency tunings tend to be 

approximately logarithmically scaled (e.g., Hess & Snowden, 1992; Lui et al., 2007). The 

accompanying n factors (roughly the number of cycles per wavelet, 𝑛 = 2𝜋𝑓 ∙ 𝑆𝐷, where SD is 

the wavelet standard deviation) were also logarithmically spaced between 4.4 and 14.5, yielding 

the temporal resolutions ranging from SD = 117 ms (at 6 Hz) to SD = 46 ms (at 50 Hz) and 

spectral resolutions ranging from FWHM (full width at half maximum) = 3.2 Hz (at 3 Hz) to 

FWHM = 8.2 Hz (at 50 Hz). These values strike a good balance for the temporal/spectral-

resolution trade-off, and are typically used in the literature (e.g., Cohen, 2014). 

3.3. Generating phase-scrambled controls. We generated phase-scrambled control data 

whose spectral power fluctuated stochastically (i.e., unpredictably in a memory free manner) 

while maintaining the time-averaged spectral-amplitude profiles of the real EEG data. While 

phase-scrambling can be performed using several different methods, we chose discrete cosine 

transform, DCT (e.g., Kiya et al., 2010). In short, we transformed each 5 min EEG waveform 

with type-2 DCT, randomly shuffled the signs of the coefficients, and then inverse-transformed it 

with type-3 DCT (the “inverse DCT”), which yielded a phase-scrambled version. DCT phase-

scrambling is similar to DFT (discrete Fourier transform) phase-scrambling except that it is less 

susceptible to edge effects. We verified that DCT phase-scrambling yielded a desired outcome, 

generating waveforms whose spectral-power fluctuations conformed to exponential distributions 

(see below) indicative of a Poisson point process (a stochastic process), with virtually no 

distortions to the time-averaged spectral-amplitude profiles of EEG or EEGd (e.g., the blue 

curves overlap the black curves in Figure 1B and 1D). 

3.4. Computing entropy per interval, d. We computed entropy for non-overlapping 

intervals of duration d (sec). For each interval, we divided spectral power values into Nbins bins 

using the Freedman-Diaconis method (Freedman & Diaconis, 1981), 
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 𝑁./01 = 𝑐𝑒𝑖𝑙 6 789
:∙/;<∙[>∙?@:]BC/E

F, 

where max is the maximum spectral-power value corresponding to the highest bin, iqr is the 

interquartile range, d•512 is the number of spectral-power values available within each d (sec) 

interval sampled at 512 Hz, and ceil takes the nearest larger integer. The value of max was 

chosen such that the highest bin reached the 99.9th percentile or higher spectral-power value for 

each frequency and behavioral condition (because spectral-power values varied primarily as a 

function of frequency and condition). The iqr values were computed per frequency per condition, 

averaged across frequencies, then averaged within the same behavioral condition, yielding 

three values, one for the rest-with-the-eyes-closed condition (averaged across the original and 

replication conditions), one for the rest-with-the-eyes-open-in-dark condition, and one for the 

nature-video condition (averaged for the earlier and later viewing conditions). Thus, Nbins was 

optimized for the condition-specific iqr and the number of data points within the d (sec) interval 

while the same range [0, Max] was used in all cases. Using these spectral-power bins, we 

generated the probability distribution of spectral power values for each d (sec) interval (per 

frequency per site per participant per condition), and computed the corresponding entropy as, 

 𝑆 = ∑ 𝑝/ ∙ 𝑙𝑛(𝑝/)
/KLMNOP
/K@ , 

where S is entropy, pi is the proportion of spectral-power values within the ith bin, and Nbins is 

the number of bins.   
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Fig 1. The use of the temporal derivative of EEG (EEGd) and DCT-phase-scrambled controls for 
investigating the dynamic control of synchronization of oscillatory activity. A. An example of 1 sec EEG 
waveform (black) and its DCT-phase-scrambled control (blue) at FCz from one participant. B. The mean 
spectral-amplitude profiles of the full length (~5 min) versions of the same EEG data (black) and its DCT-phase-
scrambled control (blue), with the fast Fourier transform (FFT) computed on each consecutive 5 sec waveform 
and then averaged, plotted in a log-log format. C. The temporal derivatives, which we call EEGd, of the example 
EEG waveform (black) and its DCT-phase-scrambled control (blue) shown in A. D. The mean spectral-
amplitude profiles of the full length (~5 min) versions of the same EEGd data (black) and its DCT-phase-
scrambled control (blue), with the fast Fourier transform (FFT) computed on each consecutive 5 sec waveform 
and then averaged, plotted in a semi-log format. For B and D, the shaded areas represent ±1 standard error of 
the mean based on the FFTs computed on multiple 5 sec waveforms. The units are arbitrary (a.u.). 
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Results 
 

We started with a simple stochastic model of neural synchronization. As most neural 

connections are short-range (e.g., Buzsaki, 2006), we postulated that, at each moment, 

synchronization would sequentially spread from neural-unit to neural-unit with the probability 

pterm that the rapid spreading would terminate at any given unit. It is reasonable to assume that 

the number of neural units is large and pterm is small. Thus, the probability that the size of 

synchronized neural population, N units, is larger than n units at a given timepoint, is provided 

by the Poisson equation, 

𝑃(𝑁 > 𝑛) = (STUVW∙0)X

Y!
𝑒[STUVW∙0 = 𝑒[STUVW∙0  —Eq. 1. 

Then, the probability density function f (n) for the occurrence of a synchronized population of 

size n can be obtained by solving, 

∫ 𝑓(𝑛)]
0 𝑑𝑛 = 𝑒[STUVW∙0  —Eq. 2, 

yielding, 

𝑓(𝑛) = 𝑝$_<7𝑒[STUVW∙0  —Eq. 3. 

The exponential form of f (n) indicates that the model yields maximum entropy for fluctuations in 

n for a given temporal average <n>. Thus, our model (Eq. 1) describes a simple macroscopic 

mechanism that generates synchronization dynamics that maximize entropy for a given 

temporal average (Eq. 3). We note that any reasonable model that leads to an exponential 

probability density function for n with its parameters related to the probability of synchronization 

would be just as appropriate for our discussion.    

It is reasonable to assume that EEG spectral power at a given site is proportional to the size 

of the synchronously oscillating neural population n within the accessible current sources. Then, 

Eq. 3 predicts an exponential distribution for the fluctuations of spectral power for phase-

scrambled EEG (which are rendered stochastic). Our data confirmed this prediction (the thinner 

horizontal lines in Figure 2). Our goal was to elucidate the mechanisms that make the real EEG 

spectral-power dynamics deviate from stochastic (exponential) dynamics in the characteristic U-

shaped manner (the thicker curves in Figure 2). To this end, we considered the relationship 

between average spectral power and entropy. 
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Fig 2. Probability distributions of spectral power as residual deviations (in ratio) from exponential fits to 
phase-scrambled controls. The distributions are shown for representative frequency bands, q (6.0 Hz), a (10.5 
Hz), b (14.6 Hz and 20.6 Hz) and g (31.9 Hz, 40.0 Hz, and 50.1 Hz), color-coded from cooler to warmer. The five 
panels show the residual distributions for the five conditions: 5-min rest with the eyes closed (Rest EC), its 
replication (Rest EC rep), 5-min rest with the eyes open in dark (Rest EO DK), and the earlier and later 5-min 
viewing of a silent nature video (Nature video). Timepoint-by-timepoint spectral-power values obtained in each 
condition were normalized to the median power per frequency per site per participant, then averaged across 
sites (x-axis). Note that all distributions for the phase-scrambled controls tightly conform to the exponential form 
(the thinner horizontal lines at y = 1), whereas the distributions for the real EEG data (the thicker curves) deviate 
from the exponential form in a characteristic U-shaped manner with elevated occurrences of the lowest and 
highest ranges of power. The shaded areas represent ±1 standard error of the mean with participants as the 
random effect.  
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Stochastic dynamics such as the spectral-power dynamics of the phase-scrambled controls 

(the thinner horizontal lines in Figure 2) are well fit by Eq. 3 with a constant pterm. Nevertheless, 

the effective value of pterm within an interval of duration d, which we call pterm.d, stochastically 

fluctuates with the variance given by, 

 𝑉𝑎𝑟(𝑝$_<7.>) ∝ 𝑝$_<7 ∙ (1 − 𝑝$_<7)/𝑑 —Eq. 4. 

Note that this is analogous to the familiar coin-tossing example. While the probability of getting 

heads is stationary with pheads = ½ for each (fair) coin toss, the effective probability of getting 

heads, that is, the actual proportion of heads obtained for a given set of N trials pheads.N is 

variable, with its set-to-set variance given by, 𝑉𝑎𝑟(𝑝g_8>1.L) = 𝑝g_8>1 ∙ (1 − 𝑝g_8>1)/𝑁. 

For stochastic dynamics of synchronization, Eq. 3 holds within an interval of any duration 

(given that it includes sufficient data points to reliability evaluate the probability distribution of n), 

so that the average size of a synchronized population <n> and entropy S within any interval of 

duration d are given by, 

⟨𝑛⟩ = ∫ 𝑓(𝑛) ∙ 𝑛	𝑑𝑛 = @
STUVW.k

]
Y   —Eq. 5, and 

𝑆 = −∫ 𝑓(𝑛) ∙ 𝑙𝑛{𝑓(𝑛)}	𝑑𝑛 = 1 − 𝑙𝑛(𝑝$_<7.>)
]
Y   —Eq. 6, 

where f (n) is given by Eq. 3 with pterm.d substituted for pterm. Note that even if pterm.d varied 

beyond the level of stochastic fluctuations (Eq. 4), Eqs. 5 and 6 would still hold if pterm.d 

remained effectively constant on the timescale of d.  

Taking the natural log of Eq. 5, we get, 𝑙𝑛(⟨𝑛⟩) = −𝑙𝑛(𝑝$_<7.>). Substituting this into Eq. 6 

yields a linear relationship between entropy, S, and the log average size of the synchronized 

population, ln(<n>), 

𝑆 = 𝑙𝑛(⟨𝑛⟩) + 1  —Eq. 7. 

As we assume that the observed spectral power SP at each site is proportional to the size of the 

synchronized neural population n, we have   

𝑆𝑃 = 𝑘 ∙ 𝑛  —Eq. 8, 

where k is the constant of proportionality. Taking the temporal average yields, 

⟨𝑆𝑃⟩ = 𝑘 ∙ ⟨𝑛⟩  —Eq. 9. 
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Taking the natural log of Eq. 9, 𝑙𝑛(⟨𝑆𝑃⟩) = 𝑙𝑛(⟨𝑛⟩) + 𝑙𝑛(𝑘), and solving for ln(<n>), we get, 

𝑙𝑛(⟨𝑛⟩) = 𝑙𝑛(⟨𝑆𝑃⟩) − 𝑙𝑛(𝑘)  —Eq. 10. 

Substituting Eq. 10 into Eq. 7 yields, 

𝑆 = 𝑙𝑛(⟨𝑆𝑃⟩) + 1 − 𝑙𝑛(𝑘)  —Eq. 11. 

Note that any attenuation of SP due to the use of scalp-recorded EEG to compute spectral 

power is absorbed in k (Eq. 8). The computation of entropy, S, requires binning of spectral-

power values (see Methods 3.4) to generate their probability distribution per d (sec) interval, 

which tends to underestimate entropy. We accommodated this underestimation of the true 

entropy, S, by the observed entropy, Sobs, by introducing a scaling factor a and an additive term 

b, 

𝑆q.1 = 𝑎𝑆 + 𝑏  —Eq. 12, 

where 0 ≤ 𝑎 ≤ 1; a approaches 1 and b approaches 0 with a larger number of data points and 

finer spectral-power bins per interval. Substituting Eq. 12 into Eq. 11 yields, 

𝑆q.1 = 𝑎 ∙ [𝑙𝑛(⟨𝑆𝑃⟩) + 1 − 𝑙𝑛(𝑘)]  —Eq. 13. 

The parameter b has been absorbed in k because linear fitting cannot distinguish between b 
and k. As such, the observed value of k would be difficult to interpret. 

Phase-scrambled spectral-power dynamics (which we have confirmed to obey Eq. 3; Figure 

2) should obey Eq. 13 for intervals of any duration d (given that it includes sufficient data points 

to reliability evaluate the probability distribution of SP). To confirm this prediction, we divided 

each ~5 min EEG recording period into non-overlapping d (sec) intervals and computed 

average spectral power <SP> and entropy Sobs for each interval. The use of a longer interval, 

providing a larger number of SP values per interval, would make the relationship between 

ln(<SP>) and Sobs tighter by increasing the accuracy of estimating <SP> and Sobs. However, it 

would reduce the variability in <SP> and Sobs across intervals (Eq. 4) and also reduce the 

number of ln(<SP>)-Sobs pairs to evaluate their relationship over time. We present our primary 

analyses with d = 3 sec; the choice of this particular duration will be justified below. 

Each upper-left panel in Figure 3 shows, for the phase-scrambled controls, the 2D-density 

plot of ln(<SP>)-Sobs pairs for all d = 3 sec intervals for all frequencies, sites, and participants for 

a specific condition. Density is color-coded as percentile so that confidence intervals can be 

inferred. As predicted by Eq. 13, the relationship between ln(<SP>) and Sobs for the phase-
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scrambled controls was linear for all conditions, rest with the eyes closed, its replication, rest 

with the eyes open in dark, and the earlier and later viewing of a silent nature video. 

We note that minor deviations from linearity occurred in the extreme ranges of spectral 

power for technical reasons. First, the binning of spectral-power values necessary to compute 

entropy per time interval (see Methods 3.4) caused an underestimation of entropy, generating 

the slight upward curvature in the lowest spectral-power range especially for ln[<SP>] < 0 (see 

the lower-left portions of the left panels in Figure 3) due to the floor effect (entropy > 0). Second, 

the use of a fixed maximum spectral-power bin (necessary to compute entropy over the same 

range of spectral-power bins in all cases) prevented extremely high-power values (though up to 

at least 99.9th percentile of the values were retained; see Methods 3.4) from contributing to the 

computation of entropy, causing an underestimation of entropy in the highest spectral-power 

range especially for ln[<SP>] > 5.5 (see the upper-right portions of the left panels in Figure 3). 

These extreme ranges of ln[<SP>] were excluded from the subsequent analyses (also from the 

computation of the linear fits shown in Figure 3).   

Notwithstanding these minor deviations for the extreme values of ln(<SP>), the crucial 

observation is that the relationship between ln(<SP>) and Sobs were consistently linear for all 

conditions for the phase-scrambled controls, obeying Eq. 13. Because Eq. 13 derives from Eq. 

3 (describing a maximum-entropy distribution), the linear relationships defined by the phase-

scrambled controls indicate the line of maximum entropy.    

Remarkably, the relationship between ln(<SP>) and Sobs for the real EEG data tightly 

clustered along the line of maximum entropy (the lower-left panels in Figure 3). Because 

average spectral power considerably varied depending on frequency, sites, and participants, the 

range of temporal variations in ln(<SP>) and Sobs are obscured when all ln(<SP>)-Sobs pairs are 

simply plotted together. To focus on the temporal variation in ln(<SP>) and Sobs, we aligned the 

2D-density plot for the phase-scrambled control for each frequency, site, and participant at its 

center at (0,0) and equivalently translated the density plots for the corresponding real EEG data.  

The centered relationships between ln(<SP>) and Sobs are shown in the main panels in 

Figure 3. The 2D-densoty plots for the phase-scrambled controls are shifted upward to avoid 

overlaps with those for the real EEG data, with the parallel gray dashed oblique lines indicating 

the line of maximum entropy. It is clear that the ranges of average spectral power <SP> (for d = 

3 sec intervals) were substantially extended in the real EEG data relative to their phase-

scrambled controls while consistently following the line of maximum entropy. This pattern 

appears to be universal, observed in all conditions (the main panels in Figure 3), all 

representative frequencies per condition (Figure 4), and all participants (Figures S1-S2). These 
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results suggest that spectral-power dynamics maintain maximum entropy on the timescale of a 

few seconds while generating large power variations (relative to phase-scrambled controls) by 

changing the probability of synchronization on slower timescales (Eqs. 5-6). 
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   Fig 3. Relationship between log average spectral power ln(<SP>) and entropy Sobs for d = 3 sec intervals. Each 
set of three panels shows the data for a specific condition: 5-min rest with the eyes closed (Rest EC), its replication 
(Rest EC rep), 5-min rest with the eyes open in dark (Rest EO DK), and the earlier and later 5-min viewing of a silent 
nature video (Nature video). For each condition, the ln(<SP>)-Sobs pair was computed for each non-overlapping d = 3 
sec interval per frequency per site per participant. Upper-left panels. 2D-density plots of all ln(<SP>)-Sobs pairs for the 
phase-scrambled controls. The linear fits (gray dashed oblique lines) indicate the line of maximum entropy indicative of 
spectral power fluctuations that maximize entropy for a given value of average spectral power (see text). Lower-left 
panels. 2D-density plots of all ln(<SP>)-Sobs pairs for the real EEG data. Note that the distributions follow the line of 
maximum entropy (the gray dashed oblique lines) defined by the phase-scrambled controls. Main panels. Re-plotting 
of the 2D-density plots for both the phase-scrambled controls and the real EEG data after aligning the phase-
scrambled 2D-density plot for each frequency, site, and participant at its center at (0,0) and equivalently translating the 
corresponding real-data density plots. The 2D-density plots for the phase-scrambled controls are shifted upward to 
avoid overlaps with those for the real EEG data. The centering shows that the dynamic ranges of average spectral 
power (per d = 3 sec interval) were substantially extended along the line of maximum entropy (the gray dashed oblique 
lines) for the real EEG data relative to their phase-scrambled controls in all conditions. This pattern was observed for 
all representative frequencies (Figure 4) and participants (Figures S1-S2). Thus, on the timescale of up to about 3 sec, 
spectral power appears to be controlled in such a way that the dynamic ranges are substantially extended (relative to 
stochastic dynamics) while tightly conforming to the line of maximum entropy. All panels. Density is color-coded as 
percentile so that confidence intervals can be inferred. The extreme ranges of spectral power, ln(<SP>) < 0 and 
ln(<SP>) > 5.5 were excluded from the computations of the line of maximum entropy and the centered 2D-density plots 
(the main panels) to avoid the binning-related distortions (see text).   
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Fig 4. The same as the main panels in Figure 3, but the centered relationships are shown 
separately for the representative frequencies (rows) and conditions (columns). The phase-
scrambled distributions are shifted upward to avoid overlaps with the real-data distributions, and the 
gray dashed oblique lines indicate the line of maximum entropy. Note that the dynamic ranges of 
average spectral power were substantially extended along the line of maximum entropy for the real 
EEG data relative to their phase-scrambled controls for all representative frequencies in all conditions. 
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To examine how closely the spectral-power dynamics followed the line of maximum entropy 

we computed the probability distributions of entropy around the line of maximum entropy for the 

real EEG data and their phase-scrambled controls. While the line of maximum entropy was 

virtually identical for all participants (e.g., Figures S1 and S2), here we computed it separately 

for each participant to increase the accuracy in estimating entropy distributions around it. The 

bins to compute the distributions were determined by the maximum (max), minimum (min), and 

inter-quartile range (iqr) of the entropy distributions for the relevant real EEG data and their 

phase-scrambled controls (per participant), with the number of bins given by, 𝑁./01 =

𝑐𝑒𝑖𝑙 6 789[7/0
:∙/;<∙LNOTUVuvwPBC/E

F (Freedman & Diaconis, 1981), where Nintervals is the number of d (sec) 

intervals for which ln(<SP>)-Sobs pairs were computed. 

These probability distributions are plotted in Figure 5A for the five conditions for 

representative interval durations, d = 1, 3, 10, 20, 40, and 90 sec. The negative and positive 

values on the x-axis indicate the negative and positive deviations from the line of maximum 

entropy, x-scale is normalized so that all distributions for the phase-scrambled controls have the 

same standard deviation, and the y-axis indicates probability density. The shaded areas 

represent the distributions for the phase-scrambled controls (symmetric about the line of 

maximum entropy regardless of d as expected), the solid curves represent the distributions for 

the real data, and the solid areas represent the regions where the probability density was higher 

for the real data than for their phase-scrambled controls.  

The real and phase-scrambled distributions were virtually indistinguishable for d = 1 sec and 

d = 3 sec for all five conditions (the two left columns in Figure 5A), indicating that the real data 

tightly followed the line of maximum entropy up to d = 3 sec. For longer interval durations, the 

real distributions progressively extended in the lower-entropy direction, seen as the solid-

colored negative tails increasing in the third through the last column in Figure 5A. We quantified 

these lower-entropy tails for the real EEG data by computing the proportions of lower-entropy 

intervals (PrLEI) for the real data relative to their phase-scrambled controls. Specifically, for 

each distribution we computed the real minus phase-scrambled probability density wherever the 

density was higher for the real data than for the phase-scrambled controls, and summed those 

differences (multiplied by the bin width to convert to proportions) separately on the negative and 

positive sides, then subtracted the sum on the positive side from the sum on the negative side. 

This algorithm essentially yielded the proportion of the real-data distribution extending in the 

lower-entropy direction relative to the corresponding phase-scrambled distribution while 

compensating for any changes in distribution widths (approximately corresponding to the solid-

colored negative tails of the real data in Figure 5A). For example, PrLEI = 0.2 would indicate 
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that for a given interval duration d, the occurrences of lower-entropy intervals for the real data 

were 20% more frequent than for their phase-scrambled control. 

We computed PrLEI values per participant per condition and plotted them as a function of 

interval duration d in Figure 5B. The circular symbols connected with thick lines indicate the 

median PrLEI values with the thin dotted lines showing the values for the individual participants. 

While PrLEI became large for longer interval durations (note the y-axis is reversed), the median 

PrLEI values remained small (< 5%) and condition independent up to about d = 3 sec. This 

indicates that up to the timescale of a few seconds, only up to about 5% of intervals of the real 

EEG data (on average) more negatively deviated from the line of maximum entropy than their 

phase-scrambled controls. That is, on average, greater than 95% of spectral-power dynamics 

followed the line of maximum entropy on the timescale of a few seconds. Even at the level of 

individual participants, only a few (out of 52), yielded PrLEI values greater than 10% for d = 3 

sec (the dotted lines in Figure 5B). 

The PrLEI values (for d = 3 sec) were consistently low for all frequencies for all conditions 

(Figure 6A) and globally low at all sites for all conditions (Figure 6B). Nevertheless, the data 

potentially suggest an interesting spatial pattern. We z-transformed the PrLEI values across 

sites per participant to quantify the consistency of regional deviations in PrLEI from the spatial 

average as t-values (with |t|>3.95 for Bonferroni-corrected 2-tailed significance at a = 0.05) 

(Figure 6C). Cooler colors indicate regions with lower-than-average PrLEI values while warmer 

colors indicate regions with higher-than-average PrLEI values. In the eyes-open conditions, 

entropy was near maximal (very low PrLEI values) in the mid-central-posterior region (the dark 

blue regions highlighted with dotted circles in the lower three rows of Figure 6B and 6C). At the 

same time, consistent elevations in the PrlEI values (though still low with the means of less than 

8.7% for all sites for all conditions) were observed in areas surrounding the mid-central-posterior 

region (Figure 6C). In particular, in the eyes-closed conditions the PrLEI values were focally 

elevated in the right-lateral region (the upper two rows in Figure 6C).   
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Fig 5. Probability distributions of entropy Sobs relative to the line of maximum entropy for the real EEG data and their 
phase-scrambled controls as a function of interval duration d. A. Probability distributions for the phase-scrambled controls 
(shaded areas) and real EEG data (solid outlines), with the line of maximum entropy labeled as 0 on the x-axis and the negative tails 
of the real-data distributions toward lower entropy shown as solid areas. The rows correspond to the five conditions and the columns 
correspond to the representative interval durations d (sec). The probability distributions have been normalized so that the standard 
deviations are equalized for all phase-scrambled-control distributions. Note that up to about d = 3 sec, the distributions for the real 
EEG data and their phase-scrambled controls virtually overlap. B. Proportions of lower-entropy intervals (PrLEI) for the real EEG 
data relative to their phase-scrambled controls (approximately the solid-colored negative tails shown in A) as a function of interval 
duration d (sec). This measure indicates the proportions of d (sec) intervals for which the real EEG data yielded lower entropy than 
predicted by the line of maximum entropy. The circular symbols connected with thick lines indicate the median PrLEI values with the 
five conditions color-coded as in A (the black dotted lines indicating the replication of the rest-with-the-eyes-closed condition and the 
blue dotted lines indicating the later viewing of the nature-video condition) with the thin dotted lines showing the PrLEI values for the 
individual participants. Note that for the interval durations up to about d = 3 sec the real EEG data closely followed the line of 
maximum entropy with less than ~5% deviations (in median PrLEI values) across all conditions, suggesting that neural dynamics on 
the spatial-scale of EEG current sources generally maintain maximum entropy up to the timescale of a few seconds (see text).      
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Fig 6. Proportions of lower-entropy intervals (PrLEI) for d = 3 sec for the real EEG data relative to their phase-
scrambled controls as a function of frequency and site. PrLEI indicates the proportion of d (sec) intervals for which 
the real EEG data had lower entropy than predicted by the line of maximum entropy. A. PrLEI as a function of frequency. 
The thick lines indicate the median PrLEI values with the thin lines showing the values for the individual participants. The 
rows correspond to the five conditions. Note that the median PrLEI values were low regardless of frequency or condition. 
B. PrLEI as a function of site. The rows correspond to the five conditions. The mean PrLEI values were globally low 
across all sites and conditions. The mid-central-posterior region (highlighted with dotted circles) yielded particularly low 
PrLEI values in the eyes-open conditions (rest-with-the-eyes-open-in-dark and nature-video conditions) (the lower three 
topoplots). C. Same as B, but the data from each participant were z-transformed across sites to quantify the consistency 
of regional deviations of PrLEI values from the spatial average as t values (with |t|>3.95 for Bonferroni-corrected 2-tailed 
significance at a = 0.05). Cooler colors indicate regions with lower-than-average PrLEI values while warmer colors 
indicate regions with higher-than-average PrLEI values. The t-values confirm that the PrLEI values were consistently low 
in the mid-central-posterior region in the eyes-open conditions (see B). Further, consistent elevations in the PrLEI values 
(though still low with the means of less than 8.7% for all sites and conditions) occurred in areas surrounding the mid-
central-posterior region, particularly in the right-lateral region in the eyes-closed conditions (the upper two topoplots). 
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Discussion 
 

The dynamics of EEG spectral power deviate from stochastic dynamics in a U-shaped 

manner, such that the occurrences of the lowest and highest ranges of power are elevated 

(Figure 2). We used a simple mathematical model of synchronization dynamics to investigate 

the mechanisms that generate these characteristic deviations. 

We modeled synchronization dynamics as simple chain reactions, where synchronization 

sequentially spreads from neural-unit to neural-unit at each moment with the probability pterm for 

the rapid spreading to terminate (Eq. 1). Although one may question the physiological relevance 

of postulating synchronization to independently spread at each time moment, the model (Eq. 1) 

is useful in the sense that it provides a simple computational mechanism that generates 

synchronization dynamics that maximize entropy for a given temporal average (Eq. 3). Note that 

the inferences that we have drawn are valid irrespective of the physiological plausibility of the 

specific model because they are based on how EEG spectral-power dynamics obeyed the rule 

of maximum entropy (i.e., Eq. 13 derived from Eq. 3). If the simple chain-reaction model of 

synchronization dynamics (Eq. 1) were physiological relevant, the parameter pterm could be 

interpreted as the probability of termination of the sequential spreading of synchronization. If 

not, pterm would be related to the probability of synchronization in some other way with the 

quantity 1/pterm directly related to the temporal average of the size of synchronized population 

(Eq. 5).        

We assumed that EEG spectral power was proportional to the size of the synchronously 

oscillating neural population accessible at each site. For a constant pterm, the model predicted 

stochastic dynamics (Eq. 3) with the temporal variation of spectral power exponentially 

distributed. The model further predicted that if pterm remained constant the fluctuations of log 

average spectral power and entropy should be associated along the line of maximum entropy 

(Eq. 13 derived from Eq. 3) on any timescale. These predictions were confirmed for the phase-

scrambled controls (Figure 5A). Eq. 13 further predicted that even if pterm substantially varied as 

a function of time, if it remained relatively constant up to some timescale d (sec) the fluctuations 

of log average spectral power and entropy should still be associated along the line of maximum 

entropy up to that timescale (Eqs. 5, 6). 

The results clearly showed that up to a few seconds (d = 3 sec), the dynamics of the EEG 

data closely followed the line of maximum entropy (Figure 3) for all representative frequencies 

(Figure 4) and all participants (Figures S1-S2) whether they rested with their eyes closed, rested 

with their eyes open in a darkened room, or viewed a silent nature video. The EEG dynamics 
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were nearly as tightly distributed around the line of maximum entropy as were their phase-

scrambled controls (see the d = 3 sec column highlighted with the rectangle in Figure 5A). Any 

systematic deviations from the line of maximum entropy were small up to d = 3 sec with the 

median PrLEI values remaining low for all frequencies and conditions, especially for the eyes-

open conditions where the median values were consistently below ~5% (Figure 6A). These 

results suggest that the majority (~95%) of the low- and high-spectral-power states that deviated 

from stochastic dynamics (Figure 2) were generated by relatively slow mechanisms that 

generally maintain maximum entropy within the timescale of a few seconds while changing the 

probability of synchronization on slower timescales to substantially extend the dynamic range of 

spectral power along the line of maximum entropy (Figure 3 [the main panels], Figure 4, and 

Figures S1 and S2).  

This conclusion may seem counterintuitive because precisely coordinated actions and 

mental operations require tight controls of oscillatory neural dynamics. One possibility is that the 

large-scale spatial synchronization of oscillatory activity may be controlled by a combination of 

the relatively slow, entropy-maximizing adjustments of synchronization probability and the 

temporally precise adjustments of phase such as phase-resetting generated by sensorimotor 

interactions. For example, the inter-regional and cross-frequency coordination of large-scale 

oscillatory activity may be generally controlled by slowly co-varying the probabilities of 

synchronization across the relevant regions and frequency bands while maintaining maximum 

entropy on the timescale of a few seconds for energy efficiency. At the same time, the precisely 

timed coordination of inter-regional and cross-frequency synchronization of oscillatory activity 

may utilize phase-resetting initiated by punctate sensorimotor signals such as those generated 

by multisensory environmental stimuli as well as goal-directed and routine sensorimotor events 

such as blinks, saccades, and active touch (e.g., Rajkai et al., 2008; Fiebelkorn et al., 2011; 

Mercier et al., 2013; Thorne & Debener, 2014; Wutz et al., 2014; Sugiyama et al., 2019; see 

Ding & Simon, 2013 and Voloh & Womelsdorf, 2016 for reviews). 

While the deviations from the line of maximum entropy were globally low on the timescale of 

a few seconds at all sites for all conditions (Figure 6B), we observed some notable spatial 

patterns. In particular, in the eyes-open conditions entropy was near maximal in the mid-central-

posterior region (highlighted with dotted circles in the lower three rows in Figure 6B and 6C). 

This potentially suggests that, especially in the presence of substantial sensory input (the eyes-

open conditions here), the mid-central-posterior region plays the role of an “entropy dump” to 

facilitate the temporally precise control of spectral-power dynamics in the surrounding regions. 

In the eyes-closed conditions, we observed focal PrLEI elevations in the right-lateral region (the 
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upper two rows in Figure 6C), potentially suggesting that this cortical region plays a role in 

controlling synchronization dynamics for constructing spontaneous imagery and thoughts (which 

were encouraged in the rest-with-the-eyes-closed condition). While these interpretations are 

highly speculative, analyzing deviations of spectral-power dynamics from the line of maximum 

entropy may provide a useful method for tracking the spatiotemporal occurrences of temporally 

precise controls of large-scale spectral dynamics.     

In summary, we used a simple mathematical model of synchronization to investigate the 

mechanisms that make EEG spectral-power dynamics deviate from stochastic dynamics in a 

characteristic U-shaped manner (Figure 2). The results have clearly shown that the majority 

(~95%) of this control is universally (across frequencies, sites, and behavioral conditions) 

accomplished by slowly changing the probability of synchronization while maintaining maximum 

entropy on the timescale of a few seconds. The results may further suggest that the mid-central-

posterior region potentially serves as an entropy dump to facilitate the generation of precisely 

controlled spectral-power dynamics in the surrounding regions.  
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Supplementary figures 
 

Figure S1. Individual participants’ data for the main panels in Figure 3 for participants p1-
p28 who participated in the rest-with-the-eyes-closed condition, the nature-video 
condition, or both. 
 

Figure S2. Individual participants’ data for the main panels in Figure 3 for participants 
p29-p52 who participated in the replication of the rest-with-the-eyes-closed condition and 
the rest-with-the-eyes-open-in-dark condition. 
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Fig S1. Individual participants’ data for the main panels in Figure 3 for participants p1-p28 who participated in the rest-
with-the-eyes-closed condition, the nature-video condition, or both. All participants who participated in the nature-video 
condition provided data for both earlier and later viewings. The dynamic ranges of average spectral power (for d = 3 sec intervals) 
were moderately to substantially extended along the line of maximum entropy (the gray dashed oblique lines) for the real EEG data 
relative to their phase-scrambled controls for all participants for all conditions. Note that the degree of extension of spectral-power 
dynamic range does not appear to be a trait-like property as it substantially varied for some participants between conditions.    
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Fig S2. Individual participants’ data for the main panels in Figure 3 for participants p29-p52 who 
participated in the replication of the rest-with-the-eyes-closed condition and the rest-with-the-eyes-open-
in-dark condition. The dynamic ranges of average spectral power (for d = 3 sec intervals) were moderately to 
substantially extended along the line of maximum entropy (the gray dashed oblique lines) for the real EEG data 
relative to their phase-scrambled controls for all participants for all conditions. Note that the degree of extension of 
spectral-power dynamic range does not appear to be a trait-like property as it substantially varied for some 
participants between the two similar conditions.    
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