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Abstract We introduce a straightforward, robust method for recording and analyzing spiking8

activity over timeframes longer than a single session, with primary application to the marmoset9

(Callithrix jacchus). Although in theory the marmoset’s smooth brain allows for broad deployment10

of powerful tools in primate cortex, in practice marmosets do not typically engage in long11

experimental sessions akin to rhesus monkeys. This potentially limits their value for detailed,12

quantitative neurophysiological study. Here we describe chronically-implanted arrays with a 3D13

arrangement of electrodes yielding stable single and multi- unit responses, and an analytic14

method for creating "supersessions" combining that array data across multiple experiments. We15

could match units across different recording sessions over several weeks, demonstrating the16

feasibility of pooling data over sessions. This could be a key tool for extending the viability of17

marmosets for dissecting neural computations in primate cortex.18

19

Introduction20

The marmoset has drawn attention as a complementary nonhuman primate model system for vi-21

sual neuroscience. While the dominant primatemodel system in neuroscience, the rhesusmonkey22

(Macaca mulatta), has the advantage of (relatively) rich cognitive abilities, a large body and robust23

physiology, and an aggressive work ethic, their large and convoluted (gyrified) brains currently limit24

the number of techniques that can be applied for measurements of neural activity. Thus, despite25

their excellent trainability for complex tasks and willingness to engage in lengthy experimental26

sessions, the scale and variety of neurophysiological questions that can be addressed have been27

somewhat limited by practical constraints. Recently, the commonmarmoset (Callithrix jacchus) has28

emerged as a complementary primate model system because of their smooth (lissencephalic) cor-29

tex, opening up amuch larger number cortical areas to the use of large-scale chronically implanted30

electrode arrays (in addition to other techniques). However, a major current concern for adopt-31

ing the awake behaving marmoset for detailed quantitative studies is their tendency to perform32

far fewer trials per session compared to macaques. Such a behavioral limitation would result in33

correspondingly smaller amounts of neural data (and hence, statistical power) per experiment, un-34

dercutting the other advantages of the species, and likely limiting their applicability as a powerful35

neurophysiological complement to the sorts of quantitative neuroscience work done in macaques.36

To redress this fundamental potential limitation, we have developed a straightforward, user-37

friendly tool for recording from large-scale arrays in marmosets while surmounting the relatively38

short behavioral sessions performed by this smaller (and gentler) species. First, we report success-39
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ful long-term electrophysiological recordings using a new type of multi-electrode array for which40

primate use has not yet been reported in publication to our knowledge, but which is commercially41

available. These “3D” arrays are available with customizable electrode spacing not just across a42

2D grid, but also along the depth of individual shanks. The arrays yielded good quality single-43

unit (SUA) and multi-unit (MUA) activity, as demonstrated in two different marmoset cortical areas44

(area MT, and the posterior parietal cortex, PPC). Second, we introduce a transparent means for45

identifying activity recorded on these arrays, not just within individual sessions, but — importantly46

— across sessions. This integration of hardware and software solutions allowed for data from the47

sameunit to be combined overmultiple behavioral sessions, intowhatwe termed "supersessions."48

This brings the statistical power of awake-behaving marmoset neurophysiology closer to that of49

macaques on a per-unit basis, while still allowing for larger scale recordings and/or powerful com-50

plementary tools that are more challenging to perform in macaques.51

Here, wedescribe both thephysiological and computational components of this tool anddemon-52

strate its potential usefulness for transcending the behavioral limitations of marmosets into the53

realm of detailed, quantitative assessments of neural activity at large scales. Furthermore, the tool54

we introduce here is intentionally straightforward, meaning it can be readily implemented by oth-55

ers, as well as extended when ongoing updates to hardware and software emerge. We conclude56

by describing current limitations and how updates to this tool could further improve it.57

Toprovide a bitmore detail before delving into the results, we found that implanting commercially-58

available 3D "N-form arrays" (Modular Bionics) resulted in high quality, stable unit activity in mar-59

mosets. In our hands and experiences, this reflected a significant step forward in neural recording60

success, as prior attempts using more common types of 2D planar arrays (Utah, Black rock sys-61

tems) yielded less reliable and lower-quality outcomes. Although our goal was simply to record62

neural activity and not to mechanistically understand why a particular array style works better or63

worse, our hypothesis is that the slow insertion style (Nicolelis et al., 2003) and sufficient spac-64

ing between shanks of the N-form array (compared to Rennaker et al. (2005); Karumbaiah et al.65

(2013)), produces less damage, inflammation, and/or gliosis, and still reduces chronic respiratory66

micromotion. (Prodanov and Delbeke, 2016).67

Given the success of the neural recording hardware in yielding qualitatively impressive neu-68

ral activity over long time periods, we designed a method to systematically compare and match69

(distributions of) spike waveforms across sessions. Our method identifies units from individual70

sessions independently, and then integrates spike clusters from new recordings into known, exist-71

ing ones identified in prior sessions. Analyses of units can therefore be performed over multiple72

experimental sessions.73

In order to achieve a representation of spike shapes that was robust to potentially varying noise74

levels and/or forms across experimental sessions, we extracted simple properties of spike shapes75

in a narrow window around their peak. This was achieved by matching a family of predefined tem-76

plates on a GPU to yield a parametric representation of local excursions in the raw voltage traces,77

which included conventional unit spiking activity, spike events from weaker or more distant neu-78

ral sources, and noise. Unit isolation was not a conventional detection problem, and was instead79

transformed into a multivariate classification problem to be solved by a clustering algorithm. The80

resulting clusters were then matched across recording sessions. Although we are not deeply at-81

tached to this particular spike sorting approach, we provide it as a robust, intuitive starting point,82

which we validated against a more sophisticated and complex spike-sorting package. Its simplic-83

ity also allows for online views of sorting results during experiments, which could be useful for84

experimental decisions even if more sophisticated sorting routines are employed post hoc.85

Taken together, this work puts forth a synthesis of commercially-available hardware and intu-86

itive software that allows experimenters to overcome one of themajor limitations of themarmoset87

as a model species by introducing the concept of supersessions. More generally, this framework88

may support better integration of work done in marmosets and macaques, allowing these two89

awake-behaving primate preparations to have greater scientific overlap and thus to more solidly90
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allow for their relative strengths and weaknesses to be considered.91

Results92

Neural activity apparent for more than 9 months on chronically-implanted 3D ar-93

rays94

We recorded single andmulti-unit (hereafter, "unit") activity in the brains of 2marmosets, one with95

a 3D N-form array in and around the middle temporal area (MT), the other with an identical array96

placed in posterior parietal cortex (PPC). For both arrays (Figure 1A, B, respectively), we were able97

to record spiking activity starting a week after insertion. Activity lasted for a duration of at least98

9 months, as depicted in Figure 1 (top rows). Figure 1 (second rows) show, in comparison, the99

relatively short durations of individual recording sessions (approximately a half hour to an hour).100

These durations likely reflect a lower bound on how longmarmosets will work, as they were largely101

determined by the animal’s preponent motivation to engage in various visual tasks with no fluid102

or food restriction.103

Signal amplitudes (Figure 1, third rows) were fairly constant over long periods of time, per-104

haps with the first two weeks after implantation yielding smaller signals before stabilizing (i.e., first105

few recording sessions, visible at the very left of the plots). A gradual decline in signal amplitude106

was further apparent after about 7 months for marmoset J. Detected events (see Methods) had a107

wide amplitude range of relatively sparse (0.1 – 10Hz) events, indicative of spiking activity (Figure108

1, bottom rows). Taken together, these descriptions of the behavior of the animals and the signals109

from the electrode arrays lay the groundwork for attempting to stitch together data frommultiple,110

subsequent recording sessions. The next critical step would be identifying unit activity that could111

conservatively be identified across such sessions.112

Spike clusters overlap in consecutive sessions113

Our goal was to identify spikes from the same units across recording sessions. This required mea-114

sures that would be robust to noise, in the sense that spikes fromother neurons would not perturb115

or distort characterization and identification of a given unit. To that aim, we focused our analysis116

on a very short temporal window, including only the depolarization phase of a spike, represented117

by a local minimum in the raw voltage traces.118

For each local minimum (i.e., putative spike) in the raw voltage trace, we determined: (a) ampli-119

tude, measured as the dot product with a template (of unit power), expressed in standard devia-120

tions (�), as calculated on the high-pass filtered voltage traces; (b) width, measured as the full width121

at half minimum; and (c) symmetry, measured as the ratio of its falling and rising phase durations122

(i.e., a 1 : 2 ratio means that recovering back to baseline took twice as long as reaching the voltage123

minimum).124

Theseparameterized shape characterizations of the unitswere put into 3D-histograms (marginals125

shown in Figure 2A) for each recording session, and clustered using a watershed algorithm (see126

Methods for details). This procedure yielded shape clusters (cyan markers in Figure 2A) for every127

session in a common coordinate system to allow for cross-session comparisons of spike shapes.128

Shape clusters between consecutive sessions often looked very similar, and so we further tested129

whether they likely reflected spikes from the same or from different units.130

Specifically, if the brain tissue was held in place by the 16 electrode shanks of the array such131

that relative movements between the electrodes and the sampled neurons rarely happened, we132

would always record from the same neurons and see identical spike shapes. Otherwise, if there133

were substantial shifts in relative position between brain and electrodes, both amplitude and spike134

shape would shift with movement, and we would be unable to track units across a large number135

of sessions.136

We were indeed able to systematically match units across recordings. This was done quantita-137

tively, using the Jensen-Shannon divergence as a distance measure in the histogram shape space138
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Figure 1. Long-term stability of arrays. (A) Marmoset J. Top panel: Illustration when individual recording
sessions were performed. For clarity, the plots below and in subsequent Figures reflect individual recording
sessions rather than time. Second row: Durations of electrophysiological recordings in individual sessions.
Third row: Root-mean-squared voltage fluctuations of the common averaged, 300Hz high-pass filtered data
(scatter plots for active electrodes, average shown in red). Bottom row: Amplitude histograms of detected
events, averaged across electrodes. (B) Same statistics for Marmoset B.
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Figure 2. Example of merging clusters across sessions. (A) Histograms for amplitudes and widths (left panel)
or symmetries right panes) of detected events on February 1. Regions outlined in blue are shown for a range
of dates in (B), using the same color code and axes. Cyan circles mark the three clusters detected in this
session. (B) Left: marginal histograms of local maxima for 20 consecutive recording sessions, labeled with
dates. Right: temporal matches of the 3 clusters found on February 1. (C) Waterfall plots of average spike
shapes, for dates as color-coded in (B). Data from marmoset B.
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(allowing for small amplitude shifts under a penalty). Figure 2B shows an example of tracking the 3139

units observed on February 1 across multiple sessions. Cluster 1 provides an example of a clearly140

isolated unit with very large spikes, which lasted for about 5 weeks. For this cluster, averaged spike141

shapes were very similar across recording sessions, with smaller amplitudes for the initial and fi-142

nal recordings (Figure 2C, cluster 1). Cluster 2 represents a cluster with decent amplitude spikes143

but relatively common spike shapes, resulting in highly variable sorting performance. While being144

reasonably well isolated from January 29 to February 1, it is contaminated to a variable degree145

with spikes from different units in other sessions and couldn’t be separated from another cluster146

in two intermediate recording sessions. Cluster 3 had low spike amplitudes, but would be con-147

sidered a decent multi-unit cluster from January 29 to February 1. For the other sessions there is148

a small local maximum in the shape histograms, but the cluster would be considerably contami-149

nated with unclassified, smaller amplitude spikes. Given that larger amplitude clusters slowly (and150

independently) drift over time, we can assume that the same happens to units in this cluster, mak-151

ing it difficult to obtain exact matches across recordings. But, the relatively moderate firing rate of152

the cluster would suggest that few units with defined shapes were involved, distinguishing it from153

unclassified spikes.154

In conclusion, ourmain result is thatmatching simple shape statistics of spikewaveforms across155

several recording sessions using N-form arrays in marmosets is feasible, and for some units this156

consecutive recording is possible over notably long periods of time (> 1 month). This grants us the157

capacity to combine data from multiple experimental days, which we deem "supersessions".158

Tuning properties on individual electrodes are stable across sessions159

We further confirmed the stability of the measured "supersession" neuronal activity by evaluating160

the cross-session consistency of physiological tuning properties. This evaluation was done for the161

MT array implanted in marmoset J, where we were able to confirm that several sites on the array162

showed directionally-tuned activity in response to moving dots in the left visual field (as expected163

when recording from area MT in the right hemisphere).164

The MT electrodes recorded strongly tuned multi-unit activity, so we focused on MUA super-165

sessions for this analysis. We again used our parameterized representation of spike shapes to166

determine a region of interest (Figure 3A, E, outlined in black) in spike shape space with strong167

directional tuning across recording sessions (Figure 3A, E). This was feasible because tuning on a168

given electrode was consistent across a wide range of spike shapes (Figure 3B, F). For the twoMUA169

sites shown as examples, the direction tuning curves measured were stable over almost 3 weeks.170

This stability of physiological properties, built on top of the stability of spike shapes themselves,171

further strengthens the case for the validity and viability of supersessions.172

We therefore created supersessions across these sessions that exhibited stable tuning and173

spike shapes, which allowed us to combine larger amounts of data for a single analysis. As an ex-174

ample here, we show that supersessions allow us to resolve the detailed time course of responses175

to individual motion directions at a high temporal resolution (Figure 3C, G). Note that transient176

aspects of the motion-driven response were very short and consisted of only a few spikes per trial,177

such that averages across many trials were beneficial. To illustrate this effect, we show the same178

analysis for responses obtained in a single session (Figure 3 I-K). Averaging over the temporal re-179

sponses, we then obtained tuning curves for individual sessions (Figure 3D, H, L).180

In this example, tuning was stable for considerably longer than one week. This demonstrates181

that not only were shape clusters with high amplitudes were stable across sessions, but also that182

functional properties of low-amplitude activity were conserved across many sessions. Further-183

more, being able to combine 10 or more sessions provides an order-of-magnitude increase in trial184

count that, even assuming some degree of lower-quality unit isolation, should counterweight the185

relatively short individual behavioral sessions. We delve into this issue in more depth at the end186

of the results sections.187
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Figure 3. Examples of direction tuning on two electrodes. Top: Legends and stimuli for the examples below.
Moving dots were presented at (-15,-15) degrees from the fixation point (red square).
(A) Sensitivity indices and (B) maximum response directions in dependence of spike shapes. (across sessions,
corrected for a cross session baseline effect). The region outlined in black was used for further analysis. (C)
Temporal firing rate responses, averaged across sessions and shown for individual tuning directions (colored
lines, black line: avg. response, 4041 trials). (D) Tuning curves obtained for individual recording sessions
(labeled above, some dates had a morning and afternoon session). (E – H) Same analysis for a second
example electrode. (I – L) Tuning observed in a single session (January 27 afternoon session, 254 trials).
Recordings in area MT (marmoset J).
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Most units in a given recording were observed for several sessions188

Having established stability of both spike waveforms and physiological tuning, we now turn to189

report a more comprehensive statistical description of recording stability and our ability to distin-190

guish spike shape clusters (i.e., to isolate one unit from another). A summary of all tracked units191

across recording sessions is shown in Figure 4. Spike clusterswere regions in 3D-shape-histograms,192

consisting of a set of voxels, which could be divided into boundary voxels (adjacent to a voxel out-193

side the cluster) and center voxels. If the average spike count in boundary voxels was less than 3/4194

of the average density in center voxels, clusters were considered as "better-isolated" and shown195

in darker colors in Figure 4.196

We further distinguished clusters that lasted for shorter numbers of sessions (<5, orange) and197

longer numbers of sessions (blue, ≥5), as many of the short-lived units had low amplitudes and198

were less reliably detected. We found that a large proportion of units in a given recording survived199

formultiple recording sessions (histograms in Figure 4, blue vs. orange), especially when they were200

considered as better-isolated (Figure 4, darker colors).201

A more detailed visualization of the survival of individual units is shown in the upper half of202

both panels in Figure 4. This plot can resolve whether the appearance or disappearance of units203

between two sessions happened locally (i.e., affecting only some individual units), or globally (i.e.,204

affecting most, if not all, units across the array). To further see whether the temporal separation205

(i.e., number of days) between consecutive sessions was a major factor for the loss (/turnover) of206

units, we visualized the relation between the number of long lasting units lost and the temporal207

separation between the two sessions when the loss occurred (Figure 4, insets). Although larger208

temporal separations tended to correlate with a higher turnover of units, substantial unit turnover209

could also occur even with very short temporal separations between sessions.210

This analysis also highlights a difference between the two animals: while there are several dis-211

tinct time points of high turnover in marmoset J (Figure 4A, likely indicative of discrete changes in212

electrode array position), no such events could be identified in marmoset B (Figure 4B, likely in-213

dicative of only smaller and/or more gradual changes in array position within the brain). Although214

we are not sure why the array stability was different in the two animals, this does show that: (a) our215

analysis scheme is capable of revealing changes and differences in stability; and (b) regardless of216

whether an array was stable over longer or short terms with or without distinct temporal changes,217

it is possible to follow units across supersessions in both regimes.218

Figure 5 shows descriptive histograms of the basic properties of all detected shape clusters219

(grayscale background). We distinguished clusters that survived short-term (upper row) and long-220

term (lower row). Several basic relations become apparent from visual inspection. First, the spread221

(avg. diameter) and firing rates of clusters tended to be larger for smaller amplitude waveforms,222

likely reflecting the effects of merging overlapping shapes from multiple units. Second, large am-223

plitude waveforms were generally more skewed than those with low amplitudes, likely reflecting224

our descriptive approach’s ability to identify the basic shape of individual unit waveforms. Third,225

waveforms from the array in MT tended to be narrower than those from the PPC array, perhaps226

revealing a biophysical difference that our approach is capable of picking up.227

Viewing these basic descriptive plots, we also wondered whether long term matches of spike228

clusters might be a result of detecting different units that just happen to produce similar shapes.229

To test this, we estimated how likely a given cluster might be mistaken for a different cluster by230

counting the clusters with similar spike shapes from all recording sessions. We then ranked better-231

isolated clusters according to the number of similar shaped clusters. The resulting rank a cluster232

had in the sorted array is depicted in color in Figure 5. A low rank corresponds to isolated units and233

a low likelihood to detect the same cluster by chance (Figure 5, yellow/green circles), and a high234

rank means that the corresponding spike shapes were frequently observed (Figure 5, blue circles).235

Sorting clusters in this way allows us to investigate whether clusters with commonly observed236

spike shapes would show a bias in long-term survival. We observed thatmany clusters with unique237
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Figure 4. The majority of clusters survives for multiple sessions. (A) Clusters detected in recordings of area
MT (marmoset J). Top: temporal pattern of long-term (at least 5 sessions, blue) and short lived (<5 sessions,
orange) clusters. Better-isolated clusters are shown in darker shades. Inset: Number of disappearing units in
dependence of the temporal gap between two recording sessions. Bottom: Number of clusters in each
session. (B) Same plots for recordings in PPC (marmoset B).

shapes survived less than 5 sessions (Figure 5, yellow circles). However, we also noticed that many238

of these clusters had relatively low amplitudes and therefore might have been lost, not due to239

actual changes in the presence of the unit over a particular (brief) time frame, but due to insuffi-240

cient signal-to-noise ratio relative to our spike-identification standards. We therefore re-focused241

our analysis of the relation between spike waveform uniqueness and lifetime using only clusters242

surviving for at least 5 sessions.243

In order to assess whether clusters with more or less common waveform shapes might show244
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Figure 5. Detected shape clusters are similar (at a population level) when observed for multiple sessions. (A)
Clusters detected in all recordings and electrodes of area MT (marmoset J). Grayscale represents the density
of all detected clusters without merging them across sessions. Colored circles represent individual,
better-isolated clusters, merged across sessions. These were ranked according to the corresponding overall
density of clusters (i.e. grayscale background) and this ranking is shown in color. Specifically, properties of
clusters depicted in yellow were rarely observed and those in blue were commonly found in the data.
Clusters surviving less than (top row) and at least (bottom row) 5 sessions are plotted separately for clarity.
(B) Same analysis for recordings in PPC (marmoset B).

a difference in their lifespans, we analyzed cluster survival, excluding different amounts of the245

most common cluster shapes. Due to the limited amount of data, we visualized the inverse of246

the expected lifetime at a given age, which is assuming a constant probability to lose a cluster in247

each session. Figure 6 shows that this assumption is reasonable, as the fraction of clusters lost per248

session does not change dramatically after 5 sessions. Importantly, except for clusters with the249

10% most uncommon shapes, the rate at which spike clusters were lost over time did not depend250

on how common the spike shapes of that cluster were. This is good news, as it does not appear that251

the longevity of units over sessions is strongly confounded by the appearance and disappearance252

of units which happen to have similar spike shapes.253

This analysis also revealed an interesting difference between the two animals: For the array in254

PPC, cluster survival was about twice as long as for the array in areaMT. Although there weremore255

clusters observed for theMT array, we also observed greater variations in signal amplitude and we256

gradually lost signal in the later recordings of that array (Figure 1A). We therefore infer that the257

observed effect could have been due to a higher degree of general instability of the MT array over258
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Figure 6. Cluster survival is not an effect of common spike shapes. (A) Estimated fraction of the clusters that
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time.259

Supersessions provide the power to estimate spatial and temporal aspects of re-260

sponses across sessions261

Finally, we tested whether clearly isolated units could be matched across multiple sessions to as-262

sess their spatial and temporal properties. We therefore performed generic receptive field map-263
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ping assays at regular intervals over multiple experimental sessions. As proof of concept, here, we264

describe an example in which both spatial receptive fields and temporal dynamics of responses265

were estimated using supersession data.266

Figure 7 shows two example units. The first unit had well isolated, high amplitude spike shapes267

(Figure 7C,E) and a pronounced refractory period (Figure 7 F) for at least 6 recording sessions (fir-268

ing rate (1.7 ± 0.2)Hz; avg. spike count per trial (400ms) 0.7 ± 0.4 overall and 1.5 ± 0.5 for stimuli in269

the receptive field). It consistently responded transiently to stimuli in the left visual field, 50-80ms270

after stimulus onset. The second example ((Figure 7G-L) shows a unit with an amplitude gradu-271

ally increasing and decreasing across sessions. Corresponding to an increase in SNR and lower272

contamination by false detections averaged spike shapes became sharper for sessions with large273

spikes (Figure 7K). This unit had a much faster response around 40ms, consisting of about 1 spike274

per trial (and eventually a slightly elevated sustained activity during stimulus presentation). In both275

of these cases, the response properties of the unit would have been difficult to determine using276

only a single session’s worth of data, due to the low absolute number of spikes recorded. For ex-277

ample, the total number of spikes recorded in the first 400ms in the receptive field of the unit in278

a single session was just 20-80 spikes, the total number of spikes across all trials about twice that279

amount. But by evaluating data across sessions, the supersession data shows that these units had280

clearly-localized receptive fields.281

Discussion282

Modern neurophysiological studies in primates require increasingly large amounts of data, either283

because the parameter space of relevant stimuli or behaviors grows richer (and hence, data are284

distributed across a larger number of conditions), or because the goal of the experiment itself285

is to measure more detailed aspects of population activity (and hence, more data are required286

to estimate higher order statistics). Here, we established the potential of chronically-implanted287

3D electrode arrays, coupled with a simple unit identification scheme, to allow for the creation of288

supersession datasets that transcend the standard limitations of marmoset behavior within indi-289

vidual experimental sessions. We found that high quality activity was evident on this type of array290

for many months, that a mixture of stable SUA and MUA data could be collected spanning multi-291

ple individual sessions, and that these supersessions yielded stable physiological characterizations292

that were more detailed than those from single sessions.293

Recording performance294

With the goal of making the marmoset more strongly viable for detailed quantitative studies, we295

aimed to develop an analysis pipeline that would be robust to different levels of recording quality,296

measuring single-unit activity where possible, but at the same time considering multi-unit activity.297

When applying this analysis to data recorded from implanted electrode arrays over the course of298

more than 9 months and averaging across all recording sessions, we obtained 28 better-isolated299

units/array/session. For individual arrays, these averages were 32 and 23 for marmoset J and B,300

respectively, 20 and 18 of which would be seen across a span of five or more sessions. In addi-301

tion, we found another 40 and 16 multi-unit clusters per array per session for marmosets J and B,302

respectively; 18 and 10 sessions lasting for five sessions or more).303

In comparison, previous reports of recording stability using planar (2D) ’Utah’ arrays inmacaques304

(Dickey et al., 2009; Vaidya et al., 2014; Fraser and Schwartz, 2011) focused on single unit activity,305

which strengthened their claims to be able to track individual units, but at the cost of discarding306

multi-unit activity. Values reported in those prior studies were atmost 137 units/array/session, but307

with large variations across arrays and with decreasing number over time, the average values were308

closer to 30 units/array/session. In addition, most recordings were done in the first two months309

after implantation, possibly implying a quicker falloff in signal quality than we encountered with310

different arrays, and making the comparison to our unit identification and quality less direct.311
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Figure 7. Examples of receptive fields of two units near area MT. (A) Maximum firing rates in response to
presentation of a disk of moving dots (diameter scaled by 1/2 for clarity; colors indicates firing rate) at a given
location in the visual field (fixation spot indicated by a red square). The receptive field (region where the
interpolated firing rate exceeded a threshold; see Methods) is outlined in magenta. Colored circles represent
estimates of receptive field locations for individual recording sessions. (B) Average firing rate for the three
conditions (around the RF) outlined in black in (A). (C) Marginal shape histograms (as in Figure 2). (D) Close-up
for firing rates shown in (B) for each recording session. (E) Averaged spike shapes. (F) Spike triggered
averaged firing rates show a refractory period after spikes. (G-L) Same as (A-F) for a different unit. (M) Total
number of trials per session. Colors indicate recording dates (sessions) and firing rates, respectively, and are
matched across panels. Recordings near area MT (marmoset J).

13 of 25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.09.243279doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.09.243279
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

Although a complete comparison between these types of array is beyond the scope of this312

proof-of-concept tool introduction, we believe it is likely that the variations in performance ob-313

served with ’Utah’ arrays in macaques were larger than for the 3D arrays we used. In fact, in mar-314

mosets, arrays with similar sizes as the ones used in this study (but with fewer electrode contacts)315

have been reliably implanted and oftenmeasured spiking activity formonths (Debnath et al., 2018).316

We conclude this comparison by noting that we recorded from a similar number of units as317

reported for the larger 96 channel ’Utah’ arrays (Dickey et al., 2009; Vaidya et al., 2014; Fraser and318

Schwartz, 2011), but from a smaller region of the brain, largely thanks to the denser 3D geometry319

of the arrays. This is another advantage on the hardware side of this tool, as it allows for larger320

scale recordings within small brain areas in the marmoset– arrays built for larger primate brains321

will often sparsely sample within a single area, spanning their footprint over many adjacent areas.322

Long-term stability of units323

The 3D array recordings had excellent long-term stability, which is a novel and important result for324

studies usingmarmosets. The feasibility of long term recordings is itself not totally unprecedented,325

as there are multiple approaches that align with our observations in a number of species. Here we326

review some examples, not just to bolster the case that long term stable recordings can be made327

in a number of species, but to point to the broader potential adoption of the supersession analysis328

approach we have introduced.329

For example, Jackson and Fetz (2007) used microwires and studied stability of single units in330

continuous recordings using a window discriminator, and found single units surviving for up to331

17 days in a one year experiment, where microwires were moved periodically to different neu-332

rons to improve signal quality. More systematic experiments addressing long-term stability of in-333

dividual units were done with ’Utah’ arrays by matching spike waveforms and inter-spike interval334

histograms across recording sessions (Dickey et al., 2009; Vaidya et al., 2014), eventually in combi-335

nation with correlations and firing rates (Fraser and Schwartz, 2011) to increase statistical power.336

While comprising relatively small numbers of units and recording sessions, these studies demon-337

strated a few single units being recorded for months, suggesting that there was likely no relative338

movement between the electrodes and the neural tissue. Linderman et al. (2006) used continu-339

ous recordingswere used to study short-term changes of spike amplitudes and reportedmoderate340

amplitude fluctuations in two example units.341

The N-form arrays we used had the same spacing between shanks as the ’Utah’ type of array342

— albeit with a higher density of recording sites along a shank, and far fewer total shanks. Even343

though the N-form arrays comprised only 16 shanks, we found a similar long-term stability for344

well-isolated single units, suggesting that this number of shanks is sufficient tomitigate substantial345

array drift. The smaller "bed of nails" also permits a slow insertion method, which we hypothesize346

is important for avoiding damage associated with ballistic insertion methods, especially important347

in the smaller and more delicate marmoset brain.348

In assessing the usefulness of supersession unit data, we used relatively relaxed criteria for unit349

selection. Given this liberal approach, we did not focus on comparing session-scale average spike350

waveforms (as these are sensitive to varying amounts of other-spike contamination and , but rather351

distributions of a parametric representation of spikes, where contamination could be considered352

as a mostly flat, additive component. Likewise, we dropped the comparison of inter-spike interval353

histograms, firing rates and correlations. While these can provide useful information about unit354

identity, they rely on a high SNR and good isolation of units in every single session and might even355

depend on the animal’s engagement in experiments. To avoid discarding large amounts of good356

data without further inspection, we argue that these measures might best be used for post-hoc357

tests. Spike shapes themselves proved to be reasonably informative about cluster identity, and358

for short experimental sessions and low firing rates, multiple sessions may be required to obtain359

useful second order estimates.360

Recent studies in rodents have been very successful in long-term tracking of neuronal activ-361
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ity. However, this performance was in large part made possible by increasing the density of elec-362

trode contacts, and therefore the number of observables available for spike sorting. Specifically,363

Okun et al. (2016) successfully sorted concatenated data for a small number of sessions and im-364

mobile NeuroNexus silicon probes with 4-8 tetrodes (slow insertion). Tetrode recordings in mouse365

(Dhawale et al., 2017) have been used for continuous tracking over weeks. Continuous tracking366

seems required here due to larger fluctuations in electrical coupling of neurons to electrodes. Re-367

cent work with high density arrays (Chung et al., 2019) in rats showed smaller fluctuations and368

allowed sorting segments of data and linking these together. Other recent high-density record-369

ing techniques using ultraflexible mesh electronics (Fu et al., 2016, 2017) and silicon high-density370

arrays (Jun et al., 2017b) have not yet been systematically studied for unit longevity. In primates,371

heptodes have been used in acute recordings, in marmoset cerebellum (Sedaghat-Nejad et al.,372

2019) and in macaques Kaneko et al. (2007), and single unit tracking was done in the latter case.373

In terms of stability of units, the following general picture emerges: wires and tetrodes drift374

within days, but stability is better when they are left in place without an attachedmicromanipulator375

Okun et al. (2016) or when they are continuously tracked (Dhawale et al., 2017), approaches which376

can yield stability for days to weeks. Multiple shanks likely reduce electrode drift and units can be377

tracked for weeks to months (’Utah’ arrays potentially for months if no degrading signal quality,378

Vaidya et al. (2014); Fraser and Schwartz (2011)), while ultraflexible, polymer based electrodes379

might remain stable even longer. Our results fit well into this picture.380

Implications for experimental planning and spike sorting methods381

Long-term stability offers the potential to generate detailed characterizations of neuronal behav-382

ior, but it also requires more careful experimental planning. In the two sections below, we high-383

light conceptual differences for experimental planning and spike sorting compared to the classical384

single-session approach.385

Experimental Planning386

While the general long-term stability and the observation of single- and multi-unit activity did sup-387

port more data-rich analyses than would have been possible from a single session, the fashion in388

which units ended up being sampled across recordings crucially affects the planning of possible389

experiments. If, at one extreme, we had recorded from a different set of neurons in every record-390

ing session, we would have ended up with a large sample of recorded neurons, but not more data391

per unit. Such a scenario would be allowing us to estimate distributions of neuronal behavior in a392

given area. At the other extreme, if we were to always record from the same set of neurons, we393

would end upwith a small sample, but would be able tomeasure their responses inmany different394

conditions and further quantify the higher-order statistical interactions between them.395

In reality, we found ourselves in a fruitful middle regime: Units were recorded for variable du-396

rations, in which a small fraction of units both appeared and was lost between recording sessions.397

This process was not entirely random, as we saw that most units disappeared during the initial ses-398

sions after their appearance. This means that the chance for a unit to survive for another session399

increased with the number of sessions that this neuron had already been observed. Hence, if we400

were to ask which of the units we would most likely observe in a future session, the best bet would401

be those units that were already observed for the most sessions in the past.402

The variable lifetimes of units also provide an additional tool for raising the standard for isola-403

tion. Restricting an analysis to only long-lasting units would likely reduce the chance of including404

less clearly isolated units. Such units may not be found in some of the recordings due to variations405

in signal amplitude.406

The exact timescales at which units were lost between sessions varied slightly across our two407

test arrays/animals. However, there may be two different mechanisms involved: while we found a408

relatively low, constant turnover of units on both arrays, in marmoset J we additionally saw a few409

events where a large fraction of units was lost between subsequent recordings (Figure 4). These410
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events could not be explained by a long temporal gap between the recordings, suggesting a rela-411

tively fastmechanism for that, with a timescale of hours to days (as opposed to weeks andmonths).412

We believe that these findings can impact the planning of experiments using chronic arrays.413

In the classical single session approach, experimenters devote part of the experimental time for414

general characterization of receptive fields and tuning of neurons, in order to target a neuron and415

adapt the stimulus properties to efficiently sample responses, avoiding stimuli without an expected416

effect on the neuron’s firing behavior. In the case of chronic array recordings, we record from417

many neurons with potentially different receptive fields and tuning properties, suggesting the use418

ofmore general stimuli, e.g. sampling a larger visual area and different tuning directions. Especially419

when studying interactions between a small number of units, one should keep inmind that someof420

these units may disappear during the course of an experiment and it would be advisable to start421

with a larger group of candidate units. In this regard, chronic arrays would be ideally suited for422

continuous tasks and naturalistic stimuli (e.g. Huk et al. (2018); Knöll et al. (2018)), which efficiently423

sample a large parameter space, allowing for simultaneous characterization of units with different424

tuning properties.425

If, however, an experimental design requires finding persistent units in order to adapt focused426

studies to suit their tuning, we recommend choosing units that have already been observed for427

at least 3 sessions, as these units have a high chance to survive the next sessions. In our experi-428

ments, such units had a conditional (additional) lifespan of 6 and 14 sessions (for marmoset J and429

B, respectively, cf. Figure 6A). Likewise, studies of changes in firing behaviour of single units across430

sessions (e.g. while an animal is learning a task, or after drug treatment) are in principle feasible.431

However, such experiments can usually not be repeated in the same animal, and few units will be432

clearly isolatable, resulting in a rather inefficient use of the acquired data. In this case, the sug-433

gested approach is to perform several consecutive studies on an animal, which is possible given434

the longevity of the arrays used here.435

Importantly, we have shown that it is feasible to combine data across multiple sessions to in-436

fer tuning properties of neurons from multiple sessions. The same should be possible for inter-437

neuronal correlations. Our results also highlight that, in many cases, it would be incorrect to as-438

sume that units with similar spike shapes recorded on the same electrode in subsequent sessions439

would correspond to different neurons.440

We conclude that chronically implanted electrode arrays allow for both sampling of a large set441

of neurons and detailed analysis of a few long-term units, but different timescales need to be con-442

sidered when planning experiments. If the objective is to sample the population of neurons across443

a brain area, experimental sessions could be separated by a month to take advantage of appear-444

ance and disappearance of neurons on the array. If instead the objective is a detailed analysis of445

a smaller set of neurons and their interactions, daily recordings for 2-4 weeks are ideal.446

Features of the spike sorting method447

We adopted a modular strategy for spike sorting, where individual sessions were processed inde-448

pendently and could be iteratively merged to form ’supersessions’. In this way, experimenters can449

perform preanalyses as data are generated and determine receptive fields and tuning properties450

of neurons to guide stimulus selection aswell asmonitor recording quality. Thismodular approach451

further facilitates excluding particularly noisy segments in individual sessions, which might impair452

or bias the clustering algorithm.453

The primary reason for eschewing existing spike sorting methods was a general concern about454

robustnesswhen stationarity assumptionswere notmet across recording sessions. This is a known455

challenge to even cutting-edge algorithms (Jun et al., 2017a). We instead chose a simple paramet-456

ric representation that was designed to be robust to noise and artifacts, which can differ from457

session to session. Our focus was on characterizing the peak of the depolarization phase using458

unimodal templates where the SNR would be highest. While spike shapes can be strongly bimodal,459

depending on the relative position of the electrode and neuron, the shapes for spikes with highest460
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amplitudes near the soma have been shown to be largely unimodal in theoretical studies (Lindén461

et al., 2011; Quian Quiroga, 2009; Camuñas-Mesa and Quiroga, 2013). As we recorded spikes on462

single electrodes and could expect a large number of neurons in the vicinity of an electrode (Pe-463

dreira et al., 2012), high amplitude spikes would be easiest to separate from other units. This464

situation would certainly be different for high-density probes. The process of estimating parame-465

ters of the spike shapes was essentially an optimization. We would shift a template temporally at466

sub-sampling resolution and change its width and symmetry to best match a local minimum in the467

raw voltage traces. In practice, this step was implemented by running the raw data through a large468

filter bank on a GPU.469

Our spike sorting approach did not solve the problem of overlapping spikes. However, it greatly470

reduced the problem as the time interval needed for detection was reduced to the width of the471

spike and thus, due to zero padding, much smaller than the the width of the templates in the fil-472

ter bank. In addition, for cases where overlapping spikes exist, we should see them in the shape473

histograms as somewhat isolated shapes that are a bit wider and of higher amplitude than an ad-474

jacent cluster. In our data, we did not find evidence for significant numbers of overlapping spikes475

near isolated clusters. Shape clusters were either nicely separated in the sense that overlapping476

spikes had at least half an order ofmagnitude lower amplitudes, or wewould be unable to separate477

clusters in the first place, due to low amplitudes and a large number of sources, with a combined478

firing rate beyond 100Hz (as in Figure 3). In the latter case, peak firing rates in single trials in re-479

sponse to a stimulus can be an order of magnitude higher and we necessarily detect overlapping480

spikes. Hence, firing rate estimates for low amplitude spikes should be read as a lower bound, pro-481

viding useful (slightly distorted) information about tuning in sustained responses, while truncating482

transient responses.483

In this work, we used the parametric representation of local mimina as a spike sorting method.484

But we could certainly perform spike sorting with an existing method and obtain these parametric485

representations for spikes in order to subsequentlymatch spike clusters across recording sessions.486

Likewise, as current sorting techniques are validatedwith respect to stability over long time frames,487

it would be straightforward to replace our sorting approach. However, our sorting approach could488

still be used for fast, online assessments of recording quality, neuronal yield and tuning properties489

as it does not require manual curation.490

Application to data491

In many cases, we observed that shape clusters appeared and disappeared gradually over time,492

such that the observed spike amplitudes were highest around the middle of their lifetime. We493

could thus have a situation where some shape clusters of a given unit were clearly isolated single494

unit activity, and others were contaminated (e.g. Figure 7 I). Although this effect means that some495

of the unit data from ’supersessions’ is less well-isolated than conventional singe-session data, the496

framework can also be used to estimate the impact of contamination for a given analysis, and497

hence to determine in a principled manner how high an isolation standard is required.498

To give an example how such analysis could look like, assume that we have a number of ses-499

sions (W) where a unit was well-isolated, and some sessions (C), where the same unit was contam-500

inated with low amplitude spikes from other neurons and some of its spikes were lost due to low501

amplitudes. We would then pool data from each group (W and C) of sessions to obtain a larger502

sample size and estimate firing rates and interspike interval histograms.503

Assuming that low amplitude spikes from other neurons are uncorrelated (alternatively, the504

interspike interval distribution of low amplitude spikes could be estimated with sufficient data)505

and uniformly distributed, we would fit the ISI histograms of group C as a linear combination of506

the ISI histogram of groupW and a uniform distribution. The component explained by the uniform507

distribution could then be translated into an estimate of the spike count for the low amplitude508

spikes from other neurons (i.e., dividing the rate of the uniform component by spike count of509

group C and multiply with the total recording duration of group C). To obtain an estimate of the510

17 of 25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.09.243279doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.09.243279
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

number of spikesmissed in group C due to low spike amplitudes, one canmultiply the difference in511

firing rates between group W and C with the total recording duration of group C and add the spike512

count for the low amplitude spikes determined above. After doing a given analysis separately for513

groups W and C, one could then compare the results and see how they are affected for a known514

contamination and signal loss.515

Furthermore, if one looked into the datasets of group W, one would likely find spikes that are516

statistically similar to the contaminating spikes in group C, simply by identifying identically shaped517

spikes at much lower amplitudes. Therefore, it is possible to create surrogate datasets with known518

contamination (and, by removing spikes, signal loss) and treat them as a model to predict effects519

on a given analysis. The above analysis would then provide independent data to test this model.520

Apart from spike clusters, our sorting approach also gives access to low amplitude spikes that521

do show tuned responses to visual stimulation, but likely arise from a multitude of units with a522

continuum of corresponding spike shapes (e.g. Figure 3). For the purpose of decoding neural ac-523

tivity, such low amplitude spikes can be of great value. In fact, results from other groups indicate524

that lowering the detection threshold increased the performance of a decoder despite losing infor-525

mation about the neuronal identity (Trautmann et al., 2019; Kloosterman et al., 2013; Todorova526

et al., 2014). Our work suggests that we can define a detection threshold (or region of interest)527

post-hoc, based on responsiveness to stimuli known to drive neural activity. We refer to this ac-528

tivity as multi-unit hash (MUH), creating a third category alongside with MUA, which should form529

clusters that are separable from MUH, and SUA which would additionally show a clear refractory530

period. We need to stress here that MUH is distinct from the ’unsorted spikes’ often left behind by531

most sorting algorithms.532

In summary, we were able to create ’supersessions’ for individual units on a timescale of sev-533

eral days to a few weeks. This allows for more statistical power than a single session’s worth of534

data can provide, and hence could put the awake marmoset preparation more on par with that of535

macaques. This is important because the marmoset is also a "pivot species" to richer and more536

powerful techniques that are more difficult to apply to the macaque. Such supersessions do re-537

quire reconsidering the design of experiments to handle the comings-and-goings of identified units.538

Such experiments will likely have a long term structure in which where basic characterization of539

neural response properties is performed approximately once a week, with the remainder of exper-540

imental data collection being dedicated to more sophisticated experiments.541

Methods and Materials542

Electrophysiology preparation543

Two marmosets were with implanted N-Form arrays (Modular Bionics, Berkeley, CA, USA) in area544

MT (marmoset J) or PPC (marmoset B). Prior to placing the chronically implanted array, we drilled a545

grid of 9 burr-holes over and surrounding the desired brain area based on stereotaxic coordinates546

from Paxinos et al. (2012). We performed extracellular recordings using single tungsten electrodes547

in each burr-hole to fine tune the placement of the array based on the physiological response.548

The MT array was placed based on high response to direction of motion, while the LIP array was549

placed based on high eye-movement related activity. A small craniotomy and duratomyweremade550

surrounding the desired area for array placement.551

The N-form array was mounted on a stereotax arm andmanually lowered till tips of the shanks552

had entered the brain. The brain dimpled slightly, then the tissue relaxed around the implant.553

The array was then slowly lowered until the baseplate was just above the brain’s surface. The554

array was stabilized and sealed with KwikCast before being closed entirely with dental cement and555

acrylic. The array connectors were enclosed in a custom 3D-printed box embedded in the acrylic556

implant.557

Animal procedures described in this study were approved by the UT Austin Institutional Care558

and Use Committee (IACUC, Protocol AUP-2017-00170). All of the animals were handled in strict559
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accordance with this protocol.560

The N-form arrays (Modular Bionics, Berkeley, CA, USA) consisted of a 4x4 grid of electrode561

shanks, spaced by 400 µm. Each shank was 1.5mm long and had 4 electrode contacts, one at its562

tip, and three more at 250 µm, 375 µm and 500 µm distance from the tip. Extracellular signals were563

recorded at all 64 electrode contacts with sampling rate of 30 kHz, using the OpenEphys recording564

system (Siegle et al., 2017). For marmoset J, seven of the electrode contacts were found damaged565

after the surgery and ignored for further analyses.566

Visual tasks and stimuli567

All stimuli were presented using custom MATLAB (Mathworks) code with the Psychophysics Tool-568

box (Brainard, 1997) and a Datapixx I/O box (Vpixx) for precise temporal registration of stimulus,569

behavioral, and electrophysiological events (Eastman and Huk, 2012).570

Marmosets were trained to fixate a central dot in the presence of peripheral visual stimuli. The571

animals fixated the dot within a window of 1.5 degree radius for the whole trial to obtain liquid572

reward in the form of marshmallow juice. If the marmoset broke fixation, the trial was aborted.573

Fixation was acquired and held for 200ms before a stimulus appeared.574

To measure MT receptive fields, we presented a circular cloud of randomly moving dots for575

350ms at one of 35 different screen locations during controlled fixation. The diameter of the stim-576

ulus aperture scaled with the eccentricity of its center.577

Tomeasure direction tuning, we presented coherent motion in 12 possible directions at a fixed578

location based on previously measured receptive fields. Each trial contained motion in one direc-579

tion for a duration of 500ms.580

For PPC recordings, marmosets were trained to perform a memory guided saccade task. The581

animals fixated the central dot while a target dot was briefly flashed at a random location in the pe-582

riphery. After a delay of 400-1000ms, the central dot was extinguished and themarmosets received583

liquid reward for saccades to the remembered location of the target. Memory guided saccades are584

well known to generate PPC activity in primates (Andersen et al., 1990). The task itself was not part585

of the investigations in this work. We outline it here as context for the behavioral engagement of586

the animal in the experiments and to emphasize its potential to drive neuronal activity in PPC.587

On average, recording durations of individual sessions were (26 ± 13)min for marmoset J and588

(41 ± 12)min for marmoset B.589

Pre-processing590

We filtered a 60Hz component out of the raw data for each electrode using a custom made al-591

gorithm. We also performed common average referencing by subtracting (projections onto) the592

median of high-pass filtered signals over all electrodes from each channel. We further up-sampled593

data to 60 kHz before feeding into Kilosort (Pachitariu et al., 2016). For this, values between sam-594

ples were obtained by linear interpolation and values at samples were smoothed with a [1/6 2/3595

1/6] smoothing kernel to obtain a uniform variance across data points for the case of Gaussian596

white noise.597

Spike sorting598

We aimed at jointly sorting spike data from tens of recording sessions (marmoset J: N=154, mar-599

moset B: N=95) under the following constraints:600

1. Marmosets were head-fixed, but able to move their bodies within the chair, creating tempo-601

rally variable amounts of noise in the data.602

2. Electrodes were separated by at least ≥125 µm and spikes were not generally expected to be603

seen on multiple electrodes.604

3. We observed only few separable units (0-3) per electrode.605

4. There was no apparent electrode drift within recording sessions.606

5. Spike clusters needed to be matched across recordings.607
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If spike shapes are known, then template matching would be the best way to detect spikes. How-608

ever, if spikes are to be sorted, information in the raw data needs to be used to separate spike609

clusters, and especially to separate them from fluctuations in the background noise level and low-610

amplitude events of neuronal origin. A good sorting algorithm therefore needs to make estimates611

that are maximally invariant when subjected to noise. Potential issues are:612

1. Baseline estimate: errors could change the match of bimodal templates. This may especially613

become a problem when the noise level is temporally varied.614

2. Sampling frequency and temporal resolution for peak detection: Misaligned spikes differ in615

shape. This can be resolved by upsampling the data, but results in longer templates.616

3. Temporally overlapping spikes: Need to be detected and fitted.617

To address these three issues, we generated a bank of unimodal templates (essentially triangles618

with a tip rounded off by a cosine function) which varied in phase (to effectively yield 180 kHz sam-619

pling frequency), width and symmetry (see examples in Figure 8 B), covering a wide range of pos-620

sible shapes. Each template was normalized to have an energy (sum of squared entries) of one.621

Using this bank of templates in a template matching strategy reduces baseline errors, temporal622

misalignment and the chance of fitting overlapping spikes, but does sacrifice somedetection power623

(when compared to using templates generated from the data, about 10% of the signal power).624

We determined local maxima (in time and width, but global in symmetry to avoid double de-625

tections) for the match (dot product) between our templates and the preprocessed voltage traces.626

In this setting, we were fitting the peak of the depolarization phase of a spike. While an error in627

the baseline estimate would have an effect on the detected spike power, it would have little effect628

on both the estimated spike width and symmetry. Temporally overlapping spikes were less likely629

as the temporal interval for detection was restricted the duration of the depolarization phase (i.e.630

0.5msor less) and a linear combination fittingwas not necessary in our recordings. Note thatwedid631

not capture the repolarization phase of a spike at all, however, we argue that due to smoothness632

constraints, the shape of the repolarization phase covaried with its symmetry, and its duration was633

hard to estimate due to potential drifts in baseline. Matching a large set of potential templates was634

computationally expensive, but also well suited to run on a GPU. Our implementation ran about635

twice as long as recording the data for 64 electrodes sampled at 30 kHz. Marginal histograms of636

shapes obtained for an example recording are shown in Figure 8C.637

Spike clusters appear as local density maxima in these histograms. To show that this is indeed638

the case, we sorted spikes with a widely used spike sorting algorithm (Kilosort, Pachitariu et al.639

(2016)). For that, we used a low threshold for splitting clusters in the Kilosort algorithm and ex-640

tracted the shapes of the corresponding spikes from our template matching strategy. This allowed641

us to perform the manual step of merging clusters in an automated procedure, using the Jensen-642

Shannon divergence between shape histograms as a distance metric.643

We obtained three dimensional histograms of shape parameters for spikes from each Kilosort644

cluster (Figure 8D). We compared Kilosort clusters to clusters obtained by running the watershed645

algorithm on shape histograms and found a good match for high amplitude clusters (Figure 8 E).646

The latter clusters were (by construction) better localized in our histograms and we decided to use647

them instead of Kilosort clusters in the following analyses.648

Possible extensions649

We implemented the spike sorting for the case of single, isolated electrodes. An extension to dense650

arrays is beyond the scope of this article, but wewill briefly discuss potential implementation issues651

here.652

1. Linear arrays/stereotrodes: can be treated as another dimension, like the phase. This just653

requires one to set a spatial extent of spikes, creating spatially shifted templates. With this654

method, one could determine maxima at each time frame for each spatial shift, and do a655

recursive maximization in a second step to obtain spatially isolated maxima.656
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Figure 8. Spike detection and sorting. Raw voltage traces from single electrodes (A) are matched in a sliding window to a set of triangular,
unimodal templates (examples in B, upper left) differing in width, symmetry and phase offset. Local maxima of template - raw trace matches in
this parameter space (right plots, red dots) are then detected as putative spikes with a shape characterized by the corresponding width,
symmetry and signal power (dot product of template and raw trace). (C) Histograms of shapes for an example electrode and recording (marginal
distributions). Locations of clusters determined by a watershed algorithm are marked with cyan circles. (D) Shapes of events detected by
Kilosort on the same electrode, grouped into clusters by an automated procedure. (E) Clusters determined by the watershed algorithm
(corresponding to the cyan circles in (C)).

2. Spatial grids: memory constraints on the GPU will currently require chunking the array into657

rows of electrodes.658

Our current implementation does not include a template generation andmatching step, poten-659

tially resulting in suboptimal detection performance. A potential improvement, while still avoiding660

the baseline issue, could be to generate templates, smooth them with a kernel and generate tem-661

plate versions with different widths and phases by interpolation. We would need to normalize the662

templates to unit power and reduce positive (repolarization) parts of the templates (e.g. divide663

by 2), to reduce a potential baseline effect. Then we would replace the predefined templates of664

a given cluster (obtained from the watershed algorithm) with these templates, while keeping the665

other predefined templates as alternative options (for events that do not match a particular tem-666

plate). Next, we could rerun the detection with the modified set of templates, considering events667

which are best matching the inserted templates as spikes.668

Cross-session merges669

We computed pairwise Jensen-Shannon divergences between existing clusters from the previous670

2 sessions and clusters from the current session allowing for small shifts in amplitude, width and671

symmetry for a penalty. Specifically, we did multiply the Jensen-Shannon divergence with the in-672

verse of Hanning kernels with a half-width of 7 (for amplitude) and 3 (width and symmetry) bins.673

Each cluster from the current session was then merged with the existing cluster with the smallest674

Jensen-Shannon divergence if this was below a threshold of 0.3 ln(2), otherwise it was labeled as a675
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new cluster. To allow for slow temporal drifts, the merged cluster was then assigned a shape den-676

sity equal to the average of the previous and current density (resulting in effective down-weighting677

of earlier densities).678

Motion direction tuning679

Using data from all trials across sessions, we determined sensitivity maps (in spike width and am-680

plitude space) for directional tuning for each electrode in a temporal window from 20-470ms from681

stimulus onset. For that, we took spike responses with given amplitude andwidth, and determined682

the sensitivity index of direction with the maximum firing rate vs. the opposite direction. That683

yielded a map of sensitivity indices in dependence of spike shapes which was then thresholded,684

and split into connected areas exceeding the threshold. The largest of these areas was taken as a685

mask for the neural response of the electrode. We averaged responses for each of the 12 stimulus686

directions, temporally filtering with a 20ms kernel. To see how tuning responses at a given elec-687

trode site change across sessions, we determined tuning curves for each session. Theoretically, a688

drift in firing rate or sensitivity could signal a change in coupling between neurons and the elec-689

trode, eventually caused by z-drift. Likewise, due to the spatial organization of area MT, a change690

in phase could reflect a lateral movement of the electrode.691

Cluster survival692

Spike shapes were very similar for a large fraction of clusters. It could be that clusters only ap-693

peared to last across sessions, but in fact represented multiple different clusters that just hap-694

pened to have matching shapes. Therefore we wanted to test for a bias in longevity for units with695

common spike shapes. We computed histograms of amplitudes, widths, symmetry and volume of696

shape clusters, and the average of these quantities for each better-isolated unit across sessions.697

We then ranked units according to the local density of shape clusters. A lot of short-lived units had698

low rank, but this may be a result of detection of low-amplitude units or an increased noise level699

in some of the recordings. Hence, we determined percentiles (in steps of 10) of the ranks of units700

surviving for at least 5 sessions. For all units with ranks smaller than a given percentile, we then701

estimated the conditional probability that a unit was lost in the subsequent session after having702

survived at least until that session (N). With li denoting the measured lifetimes of units, and Θ the703

Heaviside step function, that probability estimate was704

̂pN = 1 −
∑

i(li − N − 1)Θ(li − N − 1)
∑

i(li − N)Θ(li −N)
. (1)

It assumes that after the N-th session, unit losses are described by a Poisson process with a fixed705

rate.706

Receptive fields707

Firing rate responses were averaged across sessions and smoothed using a 41ms Hanning kernel.708

Maximum responses were obtained for each stimulus condition and visualized. The receptive field709

was then determined as the regionwhere the spatially interpolated response exceeded a threshold710

of twice the interquartile range above the median across conditions. Data were insufficient for711

estimating the size of the receptive field for individual sessions. To visualize the cross-session712

variation of receptive field locations, we assumed periodic boundary conditions and calculated the713

circular mean eccentricity and direction (colored circles in Figure 7A, G). Temporal firing responses714

of individual sessions (Figure 7D, J) were smoothed using an 18ms Hanning kernel.715
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