
Goren et al.

Feature selection and causal analysis for

microbiome studies in the presence of

confounding using standardization
Emily Goren1, Chong Wang1,2, Zhulin He1, Amy M Sheflin3, Dawn Chiniquy4, Jessica E Prenni3,

Susannah Tringe4, Daniel P Schachtman5 and Peng Liu1*

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.09.243188doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.09.243188
http://creativecommons.org/licenses/by/4.0/


Goren et al. Page 2 of 25

*Correspondence: pliu@iastate.edu

1 Department of Statistics, Iowa

State University, 2438 Osborn Dr,

50011, Ames, IA, USA

Full list of author information is

available at the end of the article

Abstract

Background: Microbiome studies have uncovered associations between microbes

and human, animal, and plant health outcomes. This has led to an interest in

developing microbial interventions for treatment of disease and optimization of

crop yields which requires identification of microbiome features that impact the

outcome in the population of interest. That task is challenging because of the

high dimensionality of microbiome data and the confounding that results from

the complex and dynamic interactions among host, environment, and

microbiome. In the presence of such confounding, variable selection and

estimation procedures may have unsatisfactory performance in identifying

microbial features with an effect on the outcome.

Results: In this manuscript, we aim to estimate population-level effects of

individual microbiome features while controlling for confounding by a categorical

variable. Due to the high dimensionality and confounding-induced correlation

between features, we propose feature screening, selection, and estimation

conditional on each stratum of the confounder followed by a standardization

approach to estimation of population-level effects of individual features.

Comprehensive simulation studies demonstrate the advantages of our approach in

recovering relevant features. Utilizing a potential-outcomes framework, we outline

assumptions required to ascribe causal, rather than associational, interpretations

to the identified microbiome effects. We conducted an agricultural study of the

rhizosphere microbiome of sorghum in which nitrogen fertilizer application is a

confounding variable. In this study, the proposed approach identified microbial

taxa that are consistent with biological understanding of potential plant-microbe

interactions.

Conclusions: Standardization enables more accurate identification of individual

microbiome features with an effect on the outcome of interest compared to other

variable selection and estimation procedures when there is confounding by a

categorical variable.

Keywords: high-dimensional feature selection; microbiome analysis;

next-generation sequencing; standardization; causal inference

1 Introduction

Advancements in next-generation sequencing (NGS) technologies have recently al-

lowed for unprecedented examination of the community of microorganisms in a host
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or site of interest, referred to as a microbiome (Lederberg and Mccray, 2001). Early

cultivation-dependent methods only allowed for detection of a small fraction of the

total microbial species present. In contrast, NGS technologies can rapidly detect

thousands of microbes in each sample by determining the nucleotide sequences of

short microbial DNA fragments. These fragments may either correspond to targets

of a specific genetic marker, commonly the 16S ribosomal RNA gene for taxonomic

identification of bacteria as in amplicon sequencing, or result from shearing all the

DNA in a sample as in shotgun metagenome sequencing (Riesenfeld et al., 2004).

For each fragment, the corresponding nucleotide sequence is referred to as a “read,”

the length of which is dependent on the specific NGS system (Liu et al., 2012).

Both amplicon-based and shotgun metagenomic approaches can enumerate the

relative abundance of thousands of microbial features per sample. Use of amplicon

sequencing for microbial enumeration is more common than shotgun metagenome

sequencing due to reduced cost and complexity. For this reason, we focus on

amplicon-based microbiome data here, and refer the reader to Sharpton (2014) for

detailed coverage of metagenomic sequencing and Knight et al. (2018) for a thor-

ough comparison of the two approaches. In order to enumerate microbes, amplicon

reads are typically clustered into operational taxonomic units (OTUs) according to

a fixed level of sequence similarity (e.g., 97%) (Westcott and Schloss, 2015), or as

advocated by Callahan et al. (2017), enumerated on the basis of denoised sequences

termed exact amplicon sequence variants (ASVs). Both OTUs and ASVs may be

classified into known taxa (Schloss and Westcott, 2011). The resulting microbiome

data for each sample are high-dimensional nonnegative integer counts across poten-

tially thousands of features (taxa, OTUs, or ASVs). These counts represent relative,

not absolute, numbers for each sample due to varying library sizes, a technical lim-

itation of NGS approaches. Consequently, microbiome data must be normalized,

rarefied, or treated as compositional in order to make comparisons across samples

and it is unresolved which method is optimal for a particular research question and

data set (Gloor et al., 2017; McMurdie and Holmes, 2014; Weiss et al., 2017).

Microbiome studies have uncovered associations between microbes and human,

animal, and plant health outcomes. Randomized clinical trials have been performed

to determine the causal effect of fecal microbiota transplantation (Camacho-Ortiz

et al., 2017), but these do not provide causal inference on the contribution of in-
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dividual microbiome features. It is important to identify individual microbiome

features with a causal effect on the outcome because such discoveries may lead to

development of microbial interventions for treatment of disease or optimization of

crop yields. A recent review highlights the importance of identifying individual taxa

with biologically relevant roles in microbiome studies (Banerjee et al., 2018).

Recently, there has been interest in causal inference in microbiome studies (Xia

and Sun, 2017). The gold standard for causal inference is to randomly assign treat-

ments (here, microbiome interventions) and estimate the causal effect. However, this

is challenging in microbiome studies since many microorganisms cannot be directly

cultured (Stewart, 2012), and random assignment of microbiomes to units is often

not possible. To date, causal inference in microbiome studies has been primarily

limited to causal mediation analysis that determines if a causal effect of treatment

is transmitted through the microbiome (Sohn et al., 2019; Wang et al., 2019; Zhang

et al., 2018). Software has been developed to apply Granger causality (Granger,

1969) to microbiome time series (Baksi et al., 2018), but the performance of such

an approach has not been thoroughly evaluated using simulation studies.

In this work, we aim to identify individual microbial features with a causal effect

on an outcome in a population of interest using causal inference. Here, the micro-

biome features are considered to be multivariate exposures, and are often of much

higher dimension than the sample size. Previous work on high-dimensional causal

inference is typically limited to settings with high-dimensional confounders rather

than exposures (e.g., Schneeweiss et al. (2009)) or directed graphical modeling

(Pearl, 2009). Recently, Nandy et al. (2017) considered directed graphical modeling

for estimation of joint simultaneous interventions. However, their approach requires

linearity and Gaussianity assumptions for high-dimensional inference, which are in-

appropriate for microbiome count data. There are proposed approaches for causal

inference for multivariate exposures or treatments using the potential-outcomes

framework, and such approaches often rely on the generalized propensity score

(Imai and Van Dyk, 2004). Siddique et al. (2018) compared inverse probability

of treatment weighting, propensity score adjustment, and targeted maximum likeli-

hood approaches for multivariate exposures. Wilson et al. (2018) proposed Bayesian

model averaging over different sets of confounders when the set of true confounding

variables is unknown. When the exposures are time-varying, Taubman et al. (2009)
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considered g-estimation and Hernán et al. (2001) proposed a marginal structural

model. However, in all of these studies with multivariate exposures, the exposure

dimensionality is smaller than the sample size.

In addition to the high dimensionality, causal inference for microbiome studies

is complicated by potentially complex interactions among host, environment, and

microbiome. For example, there could be categorical confounding variables that

affect both the outcome and some of the microbiome features. To overcome the

challenges of the high dimensionality and presence of categorical confounding vari-

ables in microbiome studies, we propose standardization on the confounder and

use the potential-outcomes framework for causal inference (Keiding and Clayton,

2014). The potential-outcomes framework (Holland, 1988; Neyman, 1923; Rubin,

1974) conceptually frames causal inference as a missing data problem: the out-

come can only be measured under the exposure actually received, making the out-

come unobservable under all other possible values of the exposure. We refer the

reader to Hernán and Robins (2019) for a more detailed introduction. To deal

with high-dimensionality of the microbiome exposure and categorical confounding

variables, we propose variable screening, selection, and estimation of microbiome

effects conditional on the confounder (i.e., stratification), followed by standardiza-

tion to obtain estimates of effects in the population of interest. Conditioning on the

confounder for microbiome feature screening, selection, and estimation avoids com-

plications due to high marginal confounder-induced correlation between features.

Further, conditional estimation naturally allows for effect modification (i.e., inter-

action between the confounder and microbiome features), affording flexibility to

capture host-environment-microbiome interactions. Standardization allows for esti-

mation and ranking of microbiome feature effects in the target population, which

has policy and epidemiological relevance. Even if conditions for causal inference do

not hold, avoiding such marginal correlation allows for superior identification of

associational microbiome effects.

In this manuscript we begin by defining the estimands of interest and outlining

conditions required for causal inference in Section 2. We then propose our estimation

approach with standardization in Section 3. Next, we demonstrate the feasibility

of our approach through simulation studies in Section 4 and present a real data
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application using an agricultural microbiome study in Section 5. This paper ends

with a discussion and conclusion.

2 Model and assumptions

2.1 Notation, microbiome effects, confounding

Consider a study with n units (indexed by i = 1, . . . , n) aimed at identifying the

population effect β = (β1, . . . , βp)
′ of p microbiome features (e.g., taxa, ASVs,

OTUs) Ai = (Ai1, . . . , Aip)
′ on an outcome Yi ∈ R. For formulating the estimand,

we assume that Ai has been appropriately normalized. Importantly, Yi represents

the observed outcome, which differs from the notion of a potential outcome (Rubin,

1974). Define the potential outcome Y a
i as the value the outcome would take under

the (possibly counterfactual) microbiome value a = (a1, . . . , ap)
′. Assume that the

expected potential outcome is related to the population effect β through a linear

function of the microbiome features as

E (Y a
i ) = β0 +

p∑
j=1

βjaj , i = 1, . . . , n (1)

where for each j, βj represents the effect of the jth microbiome feature in the

population. In terms of (1), identifying which microbiome features have a causal

effect on the response corresponds to estimation and inference for βj (1 ≤ j ≤ p).

For generality, the formulation of Equation (1) ignores possible microbe-microbe

interactions and any constraints of carrying capacity.

Note that the model in (1) is defined for the potential outcomes, not the ob-

served data, and is thus a marginal structural model (Hernán et al., 2001). In

the presence of a confounding variable Li that affects both Ai and Yi, this

model generally does not hold for the observed data because confounding implies

E (Y a
i ) 6= E (Yi |Ai = a). Consequently, specific assumptions and methodology are

required to obtain an estimator β̂ of β that has causal, rather than merely associa-

tional, interpretation. In the next sub-section, we address the assumptions required

for such a causal interpretation. We restrict our attention to the case where the con-

founder Li is categorical with a finite number of levels, each represented sufficiently

in the study of n units.
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2.2 Assumptions for causal inference

Under the potential-outcomes framework, ascribing a causal interpretation to an

estimate of β requires three assumptions: positivity, conditional exchangeability,

and consistency (Hernán and Robins, 2019). Positivity requires positive probability

for each possible microbiome level, conditional on the confounder. To formalize

this, let A denote the set of all possible microbiome values in the population. The

positivity condition holds if Pr (Ai = a | Li = l) > 0 for all a ∈ A and all levels l

of confounder Li such that Pr(Li = l) 6= 0 in the population of interest, henceforth

denoted by the set L. Clearly, if a given microbe is either absent or below the limit of

detection across all samples, its effect on the response cannot be determined. Hence,

this assumption requires a large enough sequencing depth in order to sufficiently

enumerate any present microbes with a causal effect. Practical considerations for

evaluating the positivity assumption are covered by Westreich and Cole (2010).

To meet the conditional exchangeability requirement, the data-generating mecha-

nism for each possible microbiome must depend only on the confounder, formalized

as Y a
i ⊥⊥ Ai | Li for all l ∈ L, where ⊥⊥ denotes statistical independence. Con-

ditional exchangeability requires no unmeasured confounding. This assumption is

most justifiable in experiments where the confounder is randomly assigned as in our

motivating study described later in Section 5, where agricultural plots are random-

ized to either low or high nitrogen fertilizer.

The consistency criterion is met if the observed outcome for each unit is the

potential outcome under the observed microbiome, formally stated as Ai = a =⇒

Y a
i = Yi. For microbiome data, this necessitates appropriate normalization. Since

NGS-based technologies enumerate based on genetic material, the resulting counts

can arise from both viable and non-viable microbes (Boers et al., 2016). In order to

met the consistency assumption, relevant microbes with the same normalized count

cannot have disparate effects due to differential viability. When there is concern

that this assumption may be violated, it is possible to restrict amplification of

RNA target genes to only viable bacterial cells (Rogers et al., 2008). We note that

even if these three conditions cannot be verified, our proposed method has utility

in estimation of associational, rather than causal, effects.
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3 Methods

3.1 Standardization

Our goal is to estimate the population microbiome effects β of (1) and infer which

microbiome features are relevant to the response, that is, {1 ≤ j ≤ p : βj 6= 0}.

We propose computing an estimate β̂l for each stratum l ∈ L of the confounder,

followed by standardization to the confounder distribution, thereby obtaining a

population-level estimate β̂. Under the assumptions stated in Section 2.2, there is

no confounding within each stratum l of the confounder. Beyond elimination of

confounding, conditioning on a stratum of the confounder avoids marginal corre-

lation between features induced by the relationship with the confounder that can

hinder feature selection performance. Figure S7 in the Supplementary Materials

shows microbiome data from an agricultural study described in Section 5 where

many features are highly correlated when considered marginally, but are relatively

uncorrelated within each level of a fertilizer confounder. Combining the assumptions

of Section 2.2 with the model in (1) and allowing for effect modification, we have

E (Yi |Ai = a, Li = l) = βl0 +

p∑
j=1

βljaj , ∀i ∈ {1 ≤ i ≤ n : Li = l} (2)

where βl = (βl1, . . . , β
l
p)
′ is the corresponding stratum-specific effect. There is effect

modification if βl 6= βl
′

for some l 6= l′ ∈ L.

Standardizing the stratum-specific mean outcomes to the confounder distribution

produces the population mean outcome function

E (Yi |Ai) =
∑
l∈L

βl0 +

p∑
j=1

Aijβ
l
j

Pr (Li = l) . (3)

By linearity, the effect in the population corresponding to a one-unit increase in

the jth microbiome feature, controlling for all others, is represented by βj =∑
l∈L β

l
j Pr (Li = l) for j = 1, . . . , p. Given a suitable estimator β̂l of βl for all

l ∈ L, the resulting population-standardized estimate of βj is

β̂j =
∑
l∈L

β̂lj Pr (Li = l) . (4)
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3.2 Feature selection and estimation

In this section, we propose a feature selection and estimation procedure for stratum-

specific coefficients βl, performed independently for each confounder level l ∈ L.

Within each stratum, we make a sparsity assumption that few microbiome features

have an effect on the response and correspondingly most entries of βl are zero,

and also assume that the outcome is normally distributed with constant variance.

Commonly, n � p for microbiome features for taxa at the level of species (and

perhaps genera), OTUs, or ASVs. Consequently, we suggest penalized least squares

estimation that induces shrinkage towards zero via a penalty function pλ, where λ

is a tuning parameter controlling the amount of shrinkage. We suggest choosing λ

using the Bayesian information criterion (BIC) (Schwarz, 1978) due to its consis-

tency property in selecting the true features in certain settings (Wang et al., 2007)

and nonconsistency of prediction accuracy criteria such as cross-validation (Leng

et al., 2006). Possible choices for penalties that perform variable selection through

shrinkage-induced sparsity include the least absolute shrinkage and selection oper-

ator (LASSO) (Tibshirani, 1996) and smoothly clipped absolute deviation (SCAD)

(Fan and Li, 2001), among others (Zhang et al., 2010).

Due to the high dimensionality of microbiome data, variable screening in con-

junction with penalized estimation may improve accuracy and algorithmic stability

(Fan and Lv, 2008). The sure independence screening (SIS) of Fan and Lv (2008)

retains features attaining the highest marginal correlation with the response, which

may lead to poor performance when irrelevant features are more highly correlated

with the response, marginally, than relevant ones. Since this is likely the case for mi-

crobiome data, we instead consider using the iterative sure independence screening

procedure proposed by Fan and Lv (2008) and implemented by Saldana and Feng

(2018) that avoids such a drawback by performing iterative feature recruitment and

deletion based on a given penalty pλ.

3.3 Post-selection inference and error rate control

Inference on which microbiome features have a population-level effect, conducted

by testing the null hypothesis H0j : βj = 0 for the jth feature (1 ≤ j ≤ p), is

challenging using penalized least squares estimation. For example, the asymptotic

distribution of the LASSO may not be continuous and is difficult to characterize
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in high-dimensional settings (Knight and Fu, 2000). Many approaches for error

rate control post-variable selection using penalized regression make use of data

splitting techniques (Bühlmann et al., 2014; Dezeure et al., 2015) but have low

power for the small sample sizes common to microbiome studies. Due to these

reasons, for inference we propose using the debiased, also known as desparsified,

LASSO (van de Geer et al., 2014; Zhang and Zhang, 2014) applied to the estimate

β̂l obtained using the LASSO penalty with the iterative SIS procedure. To make the

computation tractable, we only apply the debiasing procedure to the features not

screened out by the iterative SIS procedure and let b̂l denote the resulting estimate.

Under regularity assumptions and appropriate penalization, the debiased LASSO

estimator has a limiting normal distribution (Dezeure et al., 2015).

For the jth feature, the standardized debiased iterative SIS-LASSO estimate b̂j

and its standard error are given by

b̂j =
∑
l∈L

b̂lj Pr(Li = l), se(̂bj) =

√∑
l∈L

[
se(b̂lj) Pr(Li = l)

]2
, (5)

respectively, where the standard error formula follows from the independence of the

strata. To obtain an estimator of the standard error, we plug-in the estimate ŝelj of

se(b̂lj) given by Dezeure et al. (2017) under homoscedastic errors if the jth feature

was not removed by screening in the lth confounder stratum. We compute a p-value

for testing H0j : βj = 0 versus H1j : βj 6= 0 according to pj = 2[1 − Φ(|b̂j |/ŝej)]

if feature j was not screened out in all confounder strata for j = 1, . . . , p, where

Φ(·) denotes the standard normal cdf. To control the false discovery rate (FDR),

we apply the Benjamini-Hochberg (BH) adjustment across all p features (Benjamini

and Hochberg, 1995) to account for multiplicity in all features, including those that

were removed from all strata.

4 Simulation Studies

Here, we evaluate our proposed standardization method using simulation studies.

The simulation settings were designed to mimic microbiome studies seen in practice.

To emulate species-level data, we consider p = 2, 000 microbiome features. To reflect

data summarized at the genus level, we also consider p = 50. We consider sample

sizes of n = 50 and n = 100, and assume the confounder is a binary indicator that

takes the value one for i = 1, . . . , n/2 and zero for i = n/2 + 1, . . . , n.
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4.1 Data-generating model for microbiome features

Conditional on the confounder Li = 0, the count data for the jth microbiome

feature were drawn independently from a negative binomial distribution with mean

γ0j and dispersion φj parameterized such that Var(Aij) = γ0j + φj(γ0j)
2. That is,

when Li = 0, the baseline mean for feature j is γ0j . When the confounder is present

(Li = 1), the microbiome feature counts were drawn independently from a negative

binomial distribution with mean γ0jγ1j and dispersion φj . Hence, γ1j represents

the multiplicative change in the mean relative to when the confounder is absent.

If γ1j 6= 1, then feature j is affected by the confounder and otherwise γ1j = 1.

The first 30% of features were set to be affected by the confounder (differentially

abundant between condition Li = 0 and condition Li = 1). More specifically, we

simulated parameters γ0j and γ1j from the following distributions for j = 1, . . . , p:

γ0j
ind∼

 logN (1/2, 9/4) if βj = 0

δ{5} if βj 6= 0

γ1j
ind∼

 logN (±1/4, 9/4) if feature j is affected by Li

δ{1} otherwise

where δ{x} represents a point mass at x. Our rationale for setting the baseline

mean to five for relevant features (βj 6= 0) was to ensure that they were sufficiently

abundant for feature selection. We set the dispersions φj = 10−1 for all features

j = 1, . . . , p and simulated the microbiome count data Ai with negative binomial

distributions. In addition, we conducted a second set of simulations with φj = 10−6,

which approximates a Poisson distribution.

4.2 Data-generating model for response

Given the confounder and microbiome features Ai simulated from the above sub-

section, we draw the responses independently from a normal distribution with mean

µi(Ãi, Li) and variance σ2, where Ãi represents Ai after centering and scaling (to

mean zero and variance one within strata) and

µi(Ãi, Li) =

 β0 +
∑p
j=1 Ãijβj if Li = 0

β0 + β` +
∑p
j=1 Ãijδβj if Li = 1

(6)
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for i = 1, . . . , n. For more intuitive comparison of effect modification size, model (6)

has an additive effect β` for the intercept and multiplicative effect δ for microbiome

feature effects when Li = 1 compared with Li = 0. In particular, β` represents the

direct confounder effect and δ is an effect modification parameter. Our simulation

considers the case when there is no effect modification (δ = 1) as well as strong effect

modification (δ = −0.9) where the relevant microbiome effects are large within each

level of the confounder but small overall in the population. The response variability

was set to σ2 = 1/16 for all scenarios. A total of s = 5 features were set to be

relevant, with the non-zero elements of β set to (3,−3, 3,−3, 3). Our motivation for

setting |βj | = 3 for all relevant j is to ensure the βmin property for model selection

consistency is met within all strata for all simulation scenarios (Bühlmann et al.,

2014). The choice of s = 5 yields sparsity such that s < nl/log(p) for most, but

not all, simulation scenarios. Three scenarios covering differing proportions of the

relevant features set to be confounded (βj 6= 0 and γ1j 6= 1) were considered: either

all (100% confounded), the first three (60% confounded), or none (0% confounded).

To summarize our simulation settings, we have considered two dimensions of mi-

crobiome features: p = 2, 000 and p = 50; two sample sizes: n = 50 and n = 100; two

distributions of microbiome count data: negative binomial and Poisson; inclusion

of effect modifier: none or strong effect modifier; and three different proportions of

confounded relevant features: 100%, 60%, and 0%. Hence, in total, we examined 48

different simulation settings. For each simulation setting, a total of 100 data sets

were simulated.

4.3 Screening, penalization, and comparison models

We denote our proposed approach of estimation conditional on each stratum fol-

lowed by standardization as “Conditional Std”. We investigate the performance of

variable section using the LASSO and SCAD penalties for pλ both with and without

screening, as well as the proposed inference procedure using the debiased LASSO

with iterative SIS described in Section 3.3.

We compare our approach with six other models applied to the pooled data set,

as opposed to conditionally on each stratum. The six comparison models are con-

structed based on three inclusion strategies for the confounder effect β` of Equa-

tion (6) and two possibilities for modeling effect modification. The confounder effect
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is either subject to screening and variable selection (“Select L”), forced to be in-

cluded without penalization (“Require L”), or removed from the model entirely

(“Ignore L”). We either model each microbiome feature effect as common across

all confounder strata (corresponding to models with the aforementioned names)

or allow for effect modification through stratum-specific microbiome feature effects

denoted with the suffix “EffMod.” For each of the six models under comparison, we

also investigate the performance of variable section using the LASSO and SCAD

penalties for pλ both with and without screening, as well as the proposed inference

procedure using the debiased LASSO with iterative SIS.

Table 1 presents the objective function for our proposed “Conditional Std“ ap-

proach and the other six models under comparison. For the proposed approach

“Conditional Std,” screening is based on iterative SIS recommended defaults ap-

plied to each stratum, whereas for all other approaches it is applied to the entire

data set to correspond with the assumed model, resulting in different maximum

model sizes shown in Table 2. The variables considered in the iterative SIS pro-

cedure for each model detailed in Table 2 correspond to those penalized in the

objective function in Table 1. For “Conditional Std” and models allowing effect

modification (suffix “EffMod”), the population estimates are computed according

to Equation (4). These models center and scale each microbiome feature within each

stratum, denoted by Ãij . For models that do not allow for effect modification, the

microbiome features are centered and scaled to have mean zero and variance one

across all observations, regardless of stratum, denoted by Ȧij .

4.4 Results

Simulation performance was summarized across all 100 simulated data sets for each

scenario, model, and variable selection method considered using the true positive

rate (TPR) and false positive rate (FPR). Given the selected variables, TPR mea-

sures the proportion of relevant features detected, while FPR measures the propor-

tion of irrelevant features declared to be relevant, and these are computed here at

the population-level by

TPR =

∑p
j=1 I(β̂j 6= 0)I(βj 6= 0)∑p

j=1 I(βj 6= 0)
, (7)
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FPR =

∑p
j=1 I(β̂j 6= 0)I(βj = 0)∑p

j=1 I(βj = 0)
(8)

for all methods except the debiased LASSO inference procedure where I(β̂j 6= 0)

is replaced with the decision rule induced by the corresponding hypothesis test

with FDR control at 0.05. An ideal method would take (TPR, FPR) values (1, 0).

Supplementary Material Table S1 shows the average TPR and FPR across the 100

simulated data sets for the 12 simulation settings with Poisson distributed features

and n = 100. The table lists the results for our proposed approach “Conditional

Std” model and the other six models under comparison across different variable

selection methods. Generally, the proposed “Conditional Std” model performed

better than other models applied to the entire data set across different variable

selection methods considered. When effect modification is present, the proposed

approach has the highest mean TPR and lowest mean FPR for both the LASSO and

SCAD penalties, both with and without screening, often achieving perfect rates on

average. For the debiased LASSO applied after iterative SIS with the BH procedure

and FDR control set to 0.05 (denoted by “iterSIS-dbLASSO-BH”), the proposed

approach has the highest TPR and among the lowest FPR under strong effect

modification across variable selection methods. This is not the case only when no

effect modification is present, under high dimensionality (p = 2, 000), and not all

relevant features are not confounded.

For post-selection inference based on the debiased LASSO following screening

with iterative SIS, we evaluated the area under the receiver operating characteristic

curve (AUC) using the p-values for testing H0j : βj = 0 as the classifiers. AUC

aggregates classification performance of TPR versus FPR across different classifica-

tion thresholds, taking the value 1 for perfect prediction, 0.5 for random guessing,

and 0 for always wrong prediction. Box plots of the AUC across 100 data sets for

each model are shown in Figure 1 for 12 simulation settings with n = 100 and

Poisson features (results for n = 50 and negative binomial features are presented in

Supplementary Material Figures S1–S3). The proposed approach has near perfect

ranking under low dimensionality (p = 50) for all settings and under high dimen-

sionality (p = 2, 000) when all relevant features are impacted by the confounder.

Similar to the results in Supplementary Material Table S1, the proposed approach
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performs best out of all models considered except when effect modification is not

present and at least some relevant features are not confounded.

To evaluate false discovery rate (FDR) control for varying thresholds α =

(0.01, 0.02, . . . , 0.10) commonly used in practice, we computed the false discovery

proportion (FDP) at a given α value for debiased LASSO inference according to

FDP(α) =

∑p
j=1 I(qj < α)I(βj = 0)∑p

j=1 I(qj < α)
, (9)

where qj is the BH-adjusted p-value (or q-value) for feature j. A well performing

model will have FDP(α) ≤ α. For n = 100 and Poisson features, Figure 2 shows that

the proposed “Conditional Std” model appropriately controls FDR under low di-

mensionality (p = 50). For high dimensionality (p = 2, 000), the proposed approach

does not control FDR when at least some relevant features are not confounded,

though the observed mean FDP does not exceed the nominal level greatly when

compared to other competing models applied to the pooled data. The FDR control

for the other six models under comparison is either very conservative or highly lib-

eral. Similar results were seen for n = 50 and negative binomial features, though lack

of FDR control was more common for the n = 50 case (Supplementary Materials

Figures S4–S6).

5 Real Data Analysis

We conducted a microbiome study to investigate the effect of the rhizosphere micro-

biome of the cereal crop sorghum (Sorghum bicolor) on the phenotype 12-oxo phy-

todienoic acid (OPDA) production in the root. Sorghum root production of OPDA

is of primary interest due to OPDA having both independent plant defense func-

tions and being an important precursor to Jasmonic acid, which functions in plant

immune responses that are induced by beneficial bacteria (Van der Ent et al., 2009;

Wasternack, 2014). The study analyzed here is part of an experiment described by

Sheflin et al. (2019); we subset on n = 34 samples collected in September across high

and low nitrogen fertilizer. Rhizosphere microbiome data were collected using 16S

amplicon sequencing and clustered at 97% sequence identity. The resulting 5, 584

OTUs were rarefied to 20, 000 reads per observation and low abundance OTUs (less

than 4 non-zero observations out of 34) were excluded (Xiao et al., 2018), leaving

a total of 4, 244 OTUs.
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Pairwise Spearman’s correlations for the feature counts are shown in Figure S7

in the Supplementary Materials for the 150 largest marginal correlations (pooling

samples over nitrogen fertilizer levels), which contrast to the small correlations

within nitrogen stratum. Using our proposed procedure of testing the standardized

feature effect using the debiased LASSO following iterative SIS applied to each

nitrogen level, a total of four microbiome features with an effect on root ODPA

production were identified while FDR was controlled at 0.05 with BH adjustment

(Table 3). Nitrogen stratum-specific residuals did not indicate any violation of the

assumptions of constant variance or normality (Figures S8–S9 of the Supplementary

Materials).

Each microbiome feature effect identified at the study population-level was only

identified in one nitrogen condition, though abundance did not differ greatly be-

tween the two nitrogen strata (Table 3). Specifically, only one feature was estimated

to be more abundant under low nitrogen, and this feature was classified as belong-

ing to the Rhodospirillaceae family (nonsulfur photosynthetic bacteria), of which

nearly all members have the capacity to fix molecular nitrogen (Madigan et al.,

1984). Various strains of Rhodospirillaceae have shown potential to promote plant

growth in the grass species Brachiaria brizantha (Silva et al., 2013). Consequently,

the increased levels of root OPDA content may have been the result of bacterial

synthesis (Forchetti et al., 2007). While less is known about the three additional sig-

nificant features, the overall findings are in alignment with biological understanding

of potential plant-microbe interactions.

6 Discussion

We have proposed and evaluated methodology for causal inference for individual fea-

tures in high-dimensional microbiome data using standardization. These techniques

are typically employed in epidemiology and use the potential-outcomes framework,

in contrast to graphical models, which are a more common approach for high-

dimensional causal inference but usually require Gaussian assumptions for inference

that are often violated by microbiome data (Pearl, 2009). Instead, our approach

conditions on the confounder and shows favorable results for Poisson and nega-

tive binomial microbiome features. Compared to estimation methods applied to the

entire data set, the proposed standardization approach typically demonstrated su-
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perior recovery of relevant microbiome effects accross multiple variable screening

and selection procedures.

Association and causation are not equivalent even for a one-dimensional treat-

ment or exposure, and the challenges of causal analysis are exacerbated for high-

dimensional exposures. Caution must be taken in interpreting causal effects when

the assumptions needed for causal inference, such as no unmeasured confounding

or consistency, cannot be verified. Consequently, any microbiome features identi-

fied should be either validated in experimental studies if possible, or more closely

scrutinized according to guidelines for evidence of causation. However, even if con-

ditions for causal inference do not hold, our method may provide better recovery of

associational microbiome effects as compared to models applied to the pooled data,

when there are features impacted by the confounder.

Some have advocated that microbiome data must be treated as compositional

(Gloor et al., 2017). Due to the sum to library size constraint, which is not removed

by rarefying but rather made constant across all samples, microbiome data techni-

cally lie in a simplex space (Aitchison, 1982). One goal of our funded project is to

identify microbial features that can be intervened upon to produce a favorable out-

come. Hence we analyze count data, not compositional data where it is impossible to

alter a feature without changing at least one other so as to retain the same total sum

across features. When microbiome features are high dimensional, and in particular

there is no dominating feature, the impact of this issue may be minimal. Moreover,

microbiome data often exhibit many zeros and the popular centered log-ratio ap-

proach for compositional data applies log transformation after adding an arbitrary

pseudocount, the choice of which may impact the analysis (Costea et al., 2014). In

cases when compositional analysis is preferred, such as when taxa are summarized

at the level of genus or higher typically leading to p < n with a lower prevalence

of zeros, our strategy of standardization could be altered in a straightforward way

by replacing penalized least squares with a regularized method for compositional

covariates (Lin et al., 2014; Shi et al., 2016).

Depending on the underlying biology, the taxonomic structure or phylogeny may

be important in the relationship between the microbiome and outcome. If so, higher

power may be achieved by using a different penalty that leverages such information.

The group LASSO selects groups of features (Yuan and Lin, 2006) and modifica-
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tions have been developed for microbiome applications incorporating multiple levels

of taxonomic hierarchy (Garcia et al., 2014). Other options include a phylogeny-

based penalty that penalizes coefficients along a supplied phylogenetic tree (Xian

et al., 2018) or a kernel-based penalty incorporating a desired ecological distance

(Randolph et al., 2018). To increase power and address the challenge of FDR con-

trol, the hierarchical taxonomic structure could be utilized in a multi-stage FDR

controlling approach (Hu et al., 2018). Applications of these methods require the

taxa assignments and phylogenetic tree, which may be incompletely elucidated for

novel microbial species, or measured with error (Golob et al., 2017; Lindgreen et al.,

2016).

While simulation studies showed our proposed approach had higher power and

better control of FDR at the nominal level compared to other approaches for most

scenarios considered, use of the BH procedure with the debiased LASSO and the

iterative SIS procedure failed to control FDR for some cases under high dimension-

ality. Recently, Javanmard and Javadi (2019) showed that the BH procedure may

fail to control FDR using the debiased LASSO due to correlation between estimates,

but we found little indication of highly correlated estimates in our simulation stud-

ies. Correspondingly, applying the Benjamini-Yekutieli adjustment (Benjamini and

Yekutieli, 2001) did not result in better FDR control. Instead, it appears our sam-

ple sizes were too small to achieve a high enough probability of the sure screening

property, leading to relevant features being screened out by the iterative SIS pro-

cedure. While additional methodological advancement is needed for valid inference

following both variable screening and selection when sample sizes are small, our

method performed competitively in recovering relevant features.

7 Conclusion

We have addressed the problem of selecting microbiome features relevant to an out-

come of interest under confounding by a categorical variable. Our results indicate

that standardization enables more accurate identification of individual microbiome

features with an effect on the outcome of interest compared to other variable selec-

tion and estimation procedures.
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Figures

Tables

Table 1 Models considered in simulation studies using penalized regression (with penalty pλ) for a

binary confounder Li ∈ {0, 1}. Ãij denotes microbiome feature j centered and scaled within each

stratum; Ȧij denotes microbiome feature j centered and scaled across all observations, regardless of

stratum.
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Additional Files

Additional file 1 — Supplementary Material

Additional simulation results and data analysis.

Additional file 2 — R Code

R and R markdown code for all simulation studies and data analysis.
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Figure 1 Simulation results Box plots of the area under the curve (AUC) from 100 simulation

replications for n = 100 and Poisson features using p-values based on the debiased LASSO

estimate following iterative sure independence screening.
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Figure 2 Simulation results Mean estimated false discovery proportion (FDP) for n = 100 and

Poisson features at varying nominal false discovery rate (FDR) values using Benjamini-Hotchberg

adjusted p-values based on the debiased LASSO estimate following iterative sure independence

screening (iterative SIS). The y = x line is shown in black; any values above this line indicate lack

of FDR control.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.09.243188doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.09.243188
http://creativecommons.org/licenses/by/4.0/


Goren et al. Page 25 of 25

Table 2 Variable screening and selection for models considered in simulation studies for a binary

confounder Li ∈ {0, 1}.

Model Variables screened Maximum model size

Conditional Std {βl1, . . . , βlp} (independently ∀l) dl = bnl/ log(nl)c ∀l
Select L {β1, . . . , βp, L} d = bn/ log(n)c
Select L EffMod {βl=0

1 , . . . , βl=0
p , βl=1

1 , . . . , βl=1
p , L} d = bn/ log(n)c

Require L {β1, . . . , βp} (given L) d = bn/ log(n)c
Require L EffMod {βl=0

1 , . . . , βl=0
p , βl=1

1 , . . . , βl=1
p } (given L) d = bn/ log(n)c

Ignore L {β1, . . . , βp} d = bn/ log(n)c
Ignore L EffMod {βl=0

1 , . . . , βl=0
p , βl=1

1 , . . . , βl=1
p } d = bn/ log(n)c

Table 3 Sorghum study analysis results: features with a significant effect on sorghum root ODPA

production in the study population with FDR control at the 0.05 level using the Benjamini-Hochberg

(BH) procedure on the debiased LASSO estimate following sure independence screening (iterative

SIS). The corresponding conditional estimates and rarefied mean abundance (standard deviation) is

also presented.

Standardized Conditional: High N Conditional: Low N

Feature Estimate q-value Estimate q-value Mean (SD) Estimate q-value Mean (SD)

Order
3.18 < 0.001 6.36 < 0.001 56.8 (10.6) 0.00 1.000 52.5 (10.2)

Rhodocyclales

Family
4.68 < 0.001 0.00 1.000 13.4 (4.0) 9.37 < 0.001 5.1 (2.2)

Rhodospirillaceae

Genus
3.72 < 0.001 7.45 < 0.001 6.9 (6.5) 0.00 1.000 1.6 (1.5)

Massilia

Unnamed Order
1.53 0.001 3.06 0.001 6.7 (3.5) 0.00 1.000 10.9 (5.8)

Sva0725
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