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Abstract: 

Placozoa are small disc-shaped animals, representing the simplest known, possibly 
ancestral, organization of free-living animals. With only six morphological distinct cell 
types, without any recognized neurons or muscle, placozoans exhibit fast effector 
reactions and complex behaviors. However, little is known about electrogenic 
mechanisms in these animals. Here, we showed the presence of rapid action potentials 
in four species of placozoans (Trichoplax adhaerens [H1 haplotype], Trichoplax sp.[H2], 
Hoilungia hongkongensis [H13], and Hoilungia sp. [H4]).  These action potentials are 
sodium-dependent and can be inducible. The molecular analysis suggests the presence 
of 5-7 different types of voltage-gated sodium channels, which showed substantial 
evolutionary radiation compared to many other metazoans. Such unexpected diversity 
of sodium channels in early-branched animal lineages reflect both duplication events 
and parallel evolution of unique behavioral integration in these nerveless animals. 

 

Keywords: Placozoa, Trichoplax, Hoilungia, Evolution, basal Metazoa, voltage-gated 
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Highlights 

• Placozoans are the simplest known animals without recognized neurons and muscles  

• With only six morphological cell types, placozoans showed complex & rapid behaviors 

• Sodium-dependent action potentials have been discovered in intact animals  

• Voltage-gated sodium channels (Nav) in Placozoa support a rapid behavioral integration 

• Placozoans have more Nav channels that any studied invertebrate animal so far 

• Diversification of Nav-channels highlight the unique evolution of these nerveless animals 
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1. Introduction  

The origin and early evolution of 

electrogenic mechanisms for behavioral 

integration in animals are elusive[1-3]. A 

diverse set of voltage-gated ion channels and 

all-or-none action potentials have been 

described in ctenophores - descendants of 

the earliest-branching metazoans, which 

independently evolved neuro-muscular 

systems[4,5]. On the other hand, Porifera 

might exemplify secondary simplification of 

features, and many sponges lost some 

ancestral traits such as sodium voltage-gated 

channels[6,7]. However, slow (likely 

calcium) action potentials can be recorded 

from glass sponges[8,9]. 

Thus, representatives of Placozoa 

(the third branch on the animal tree of life) 

can be critical reference models to decipher 

the development of integrative mechanisms 

in Metazoa[10-14]. Although placozoans 

might contain more than one hundred 

marine species[15], most information about 

the group is based on the study of 

Trichoplax adhaerens - the founding 

member of the phylum. These 0.5-2 mm 

disc-shaped benthic grazers are the simplest 

free-living animals[16], with only six 

morphologically recognized cell types[17].  

Despite stunning morphological 

simplicity, placozoans have a complex 

behavioral repertoire[18-23], including 

social behaviors[24] and ultrafast 

contractions[25] as well as a complex 

system of intercellular 

signaling[17,18,22,26-30] . But the cellular 

bases of behavior in T.adhaerens and related 

species are unknown. We hypothesize that 

placozoans have developed all-or-none 

action potentials to support the rapid 

propagation and integration of electrical and 

chemical signals across cell layers. A 

specialized meshwork of fiber cells, located 

in the middle layer of cells, was considered 

to be an analog of the neural and muscular 

systems[16], but no synapses and no gap 

junctions have been described 

morphologically[16,17]. The innexins and 

connexins – the canonical gap junction 

proteins are not encoded in the sequenced 

genome of T.adhaerens and its 

kin[14,31,32]. Adherent junctions do 

facilitate diffusion of potential nutrients into 

the animals[33], but it is unknown if they 

participate in the propagation of any 

electrical signals.  

Ultrasmall sizes of most of the 

placozoan cells (3-5µm), their extremely 

fragile nature, significantly limit the 

application of patch-clamp protocols for 

direct electrophysiological studies.  

Furthermore, a very high level of 

autofluorescence also restricts the usage of 

voltage-sensitive dyes for these animals. 

Both voltage-gated T-type calcium[34] and 

leak sodium[35] ion channels have been 

recently cloned and expressed in 

heterologous systems. These studies 

provided the first insights into the placozoan 

electrophysiology. Also, two types of 

sodium voltage-gated ion channels have 

been indentified in Trichoplax[6,36,37], and 

they might belong to the Nav2-like family of 

the channels with possible Ca2+-

selectivity[37-40]. However, no successful 

recordings were performed from intact 

animals, and it is unclear whether 

regenerative and/or Na+-dependent action 

potentials exist in placozoans. 

Here, we performed 

electrophysiological tests on representatives 

of two placozoa genera (Trichoplax and 

Hoilungia) and provided the evidence for 

the presence of rapid Na+-dependent action 

potentials. We also revealed a surprising 

diversity of sodium voltage-gated channels 

in all four investigated species as well as 

candidates for other diverse families of 

cationic channels. Our data suggest parallel 
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evolution and prominent diversification of 

mechanisms controlling excitability in these 

nerveless animals. 

 

2. Materials and methods 

2.1. Animals  

 Three different species, Trichoplax 

adhaerens (haplotype H1), Trichoplax 

sp.(H2), and Hoilungia 

hongkongensis(H13)[31], were maintained 

in the laboratory culture; animals were fed 

on rice grains and algae as described 

elsewhere[23]. Hoilungia sp. (H4) were 

maintained in 10-40 L marine aquaria and 

fed on three species of algae (Tetraselmis 

marina, Spirulina versicolor, Leptolyngbya 

ectocarpi)[28,41]. 

 

2.2. Electrophysiological 

experiments 

In all tests, animals were placed in 

3mm Petry dishes, and experiments were 

conducted under differential contrast 

microscopy (DIC, Olympus BX51WI 

microscope, n=49 specimens). Extracellular 

recordings were performed using glass 

microelectrodes. The microelectrodes were 

made from borosilicate glass capillary 

(BF150-86-10) on a Sutter p-1000 puller 

(Sutter,USA) and filled with artificial 

seawater or equimolar sodium-free solution.  

The extracellular signals were filtered from 

300 to 10000 Hz, amplified (x50) with 

MultiClamp 700B amplifier (Molecular 

Devices,USA), digitized at 20 kHz using 

Digidata 1500 and recorded using PCLAMP 

software (Molecular Devices,USA). 

To reduce movements, placozoans 

were immobilized in 1% agarose made 

either artificial seawater (ASW: NaCl-

450mM, KCl-13.4mM, MgCl2-24mM, 

CaCl2-9.5mM, MgSO4–5mM; pH=8.0) or 

sodium-free seawater, where NaCl was 

replaced by N-methyl-d-glucamine (NMDG, 

390mM, pH=8.0)[42]. Initially, 1% agarose 

and seawater were heated to 40oC, and then 

we placed a small (<0.1-0.2 mL) drop of the 

agarose solution at room temperature. Using 

a pipette with 10µm of ASW, we transferred 

a specimen into the same dish and placed it 

on ice for about 10sec, which prevented 

damage to the animals. Thus, we embedded 

a placozoan in the middle of the agar drop, 

and a small agar block with the animal was 

placed into a recording chamber filled with 

ASW or a given extracellular solution. The 

small sizes of agar block hold the animals, 

allowed to perform microelectrode 

recordings and change solutions as needed. 

Placozoans were monitored under DIC 

microscopy and were well-maintained for 

several hours for long-term observations and 

physiological tests. Statistical analyses of all 

electrophysiological and pharmacological 

tests were performed using paired Students’ 

t-tests.  

2.3. Comparative bioinformatic 

analyses 

We used the data from 18 genomes 

of basal metazoans and two 

choanoflagellates (Supplement 1) for the 

presence of sodium and calcium channels. 

All accession numbers, gene IDs, and 

sequences are listed in Supplement 2. The 

search for possible Nav and Cav homologs 

and computational annotation of predicted 

gene functions was performed using 

sequence similarity methods(BLAST) 

algorithm and protein domain 

detection(Pfam and SMART[43,44]). 

Human Nav and Cav protein sequences were 

used as queries to search target proteomes. 

All hits with the score at least 100 were put 

as queries in BLAST search against the 

SwissProt database to infer their family 

assignment and completeness. 

Protein sequences were aligned in 

Mafft[45] with default settings. 
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Phylogenetic trees were inferred using the 

Maximum Likelihood algorithm 

implemented in IQTREE web server[46]. 

Tree robustness was tested with 1000 

replicates of ultrafast bootstrap. 

 

3. Results  

3.1. Induced action potentials in 

placozoans  

Fig.1 shows one of the tested 

placozoan species (Hoilungia), which are 

flat animals (20µm in ‘dorso-ventral’ 

orientation).  For electrical recordings, we 

used extracellular glass microelectrodes with 

the initial resistance 1-2MΩ. Applying 

negative pressure inside the pipette on 

contact with placozoan cells increased the 

resistance of microelectrodes to 6-18MΩ. In 

general, no spontaneous action potentials 

were recorded. However, electrical 

stimulation (10-150nA pulses, 0.5-2sec) 

induced a burst of electrical signals (Fig. 

1B,C,H), and these types of responses were 

observed in each of the four tested species of 

Placozoa (Fig.1S Supplement). The 

averaging of 50-1000 electrical responses 

revealed a class of regenerative electrical 

signals, which we recognized as action 

potentials. They were similar to action 

potentials observed in other basal metazoans 

and bilaterian animals (including mammals), 

where recording is performed either from 

nerves or around neuronal somata[47].  It is 

also possible to see different shapes of these 

action potentials (Figs. 1C,H,2B), which 

likely reflect different positions of recording 

electrodes. Of note, the duration of these 

action potentials is short (compared to the 

majority of invertebrates[47]), and the 

averaging of the signals was ~3ms, which is 

comparable to some fast-spiking activity 

(also shorter action potentials, 1-2ms, were 

recorded).  

The specialized crystal cells were 

recently discovered in both Trichoplax[17] 

and Hoilungia[31,41]; they were identified 

as the gravity sensors[48]. These cells are 

easily recognized in intact animals under 

differential contrast illumination due to the 

presence of a large aragonite crystal in each 

cell (Fig. 1D). These cells are also easy to 

isolate (Fig. 1E), and they are relatively 

large for single-cell recording (Fig. 1F). Fig 

1G shows a prominent burst of fast action 

potentials induced in the crystal cells.  

3.2. Sodium-dependence of spikes in 

placozoans  

Short durations of the recorded 

electrical signals in placozoans suggest that 

these action potentials reflect the activity of 

sodium-type ion channels. To test this 

possibility, we replaced the standard 

artificial seawater with sodium-free solution, 

were NaCl was substituted by N-methyl-d-

glucamine (NMDG) to preserve the 

osmolarity.  As in control tests – animals 

were immobilized in small blocks of 1% 

agarose, which limited movements of 

animals but allowed changing of solutions. 

The induced electrical activity was 

reversibly eliminated in Na-free NMDG 

solution, suggesting sodium-dependence of 

observed action potentials (Fig.2). Of note, 

direct placement of free-moving placozoans 

in the NMDG solution induced dissociation 

of animals into cells within 30-60 mins. 

Thus, as a control test, we placed animals in 

the 1% agar block made of Na-free solution, 

where the animals preserved their shape; 

then, we were able to use an extracellular 

electrode filled with different solutions to 

test the presence/absence of Na-dependent 

action potentials. Applying a small positive 

pressure during the recording, we carried out 

microapplication of the solution inside the 

electrode directly to the recording site. Here, 

we showed that when the electrode was 

filled with Na-free solution, no action 
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potentials were induced by current pulses, 

but the spikes were restored when the 

electrode filled with NaCl-containing 

artificial seawater was used (Fig. 

2C,D;n=14).    

3.3 The Diversity and Structure of 

sodium channels in Placozoa 

Na+-dependent action potentials in 

placozoans could be mediated by two 

classes of voltage-gated cation channels 

(Cav and Nav, Fig.3B) with a shared 

topology containing 24 transmembrane 

(TM) helices, which are four repeats of 6TM 

domains[36,37,40,49,50] evolved from 

prokaryotic ancestors[37,51]. One sodium-

conducting Cav3 and two Nav channels in 

Trichoplax have been reported[6,36,37,50].  

Here, we identified five Nav in both 

Trichoplax species (H1, H2 haplotypes) and 

seven channels in each species of the genus 

Hoilungia (Figs. 3A, and 4).  It appears that 

in the lineage leading to Hoilungia, there 

was one additional duplication event 

generating novel Nav orthologs (Fig. 4). 

Thus, the discovered diversity of Nav-type 

channels in Placozoa is significantly higher 

than it was anticipated and observed in other 

basal metazoans, including ctenophores, 

sponges, and most of the bilaterians, except 

vertebrates.  

The pore motifs controlling 

calcium(EEEE/EEDD) or 

sodium(DEKA/DKEA) ion selectivity is 

highly conservative over 800 million years 

of evolution and can be predicted based on 

the presence of negatively charged amino 

acids such as aspartate(D) and glutamate(E) 

and a positively charged lysine(K)[6,36-

38,52,53]. Fig. 3A illustrates a much greater 

diversity of the pore/ion selectivity filter 

motifs discovered in placozoans compared 

to other studied groups, including cnidarians 

and many bilaterians (Supplement 3-6).   

Of note, some pore motifs contain 

polar uncharged amino acids - threonine(T) 

and serine (S), suggesting distinct 

characteristics of voltage-gated channels in 

Placozoa. Specifically, in both Trichoplax 

and Hoilungia, we identified novel 

combinations for selective filters responsible 

for Na+ pore permeability (Fig.3A): DEDA, 

DEET, DEDT, DEDS, and already known 

from other species DEEA, characteristic for 

Nav2-type of the channels with less specific 

cation selectivity[37].  

 

Discussion  

The observed diversity of Nav 

channels and their motifs in Placozoa also 

implies differences in their functions, 

cellular and subcellular localization, and 

pore selectivity – all to be tested 

experimentally in future studies.  The 

presence of distinct pore motifs suggests that 

both Na+ and Ca2+ permeability occurred in 

Nav-like and Cav3-like channels[34,37,50]. 

The involvement of Cav3-like channels in 

Na-dependent action potentials is highly 

likely, but their kinetics can be slower[34]. 

Some medusozoans (Cnidaria) and 

bilaterians (including humans) 

independently developed Nav1-type 

channels with very fast activation kinetics 

and high selectivity for Na+ vs. 

Ca2+[6,36,37,40,49,54]. This metazoan-

specific innovation is associated with the 

presence of a single positively-charged 

lysine (K) in the selective filter region, 

leading to DEKA and DKEA motifs for 

humans and jellyfishes, 

respectively[36,37,40,49,51]. In two species 

of Hoilungia (H4 and H13 haplotypes), we 

also identified lysine (K) but in the 4th vs. 

the 2nd positions (as in jellyfishes) of the 

second domain (DII, Fig. 3A), suggesting 

faster kinetics for placozoans’ Nav.  
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We detect genes encoding Nav-type 

channels in ctenophores (which is not 

surprising due to their predatory lifestyle 

and complex behaviors) and in the sessile 

calcareous sponge  Sycon; Fig. 4 shows that 

additional/putative voltage-gated cationic 

channels can be discovered in basal 

metazoans (although we do not exclude the 

presence of possible pseudogenes). In 

contrast, the desmosponges likely lost 

sodium voltage-gated channels. 

The systemic functions of ion 

channels in placozoans are unknown.  The 

detection of the action potential in the 

crystal cells is an important indication of the 

role of fast signaling in the control of the 

geotaxis and spatial orientation. However, 

systematic analysis of cellular and 

subcellular expression of Nav as well as 

pharmacological and imaging studies would 

be essential to characterize cellular and 

biophysical bases of rapid (Na-dependent) 

responses in these animals. The diversity of 

predicted Nav channels might also reflect the 

resistance of placozoans against potential 

toxins.   

In summary, the revealed adaptive 

radiation of Nav in Placozoa and the 

appearance of additional channel orthologs 

in Hoilungia (compared to Trichoplax) 

emphasize the importance of Placozoa for 

deciphering the evolution of integrative 

functions in animals and discoveries of 

novel properties of ion channels in these 

cryptic animals. 
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Figure 1. Electrical activity in Placozoa. A) A general view of Hoilungia hongkongensis (the 

focus is on the upper side of this disc-shaped animal). B, C) Extracellular recording from an 

intact animal. Depolarization by 50nA current repetitively induced a burst of action potentials. 

C) Illustrative examples of different electrical responses following a single depolarization pulse; 

an insert shows the shape of a normalized signal, which was obtained by averaging of several 

dozen action potentials within a given response to a depolarization pulse (lower trace). D-G) 

Patch recording from a single crystal cell. D) A view of the rim area of Tricholax sp.(H2), arrows 

show the position of crystal cells (gravity receptors[48]), which can easily be observed under 

DIC illumination. E) Isolated crystal cells (cc); these cells can be isolated together with fiber 

cells (fc). F) The image shows the electrode with a single crystal cell (note a visible aragonite 

crystal - arrow). G) Electrical recording from a single crystal cell (current pulse: 20nA). H) 

Different shapes of spikes recorded from Hoilungia. Scale: A-100µm; D–50µm; E–10 µm. 
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Figure 2. A) Action potentials in response to 150nA current pulses (shaded area, 2s). B) The 

averaged action potential (AP) from all recorded action potentials (n=911). C) An illustrated 

example of a typical response to a single current pulse in the artificial seawater [ASW] (with 

Na+, red trace) and in the Na+-free solution (NaCl was replaced by N-methyl-D-glucamine 

(NMDG), blue trace). D) A histogram shows average numbers of APs to single current pulse in 

the presence of Na+ [red,ASW] and in the Na+-free solution(blue); Students’ paired t-test, 

****p<0.0001,n=14).  
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Figure 3. Voltage-gated sodium channels(Nav) in Placozoa revealed a remarkable diversity 

of ion selectivity pore motifs. All metazoan’s Nav have the same 4-domain organization, 

acquired from ancestral eukaryotes[6,36,38,40,49,55]. Here, choanoflagellates are used as the 

outgroup (Fig.4). A) The table shows critical amino acids of Nav domains (D1-DIV),  which 

contribute to pore selectivity motifs (marked as SF–Selectivity Filter)[37]) and inactivation gates 

(In.Gate). Top four entries represent human Nav1; these channels contain a critical lysine (K) in 

the pore region, which is responsible for sodium selectivity[6,36,37]. B) Schematic organization 

of a generalized sodium channel. Each of the four Nav domain (I-IV) contains six transmembrane 

loops (1-6), the pore region with four key amino-acids (indicated by circles) responsible for ion 

selectivity (table A). The voltage sensor is indicated as +. A region responsible for inactivation is 

located between domains DIII and DIV. Selectivity pore motifs are from Homo Nav1 

subtypes[6,36,37]. C) WebLogo representation[56] of four critical amino acids forming ion 

selectivity filters (SF), as calculated from table A for each of the Nav domains (DI–DIV). D-E) 

The reconstruction of a hypothetical 3D-structure of the Nav-1-like channel from Trichoplax 

adhaerens (TriadITZ_003340). D) Top Nav view is  based on pdb ID: 6A90 modeling[57]). E) 

Side view of the same Nav-1-like Trichoplax channel generated using Phyre2 modeling[58]. The 

structural model is close to the human Nav1.4 type, where a ‘detection’ pocket is marked by red, 

and located close to the inactivation gate (arrow). 
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Figure 4. The diversity and evolutionary relationships of voltage-gated sodium and calcium 

channels in Metazoa and two species of choanoflagellates (Monosiga and Salpingoeca) as 

outgroups. 207 protein sequences were aligned with Mafft[45]. The phylogenetic tree was 

reconstructed using Iqtree[46] with the VT+G4 evolutionary model. Abbreviations: Nav–voltage-

gated sodium channels, Cav-voltage-gated calcium channels, NALCN–sodium leak channels. 

Clade labeled “Putative ion channels” correspond to the group of sequences with no 

experimentally studied homologs, which mostly present in early-branching metazoan lineages. 

Placozoan species are denoted by mitochondrial haplotypes: H1–Trichoplax adhaerens, H2–

Trichoplax sp., H13–Hoilungia hongkongensis, H4–Hoilungia sp. Selective groups of 

ctenophores, cnidaria, and sponges are collapsed here, but Fig.1S(supplement) shows the 

expanded version of this tree. The references for each particular species, gene and/or their 

sequences with relevant GeneBank accession numbers are summarized in the supplementary 

excel Table S1.  
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