
Deep Learning assisted Peak Curation for large scale
LC-MS Metabolomics

Yoann Gloaguen1,2,3, Jennifer Kirwan1,3, Dieter Beule2,3,4

1Berlin Institute of Health Metabolomics Platform, 10178 Berlin, Germany
2Core Unit Bioinformatics, Berlin Institute of Health, 10178 Berlin, Germany
3Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
4Charité—Universitätsmedizin Berlin, 10178 Berlin, Germany

ABSTRACT
Available automated methods for peak detection in untargeted metabolomics suffer from
poor precision. We present NeatMS which uses machine learning to replace peak curation
by human experts. We show how to integrate our open source module into different LC-
MS analysis workflows and quantify its performance. NeatMS is designed to be suitable for
large scale studies and improves the robustness of the final peak list.

MAIN
Liquid chromatography-mass spectrometry (LC-MS) is a widely used method in untargeted
metabolomics. The post-acquisition raw data processing which aims to detect compound
related peaks and distinguish them from noise signals is still a major challenge. Many
algorithms and tools have been developed to address this challenge (e.g. XCMS1,
MZmine2, Optimus3). Pipelines for the automatic LC-MS raw data processing usually
consist of the following steps: definition of regions of interest (ROI), detection of
chromatographic peaks, quantification of these peaks, peak matching or grouping for
samples within the batch or analysis, clustering of peaks belonging to the same
compound. XCMS and MZmine are the most widely used open source software which
perform all these steps and provide the user with a table of peaks found in the spectra and
their integral intensities for each sample. However, there is a tendency for peak picking
software to over-pick peaks (i.e. creating a high number of false positives4), poor
consistency between software is another major issue5. Both issues may obstruct or
impede downstream analysis and biomedical interpretation of metabolomics studies and
thus some kind of manual peak curation is still the norm. This also makes analysis of large
scale studies extremely laborious and limits reproducibility of analysis. Recent progress in
machine learning (ML) algorithms6 and availability of affordable parallel processing
hardware (GPUs) has sparked application of deep learning methods in both GC-MS7,8 and
LC-MS in peak detection9,10. ML has also been used for intra and inter batch correction11
in LC-MS.

Here we introduce NeatMS which is designed to serve as an independent deep learning
based peak filter tool in existing analysis pipelines. It addresses the over-picking issue by
automatically evaluating and classifying peaks based on quality. To achieve this, we
introduce three peak quality classes (high, acceptable, “poor quality or noise” – henceforth
called noise) and provide a pre-trained neural network to allow for out of the box usage.
Transfer learning and complete retraining are also supported, see methods. NeatMS can
be easily integrated into existing workflows, see Figure 1.a, it uses a convolutional network
architecture shown in (Figure 1.b). Further algorithm details are given in the methods
section.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.09.242727doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.09.242727
http://creativecommons.org/licenses/by/4.0/

Figure 1: (a) Integration of NeatMS (red) into an existing workflow (blue): Samples are run
through the LCMS data acquisition, raw data is processed using standard automated tools
to extract peaks, both raw data and extracted peaks are used as input for NeatMS that
assigns them to three classes: high quality, acceptable or noise. The classification
information can be used in the downstream analysis. NeatMS comes with a pre-trained
network and includes all components for retraining and transfer learning.
(b) Architecture of the neural network: NeatMS includes a 2D convolutional base for
feature extraction and a classifier made of two fully connected layers. This architecture
was chosen due to its high performance in object detection and pattern recognition12. The
max pooling layer between the convolutional layers reduces data size in the retention time
dimension. This enables a higher abstraction of the data and reduces the number of
learned parameters and thus helps to prevent overfitting as well as to reduce
computational training effort. The classifier is made of two fully connected layers and uses
a softmax function to produce three output values which correspond to the peak classes.

To evaluate the performance of NeatMS we use two data sets with known chemical
standards (CS). Dataset 1 consists of 20 quality control samples from the Biocrates P400
kit13 consisting of 80 chemical standards (CS) at proprietary concentrations in a lyophilized
plasma matrix. Dataset 2 is based on the Biocrates kit calibration sample “Cal 1”, which is
matrix free and contains 41 chemical standards. We created a serial dilution in water
(1:1.2, 1:1.4, 1:1.6, 1:1.8, 1:2, 1:3, 1:5, 1:7.5, 1:10, 1:15, 1:20, 1:30, 1:50 and 1:100).
Following dilution, we added 39 compounds (Biocrates internal standard mix) at the same
concentration to each sample to act as internal standards. Each dilution was measured in
triplicate. The object of this dilution series was to objectively assess how NeatMS

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.09.242727doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.09.242727
http://creativecommons.org/licenses/by/4.0/

performed over a range of peak intensities. All data was acquired following Biocrates P400
kit standard protocol on an Agilent 1290 coupled with a Thermo QExactive instrument.

Our NeatMS analysis first evaluates the pre-trained (PT) model. This initial model was
trained on a wide range of peak shapes (see methods). Additionally, we used transfer
learning to adapt the PT model to the actual dataset 1 by manually assigning a small
subset of peaks to the correct quality class and using an 80/10/10 training/test/validation
approach (see methods for details); we will call the second model TL. The PT as well as
the TL model are provided as supplementary material. All components needed to perform
model training and transfer learning are part of the open source NeatMS software. We
processed MZmine and XCMS centWave14 peak-picking output for set 1 and 2 using
NeatMS, employing both the PT and the TL models. Table 1 summarizes the number of
peaks and class assignments for dataset 1. Furthermore, the table shows results for the
recently published peakonly tool, which also applies machine learning on raw data to
detect high quality peaks. Table S1 summarizes all parameters and software versions
used and the methods section describes how they were chosen. Further discussion will be
focused on NeatMS using the MZmine trained TL model. Results with XCMS could likely
be further improved by creating an XCMS-specific trained model.

Table 1: Tool and model comparison using dataset 1 showing average number of peaks
found across 20 samples and average percentages of detected CS. The input row shows
the results returned by the original peak detection tools (MZmine, XCMS), other rows show
the details of the three peak classes given by NeatMS. The total number of peaks after
classification is smaller than the input due to the application of a minimum scan number
filter that NeatMS uses (default value of 5 is used).

NeatMS

MZmine TL
model

NeatMS
MZmine PT

model

NeatMS
XCMS TL

model

NeatMS
XCMS PT

model
peakonly

Peak
number

Input 6977 6977 5994 5994 1907

Classified 5505 5505 4513 4513 Not
reported

High Quality 1069 2127 2280 2635 Not
reported

Acceptable
Quality 1945 1817 714 1088 Not

reported

Noise 2491 1560 1519 791 Not
reported

CS found

Input &
classified 94.25% 94.25% 97.13% 97.13% 79.44%

High Quality 79.31% 88.19% 91.44% 92.94% Not
reported

Acceptable
Quality 11.25% 4.94% 2.13% 3.69% Not

reported

Noise (3.69%) (1.13%) (3.56%) (0.50%) Not
reported

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.09.242727doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.09.242727
http://creativecommons.org/licenses/by/4.0/

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.09.242727doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.09.242727
http://creativecommons.org/licenses/by/4.0/

Figure 2: NeatMS results for dataset 1 (A, B, C) and dataset 2 (D and E) based on TL
model and MZmine output. (a) ROC curves showing learning efficacy for three different
group separations. The curves are created using the validation set of the TL model
learning, high quality class probability returned by the model is used as the varying
parameter. (b) Box plots of RSDs: High quality peaks show lower RSD and less RSD
variability. Each feature for which peaks were present in at least 4 samples was assigned
to a quality based on the most frequently reported class. (c) Venn diagram comparing
peakonly and NeatMS. Numbers show averages over the 20 samples: total number of
detected peaks (black), percent of recovered CSs (red). On average NeatMS reports 63.5
CSs as high quality, i.e. recovers 79% of original, another 11% are considered acceptable
quality. Please note that matching peaks derived by different algorithms is challenging in
itself and not completely unambiguous, cf. methods for details. (d) Classification of
individual CS over different dilutions and for different tools, NeatMS high quality class
outperforms peakonly for most dilutions. Acceptable quality class recovers a substantial
number of additional CSs. (e) Sankey diagram showing the distribution of the 41 diluted
CSs for all 3 replicates in different quality classes and their change between dilution steps.
Each dilution step is represented by a stacked barplot, the widths of the flows between bar
plots (dilutions) represent the fraction of CSs going from one class to another.

Median relative standard deviations (RSDs) increase substantially from high quality to
noise peaks (Figure 2.b), with acceptable quality peaks falling in between. Our quality
class assignment differs strongly from conventional QC-RSD filtering methods because we
also observe many noise peaks with low RSDs. This effect is present with XCMS and
MZmine for both models (not shown). Figure 2.d and 2.e show that the CSs are
consistently found by NeatMS across various low dilution samples and generally tend to
move from high to acceptable quality as dilution increases. Eventually some fall into the
NeatMS noise category while most can no longer be detected by MZmine as the signal
decreases with increasing dilution. Figure S1 (peak width distribution) shows that the noise
class is dominated by rather broad peaks while the high quality class shows a consistent
peak width distribution independent of the peak area. This indicates that our three classes
represent a sensible quality classification for peaks. Figure 2.a (ROC curve) shows that
the learning itself was very successful, the model closely resembles the expert knowledge
of the trainer. Thus NeatMS evaluation is comparable to but much faster and much more
reproducible and consistent than human expert evaluation. While an expert may still
perform best for small numbers of peaks, NeatMS must be considered superior for large
scale studies with hundreds or thousands of samples and potentially several millions of
peaks. By including training and transfer learning functionality into our solution, we
empower researchers to adapt the learned classification and filtering optimally to their
specific data, needs and preferences.

Table 1 shows that even if we do not use transfer learning NeatMS can still deliver a useful
improvement for MZmine workflows. It substantially reduces the number of peaks that
need to be considered for downstream analysis. This facilitates e.g. differential analysis
either on only high quality or on high and acceptable quality data. For XCMS the
separation between acceptable and high quality class is not so clean due to the above-
mentioned training approach. Both MZmine and XCMS users can start working with the PT
model and will immediately improve their workflow performance and incrementally create
further improvements by training better models.

Figure 2.d shows that NeatMS high quality class equals or outperforms peakonly in CS
peak recognition for all dilutions. Additional CSs are classified as acceptable. A more
detailed comparison for dataset 1 is shown in Figure 2.c (for XCMS we find comparable

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.09.242727doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.09.242727
http://creativecommons.org/licenses/by/4.0/

results, see Figure S2). NeatMS High and Acceptable quality classes together contain on
average more than 90% of CSs. Peakonly reports an average of 1907 peaks, containing
on average 79% of the CSs. Approximately the same percentage of CS is contained in
1069 high quality peaks reported by NeatMS. The concordance is however not perfect.
Only rarely do we miss CSs that peakonly reports (0.7%). A small portion of the CS
matched signals are considered Noise by NeatMS, upon visual inspection our expert
usually agrees with the NeatMS algorithm (see Figure S5).

NeatMS requires neither high compute power nor long compute time; all data analysis
described in this manuscript can be done with a standard laptop within minutes, all
described training can be done with a modern PC within a few hours. NeatMS software is
available as open source on github under permissive MIT licence and also provided as
easy to install pipy and bioconda15 packages. NeatMS comes with a comprehensive user
documentation, tutorials, and importantly also contains an easy to use training tool. Users
can thus create their own models or improve existing one according to their specific needs.
NeatMS supports standard input and output formats and is therefore easily added into
existing workflows. Thus, it is compatible with many use cases and may help to enable
improved and reproducible data analysis for large LC-MS studies.

METHODS
Our software is designed to be easily integrated into existing workflows and is adaptable to
different measurement protocols, instruments and preprocessing tools. Therefore, NeatMS
can used in different ways. Most frequently it is used to classify an input dataset using an
existing model. NeatMS also allows the creation of new or improvement of existing models
using training data. The training data can be generated with an integrated labeling tool. For
all usage the input data formats are the same and processing always starts with a data
preparation step.

Data Preparation

Although the peak detection is performed by an external tool, workflow or pipeline, the
signal used for classification is directly retrieved from the raw data. This prevents biases
originating from data transformations applied by the different peak detection tools
(baseline correction, smoothing, etc...). Therefore, the input data of the module consists of
.csv formatted files describing the peaks detected and the raw sample files in mzML
format. Other vendor specific raw file formats can be converted into mzML format using
the msconvert tool available in ProteoWizard16. The csv input files can be generated using
standard preprocessing tools such as MZmine or XCMS. The position of the module within
standard data processing workflows is illustrated in Figure 1.a. The output of NeatMS is
again in csv format and contains the information from the input csv as well as the peak
classification and labeling generated by the software.

Before any transformation NeatMS excludes unacceptably narrow peaks from further
processing by requiring a minimum scan number of 5 (configurable minimum scan number
input filter). As the model evaluates the peak shapes and the quality of their extraction
from the raw signal (e.g. peak boundaries), it is important to provide contextual
information. This is performed by extracting a larger retention time (RT) window to
conserve the signal surrounding the peak (called peak margin thereafter). The RT window
of the signal to be extracted is defined as follow (with n = 1 by default):

RT window ∈ (peak start RT – n × peak width, peak end RT + n × peak width)

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.09.242727doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.09.242727
http://creativecommons.org/licenses/by/4.0/

A min-max normalization is then applied to the extracted signal:

�
����

�
� � ��� ��	

�
���� � ��� ��	

The resulting signal is linearly interpolated to obtain a vector of size s (120 by default). The
s/(2n+1) that is, by default, the central 40 values, represents the peak signal and the n ×
s/(2n+1) that is by default the 40 values on each side represents the peak margins as
shown in Figure 3. A second (binary) vector of length s is then created to describe whether
an intensity value (single point) is part of the peak window (1) or the margin (0). The
resulting data structure is a 2-dimensional tensor, or matrix, of size 2 × s as shown in
Figure 3. Although n and s can be adjusted by the user, the pre-trained model provided
with NeatMS has been trained using default parameters and require no adjustment when
using this model.

Figure 3: Data structure of a single peak after preprocessing for neural network feeding. s:
Size of scaled intensity vector. n: Margin width (as a fraction of peak width). I: Scaled
intensity vector of size s. W: Binary window vector of size s (0=margin, 1=Peak).

Convoluted neural network architecture

The neural network (see Figure 1.b) is built following generic convolutional network
architecture including a convolutional base for feature extraction and a classifier made of
fully connected layers. The convolutional architecture of the network was selected due to
its high performance in object detection and pattern recognition12. The convolutional base
is composed of two convolutional layers, with a max pooling layer between them. This
operation reduces by half the size of the data in the retention time dimension and enables
a higher abstraction of the data to classify, which helps to prevent potential over-fitting.
This layer also reduces the number of parameters to learn and the computational cost.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.09.242727doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.09.242727
http://creativecommons.org/licenses/by/4.0/

The classifier part of the network is made of two dense layers and produces three output
values through a softmax activation function, which corresponds to the number of peak
quality classes. ReLU (Rectified Linear Unit) activation function is used throughout the rest
of the network. The convolutional layers use a stride of 1 with a “same” padding. Kernel
size and channel number for every layer is detailed in the Figure.

Training

As mentioned before NeatMS includes a pre trained base model. This PT model has been
generated using a wide variety of peaks and can be used “as is”. However, it is possible to
achieve models that are better suited to individual user needs by training the neural
network on data generated by the specific column/instrument/peak detection workflow
combination.

The creation of a new training dataset is facilitated by an interactive visualization and
labeling tool that can be run within a Jupyter notebook17. This tool requires the same input
as the main NeatMS tool and presents the user with randomly selected peaks for manual
assignment to the three labeling classes. Typically, a few hundred peaks can be labeled
within an hour. The PT model is based on about 5000 peaks, the TL model was adjusted
using about 2500 peaks. Once the desired number of peaks have been labelled, the model
can be trained using two different approaches (full training or transfer learning, see below).
The labeled dataset is divided in an 80/10/10 training/test/validation split by default. Model
testing and validation are always performed the same way regardless of the training
approach chosen. The test set is used during the actual training process to prevent
overfitting. The validation set remains untouched during the entire training process and is
subsequently used for hyperparameter optimization. This optimization can be performed
automatically or manually, but performing it manually allows more control over the
specificity vs. sensitivity of the model. Instructions for manual process are given in the
documentation.

The training tool enables the freezing of any network layer, making it possible to select the
specific layers in which weights should be adjusted. It is, however, considered better
practice to only adjust the classifier part by freezing the entire convolutional base when the
training set is very small. Guidance on layer selection is given in the advanced section of
the documentation. This approach is especially important for transfer learning and enables
fine tuning of the pretrained models by further training specific layers18. The advantage of
this approach over full training is that it requires a much smaller training dataset and thus
less manual labeling effort. However, the tool also supports full training of entirely new
models. This approach consists of using only the network architecture and fully training the
model from scratch. This approach will produce the best results for the data being
analyzed but requires a large training dataset. Instructions on how to import models are
available in the documentation.

Data Analysis Details

To evaluate NeatMS, dataset 1 and 2 were preprocessed with MZmine and XCMS using
the versions and parameters detailed in Table S1. We choose the peakonly parameters as
suggested by the authors and also tried to further optimize them, see Figure S4.
Unfortunately, it was not possible to apply transfer learning or any retraining for peakonly
because the software does not provide the necessary components to do this. For XCMS
centWave we applied IPO24 for parameter optimisation individually for each dataset,

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.09.242727doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.09.242727
http://creativecommons.org/licenses/by/4.0/

furthermore we used the XCMS peak merging feature. For MZmine we used the
parameters recommended in the user documentation.

Our validation with dataset 1 focuses on the number of known spiked chemical standards
found by the different tools. Peak identification was performed using compound specific
RT and m/z tolerance windows provided with the Biocrates kit. To compute the final
results, percentages were calculated on the basis that all 80 compounds are detectable in
all 20 samples. The same approach was used to analyse the recovery of CSs in dataset 2.
These samples contain the same 80 CSs as dataset 1, but only 41 of the CSs were diluted
while 39 were used as internal standards and thus were at the same concentration
throughout (Figure S3.b). The Sankey diagram (Figure 2.e) was created by comparing the
peak classes of the CSs for all three replicates in the consecutive dilution points to
generate migration flows. A class corresponding to non-detected CSs was added to
conserve an even CS population size throughout. To create the Venn diagrams (Figure 2.c
and S2), peaks reported by one tool were compared to the list of peaks reported by the
other tool and considered the same when any two peaks presented a mutual overlap
higher than 50% in the RT and m/z dimensions, respectively. However, tools can differ
widely in the peak boundaries assignment for the same peak. Therefore, any peak
matching method will remain imperfect and ambiguous. This explains the non-complete
overlap of peaks found by NeatMS when compared to peakonly. To generate RSD results
in Figure 2.b we used peak alignment (using the MZmine join aligner algorithm) and
assigned the features to the most frequently found quality class across the 20 samples.
Features were retained only when present in a minimum of 4 samples.

Module

NeatMS is written in python 3.6 and is available as a python package through pypi
package installer and bioconda. The data handling and operations are performed using
NumPy19 and scikit-learn20 and the neural network is constructed using Keras21 and
Tensorflow22. As a python package, the intended use of the module is to be embedded as
an extra step within a data processing pipeline. The module can be integrated and
automatically executed by any pipeline or workflow management tool capable of running
python code. However, it can also be used as a standalone application through a
dedicated python script or within a Jupyter notebook. Several Jupyter notebooks are
provided for tutorial purposes and can serve as templates and examples. The generated
results are reported in standard .csv format and can also be exported as pandas23
dataframes for direct integration in python supported pipelines. The structure of the output
can be controlled through a dedicated method to ensure smooth integration into the
majority of data processing pipelines. Optional filters can also be turned on and
parameterized. Details about full usage of the export method are provided in the
documentation.

Data availability
The github repository contains some sample data from dataset 1, the full datasets can be
downloaded from http://doi.org/10.5281/zenodo.3973172.

Code availability
NeatMS is open-source and is freely available at https://github.com/bihealth/NeatMS
under permissive MIT license. A pypi package is available at
https://pypi.org/project/NeatMS/, a Bioconda package is available at

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.09.242727doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.09.242727
http://creativecommons.org/licenses/by/4.0/

https://anaconda.org/bioconda/neatms. The user documentation can be found at
https://neatms.readthedocs.io/en/latest/.

Acknowledgements
The authors thank Alina Eisenberger and Raphaela Fritsche for generating datasets 1 and
2, Friederike Gutmann and Mathias Kuhring for testing NeatMS and providing valuable
feedback, Eric Blanc for his valuable insight on machine learning.

References

1. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS:� Processing Mass

Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification.

Anal. Chem. 78, 779–787 (2006).

2. Pluskal, T., Castillo, S., Villar-Briones, A. & Orešič, M. MZmine 2: Modular framework for processing,

visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11, 395

(2010).

3. Protsyuk, I. et al. 3D molecular cartography using LC–MS facilitated by Optimus and ’ili software. Nature

Protocols 13, 134–154 (2018).

4. Myers, O. D., Sumner, S. J., Li, S., Barnes, S. & Du, X. One Step Forward for Reducing False Positive

and False Negative Compound Identifications from Mass Spectrometry Metabolomics Data: New

Algorithms for Constructing Extracted Ion Chromatograms and Detecting Chromatographic Peaks. Anal.

Chem. 89, 8696–8703 (2017).

5. Myers, O. D., Sumner, S. J., Li, S., Barnes, S. & Du, X. Detailed Investigation and Comparison of the

XCMS and MZmine 2 Chromatogram Construction and Chromatographic Peak Detection Methods for

Preprocessing Mass Spectrometry Metabolomics Data. Anal. Chem. 89, 8689–8695 (2017).

6. Zhang, A., Lipton, Z. C., Li, M. & Smola, A. J. Dive into Deep Learning. (2020).

7. Borgsmüller, N. et al. WiPP: Workflow for Improved Peak Picking for Gas Chromatography-Mass

Spectrometry (GC-MS) Data. Metabolites 9, 171 (2019).

8. Lebanov, L., Tedone, L., Ghiasvand, A. & Paull, B. Random Forests machine learning applied to gas

chromatography – Mass spectrometry derived average mass spectrum data sets for classification and

characterisation of essential oils. Talanta 208, 120471 (2020).

9. Melnikov, A. D., Tsentalovich, Y. P. & Yanshole, V. V. Deep Learning for the Precise Peak Detection in

High-Resolution LC–MS Data. Analytical Chemistry 92, 588–592 (2020).

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.09.242727doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.09.242727
http://creativecommons.org/licenses/by/4.0/

10. Kantz, E. D., Tiwari, S., Watrous, J. D., Cheng, S. & Jain, M. Deep Neural Networks for Classification of

LC-MS Spectral Peaks. Anal. Chem. 91, 12407–12413 (2019).

11. Rong, Z. et al. NormAE: Deep Adversarial Learning Model to Remove Batch Effects in Liquid

Chromatography Mass Spectrometry-Based Metabolomics Data. Anal. Chem. 92, 5082–5090 (2020).

12. Rawat, W. & Wang, Z. Deep Convolutional Neural Networks for Image Classification: A Comprehensive

Review. Neural Comput 29, 2352–2449 (2017).

13. AbsoluteIDQ® p400 HR Kit - Metabolomics kit for ExactiveTM. biocrates life sciences ag

https://biocrates.com/absoluteidq-p400-hr-kit/ (2020).

14. Tautenhahn, R., Böttcher, C. & Neumann, S. Highly sensitive feature detection for high resolution

LC/MS. BMC Bioinformatics 9, 504 (2008).

15. Grüning, B. et al. Bioconda: sustainable and comprehensive software distribution for the life sciences.

Nature Methods 15, 475–476 (2018).

16. Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nature

Biotechnology 30, 918–920 (2012).

17. Perez, F. & Granger, B. E. IPython: A System for Interactive Scientific Computing. Computing in Science

Engineering 9, 21–29 (2007).

18. Pan, S. J. & Yang, Q. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data

Engineering 22, 1345–1359 (2010).

19. van der Walt, S., Colbert, S. C. & Varoquaux, G. The NumPy Array: A Structure for Efficient Numerical

Computation. Computing in Science Engineering 13, 22–30 (2011).

20. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research

12, 2825–2830 (2011).

21. Chollet, F. & others. Keras. (2015).

22. Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. (2015).

23. McKinney, W. Data Structures for Statistical Computing in Python. in Proceedings of the 9th Python in

Science Conference (eds. Walt, S. van der & Millman, J.) 56–61 (2010). doi:10.25080/Majora-92bf1922-

00a.

24. Libiseller, G. et al. IPO: a tool for automated optimization of XCMS parameters. BMC Bioinformatics 16,

118 (2015).

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.09.242727doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.09.242727
http://creativecommons.org/licenses/by/4.0/

