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 2 

Abstract  24 

 25 

Here we explore how the chemical composition of particulate matter (PM) and meteorological 26 

conditions combine in shaping the air microbiome in a heavily inhabited industrial urban settlement. 27 

During the observation time, the air microbiome was highly dynamic, fluctuating between different 28 

compositional states, likely resulting from the aerosolization of different microbiomes emission 29 

sources. This dynamic process depends on the combination of local meteorological parameters and 30 

particle emission sources, which may affect the prevalent aerosolized microbiomes. In particular, we 31 

showed that, in the investigated area, industrial emissions and winds blowing from the inlands 32 

combine with an airborne microbiome that includes faecal microbiomes components, suggesting 33 

multiple citizens’ exposure to both chemicals and microorganisms of faecal origin, as related to 34 

landscape exploitation and population density. In conclusion, our findings support the need to include 35 

monitoring of the air microbiome compositional structure as a relevant factor for the final assessment 36 

of local air quality.  37 
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 3 

Introduction 38 

 39 

Airborne Particulate Matter (APM) is a complex system of particles in suspension in the atmosphere, 40 

usually defined as aerosol. Atmospheric aerosol is contributed by a multiplicity of sources of both 41 

natural and anthropogenic origin, including both biogenic and abiotic chemical components, and 42 

producing extremely complex and variable matrices that can be processed and solved for their origin 43 

using appropriate analytical processing and computational tools [1, 2]. In particular, the aerosol 44 

composition consists of a series of macrocomponents, which make up the mass of APM, as well as 45 

an even larger series of different trace components, the latter being of primary relevance as including 46 

the most toxic species and providing the highest chemical fingerprinting potential [3]. These aerosol 47 

bulk components can be emitted directly into the atmosphere (Primary Aerosol) or, otherwise, they 48 

can be abundantly produced within the atmosphere, following chemical reactions on gaseous 49 

precursors previously emitted (Secondary Aerosol). Primary Biological Aerosol (PBA), in short 50 

bioaerosol, represents the APM fraction including atmospheric particles released from the biosphere 51 

to the atmosphere [4]. PBA comprise living and dead organisms, their dispersal units (e.g. pollen and 52 

spores) as well as tissue fragments from decay processes [5, 6]. The overall mass contribution of PBA 53 

to conventional APM metrics is to date a very challenging task though some authors have recently 54 

estimated that it may account for about 16% of PM10 in different cities examined [7]. The PBA 55 

fraction including microorganisms is defined as “airborne microbiome” (AM) and represents a highly 56 

dynamic and diversified assemblage of active and inactive microorganisms [8]. Indeed, AM can 57 

originate from multiple terrestrial and marine sources - including resident microbiomes in soil, 58 

waterbodies, plants and animal faeces [4, 9] - whose relative importance depends season, location, 59 

altitude and meteorological and atmospheric factors. Further, in agricultural and suburban locations, 60 

other sources relevant to AM emissions are represented by man-made systems, such as agricultural 61 

waste, composting, and wastewater treatment plants. AM emission mechanisms include erosion or 62 

abrasive dislodgement from terrestrial sources and, from open waters, bubble-bursting at the air-water 63 
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interface [10, 11]. PBA size spans from a few nanometres up to about a tenth of a millimetre [5], with 64 

bacteria-containing particles ranging around 2-4 μm in diameter [12] and accounting for “5–50% of 65 

the total number of atmospheric particles >0.2 μm in diameter” [13]. Due to the small size, AM can 66 

be transported over large distances, across continents and oceans, and reach the upper troposphere, 67 

where it actively contributes to ice nucleation and cloud processing [14]. In the troposphere, the AM 68 

concentration ranges from 102 to 105 cells/m3 [12], being the densest in the planetary boundary layer, 69 

whose thickness depends on micrometeorological factors and geographic location, with marked daily 70 

and seasonal fluctuations [15, 16]. In particular, the near-ground AM is the one most influenced by 71 

local sources, including local meteorology and atmospheric composition. AM is then removed from 72 

the troposphere by wet and dry deposition processes. The former is the major sink for atmospheric 73 

aerosol particles, in the form of precipitation [17], while the latter, being less important on the global 74 

scale, is particularly relevant with respect to local air quality [4, 8]. 75 

Recently, an increasing perception of the strategic importance of PBA - AM in particular - for the 76 

Earth system and, ultimately, for the planet and human health, has arisen [18-20]. For instance, 77 

besides its relevance to atmospheric processes, AM has been found to control the spread of 78 

microorganisms over the planet surface, affecting the geographical biome, with key implications on 79 

agriculture and, ultimately, human health. This awareness raised concern about the potential impact 80 

of anthropic activities on PBA and, in particular, on the AM fraction. For example, changes in aerosol 81 

composition due to extensive human influence on the planetary scale give rise to air pollution, the 82 

inherent modification of atmospheric reactivity and, ultimately, climate change [21]. These factors 83 

may likely interfere with AM, shaping its structure and dispersion throughout the troposphere, with 84 

direct consequences on the terrestrial biome [22]. However, as far as we know, the current state of 85 

knowledge on the connections between AM, atmospheric processes and atmospheric pollution is still 86 

fragmentary, especially due to the lack of a cross-cut approach. Therefore, in this work, we explore 87 

the ability of an interdisciplinary approach combining chemical speciation and metagenomics in 88 

shedding light on the complex relationships among abiotic and microbiome components of local 89 
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ambient aerosol. The study is based on a series of about one hundred PM10 samples from a coastal 90 

district in north-western Italy, collected daily over six months, from February to July 2012, to cover 91 

the cold-to-warm seasonal transition. The chemical composition of each sample was obtained, and a 92 

receptor modelling approach was used to identify and quantitatively apportion the chemical species 93 

determined in the samples to their sources. Owing to the cutoff adopted in APM sampling, the 94 

samples were deemed suitable for total DNA extraction and microbiome characterization by Next-95 

Generation Sequencing using the 16S rRNA gene as target. In our work, we were able to finely 96 

reconstruct the overall aerosol behaviour in an area affected by both natural and anthropogenic 97 

emission sources, determining the local bacterial microbiome from PBA contained in PM10 and its 98 

main features as a function of local meteorological and environmental characteristics. 99 

 100 

Materials and methods 101 

 102 

Site description.  103 

The PM10 samples treated in this work were collected in Savona, one of the main towns in the 104 

Ligurian region (Figure 1). The whole region overlooks the Tyrrhenian sea but is entirely occupied 105 

by the Appenninic range down to the coast, where only a narrow strip of plain is present. Therefore, 106 

the coastal area is densely inhabited and crossed by an extremely busy traffic road mainly connecting 107 

Italy to France. Besides being occupied by a medium-size heavily inhabited urban settlement, the 108 

Savona district also hosts a wide industrial area, including a coal-fired power plant active at the time 109 

of our experimental field activity and a large and very busy harbour. The climate of this site is 110 

classified as warm-temperate (Csa, according to Köppen and Geiger classification) [23-24] with an 111 

average annual temperature of 14.6°C and average precipitation of 910 mm (https://en.climate-112 

data.org, accessed 28/07/2020). Intense northern winds characterize the circulation in winter [25], 113 

while sea-land breeze regimes prevail in the warm season, usually starting from March [26, 27].  114 

 115 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 7, 2020. ; https://doi.org/10.1101/2020.08.06.239947doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.06.239947
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

116 
Figure 1 – Location of the sampling site. Map providing the location of Savona in Italy (indicated with a yellow balloon 117 
with a star; other Italian cities are indicated with a green balloon) (top panel), and snapshot of the PM10 sampling site 118 
with a 3D view of the surroundings (bottom panel) (source: Google Earth; map data: SIO, NOAA, U.S. Navy, NGA, 119 
GEBCO, TerraMetrics). 120 
 121 

Sample collection and atmospheric parameters.  122 

A total of 184 daily PM10 samples were collected from February 1, 2012, until July 20, 2012 with 123 

low-volume samplers (SWAM Dual Channel, 55.6 m3/day, FAI, Italy) to allow simultaneous 124 

collection of both quartz (Whatman ®QM-A quartz) and PTFE membranes (Whatman PM2.5 PTFE). 125 

Samples were stored frozen in the dark at -10°C until processing. In this work, PTFE membranes 126 

were used for gravimetry, ion chromatography and elemental analysis with particle induced X-ray 127 

emission and inductively coupled plasma mass spectrometry, while quartz membranes were used for 128 

the analysis of carbonaceous macrocomponents and microbiology. A subset of 98 samples, uniformly 129 

distributed across the sampling period, was used for the analyses reported in the present paper. During 130 

the sampling campaign, meteorological parameters were measured simultaneously on site using a 131 
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 7 

Davis Vantage Pro2 Weather Station (Davis Instruments, Hayward, CA), placed in proximity of the 132 

PM10 sampler, for the measurement of temperature, pressure, relative humidity, rainfall, and wind 133 

direction and speed with a time resolution of 30 min. Subsequently, the data obtained were averaged 134 

on a daily scale (Supplementary Table S1), i.e. at the same time resolution as the PM10 samples, 135 

using the “openair” package [28] of the R software (version 3.6.1; https://www.r-project.org/).  136 

 137 

Chemical characterisation of the samples. 138 

Chemical characterization of PM10 filters was carried out using several analytical techniques. First, 139 

PM10 mass load (μg/m3) was determined by gravimetric analysis. Elemental and organic carbon were 140 

determined on quartz membranes by thermal-optical transmittance analysis (TOT), as previously 141 

described [29]. For inorganic speciation, several analytical techniques were performed on PTFE filter 142 

portions: Ion Chromatography (IC) for the determination of the main water-soluble ion composition 143 

(NH4+, K+, Mg2+, NO3-, SO42-, Na+, Cl-, Ca2+, and a few low-level organic compounds, i.e. oxalates 144 

and methanesulfonate), and Particle Induced X-ray Emission (PIXE) and Inductively Coupled Plasma 145 

Mass Spectrometry (ICP-MS) for the simultaneous analysis of a series of metals and metalloids (Na, 146 

Al, Si, Cl, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Pb, Li, Co, Rb, Sr, Cd, La, Ce, Sb, Cs, Ba, Ti, Bi, 147 

As, Se, Sn). Elemental analysis by PIXE was carried out at the Tandetron 3 MeV of LABEC-INFN, 148 

Florence (Italy), according to the method previously reported [30]. Elemental analysis by ICP-MS 149 

was carried out according to the UNI EN 14902, 2005 for PM10 as an extension of the DL 155, 2010 150 

in agreement with the EU Directive 2008/50/EC on ambient air quality and cleaner air for Europe. In 151 

order to prevent data redundancy, insoluble magnesium (Mg ins) and insoluble potassium (K ins) 152 

were calculated as the difference between PIXE and IC concentrations and replaced the 153 

corresponding elementary concentration data. 154 

 155 

Positive Matrix Factorization analysis.  156 
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Positive Matrix Factorization (PMF) is an advanced multivariate factor analysis technique widely 157 

used in receptor modelling for the chemometric evaluation and modelling of environmental datasets 158 

[3, 31-36]. PMF allows the identification and quantification of the emissive profile of a receptor site, 159 

i.e. the monitoring site where an air quality station is operated. We applied EPA PMF 5.0 software 160 

[37]. The dataset was checked and re-arranged prior to PMF modelling according to the model criteria 161 

previously described [37] and, after data pre-processing, a concentration matrix of 98 samples × 25 162 

variables was obtained. After careful evaluation of the input data and uncertainty matrices, an 163 

optimum number of factors was found by analysing the values of Q, a parameter estimating the 164 

goodness of the fit performed [38], and the distribution of residuals. In order to assess the reliability 165 

of the model reconstruction, measured (input data) and reconstructed (modeled) values together with 166 

the distribution of residuals were compared. Our results indicated a good general performance of the 167 

model in reconstructing PM10 (coefficient of determination equal to 0.79) for most variables. In order 168 

to confirm the results of receptor modelling, the origin of the air masses associated with the factors 169 

obtained was investigated through the creation of wind polar plots using the source contribution of 170 

the factors produced by PMF. In particular, polar plots were produced for each single PMF factor 171 

using the “openair” package of R [28], utilizing the conditional probability function (CPF) [39] with 172 

an arbitrary threshold set to the 75th percentile. 173 

 174 

Microbial DNA extraction, 16S rRNA gene amplification and sequencing. 175 

Microbial DNA extraction was performed on quartz membrane filter using the DNeasy PowerSoil 176 

Kit (Qiagen, Hilden, Germany) with the following modifications: the homogenization was performed 177 

with a FastPrep instrument (MP Biomedicals, Irvine, CA) at 5.5 movements per sec for 1 min, and 178 

the elution step was preceded by a 5-min incubation at 4°C [40, 41]. Extracted DNA samples were 179 

quantified with NanoDrop ND-1000 (NanoDrop Technologies, Wilmington, DE) and stored at -20°C 180 

until further processing. The V3-V4 hypervariable region of the 16S rRNA gene was PCR amplified 181 

in a 50-μL final volume containing 25 ng of microbial DNA, 2X KAPA HiFi HotStart ReadyMix 182 
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 9 

(Roche, Basel, Switzerland), and 200 nmol/L of 341F and 785R primers carrying Illumina overhang 183 

adapter sequences. The thermal cycle was performed as already described [42], using 30 184 

amplification cycles. PCR products were purified using Agencourt AMPure XP magnetic beads 185 

(Beckman Coulter, Brea, CA). Indexed libraries were prepared by limited-cycle PCR with Nextera 186 

technology and cleaned-up as described above. Libraries were normalized to 1 nM and pooled. The 187 

sample pool was denatured with 0.2 N NaOH and diluted to 6 pM with a 20% PhiX control. 188 

Sequencing was performed on an Illumina MiSeq platform using a 2 × 250 bp paired-end protocol, 189 

according to the manufacturer's instructions (Illumina, San Diego, CA). Sequence reads were 190 

deposited in the National Center for Biotechnology Information Sequence Read Archive (NCBI SRA; 191 

BioProject ID XXXX). 192 

 193 

Bioinformatics and statistics. 194 

A pipeline combining PANDAseq [43] and QIIME 2 [44] was used to process raw sequences. 195 

DADA2 [45] was used to bin high-quality reads (min/max length = 350/550 bp) into amplicon 196 

sequence variants (ASVs). After taxonomy assignment using the VSEARCH algorithm [46] and the 197 

SILVA database (December 2017 release) [47], the sequences assigned to eukaryotes (i.e. 198 

chloroplasts and mitochondria) or unassigned were discarded. Three different metrics were used to 199 

evaluate alpha diversity - Faith’s Phylogenetic Diversity (PD whole tree) [48], Chao1 index for 200 

microbial richness, and number of observed ASVs - and unweighted UniFrac distance was used for 201 

Principal Coordinates Analysis (PCoA). Permutation test with pseudo-F ratio (function “adonis” in 202 

the “vegan” package of R), Kruskal-Wallis test or Wilcoxon rank-sum test were used to assess data 203 

separation. Kendall correlation test was used to determine associations between the PCoA coordinates 204 

of each sample and the factors identified by the PMF analysis. P-values were corrected for multiple 205 

testing with the Benjamini-Hochberg method, with a false discovery rate (FDR) ≤ 0.05 considered 206 

statistically significant. All statistical analyses were performed in R  using “Made4” [49] and “vegan” 207 

(https://cran.r-project.org/web/packages/vegan/index.html) packages. Clustering analysis of family-208 
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 10 

level AM profiles, filtered for family subject prevalence of at least 20%, based on the SILVA 209 

taxonomy assignment, was carried out using hierarchical Ward-linkage clustering based on the 210 

Spearman correlation coefficients. We verified that each cluster showed significant correlations 211 

between samples within the group (multiple testing using the Benjamini–Hochberg method) and that 212 

the clusters were statistically significantly different from each other (permutational MANOVA using 213 

the Spearman distance matrix as input, function adonis of the vegan package in R).  214 

Additionally, PANDAseq assembled paired-end reads were also processed with the QIIME1 [50] 215 

pipeline for OTUs (Operational Taxonomic Units) clustering based on 97% similarity threshold. 216 

Taxonomy was then assigned using the SILVA database. OTUs were processed through the R 217 

package “MaAsLin2” [51] to determine their association with microbial clusters. Kruskal-Wallis test 218 

was used to find OTUs whose relative abundance was significantly different among microbial 219 

clusters. The resulting OTUs were taxonomically assigned against the NCBI 16S rRNA database 220 

using the BLAST algorithm (https://blast.ncbi.nlm.nih.gov/).  221 

 222 

Results 223 

 224 

Particulate Matter emission sources and atmospheric parameters. 225 

The PMF model application on PM10 samples resulted in a solution with an optimum number of seven 226 

source factors at the receptor site, i.e. the station where the PM10 samples were collected. Like other 227 

multivariate methods, these factors correspond to linear combinations of the original compositional 228 

parameters, each potentially identifiable as an emission source profile. The fractional contribution 229 

per sample for each of the seven factors is reported in Supplementary Table S2. 230 

In order to associate the factors with specific emission sources, prior knowledge about the receptor 231 

site (Savona, Italy) was used together with a critical analysis of the factor fingerprints (Figure 2A). 232 

Moreover, the percentage contribution of the seven identified sources to the total variable was 233 

reported (PM10, Figure 2B). As a result, the seven factors extracted by PMF analysis can be described 234 
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 11 

as follows. Factor 1 is characterized by the prevalence of elements attributable to the geochemical 235 

composition because of the high percentages of Si, Al, and Ti. Therefore, this factor was identified 236 

as “crustal material and road dust resuspension”, deriving from the soil and/or road surface [34, 52]. 237 

Factor 2 is linked to organic carbon (OC), Cu, Zn, Cr, and K+. OC and K+ are strictly related to 238 

combustion processes, including biomass burning, as previously described [53]. Cu, Zn, and Cr are 239 

associated with traffic: Cu and Cr are well-known tracers of the brakes of motor vehicles, while Zn 240 

is known as a tracer of tire wear [54-56]. Therefore, this factor was identified as a combination of 241 

“traffic and biomass burning” sources. Factor 3 is mainly associated with NO3- from gas-to-particle 242 

conversion of NOx (g) in the atmosphere to which traffic and other high-temperature combustion 243 

processes may contribute [57, 58]; as such it can hardly be attributed to a single well-defined source, 244 

especially in such a complex emissive scenario. Therefore, this factor was identified collectively as 245 

“secondary nitrate”.  Factor 4 relates to SO42- and NH4+ from gas-to particle reactions, leading to 246 

secondary ammonium sulphate [59-61]. Similarly to secondary nitrate, this component can be 247 

contributed by various sources (both natural and anthropogenic) due to the multiplicity of fossil fuel 248 

sources of the precursor gaseous SO2 and the ubiquity of NH3 (g) [62, 63]. Therefore, this factor was 249 

collectively identified as “secondary ammonium sulphate”. Factor 5 is associated with Na, Mg ins, 250 

V, and Ni. The distinctive association of V and Ni reveals emissions attributable to the combustion 251 

of heavy oil [64-66]. The association of these species with Na and Mg suggests a "naval-maritime 252 

transport" source. Factor 6 is mainly characterized by high scores of Pb, K ins, Zn, OC, and elemental 253 

carbon (EC). The fine particles produced by coal combustion are characterized by significant 254 

fractions of OC and K together with typical elements such as Zn, while other semi-volatile elements 255 

condense on the surface of fine particles of K ins [67]. Therefore, this factor was identified as “coal 256 

burning”. Factor 7 is connected to a large score of Cl-, Na, and Mg++, and clearly identified as “sea 257 

spray” aerosol [68].  258 
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Figure 2 – Emission sources identified by PMF 259 
analysis. (A) Stacked bar chart of the percentage 260 
concentration of each chemical species contributing to 261 
each of the seven factors that represent the chemical 262 
profile of each source identified in the PMF model. (B) 263 
Pie chart representing the contribution of the seven 264 
sources to PM10 mass. The seven factors were identified 265 
as reported at the top. 266 
 267 

 268 

 269 

 270 

 271 

In order to confirm the PMF analysis results, the origin of the polluted air masses was investigated 272 

by analyzing the PMF factors as a function of wind direction, calculating the respective cumulative 273 

distribution functions and generating the corresponding wind polar plots. This method associates the 274 

emissive profile obtained by PMF with wind direction and intensity to which the receptor site is 275 

downwind. The plots obtained are shown in Supplementary Figure S1. In particular, factors 1, 3, 4, 276 

and 6 (respectively crustal material and road dust resuspension, secondary nitrate, secondary 277 

ammonium sulphate, and coal burning) are associated with winds blowing from the inland towards 278 

the coast covering traffic and industrial sources. Factor 5 (naval-maritime transport) is oriented 279 

downwind from the sea, confirming that it is associated with the fuel oil used for sea shipping. Finally, 280 

while factor 2 shows a local origin indicating sources in the proximity of the receptor site, factor 7 is 281 

meridionally oriented, indicating once more a marine origin. It should be noted, however, that, unlike 282 

factor 5 characterized by elements typical of the submicron fraction likely flushed back and forth by 283 

sea-land breezes from the harbor, factor 7 is associated with coarse particles requiring different 284 

meteorological conditions (possibly more intense winds from the open sea in order to sustain heavier 285 

particles). 286 

 287 
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AM overall composition. 288 

Next generation sequencing of the V3-V4 hypervariable region of the 16S rRNA gene from the total 289 

microbial DNA extracted from PM10 air filters resulted in 98 samples containing more than 1 000 290 

reads per samples which were retained for the rest of the study, for a total of 797 781 high-quality 291 

sequences with an average of 8 058 ± 3 410 (mean ± SD) paired-end reads per sample, binned into 4 292 

189 ASVs. According to our data, AM is dominated by the phyla Proteobacteria (mean relative 293 

abundance ± SD = 42.8 ± 19.4%) and Firmicutes (27.4 ± 18.9%), with Actinobacteria (14.8 ± 10.9%) 294 

and Bacteroidetes (9.2 ± 8.6%) being subdominant. At the family level, the most represented taxa are 295 

Comamonadaceae (6.1 ± 13.4%) and Sphingomonadaceae (4.3 ± 5.0%), both belonging to 296 

Proteobacteria. Other represented families are Ruminococcaceae (3.9 ± 7.6%), Enterobacteriaceae 297 

(3.7 ± 5.9%), Clostridiaceae (3.6 ± 6.8%), Bacillaceae (3.5 ± 5.0%) and Flavobacteriaceae (3.4 ± 298 

5.7%). Please see Supplementary Figure S2 for a graphical representation of the overall 299 

compositional structure of AM throughout the entire sampling period. 300 

In order to explore connections between the AM structure and seasonality, we compared the levels 301 

of AM diversity over the different months (Figure 3). Diversity measurements indicated a general 302 

trend of microbial richness to decrease from winter to summer, although the differences did not reach 303 

statistical significance (Kruskal-Wallis test, FDR corrected p-value > 0.05) (Figure 3A). Conversely, 304 

the PCoA of unweighted UniFrac distances between the AM compositional profiles showed sample 305 

segregation according to the month of sampling (Figure 3B) (FDR-corrected permutation test with 306 

pseudo-F ratio, p-value = 0.012), meaning that seasonality significantly affects the overall 307 

compositional AM structure. 308 

  309 

Variation of the AM topological structure and association with PM emission sources and 310 

meteorological parameters. 311 

To further explore the overall AM variation across the sampling period, a clustering analysis of the 312 

AM compositional profiles was carried out. Hierarchical Ward-linkage clustering based on the 313 
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 314 
Figure 3 – AM alpha and beta diversity throughout the sampling period. (A) Box-and-whiskers distribution of Faith's 315 
Phylogenetic Diversity (PD_whole_tree), Chao1 index for microbial richness and number of observed ASVs, for each 316 
month of sampling. The data show a trend towards reduced microbial richness from winter to summer, although the 317 
differences did not reach statistical significance (Kruskal-Wallis test, FDR-corrected p-value > 0.05). (B) Principal 318 
Coordinates Analysis (PCoA) based on unweighted UniFrac distances between AM profiles, showing separation by 319 
sampling month (permutation test with pseudo-F ratio, p-value = 0.012) (same colour code as in panel A). The first and 320 
second principal components (PCo1 and PCo2) are plotted and the percentage of variance in the dataset explained by 321 
each axis is reported. 322 
 323 

Spearman correlation coefficients of family-level AM profiles resulted in the significant separation 324 

of 4 clusters, named C1, C2, C3 and C4, respectively (FDR-corrected permutation test with pseudo-325 

F ratio, p-value ≤ 0.001) (Figure 4). Confirming the robustness of the identified clusters, the PCoA 326 

of the unweighted UniFrac distances between samples revealed a sharp segregation based on the 327 

assigned cluster (Figure 5). Interestingly, when we searched for correlations between PCoA 328 

coordinates and measured meteorological parameters or PMF factors (Supplementary Tables S1 329 
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330 
Figure 4 – Family-level clusters of the airborne microbiome. Hierarchical Ward-linkage clustering based on the 331 
Spearman correlation coefficients of the proportion of families in the AM samples. Only families with relative abundance 332 
>2% in at least 3 samples were retained. The four identified clusters (FDR-corrected permutation test with pseudo-F ratio, 333 
p-value ≤ 0.001) are labelled in the top tree and highlighted by different coloured squares (red, blue, green and yellow for 334 
the clusters C1, C2, C3 and C4, respectively).  335 
 336 

and S2, respectively), we found that factor 5 (naval-maritime transport) and relative humidity (RH) 337 

were both positively correlated with the PCo1 axis (Kendall’s test, FDR-corrected p-value ≤ 0.001), 338 

while factor 6 (coal burning) was negatively correlated with the PCo1 coordinates (p-value ≤ 0.001) 339 

(Figure 5). This indirect gradient analysis allowed to highlight positive associations between clusters 340 

C1 and C3 and factors 6 and 5, respectively. Further, cluster C3 was found to be positively related to 341 

RH. As for seasonality, the clusters C3 and C4 are the most prevalent in summer and winter, 342 

respectively, while for C1 and C2 we did not observe any prevalence for a particular sampling period. 343 

We also compared the microbial diversity values of samples included in the different clusters, using 344 

three different diversity metrics. Our data indicated higher biodiversity in clusters C1 and C2 (PD 345 
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whole tree, chao1, and observed ASVs, mean ± SD: 3.6±1.3, 67.2±43.9, and 65.0±40.5 for C1, 346 

3.2±1.4, 59.1±38.2 and 57.6±36.0 for C2, respectively) compared to C3 and C4 (1.4±0.7, 18.7±9.4, 347 

and 18.5±9.3 for C3, 2.4±1.2, 31.2±18.4 and 31.2±18.3 for C4), with C3 having the lowest 348 

biodiversity (Kruskal-Wallis test, FDR corrected p-value ≤ 0.001). 349 

 350 

Figure 5 – Variation of the AM topological structure and association with PM emission sources and meteorological 351 
parameters. Principal coordinates analysis (PCoA) based on the unweighted UniFrac distance shows separation between 352 
the microbial clusters (C1 to C4; permutation test with pseudo F-ratio, p-value ≤ 0.001; see also Figure 3). The percentage 353 
of variance in the dataset explained by each axis, first and second principal component (PCo1 and PCo2), is 13.2% and 354 
5.9%, respectively. Ellipses include 95% confidence area based on the standard error of the weighted average of sample 355 
coordinates. Significant Kendall correlations between PCoA axes and PMF factors and measured meteorological 356 
parameters are reported with a black arrow. Specifically, the emission source factor 5 (naval-maritime transport) and 357 
relative humidity are both positively correlated with the PCo1 axis (Kendall correlation test, FDR-corrected p-value ≤ 358 
0.001), while the emission source factor 6 (coal burning) is negatively correlated with the PCo1 coordinates (p-value ≤ 359 
0.001). For each AM cluster, the proportion of samples based on the sampling time (from February (dark blue) to July 360 
(yellow) is shown as a pie chart.  361 
 362 
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Compositional specificity and prevalent microbiological source of the four AM clusters.   363 

We subsequently compared the relative abundance of AM families among the four clusters in order 364 

to find out the most distinctive families of each of them (Supplementary Figure S3). According to 365 

our findings, the discriminating families (i.e. families with significantly different relative abundance, 366 

based on Kruskal-Wallis test) for the microbial cluster C1 are Prevotellaceae, Erysipelotrichaceae, 367 

Coriobacteriaceae, Christensenellaceae, Lachnospiraceae, Ruminococcaceae, and Spirochaetaceae. 368 

The microbial cluster C2 is instead characterized by higher abundance in the families 369 

Microbacteriaceae, Cytophagaceae, Oxalobacteraceae, Sphingobacteriaceae, Nocardioidaceae, 370 

Methylobacteriaceae, Intrasporangiaceae, Rhodobacteraceae and Acetobacteraceae. Only two 371 

proteobacterial families, namely Brucellaceae and Comamonadaceae, have a significantly higher 372 

abundance in cluster C3. Four families show higher abundance in cluster C4, i.e. 373 

Peptostreptococcaceae, Clostridiaceae, Bacillaceae and Enterobacteriaceae. It is also worth noting 374 

that the families Planococcaceae and Paenibacillaceae are highly represented in both C2 and C4 375 

clusters, whereas Sphingomonadaceae members are equally represented in all clusters except for C4.  376 

In an attempt to identify the most likely prevalent microbial origin of the four AM clusters, we first 377 

derived the respective compositional peculiarities at the OTU level. To this aim, 16S rRNA gene 378 

reads were clustered at 97% homology, resulting in 3 821 OTUs. By linear regression, we 379 

subsequently obtained 80 OTUs specifically discriminating the four clusters. In particular, for 52 of 380 

these OTUs a significantly different distribution in the four clusters was confirmed by a Kruskal-381 

Wallis test, as shown in Supplementary Figure S4. For each of them, the isolation source of the 382 

closest BLAST match within the NCBI 16S rRNA sequence database was recovered 383 

(Supplementary Table S3). Interestingly, according to our findings, the cluster C1 is mainly 384 

characterized by OTUs of faecal origin. These OTUs include sequences assigned to typical 385 

components of the human gut microbiome, such as Faecalibacterium prausnitzii, Ruminococcus 386 

faecis, Prevotella copri, Eubacterium eligens, Ruminococcus bromii, Roseburia inulinivorans and 387 

Blautia faecis [69-71], the cattle rumen components Succinivibrio dextrinosolvens [72] and 388 
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Oscillibacter ruminantium [73], and the porcine gut microbiome member Treponema porcinum [74]. 389 

Differently, the cluster C2 is characterized by OTUs assigned to microorganisms isolated from plant 390 

roots and leaves, including Curtobacterium flaccumfaciens [75], Glutamicibacter halophytocola [76] 391 

and Frigoribacterium endophyticum [77], as well as by a specific pattern of environmental bacteria, 392 

from soil, air, and fresh and marine water ecosystems. Similarly, both clusters C3 and C4 are 393 

characterized by a peculiar combination of environmental microorganisms from different sources, 394 

including soil, fresh and marine waters, and airborne microbial ecosystems.     395 

 396 

Discussion 397 

 398 

In order to explore connections between the local air microbiome, atmospheric pollution and 399 

meteorological factors, here we provide a longitudinal survey of the near-ground AM, atmospheric 400 

particulate and atmospheric parameters in Savona, Italy. According to our findings, the local AM 401 

appears dominated by the phyla Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes, well 402 

matching the general layout of an AM community [4]. The application of the PMF receptor modelling 403 

on the chemical compositional pattern of the PM10 samples collected during the field campaign 404 

allowed the identification of seven emission sources: “crustal material and road dust resuspension”, 405 

“traffic and biomass burning”, “secondary nitrate”, “secondary ammonium sulphate”, “naval-406 

maritime transport”, “coal burning” and “sea spray”. Each source factor was subsequently subjected 407 

to anemological analysis based on polar plots, allowing each emission source to be associated with 408 

the corresponding wind direction to which the receptor site is downwind. Specifically, emission 409 

sources as “crustal material and road dust resuspension”, “secondary nitrate”, “secondary ammonium 410 

sulphate” and “coal burning” were associated with winds blowing from the inland toward the 411 

sampling site, intercepting traffic and industrial particulate sources. Conversely, emission sources 412 

such as “naval-maritime transport” and “sea spray” were associated with a sea breeze, supporting a 413 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 7, 2020. ; https://doi.org/10.1101/2020.08.06.239947doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.06.239947
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

marine origin for both. Finally, the “traffic and biomass burning” emission source mostly showed a 414 

local origin. 415 

When we explored the AM structure variation during the observation period, we were able to identify 416 

four distinct clusters of samples, named C1 to C4. Interestingly, the four clusters were associated with 417 

a peculiar combination of seasonality, meteorological variables and emission sources. In particular, 418 

the AM cluster C1 was associated with the “coal burning” emission source, suggesting not actually 419 

the industrial facility as a microbiome source, but rather the influence of an air mass whose transport 420 

over a given district harvests chemical and microbiological components along the same tropospheric 421 

path. Instead, the cluster C3, most represented in the warm period, probably has a marine origin due 422 

to its association with the “naval-marine transport” emission source and high relative humidity. 423 

Finally, the clusters C2 and C4 did not show any specific association with the aerosol sources assessed 424 

by PMF, even if they showed a different seasonal behaviour, with C4 being more represented in the 425 

cold period.  426 

The four AM clusters revealed a distinct, well-defined compositional structure, each being enriched 427 

with a specific set of microbial families and OTUs. The specificity of each bacterial profile de facto 428 

serves as a microbiological fingerprint, allowing to single out the probable microbiome sources 429 

characterizing each cluster that, similar to what occurs to abiotic particles, allow to trace back the 430 

origin of the air mass. In particular, the clusters C3 and C4 substantially reflect interconnected 431 

environmental microbiomes, encompassing a specific combination of microorganisms from soil 432 

resuspension, as well as from marine and fresh waters (possibly from rivers and streams flowing into 433 

the Ligurian Sea) and from the air. C2 cluster reveals the plant microbiome as an additional source, 434 

showing a further combination of plant-associated and environmental microorganisms, due to the 435 

contact of air masses over a vegetation landscape. Interestingly, the feasibility of air mass tracing also 436 

using bacterial species clearly emerges when we observe in detail the compositional structure of C1. 437 

This is in fact the only AM cluster carrying a recognizable pool of bacterial moieties of faecal origin, 438 

which are consistently part of the animal gut microbiome, suggesting not only a well-defined origin 439 
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but also the potential use of this information in the assessment of microbiological impacts. It should 440 

be noted that in the area upwind C1 no sewage treatment plant as a possible source of faecal 441 

microbiome was present at the time of sampling. However, the area is very densely populated and 442 

forested areas populated by local fauna are closely found within a few kilometres. 443 

Taken together, our data on the temporal dynamics of the near-ground AM in Savona, highlight the 444 

relevant degree of plasticity of AM over time. As such, we demonstrated how meteorological factors 445 

(e.g. wind direction and humidity) and atmospheric pollution (particles emission sources) can 446 

combine in shaping the AM configuration. In particular, coal burning and winds blowing from the 447 

inlands mix to establish a characteristic AM with a prevalence of aerosolized faecal microorganisms, 448 

regardless of seasonality. Conversely, in the summer season, humidity, sea breeze and naval-marine 449 

transport pollutants result in an AM mainly originating from environmental microbiomes, including 450 

microorganisms that are typically found in seawater and soil. Even if we were not able to establish 451 

connections between the other identified emission sources and specific AM clusters, we would stress 452 

the importance of seasonality in shaping the AM structure. Indeed, the variation between the clusters 453 

C2 and C4, for which no connection with any emission source was observed, was shown to be 454 

dependent on the sampling period, with the cluster C2 most prevalent during the warm season and 455 

including plant microbiomes as possible characteristic sources. 456 

In conclusion, our results suggest that, in an urban settlement, air pollution may increase the 457 

proportion of aerosolized faecal microorganisms in the atmosphere, ultimately increasing citizens’ 458 

exposure to faecal microbes. Similar results have recently been obtained by exploring AM in Beijing 459 

over 6 months [22]. Our findings strengthen the importance of including the monitoring of the AM 460 

compositional structure as a determinant factor in the currently used air quality indexes. Indeed, in 461 

urban areas, the possible increased exposure to faecal-associated microbiomes as a result of 462 

increasing pollution can pose a possible threat to human health, particularly in regions with high-463 

intensity animal farming, due to the inherent propensity of opportunistic pathogens to aerosolize. 464 

 465 
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 684 

Supplementary Information Description 685 

 686 

Supplementary Table S1 (2 pages) – Meteorological parameters during the PM sampling 687 

period. The first column reports the sample ID, while the second indicates the sampling date. The 688 

meteorological parameters taken into account are temperature (T, °C), relative humidity (RH, %), 689 

pressure (P, mbar), rainfall (Rain, mm), wind speed (ws, m/s, and wind direction (wd, °). All values 690 

were taken every 30 min and averaged on a daily basis. 691 
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Supplementary Table S2 (2 pages) – Normalized contributions per sample of the seven factors 692 

resolved by PMF analysis. The first column reports the sample ID. All the other columns represent 693 

the contribution of each factor identified by PMF on the corresponding sample. 694 

Supplementary Table S3 (provided as Excel file) – Characteristics of the OTUs accounting for 695 

the compositional specificity of the four AM clusters. For each OTU, the following information is 696 

given: unique OTUs ID, taxonomy as assigned with SILVA database, the cluster/s to which each 697 

OTU is significantly correlated (i.e. the cluster/s in which the given OTU is significantly more 698 

represented), the BLAST best hit resulting from blasting OTU fasta sequences against the NCBI 16S 699 

rRNA sequence database, the percentage of identity (ID (%)) and coverage (coverage (%)) between 700 

the OTU sequences and the corresponding best hit, and the isolation source of each best hit as reported 701 

in the GenBank database. 702 

Supplementary Figure S1 – Association between the factors obtained by PMF analysis and the 703 

wind direction and intensity. Polar plots of the seven factors obtained by the PMF model. ws, wind 704 

speed; CPF, conditional probability function. 705 

Supplementary Figure S2 - AM overall composition. Pie charts summarizing the microbiota 706 

composition of air filter samples at phylum (A) and family (B) level. Only phyla with relative 707 

abundance >1.5% in at least 10 samples and families with relative abundance >3% in at least 10 708 

samples are shown.  709 

Supplementary Figure S3 – AM bacterial families differentially represented among the four 710 

microbial clusters. Box plots showing the bacterial families whose relative abundance is 711 

significantly differently distributed among the microbial clusters C1-C4 (Kruskal-Wallis test, FDR-712 

corrected p-value ≤ 0.05*, p-value ≤ 0.01** and p-value ≤ 0.001***). The central box represents the 713 

distance between the 25th and 75th percentiles. The median is marked with a black line. Whiskers 714 

identify the 10th and 90th percentiles. 715 

Supplementary Figure S4 (2 pages) – AM-associated OTUs showing different distribution 716 

across microbial clusters. Box plots showing the OTUs whose relative abundance is significantly 717 
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differently distributed among the four microbial clusters C1-C4 (Kruskal-Wallis test, FDR-corrected 718 

p-value ≤ 0.05*, p-value ≤ 0.01** and p-value ≤ 0.001***). The central box represents the distance 719 

between the 25th and 75th percentiles. The median is marked with a black line. Whiskers identify the 720 

10th and 90th percentiles. unc., unclassified; amb., ambiguous. 721 
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