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Abstract 

 

A major open question in microbiome research is whether we can predict how the components of                

a diet collectively determine the taxonomic composition of microbial communities. Motivated by            

this challenge, here we ask whether communities assembled in a mixed nutrient environment can              

be predicted from those assembled in every single nutrient in isolation. To that end, we first                

formulate a quantitative null model of community assembly in a mixture of nutrients that recruit               

species independently. We then test the model predictions by assembling replicate communities            

in synthetic environments that contain either a pair of nutrients, or each nutrient in isolation. We                

find that the null, naturally additive model generally predicts well the family-level community             

composition. However, we also identify systematic deviations from the additive predictions that            

reflect generic patterns of nutrient dominance at the family-level of taxonomy. Pairs of             

more-similar nutrients (e.g. two sugars) are on average more additive than pairs of more              

dissimilar nutrients (e.g. one sugar and one organic acid). A simple dominance rule emerges,              

where we find that sugars generally dominate organic acids. This simple dominance rule extends              

to most families and most sugar-organic acid pairs in our experiment. Our results suggest that               

regularities in the ways nutrients interact may help us predict how microbial communities             

respond to changes in nutrient composition. 
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Introduction 
 

Understanding how the components of a complex biological system combine together to produce             

the system’s properties and functions is a fundamental question in biology. Answering this             

question is central to solving many fundamental and applied problems, such as how multiple              

genes combine to give rise to complex traits [1,2], how multiple drugs affect the evolution of                

resistance in bacteria and cancer cells [3,4], how multiple environmental stressors affect bacterial             

physiology [5], or how multiple species affect the function of a microbial consortium [6–8]. 

 

In microbial population biology, a major related open question is whether we can predict how the                

components of a diet collectively determine the taxonomic and functional composition of            

microbial communities. Faith and co-workers tackled this question using a defined gut microbial             

community and a host diet with varying combinations of four macronutrients [9]. This study              

found that community composition in the combinatorial diets could be predicted from the             

communities assembled in each of the separate nutrients using an additive linear model [9]. Given               

the presence of a host and its own possible interactions with the nutrients and resident species, it                 

is not immediately clear whether such additivity is directly mediated by interactions between the              

community members and the supplied nutrients, or whether it is mediated by the host, for               

instance by producing additional nutrients, or through potential interactions between its immune            

system and the community members. In a different study, Enke et al found evidence that marine                

enrichment communities assembled in mixes of two different polysaccharides could be explained            

as a linear combination of the communities assembled in each polysaccharide in isolation [10]. 

 

Despite the important insights provided by both of these studies, we are far from a general and                 

quantitative understanding of how specific nutrients combine together to shape the composition            

of self-assembled communities [11]. Motivated by this challenge, here we set out to             

systematically investigate whether the assembly of enrichment microbial communities in defined           

nutrient mixes could be predicted from the communities that assembled in each of the single               

nutrients in isolation.  

 

Results 
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A null expectation for community assembly in mixed nutrient environments. To address this             

question, we must first develop a quantitative null model that predicts community composition in              

a mixed nutrient environment in the case where each nutrient recruits species independently. Any              

deviation between the null model prediction and the observed (measured) composition reveals            

that nutrients are not acting independently, but rather “interact” to shape community composition.             

This definition of an interaction as a deviation from a null model that assumes independent               

effects is commonplace in systems-level biology [12].  

 

In order to formulate the null expectation for independently acting nutrients, let us consider a               

simple environment consisting of two unconnected demes where two bacterial species, A and B,              

can grow together. The first deme contains a single growth limiting nutrient (nutrient 1), while               

the second deme contains a different single limiting nutrient (nutrient 2) (Fig. 1A ). In this               

scenario, each nutrient influences the abundance of species A and B independently: the microbes              

growing on nutrient 1 do not have access to nutrient 2 and vice versa. Let’s denote the abundance                  

of species A in deme 1 and 2 by nA,1 and nA,2, and the abundance of species B as nB,1 and nB,2,                      

respectively. If we now consider the two-deme environment as a whole, the abundance of species               

A is the sum of its abundance in each deme nA,12 = nA,1 + nA,2 (likewise, for species B nB,12 = nB,1 +                       

nB,2). This example illustrates that in the scenario when two limiting nutrients act independently,              

each of them recruits species just as if the other nutrients were not there. In such case, the                  

abundance of each species in a nutrient mix is the sum of what we would find in the single                   

nutrient habitats. Note that the lack of nutrient interactions does not mean that species do not                

interact with each other, but rather that whatever ecological or metabolic interaction they may              

have (e.g., competition for nutrients, cross-feeding, growth inhibition by toxins), such interaction            

is not affected by mixing nutrients. 

 

Fig. 1. Predicting community composition in mixed nutrient environments. A. Community           
composition in a single nutrient (nutrient 1 or nutrient 2) vs a mixture of nutrients (nutrient 1+nutrient 2).                  
Assuming that nutrients act independently, the null model predicts that the abundance of each species in                
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the mixture is the sum of its abundance in the single nutrients (i.e. additive). B. Plotting the experimentally                  
measured (observed) relative abundance in the mixed carbon sources against its predicted (from null              
model) relative abundance reveals the presence or absence of interactions. Any deviation from the identity               
line (predicted=observed) is the interaction effect ( ε ). When ε = 0, there is no interaction between nutrients.                 
When ε is non-zero, community composition is affected by nutrient interactions. If ε>0, the null model                
underestimates the abundance. If ε <0, the model overestimates the abundance. 
 

Under the null model, the relative abundance of species i in a mix of nutrients 1 and 2 can be                    

written as fi,12 (null) = w1 fi,1 + w2 fi,2 where fi,1 and fi,2 are the relative abundances of i in nutrient 1                       

and 2, respectively, and w1 and w2 are the relative number of cells in nutrients 1 and 2 (Methods).                   

Any quantitative difference between the null model prediction and the observed composition            

quantifies an “interaction” between nutrients. Accounting for the presence of such interactions,            

the model can be re-written as fi,12 = fi,12 (null) + εi,12 where εi,12 represents the interaction between                  

nutrients 1 and 2 (Fig. 1B ).  

 

Experimental system. Equipped with this null model, we can now ask to what extent the               

nutrients recruit species independently in mixed environments. To address this question, we            

followed a similar enrichment community approach to the one we have used in previous work for                

studying the self-assembly of replicate microbial communities in a single carbon source [13,14]             

(Methods, Fig. 2A ). Briefly, habitats were initially inoculated from two different soil inocula.             

Communities were then grown in synthetic (M9) minimal media supplemented with either a             

single carbon source or a mixture of two carbon sources, and they were serially passaged with                

transfers to fresh medium every 48h for a total of 10 transfers (dilution factor = 125×) (Fig. 2A ).                  

The two-carbon source cultures consisted of a focal carbon source mixed 1:1 with one of eight                

additional carbon sources. We previously found that stable multi-species communities routinely           

assemble in a single carbon source (which is limiting under our conditions), and they converge at                

the family level in a manner that is largely governed by the carbon source supplied, while the                 

genus or lower level composition is highly variable [13]. We chose glucose as the focal carbon                

source because we have previously carried out multiple assembly experiments in this nutrient             

[13,14]. As the additional carbon sources, we chose cellobiose, fructose, ribose, and glycerol (i.e.              

a pentose, a hexose, a disaccharide and a sugar alcohol) and fumarate, benzoate, glutamine and               

glycine (two aminoacids and two organic acids). All carbon sources were also used in single               

carbon source cultures.  
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Communities assembled in single sugars contained 5 to 24 ESVs, mainly belonging to the              

fermenter Enterobacteriaceae family (~0.98±0.03) (Fig. S1 ). In contrast, communities assembled          

in organic acids exhibited a higher richness (12-36 ESVs), and unlike in sugars,             

Enterobacteriaceae were generally rare (~0.06±0.06). Instead, communities were dominated by          

respirators mainly belonging to the Pseudomonadaceae (~0.51±0.25), Moraxellaceae (~0.18±0.2),         

and Rhizobiaceae (0.11±0.13) families (Fig. S1 ). Because of the observed family-level           

convergence across carbon sources, which is consistent with previous studies [13–15], we focus             

our analysis below on family-level abundance. 

 
 

 
Fig. 2. Systematic deviations from the null prediction reveals that some nutrients interact to shape               
community assembly. A. Schematic of experimental design. Two different soil samples were inoculated             
in minimal M9 medium supplemented with either a single carbon source (CS1 or CS2) or a mixture of two                   
carbon sources (CS1 + CS2) (3-4 replicates each). Communities were propagated into fresh media every               
48h for 10 transfers, and then sequenced to assess community composition. Carbon source mixtures              
consisted of a focal carbon source (CS1; glucose or succinate) mixed with a second carbon source (CS2).                 
B, C. For each pair of carbon sources, we show the experimentally observed and predicted (by the null                  
additive model) relative abundance of each family in the mixture. Any deviation from the identity line                
(predicted=observed) reveals an interaction effect. Only the four most abundant families are shown. Error              
bars represent mean ± SE.  
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The null model of independently acting nutrients explains a high fraction of the variation              

observed. To investigate the predictive power of the null (additive) model, we compare the              

predicted and observed relative abundances of each family for each carbon source pair across all               

experiments. Our results show that the null model predicts well the family-level abundances on              

average (Pearson’s R=0.95 and p<0.001; RMSE=0.073, N=223) (Fig. 2B, Fig. S2 ). To confirm             

that the strong predictive power of the null model is not an idiosyncrasy of using glucose as the                  

focal carbon source in the pairs, we repeated the same experiment with succinate (an organic               

acid) as the focal carbon source. Although the correlation between observed and predicted             

abundance is lower than when glucose was the focal carbon source, the null additive model               

remains strongly predictive (Pearson’s R=0.87 and p<0.001; RMSE=0.094; N=257) (Fig. 2B ).  

 

This result seems to indicate that, at the family level, a simple model that assumes that nutrients                 

act independently can predict community composition in a pair of nutrients (for an analysis of               

this point at the genus and ESV level, see Fig. S3 ). However, when we looked at this more                  

closely and broke down our results by carbon source and family, we found consistent and               

systematic deviations from the null model (Fig. 2C ). For example, across all succinate-sugar             

pairs, Enterobacteriaceae are significantly more abundant than predicted by the null model (ε =              

0.347±0.107, Mean±SD; p < 0.001, one-sample Student’s t-test, N=32) while both Rhizobiaceae            

and Moraxellaceae are less abundant than predicted (ε = -0.136±0.0339 and ε=-0.152±0.0415; p<             

0.001, one-sample Student’s t-test, N=32) (Fig. 2C ). The null ‘interaction-free’ model also            

predicts species abundance better in certain carbon source combinations (e.g. glucose + ribose)             

than in others (e.g. glucose + glutamine) (Fig. 2C ). The existence of systematic deviations from               

the null prediction reveals that some nutrient pairs do not act independently, but instead interact               

with each other to affect the abundance of specific families. 

 

A simple dominance rule in mixed nutrient environments: sugars generally dominate           

organic acids. To map the regularities we have observed in nutrient interactions, we next sought               

to characterize the nature of these interactions for each carbon source pair and every family. One                

helpful way of visualizing nutrient interactions is to draw the pairwise abundance landscape for              

each species and carbon source pair (Fig. 3A ). For instance, a species could be either more                

abundant in a pair of nutrients than it is in any of them independently (synergy). Or it could be                   

less abundant than it is in any of the two (antagonism). Dominance is a less extreme interaction                 

which can be visualized by the pushing of a species abundance towards one single nutrient and                
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away from the average that is the predicted value, thus overriding the effect of the paired nutrient                 

(Fig. 3A ).  

 

 

 
Fig. 3. Sugars generally dominate over organic acids. A. Detecting interactions and hierarchies of              
dominance between nutrients on microbial community composition. Drawing the single and pairwise            
abundance landscapes for each species allows us to visualise interactions between nutrients. Multiple types              
of interactions are possible, including dominance, synergy and antagonism. Interactions occur when ε is              
significantly different from 0 (one-sample Student’s t-test, p < 0.05). Synergy (antagonism) occurs when              
the abundance in the mixture is greater (lower) than the abundances in any of the single nutrients                 
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independently (Methods). Dominance occurs when the abundance in the mixture is closer or similar to the                
abundance in one of the singles. The landscape also allows us to identify which carbon source has a                  
dominating effect within the pair. When ε>0, the growth-promoting nutrient dominates and has an              
overriding effect in the community composition. In contrast, when ε<0, the growth-repressing nutrient             
dominates. B. Two examples of nutrient interactions (succinate+fructose and glucose+glutamine)          
exhibiting sugar dominance. Barplots show a representative replicate from one of the inocula ( Fig. S1, S2 ).                
For instance, the landscape for succinate-fructose shows that fructose overrides the effect of succinate by               
promoting Enterobacteriaceae (E), and repressing Moraxellaceae (M) and Rhizobiaceae (R) (purple           
arrows), whereas no interaction effect is observed for Pseudomonadaceae (P). Error bars represent mean ±               
SD of the four replicates. C. Panel shows dominance index for the eight sugar-acid pairs and the four                  
dominant families. Filled circles show the mean±SD of the 2 inocula x 4 replicates for each pair of                  
nutrients, and open symbols show all 8 independent replicates (different shapes for different inocula).              
Purple indicates that the sugar dominates while orange indicates that the acid dominates. Lighter purple               
and orange indicate dominance while darker purple and orange indicate super-dominance (synergy or             
antagonism). No interaction is shown in gray, and occurs when ε=0 (one-sample Student’s t-test, p < 0.05,                 
N=8) or when dominance is undefined because the two inocula exhibit opposite dominant nutrient (in               
which case δ is shown as both - δ and +δ). D. Predicted vs observed family-level abundance. For each pair                   
of carbon sources (CS), shown is the experimentally observed and predicted (by the null model) relative                
abundance of each family in the mixed carbon sources. Any deviation from the identity line               
(predicted=observed) is the interaction effect. The colours show whether the carbon source pairs are              
sugar-sugar (SS), acid-acid (AA), or sugar-acid (SA). Error bars represent mean ± SE. Table shows RMSE                
for each carbon source pair type. 
 
 
When the interaction is positive (ε >0), the dominant nutrient is the one where the family grew to                 

a higher abundance. When the interaction is negative (ε <0), the dominant nutrient is the one               

where the species grew less well. Mathematically, dominance occurs when | ε|> 0 and min(fi,1 , fi,2)               

≤ fi,12 ≤ max(fi,1, fi,2), while synergy and antagonism (forms of super-dominance) occur when | ε|> 0               

and fi,12 > max(fi,1 , fi,2) and fi,12 < min (fi,1 , fi,2) respectively (Methods). Fig. 3B shows                 

representative examples of dominant carbon source interactions. For instance, Moraxellaceae and           

Rhizobiaceae grow strongly on succinate, but they are not present in fructose. When fructose is               

mixed with succinate, both families drop dramatically in abundance, despite their high fitness in              

succinate alone. Interestingly, however, the dominance of fructose over succinate is not observed             

for all families: those two nutrients do not interact on Pseudomonas, whose abundance is well               

predicted by the null model. Using this framework, we then systematically quantified the             

prevalence of dominance, antagonism and synergy between nutrients for each family (Fig. S4A).             

While 59% of the nutrient pair combinations exhibited no significant interaction, dominance was             

by far the most common interaction amongst those that interacted (73%, Fig. S4A ). It occurred               

predominantly in the sugar-acid pairs, and to a lesser extent in the acid-acid pairs, and only rarely                 

in the sugar-sugar pairs (Fig. S4B ). This result strongly suggests that nutrient interactions are not               

random but do have a specific structure that is conserved at the family-level (Fig. S4C ). 
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To systematically characterize and quantify nutrient dominance, we developed a dominance           

index (δ ) (Methods). For visualization purposes, the dominance index for the sugar-acid pairs (we              

will discuss the acid-acid pairs later) is written as δi = -| ε12| when the sugar dominates and as δi =                    

| ε12| when the acid dominates. If ε12= 0, then δi = 0. That is, in the absence of interaction between                    

nutrients, there is no dominance. By plotting the dominance index for each pair of nutrients and                

each family, we observe a generic pattern of dominance of sugars over acids (Fig. 3C ). The                

families Moraxellaceae or Rhizobiaceae are recruited to the community by most organic acids in              

isolation, but they are not found in most sugar communities. When sugars and organic acids are                

mixed together, the sugar dominates and both families are at much lower abundances (by ~6-fold               

in the case of Moraxellaceae and ~114-fold in Rhizobiaceae) than the predicted average, even              

though the organic acid where they thrived is present in the environment. Consistent with this               

pattern, we found that pairs of more similar nutrients (a pair of sugars or a pair of organic acids)                   

were significantly better predicted by the null model than mixed organic acid-sugar pairs (Fig.              

3D). No generic pattern of dominance was observed in the acid-acid mixtures (Fig. S5 ).              

Together, these results indicate that interactions between nutrients are not universal, but rather             

they are conserved at the family-level.  

 

Discussion 

 

Understanding how the available nutrients affect the composition of microbial communities is a             

fundamental question in microbiome biology. Here, we have shown that a simple additive model              

that assumes that nutrients act independently is predictive of community composition at the             

family (and to a lesser extent also at the genus or ESV) level of taxonomic composition. Our                 

results add to the growing evidence that nutrients may combine linearly to determine taxonomic              

abundance [9,10], and suggest that neither host action nor biochemically complex dietary sources             

are necessary for this additivity. Our results also highlight the existence of systematic and              

predictable deviations that are conserved at the family-level. 

 

In particular, we find that there exist generic patterns of dominance between nutrients for specific               

families. In our experiments, sugars generally dominate over organic acids, a nutrient interaction             

rule that is conserved at the family level. When we examine interactions and dominance at the                

genus-level, we find that sugars do not exhibit the same dominance for all genera within the same                 

9 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 7, 2020. ; https://doi.org/10.1101/2020.08.06.239897doi: bioRxiv preprint 

https://paperpile.com/c/ufiIV8/ktPA+Nxgx
https://doi.org/10.1101/2020.08.06.239897
http://creativecommons.org/licenses/by-nc-nd/4.0/


family (Fig. S6 and S7 ). This result is consistent with the convergence of community structure at                

the family level (despite substantial variation at lower levels of taxonomy) which we have              

reported for communities assembled in a single nutrient [13,14]. The predictable           

nutrient-interaction rules we have found thus represent another case of emergent simplicity in             

microbial community assembly. Together, our results highlight the importance of considering the            

taxonomic rank, and cautions against simply focusing on environmental complexity (i.e. the            

number of different nutrients) to understand how community properties, including taxonomic           

composition and function, are affected by the nutritional environment. Instead, our work suggests             

that not all nutrients are equal, and that taking into account the nature of the different nutrients                 

that are combined is crucial for predicting how communities respond to different diets. 

 

Our findings leave open many important questions about the mechanisms behind the emergent             

nutrient interaction rules observed. For instance, why are pairs of more similar nutrients better              

predicted than pairs of more dissimilar nutrients? Why do sugars dominate organic acids? Are the               

observed dominance rules followed in more complex environments? While addressing these           

questions is beyond the scope of this paper, we hope that posing them will stimulate future work.                 

Answering these questions could help guide engineering diets to modulate the composition and             

function of microbial communities in desired directions, including promoting the growth of            

beneficial species and preventing the growth of undesired species, including the spread of             

pathogens. 

 

Methods 

 

Null model for relative abundance. Let’s consider a simple scenario with two species (A and B)                

growing in two separate nutrients (1 and 2). This is similar to cocultures of A and B growing in                   

two separate demes/tubes (one per nutrient). The fractions of A and B in nutrient 1 are fA,1 = nA,1                   

/(n A,1 +nB,1) and fB,1 = nB,1 /(n A,1 +nB,1) respectively, and similarly, the fractions of A and B in                  

nutrient 2 are fA,2 = nA,2 /(n A,2 +nB,2) and fB,2 = nB,2 /(n A,2 +nB,2) (where n is the total number of cells                      

of species A or B). If we mix nutrients 1 and 2 together (i.e. mix the two tubes), the fractions of A                      

and B in the mixture are given by: 

 

fA,12 = (nA,1 +nA,2) /(n A,1 + nB,1 + nA,2 + nB,2) and 
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fB,12 = (nB,1 +nB,2) /(n A,1 + nB,1 + nA,2 + nB,2). 

 

We can define nt,1 = nA,1 + nB,1 and nt,2 = nA,2 + nB,2 as the total number of cells in the nutrient demes                        

1 and 2, respectively. We can thus write fA,12 = (nA,1 +nA,2) /(n t,1 + nt,2). Defining w1 = nt,1 /(n t,1 +                     

nt,2) and w2 = nt,2 /(n t,1 + nt,2), it is straightforward to show that: fA,12 = w1 fA,1 + w2 fA,2. By the same                        

reasoning, we find that f B,12 = w1 fB,1 + w2 fB,2. 

 

Sample collection. Soil samples were collected from two different natural sites in West Haven              

(CT, USA), with sterilized equipment, and placed into sterile bottles. Once in the lab, five grams                

of each soil sample were then transferred to 250mL flasks and soaked into 50mL of sterile 1x                 

PBS (phosphate buffer saline) supplemented with 200 μg/mL cycloheximide (Sigma, C7698) to            

inhibit eukaryotic growth. The soil suspension was well mixed and allowed to sit for 48 hrs at                 

room temperature. After 48hrs, samples of the supernatant solution containing the ‘source’ soil             

microbiome were used as inocula for the experiment or stored at −80ºC after mixing with the                

same volume of 80% glycerol. 

Preparation of media plates. Stock solutions of carbon sources (CS, for a full list see Table S1)                 

were prepared at 0.7 C-mol/L (10x) in 50 mL of double distilled sterile water and sterilized                

through 0.22µm filters (Millipore). CS were aliquoted into 96 deep-well plates (VWR) as single              

CS or mixed in pairs at 1:1 (vol:vol) and stored at -20ºC. To keep the total amount of carbon                   

constant across all treatments at 0.07 C-mol/L, pairs contained half the amount of each carbon               

source when compared to their respective single CS. Synthetic minimal growth media was             

prepared from concentrated stocks of M9 salts, MgSO 4, CaCl2, and 0.07C-mol/L (final            

concentration) of single or pairs of CS. The pH of all growth media (i.e. for each carbon source in                   

M9) were determined and shown in Table S1 . 

Community assembly experiment. Starting inocula were obtained directly from the initial           

‘source’ soil microbiome solution by inoculating 40μL into 500 μL culture media prepared as              

indicated above. For each sample and CS, 4 μL of the culture medium was dispensed into fresh                 

media plates containing the different single or pairs of CS in quadruplicate. Bacterial cultures              

were allowed to grow for 48 hrs at 30 °C in static broth in 96 deep-well plates (VWR). After 48                    

hrs each culture was homogenized by pipetting up and down 10 times before transferring 4 μL to                 

500μL of fresh media, and cells were allowed to grow again. Cultures were passaged 10 times                
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(~70 generations). Optical density (OD620) was used to measure biomass in cultures after the              

48-hour growth cycle. Samples were frozen at -80ºC after mixing with 400 µL of 80% glycerol.  

DNA extraction, library preparation, and sequencing. Samples were centrifuged for 40mins at            

3500rpm, and the pellet was stored at -80ºC until DNA extraction. DNA extraction was              

performed with the DNeasy 96 Blood & Tissue kit for animal tissues (QIAGEN), as described in                

the kit protocol, including the pre-treatment step for Gram-positive bacteria. DNA concentration            

was quantified using the Quan-iTPicoGreen dsDNA Assay kit (Molecular Probes, Inc) and the             

samples were normalized to 5ng/uL before sequencing. The 16S rRNA gene amplicon library             

preparation and sequencing were performed by Microbiome Insights, Vancouver, Canada          

(www.microbiomeinsights.com). For the library preparation, PCR was done with dual-barcoded          

primers [16] targeting the 16S V4 region and the PCR reactions were cleaned up and normalized                

using the high-throughput SequalPrep 96-well Plate Kit. Samples were sequenced on the Illumina             

MiSeq using the 300-bp paired end kit v3.chemistry. 

Taxonomy assignment. The taxonomy assignment was performed as described in previous work            

[14]. Following sequencing, the raw sequencing reads were processed, including demultiplexing           

and removing the barcodes, indexes and primers, using QIIME (version1.9, [17]), generating            

fastq files with the forward and reverse reads. DADA2 (version 1.6.0) was then used to infer                

exact sequence variants (ESVs) [18]. Briefly, the forward and reverse reads were trimmed at              

position 240 and 160, respectively, and then merged with a minimum overlap of 100bp. All other                

parameters were set to the DADA2 default values. Chimeras were removed using the             

“consensus” method in DADA2. The taxonomy of each 16S exact sequence variant (ESV) was              

then assigned using the naïve Bayesian classifier method [19] and the Silva reference database              

version [20] as described in DADA2. The analysis was performed on samples rarefied to 10779               

reads.  

 

Quantification of total abundances, interactions, and dominance. We used OD620 of the            

cultures after the 48-hour growth cycle as a proxy for total population size (community biomass).               

The predicted relative abundance of species i in a mix of nutrients 1 and 2 was then calculated as                   

fi,12(null) = w1 fi,1 + w2 fi,2 where fi,1 and fi,2 are the relative abundances of i in nutrients 1 and 2,                      

respectively, and w1= (OD6201 / (OD6201 +OD6202) and w2 = (OD6202 / (OD6201 +OD6202). For               

each carbon source pair and inoculum, fi,12(null) is calculated as the mean of the two single carbon                 

source-replicate pairwise combinations (N=16). In order to quantify interactions, we first           
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determine whether an interaction between nutrients exists for each nutrient pair (nutrient 1 and              

nutrient 2) and family i. An interaction exists when ε = fi,12 - fi,12(null) is significantly different                 

from 0 (one-sample Student’s t-test, p<0.05), that is when there is a deviation from the null                

prediction. Under such condition (i.e. | ε|> 0), synergy and antagonism (which are forms of             

super-dominance) occur when fi,12 > max(fi,1 , fi,2) and fi,12 < min (fi,1 , fi,2) respectively, while                

dominance occurs when min(fi,1 , fi,2) <= fi,12 <= max (fi,1 , fi,2) (Welch two sample t-test, p<0.05).                 

When ε>0, the nutrient with greater abundance dominates; when ε<0, the nutrient with lower              

abundance dominates. For visualization purposes, we developed a dominance index (δ ). The            

dominance index for the sugar-acid pairs is written as δi = -| ε12| when the sugar dominates and as                  

δi = | ε12| when the acid dominates. The dominance index for the sugar-sugar and acid-acid pairs is                 

written as δi = -| ε12| when the focal carbon source (glucose or succinate) dominates and as δi = | ε12|                   

when the additional carbon source dominates.  

 

Statistical analysis. All data analysis was performed in R. Pearson’s R was calculated using the               

R function ‘cor.test’ from the ‘stats’ package and the RMSE was calculated using the ‘rmse’               

function from the ‘Metrics’ package. 
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