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2 
Abstract 

Annually, approximately 3 million children around the world experience traumatic brain injuries (TBIs), of which 

up to 20% are characterized as moderate to severe (msTBI) and/or have abnormal imaging findings. Affected 

children are vulnerable to long-term cognitive and behavioral dysfunction, as injury can disrupt or alter ongoing 

brain maturation. Post-injury outcomes are highly variable, and there is only limited understanding of how 

inter-individual differences in outcomes arise. Small sample sizes have also complicated efforts to better 

understand factors influencing the impact of TBI on the developing brain. White matter (WM) disruption is a 

critical aspect of TBI neuropathology and diffusion MRI (dMRI) is particularly sensitive to microstructural 

abnormalities. Here we present the results of a coordinated analysis of dMRI data across ten cohorts from 

three countries. We had three primary aims: (1) to characterize the nature and extent of WM disruption across 

key post-injury intervals (acute/subacute - within 2 months, post-acute - 2-6 months, chronic - 6+ months); (2) 

evaluate the impact of age and sex on WM in the context of injury; and (3) to examine associations between 

WM and neurobehavioral outcomes. Based on data from 507 children and adolescents (244 with complicated 

mild to severe TBI and 263 control children), we report widespread WM disruption across all post-injury 

intervals. As expected, injury severity was a significant contributor to the pattern and extent of WM 

degradation, but explained less variance in dMRI measures with increasing time since injury, supporting other 

research indicating that other factors contribute increasingly to outcomes over time. The corpus callosum 

appears to be particularly vulnerable to injury, an effect that persists years post-TBI. We also report sex 

differences in the effect of TBI on the uncinate fasciculus (UNC), a structure with a key role in emotion 

regulation. Females with a TBI had significantly lower fractional anisotropy (FA) in the UNC than those with no 

TBI, and this phenomenon was further associated with more frequent parent-reported behavioral problems as 

measured by the Child Behavior Checklist (CBCL). These effects were not detected in males. With future 

harmonization of imaging and neurocognitive data, more complex modeling of factors influencing outcomes will 

be possible and help to identify clinically-meaningful patient subtypes. 
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3 
Introduction 

Traumatic brain injury (TBI) can have devastating and long-lasting consequences for brain health and 

associated functional outcomes, and can be especially disruptive during development in children and 

adolescents. The plasticity of the human brain during development enables learning and adaptation, but its 

hidden cost may be increased vulnerability to injury ​(Anderson ​et al.​, 2011; Ismail ​et al.​, 2017)​. Brain injury 

may derail developmental processes and can drain the neural resources required for typical brain maturation 

(Hebb, 1949; Pascual-Leone ​et al.​, 2005)​. Children and adolescents also have a higher risk of sustaining a TBI 

than adults, and TBI is the leading cause of death and disability in youth in the United States ​(Langlois ​et al.​, 

2006)​ and is a significant public health issue worldwide ​(Dewan ​et al.​, 2016)​. A number of developmental and 

physiological factors make children particularly vulnerable to poor outcomes ​(Figaji, 2017)​. Children have 

larger head-to-body ratios and less neck strength, which can influence how mechanical injury forces impact the 

brain. Additionally, incomplete myelination leads to differences in tissue viscosity which can influence response 

to injury ​(Guo ​et al.​, 2019)​. TBI can lead to cognitive impairment in all patients, but in children this disruption 

can become more apparent over time, as children fail to meet the increasing demands of educational activities 

(Ewing-Cobbs ​et al.​, 2004; Anderson ​et al.​, 2005; Babikian and Asarnow, 2009; Wells ​et al.​, 2009; Ryan ​et al.​, 

2015)​.  

Advanced magnetic resonance imaging (MRI) techniques have shown great promise in furthering our 

understanding of the injury and recovery processes that occur during dynamic periods of neurodevelopment 

(Dennis ​et al.​, 2018, Lindsey ​et al.​, 2019 ​b​)​. Research using diffusion MRI (dMRI) has revealed widespread 

disruption of brain microstructure in children and adolescents with moderate/severe TBI (msTBI) ​(Wozniak ​et 

al.​, 2007; Yuan ​et al.​, 2007; Levin ​et al.​, 2008; Caeyenberghs ​et al.​, 2009, 2010, 2012; Oni ​et al.​, 2010; Wilde 

et al.​, 2010, 2012; Wu ​et al.​, 2010; McCauley ​et al.​, 2011; Treble ​et al.​, 2013, Dennis ​et al.​, 2015 ​a​, ​b ​, 2017 ​b​; 

Johnson ​et al.​, 2015; Ewing-Cobbs ​et al.​, 2016; Faber ​et al.​, 2016; Genc ​et al.​, 2017; Königs ​et al.​, 2018, 

Lindsey ​et al.​, 2019 ​a​; Molteni ​et al.​, 2019; Watson ​et al.​, 2019)​, which is less likely  to be detected by 

conventional clinical neuroimaging. DMRI can model white matter (WM) tracts and assess tissue structure by 

mapping the diffusion of water molecules; it is particularly sensitive to traumatic axonal injury, a hallmark of 
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4 
msTBI ​(Ashwal ​et al.​, 2014, Dennis ​et al.​, 2017 ​a​)​. While this method has shown sensitivity to several forms of 

TBI-related pathology and often relates to clinical injury and outcome generally, many outstanding questions 

remain, including the moderating role of key demographic and injury variables, such as age at injury and sex.  

Critically, outcomes after TBI are highly variable, and acute clinical measures of injury severity (e.g., 

Glasgow Coma Scale [GCS], post-traumatic amnesia, loss of consciousness) and conventional clinical 

neuroimaging only modestly account for inter-individual differences ​(Anderson ​et al.​, 2006; Lajiness-O’Neill ​et 

al.​, 2011, Lindsey ​et al.​, 2019 ​b​; Petranovich ​et al.​, 2020)​. The prefrontal cortex is particularly vulnerable to TBI 

due to common injury mechanics and to the structure of the skull ​(Bigler, 2007)​, potentially contributing to the 

high prevalence of emotional dysregulation, behavioral change, and executive dysfunction after TBI. Studies 

have linked atrophy in the corpus callosum (CC) and frontal lobes with several aspects of cognitive dysfunction 

after TBI ​(Verger ​et al. ​, 2001; Slomine ​et al.​, 2002; Braga ​et al.​, 2007)​. Around half of children sustaining a 

msTBI may go on to develop novel psychiatric disorders later in life ​(Max ​et al.​, 2012 ​a​)​, although the paucity of 

longitudinal studies in pediatric msTBI means that more research is needed to better understand factors 

contributing to psychiatric disorders after TBI, and their prevalence. In fact, there is a significant and specific 

relationship between novel psychiatric disorders in children with msTBI and WM organization ​(Max ​et al.​, 

2012 ​b​)​. A more comprehensive understanding of factors that influence outcome post-injury would benefit 

patients and their families by providing more accurate expectations about recovery and may help to identify 

additional targets for intervention.  

Sex may impact outcome, as some studies have reported longer hospitalizations and greater symptom 

burden in females ​(Arambula ​et al.​, 2019)​. Analyses of long-term outcomes have also revealed sex differences 

in psychosocial dysfunction ​(Scott ​et al.​, 2015)​. There are significant sex differences in WM development that 

may influence vulnerability to injury ​(Ho ​et al.​, 2020; Schmied ​et al.​, 2020)​. Pre-clinical evidence also suggests 

that sex may moderate severity of outcomes (see review by ​(Gupte ​et al.​, 2019)​). However, most studies of 

msTBI in children have not had the sample size necessary to examine this effect ​(Dennis ​et al.​, 2018)​. Age at 

injury may also play a role in outcomes as different regions may be more or less vulnerable depending on their 

stage of maturation ​(Giza and Prins, 2006)​, although results from neuroimaging analyses have yielded 
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5 
conflicting results ​(Ewing-Cobbs ​et al.​, 2016, Dennis ​et al.​, 2017 ​b​)​. Progress to date has been limited by 

heterogeneity among patients (e.g., severity and nature of injury; age at injury; time since injury; pre- and 

comorbid factors; access to, quality, and effectiveness of treatment; and psychosocial factors), along with 

limited sample sizes. This is partially related to the difficulty of recruiting and studying this population and to the 

challenges inherent in multi-site MRI research (e.g., lack of harmonization across MRI systems and scanners; 

inherent variation in demographic characteristics between cohorts).  

The ENIGMA Diffusion Tensor Imaging (DTI) workflow ​(Jahanshad ​et al.​, 2013)​ has revealed patterns 

of altered WM organization across a number of clinical populations ​(Kochunov ​et al.​, 2020)​, including 

schizophrenia ​(Kelly ​et al.​, 2018)​, post-traumatic stress disorder ​(Dennis ​et al.​, 2019)​, and 22q11.2 Deletion 

Syndrome ​(Villalón-Reina ​et al.​, 2019)​. Here we applied these novel analytic methods to pediatric msTBI by 

analyzing data from over 500 participants across 10 cohorts. We examined alterations in WM organization in 

three post-injury intervals: acute/sub-acute (within 2 months of injury), post-acute (2-6 months post-injury), and 

chronic (more than 6 months post-injury). We hypothesized that widespread disruptions in WM organization 

would be evident in the msTBI group across multiple times post-injury and that key demographic factors such 

as age and sex would moderate outcome. 

Materials and Methods 

Study Design/Context 

The ENIGMA Pediatric msTBI Working Group is a subgroup of the ENIGMA Brain Injury Working 

Group ​(Wilde ​et al.​, 2020; Dennis ​et al.​, 2020)​, an international collaboration among neuroimaging researchers 

focused on TBI ​(Dennis ​et al.​, 2020)​. The strategy behind this collaboration is to leverage the existing 

framework of the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium ​(Thompson 

et al.​, 2020)​ to answer questions that can only be addressed with larger samples than any single institution or 

research group can access individually. Through harmonized data processing and meta-analysis, we aim to 

ensure adequate statistical power to address these questions.  

Study Samples 
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6 
The ENIGMA Pediatric msTBI dMRI analysis included ten cohorts from seven research sites across 

three countries, totaling 244 children and adolescents (170 males/74 females, aged 5-20 years) with 

complicated mild (GCS>13 but abnormal imaging findings), moderate (GCS 9-12), or severe TBI (GCS 3-8) 

and 263 control children and adolescents (150 males/113 females, aged 5-20 years). The control sample 

included both healthy controls (HC) and children with orthopedic injuries (OI). ​Some evidence suggests that 

these comparison groups differ, so collecting both HC and OI may be the best design when possible ​(Wilde ​et 

al.​, 2019)​. ​Five studies were longitudinal and six were cross-sectional, yielding 646 scans from 507 

participants. ​Table 1 ​provides basic demographic and clinical details on the cohorts. Detailed information on 

the inclusion and exclusion criteria may be found in ​Supplementary Table 1​. ​All participants provided written 

or verbal informed assent while parents provided written informed consent approved by local institutional 

review boards. Apart from one cohort, all sites shared raw imaging data with the central site (University of 

Utah), where they were processed and analyzed. The remaining site processed, quality checked, and analyzed 

data according to the same set of standardized scripts (accessible on the ENIGMA website: 

http://enigma.ini.usc.edu/protocols/dti-protocols/​). 

Image Acquisition and Processing 

The acquisition parameters for each cohort are provided in ​Supplementary Table 2​. Preprocessing, 

including eddy current correction, echo-planar imaging-induced distortion correction, and tensor fitting, was 

performed at the University of Utah. All data were visually quality checked at multiple stages according to the 

recommended protocols and quality control procedures of the ENIGMA-DTI and NITRC (Neuroimaging 

Informatics Tools and Resources Clearinghouse) webpages, including careful inspection of registrations. 

Fractional anisotropy (FA) is a measure of the degree to which water is diffusing preferentially along the 

direction of axons, and has been interpreted as a proxy for myelin integrity, though it can also be altered by 

inflammation and axonal packing ​(Basser ​et al.​, 1994)​. Mean diffusivity (MD) measures the magnitude of 

diffusion (regardless of direction) in a voxel (averaged across the three eigenvectors), radial diffusivity (RD) is 

diffusion perpendicular to the largest eigenvalue (typically along the axon), and axial diffusion (AD) is diffusion 

along the axon. Once tensors were estimated (FA/MD/RD/AD), they were mapped to the ENIGMA DTI 
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7 
template, projected onto the WM skeleton, and averaged within 24 regions of interest (ROIs) from the Johns 

Hopkins Atlas (JHU), some of which overlap ​(e.g., genu, body, and splenium of corpus callosum [CC] and total 

CC, ​http://enigma.ini.usc.edu/protocols/dti-protocols/​). Further details and ​ROI abbreviations may be found in 

Supplementary Note 1​. Across all sites (except the single site that did not share raw imaging data), we 

extracted motion parameters from the eddy current correction procedure to determine whether motion played a 

confounding role in our case-control findings. We examined rotation and translation averaged across the X, Y, 

and Z axes and found greater average rotation (​t​=2.4, ​p ​=0.018) in the control group. Therefore, we repeated 

group comparisons while covarying for rotation.  

Statistical Analysis 

For each cohort, a linear model was fit using the ​lm​, ​ppcor,​ and ​matrixStats​ packages in R 3.5.3 

(​https://www.r-project.org/​), with the ROI FA as the response variable and group and covariates as predictors. 

For cohorts/studies with more than one data collection site, each site’s subjects were analyzed as a separate 

cohort. ​As in prior ENIGMA disease working group meta-analyses ​(Kelly ​et al.​, 2018)​, a random-effects 

inverse-variance weighted meta-analysis was conducted at a central coordinating site (the University of 

Southern California Imaging Genetics Center) in R (​metafor​ package, version 1.99–118 

http://www.metafor-project.org/​) ​to combine individual cohort estimated effect sizes. ​Cohen’s ​d​ for the main 

effect of group and unstandardized β coefficients (regression parameters) for continuous predictors were 

computed with 95% confidence intervals.​ ​We used the Cohen’s ​d​ calculation which accounts for covariates in 

the fixed effects model, using the following equation: 

where  d = M1−M2
pooled SD ooled SD  p =  √ 2

SD +SD2
1

2
2  

Heterogeneity scores (​I​2​) for each test were computed, indicating the percent of total variance in effect size 

explained by heterogeneity across cohorts. As the most commonly-reported dMRI metric, ​bilaterally-averaged 

FA was the primary imaging measure, with corresponding MD, RD, and AD examined ​post hoc ​when FA was 

significant for an effect of TBI. Lateralized ROIs were examined ​post hoc​ when a significant effect was found 

for the bilateral average. The corticospinal tract was not analyzed as its FA measurements have poor reliability, 

likely due to registration issues ​(Jahanshad ​et al.​, 2013)​. The average correlation in FA between all pairs of 
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8 
ROIs was ​r ​=.56. A Bonferroni correction is considered too conservative when there are correlations among the 

multiple dependent measures being tested ​(Nyholt, 2004; Li and Ji, 2005)​. Therefore, we followed recent 

ENIGMA analyses ​(Dennis ​et al.​, 2019)​ and calculated the effective number of independent tests based on the 

observed correlation structure between the regional measures.​ ​The equation of Li and Ji ​(Li and Ji, 2005) 

yielded V​eff ​= 10, giving a significance threshold of ​p​<0.05/10=0.005.  

Code and Data Availability 

All analyses were conducted using generalizable scripts available on the ENIGMA GitHub repository: 

https://github.com/ENIGMA-git/ENIGMA/tree/master/WorkingGroups/EffectSize_and_GLM​. Individual 

ROI-level data were processed using a set of R scripts with regressions customized for the current ENIGMA 

Pediatric msTBI dMRI analysis workflow, which is available on a set of Google Spreadsheet configuration files 

by request. Data are available to researchers who join the working group and submit a secondary analysis 

proposal to the group for approval. 

Non-linear Age Term 

We first conducted analyses to examine whether a nonlinear age term should be included in statistical 

models along with age and sex, as increases and decreases in FA over the lifespan do not follow a linear trend 

(Kochunov ​et al.​, 2010)​. Age ​2​ was significantly associated with FA for a number of ROIs so it was included in 

all subsequent models. 

Primary Group Comparisons 

Data were binned into three post-injury intervals: acute to subacute (MRIs acquired 1 week-2 months 

after injury), post-acute (2-6 months post-injury), and chronic (6 months-14 years post-injury) ​(Dennis ​et al.​, 

2017 ​a​)​. Within each of these time periods, we compared groups of patients with TBI and controls. Sites with 

fewer than 5 participants in any cell were not included in meta-analyses. Six cohorts collected data on HC, 

while five studies recruited children with OIs (matched for time since injury to the TBI group) as controls. To 

examine the impact of control group, all group comparisons were repeated separately for those cohorts that 

recruited HC or OI comparison groups.  

Interactions 
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9 
We examined potential interactions between group and age or sex, within the three post-injury 

windows.  

Injury Variables 

Within the msTBI group, we examined linear relationships using regression analyses between dMRI 

measures and three injury variables: age-at-injury (controlling for age-at-scan), GCS, and time since injury 

(TSI). 

Neurobehavioral Measures 

Six of the cohorts collected the parent version of the Behavior Rating Inventory of Executive Function 

(BRIEF) ​(Gioia ​et al.​, 2000)​, although two cohorts had too few participants (<5) with both BRIEF and 

high-quality dMRI to be included in analyses. Among these, we conducted linear regressions on the normative 

T scores from two summary indices (Behavioral Regulation Index [BRI] and Metacognition Index [MI]) and the 

Global Executive Composite (GEC) within the TBI group. The BRI assesses behavior that is considered to be 

related to inhibition, shifting, and emotional control, while the MI assesses behavior considered to be related to 

the ability to plan, initiate, and monitor activity and performance along with working memory. GEC is a measure 

of behavior considered to be related to overall executive functioning. ​There was insufficient data to examine 

associations between WM organization and BRIEF scores in the acute phase sample. In the post-acute phase 

sample, 56 participants in the TBI group had BRIEF data. The average 𝝻, standard deviation 𝞼, and range of 

the T​ ​scores were: for BRI - 𝝻=51.9, 𝞼=12.0, range=37-79; for MI - 𝝻=53.3, 𝞼=11.4, range=36-78; for GEC - 

𝝻=52.8, 𝞼=11.8, range=36-74. In the chronic phase, 86 participants in the TBI group had BRIEF data. The 

average, standard deviation, and range of the T​ ​scores were: for GEC - 𝝻=51.2, 𝞼=10.5, range=32-76; for BRI - 

𝝻=50.5, 𝞼=10.7, range=36-77; for MI - 𝝻=51.5, 𝞼=10.5, range=30-75. Outliers, defined as being more than 3 

SDs away from the age-adjusted population mean, were removed (any T score <21 or >79). 

Researchers studying four of the cohorts collected the Child Behavior Checklist (CBCL), a parent report 

of emotional and behavioral functioning ​(Achenbach, 1994)​, although one cohort had too few participants with 

CBCL and dMRI of acceptable quality to be included in analyses. Among these three cohorts, we conducted 

linear regressions assessing associations with FA on the T scores from three summary indices - Internalizing 
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10 
Problems, Externalizing Problems, and Total Problems. Internalizing Problems encompasses depressive and 

anxious symptoms along with somatic complaints, while Externalizing Problems covers aggressive behavior 

and rule-breaking. Total Problems includes both of these, along with social problems, attention problems, and 

thought problems such as obsessions and compulsions. These were assessed in the chronic phase, as not 

enough cohorts collected these measures in other phases. Outliers were removed (any T score <21 or >79). 

There were 69 participants in the TBI group with CBCL data. The average, standard deviation, and range of 

scores were: Internalizing Problems - 𝝻=51.2, 𝞼=12.1, range=33-79; Externalizing Problems - 𝝻=48.3, 𝞼=11.0, 

range=33-76; Total Problems - 𝝻=49.9, 𝞼=12.2, range=24-76. 

Results 

Primary Group Comparison 

In the acute/subacute phase (38 TBI/44 control participants), post-acute phase (78 TBI/107 control 

participants), and chronic phase (160 TBI/190 control participants), we found significantly lower FA in the TBI 

group across a large number of ROIs, particularly central WM tracts and regions (​Table 2​). Effect sizes across 

ROIs for each time point are shown in ​Figure 1 ​and ​Supplementary Videos 1-3​. Forest plots for the sites 

contributing to the group comparisons are shown in ​Figures 2-4​. Follow-up analyses including average 

rotation as a covariate yielded results consistent with our main analyses (for details, see ​Supplementary Note 

1 ​and ​Supplementary Figure 1 ​). ​Post hoc ​ analyses of other diffusion metrics revealed higher RD and MD 

post-acutely and chronically, with higher RD acutely as well. Acutely, AD was significantly lower across ROIs. 

Post-acutely and chronically, AD was lower in segments of the CC and higher in other ROIs (​Supplementary 

Figures 2-4 ​). Generally, significant results for bilateral ROIs were accompanied by significant results in the 

lateralized ROIs as well.  

Interactions: ​A significant group-by-sex interaction was found in the post-acute phase for FA in the UNC 

(uncinate fasciculus). Further analyses detected no effect of group in males while females with TBI had lower 

FA than control females (​Figure 5​). In the chronic phase, there were only borderline interaction effects with 

age or sex (0.005<​p​<0.05, ​Supplementary Figure 5 ​).  
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11 
Control populations​: When conducting separate meta-analyses across sites that recruited HC vs. OI 

controls, results were generally consistent with the main analyses, although differences were not quite as 

extensive in the chronic phase for the OI comparison (​Supplementary Figure 6​). There was not a large 

enough sample (<5 per cell) in the acute phase to examine TBI vs. OI controls. 

Injury Variables 

Within the TBI group, significant associations were found with age-at-injury in the post-acute phase in 

the PTR and SLF (𝞫=0.20, ​p​=0.00023; 𝞫=0.18, ​p​=1.3x10 ​-5​, respectively), with higher FA in patients who were 

older at the time of injury (​Supplementary Figure 7​). Also post-acutely, significant associations were seen 

between TSI and the FAs of the BCC and GCC (𝞫=-0.0075, ​p​=0.00010; 𝞫=-0.0049, ​p​=0.0041, respectively) 

with lower FA in patients further from injury (​Supplementary Figure 7​). We found significant associations with 

GCS within the TBI group at all time points (​Supplementary Figure 7​); in all cases higher GCS (i.e., less 

severe injury) was associated with higher FA. Acutely, an association was found between GCS and average 

FA, along with FA of the ALIC, several ​corona radiata​ (CR)​ ​segments, FX, PTR, SCC, SS, and TAP. 

Post-acutely, GCS was associated with average FA, along with FA of the CR​ ​segments, BCC, and SLF. 

Chronically, GCS was associated with FA of the FX and SS (𝞫=0.010, ​p​=7.0x10 ​-6​; 𝞫=0.0033, ​p​=5.8x10 ​-5​, 

respectively). 

Neurobehavioral Function 

In the post-acute and chronic phases, respectively, 56 and 86 participants in the TBI group had BRIEF 

scores. In the post-acute phase, a significant association was found between BRI and average skeleton FA 

(𝞫=-0.00060, ​p​=0.0028, ​Supplementary Figure 8 ​), where higher FA was associated with better behavioral 

regulation. No associations survived correction for multiple comparisons in the chronic phase. For MI, in the 

chronic phase we found a significant negative association with the FA of the UNC (𝞫=-0.0028, ​p​=8.6x10 ​-5​, 

Supplementary Figure 8 ​). No associations survived correction for multiple comparisons in the post-acute 

phase. For GEC, a number of associations were found in both the post-acute and chronic phase, although 

none survived correction for multiple comparisons at either time point (​Supplementary Figure 8​). 
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12 
There were 69 participants across three sites in the TBI group with CBCL scores. Across the TBI group, 

no significant associations were found between FA and CBCL Internalizing, Externalizing, or Total Problems 

scores. Given the significant group-by-sex interaction with UNC FA (a key structure for emotion regulation), we 

also examined the CBCL scores in the female participants in the TBI group only. Across the three sites, 21 

female participants in the TBI group had CBCL scores. We found a significant negative association between 

total problems and FA in the UNC and SS (𝞫=-0.0027, ​p​=0.0017 and 𝞫=-0.0014, ​p​=0.0024, respectively, 

Figure 6 ​) with lower FA in patients whose parents reported more problems. 

Discussion 

Here we present the largest-ever study using dMRI to examine altered WM microstructural organization 

in pediatric patients with msTBI. In a sample of over 500 children and adolescents from ten cohorts across 

three countries, we report widespread disruption of WM microstructural organization along all post-injury time 

windows. We found that females may have a particular vulnerability to WM disruption, especially in the UNC, a 

fronto-limbic tract, which may underlie a heightened risk of behavioral or emotional problems post-injury. More 

severe injury is associated with more severe WM disruption, but this effect may lessen with increasing time 

since injury, evidenced by smaller effect sizes; this may also suggest an increasing influence of other 

moderating factors over time. Nevertheless, our results indicate that disruption of WM, particularly in callosal 

fibers, can persist for years post-injury. 

In group comparisons, central WM ROIs (CC, CR, internal capsule) exhibited the most extensive 

disruptions, although, by the chronic phase, nearly every ROI shows significant group differences. This could 

be for a variety of reasons associated with either pathology and methodology. The CC, in particular, may be 

most vulnerable to injury as the ​falx cerebri​ exacerbates lateral forces during an impact ​(Hernandez ​et al.​, 

2019)​. Methodologically, modeling crossing fibers is a known challenge in dMRI that can impact calculations in 

certain areas like the CR and may mean that alterations in FA are more consistently detected in regions with 

few mixed fiber populations like the CC. Lower FA, paired with higher MD and RD, could indicate 

demyelination but could also reflect axonal degeneration, inflammation, or changes in axonal density ​(Song ​et 

al.​, 2002, Dennis ​et al.​, 2017 ​a​)​. In the acute/subacute phase, we report lower AD, perhaps reflecting axonal 
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13 
disruption shortly after injury. In the post-acute and chronic phases, however, the directions of AD effects were 

mixed, with higher AD in the CR​ ​and lower AD in the CC. Higher AD could reflect recovery, but it could also 

result from selective degeneration of neuronal populations. Lower AD in the CC, where the fibers are more 

unidirectional, suggests axonal degeneration. If callosal projections are interrupted, this could lead to higher 

AD values in areas where they would have otherwise crossed other fiber bundles, such as the CR. 

Higher-resolution multi-shell dMRI, which can be used to model intra- and extracellular diffusion, could reveal if 

neurite density is lower and if there are more unidirectional axonal bundles in the CR further from injury. This 

would be expected in the presence of selective degeneration of callosal fibers. 

In this study, we found a group-by-sex interaction for uncinate fasciculus (UNC) FA. Females with 

msTBI had lower UNC FA compared to controls, whereas the effect of TBI was not significant in males. The 

UNC connects the ventral prefrontal cortex and the amygdala and is a key structure for emotion regulation. In 

prior studies, lower FA in the UNC after TBI was associated with reduced emotional control and increased 

vulnerability to novel psychiatric disorder, primarily the clinically-significant emotional dysregulation syndrome 

of personality change due to TBI ​(Johnson ​et al.​, 2011, Max ​et al.​, 2012 ​b​)​. While data on the long-term 

outcome after pediatric TBI is relatively sparse, one study reported greater prevalence of internalizing 

disorders in females compared to males ​(Scott ​et al.​, 2015)​, although this disparity is also present outside of 

TBI and may be related to social norms and to sex differences in reporting behaviors ​(Nolen-Hoeksema, 1990)​. 

We also show a significant association between UNC FA and the Total Problems score from the CBCL in 

female TBI patients. This association was not present in the full TBI group, suggesting that the particular 

vulnerability of the UNC in girls may lead to a greater likelihood of behavioral or emotional problems after 

injury. This analysis was underpowered, however, because our sample of females with TBI was small and only 

three sites collected the CBCL. A central future aim of the ENIGMA Pediatric msTBI working group is 

harmonizing different scales to extract common domain scores across cohorts, to analyze the neural 

underpinnings of psychiatric symptoms after TBI in a well-powered, principled manner ​(Dennis ​et al.​, 2020)​.  

Premorbid factors that are associated with brain structure may predispose children to injury (e.g., 

hyperactivity), and for this reason some studies include OI controls instead of HCs. When we conducted 
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separate meta-analyses of cohorts collecting HC vs. OI controls, results were generally consistent. ​Using the 

OI group as a comparison to the TBI group revealed more extensive differences in dMRI in the post-acute 

phase than when using the HC group as a control. The opposite is true for the chronic phase ​, although 

statistical power presumably differed in the chronic phase given the differing sample sizes (chronic phase: 73 

TBI vs 77 OI, 100 TBI vs. 119 HC). This disparity could also point to long-term impacts of injury that are not 

restricted to TBI. Hospitalization, psychological trauma from the injury event, and biological responses 

associated with secondary injury (such as inflammation) could all contribute to alterations in brain structure and 

function even when the brain itself is not directly injured ​(McDonald ​et al.​, 2016; Sheeler, 2016; Yang ​et al.​, 

2016; Nicholson ​et al.​, 2018; Ewing-Cobbs ​et al.​, 2019)​. 

We examined a number of clinical variables within the TBI group, including age-at-injury, GCS, and 

time since injury (TSI). Older patients may fare better, as we found significant associations with age-at-injury 

for the SLF and PTR - two regions that are still maturing throughout adolescence ​(Schmithorst ​et al.​, 2002; 

Barnea-Goraly ​et al.​, 2005; Ashtari ​et al.​, 2007; Lebel ​et al.​, 2012)​. However, these associations were only 

present in the post-acute phase, suggesting that in the long-term the effect is minimal, possibly reflecting late 

catch-up recovery in younger children with TBI in the chronic phase. TSI similarly showed an effect only in the 

post-acute phase. This is not surprising, however, as FA calculations in the acute phase may be influenced by 

acute pathologies such as swelling or the breakdown of the blood-brain barrier ​(Niogi and Mukherjee, 2010)​. 

The lack of detectable associations in the chronic phase (range of post-injury time intervals: 0.5-14 years) may 

be influenced by variability among cohorts, or it could indicate that the impact of TBI on WM organization may 

stabilize within the first year or so of injury. Longitudinal studies with more than two assessments are critical to 

answer this important question. GCS was significantly positively associated with FA at all time points, 

suggesting that more severe injury is associated with poorer WM organization. These effects were less 

pronounced in the chronic phase, however, suggesting that other factors besides severity may increasingly 

account for variations in long-term outcomes. Previous research has found that post-injury family environments 

influence long-term behavioral outcomes, although these factors have not explicitly been examined with regard 
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15 
to WM organization ​(Yeates ​et al.​, 1997, 2004; Schmidt ​et al.​, 2010)​. Again, more longitudinal studies are 

needed to show this directly and identify moderating factors. 

A limitation of our study is the variability among sites, scan parameters, recruitment criteria, and 

collected measures. This heterogeneity limits our ability to characterize the groups in great detail and limits our 

power for some analyses even with our large sample size, particularly those involving behavioral measures. 

For example, the associations we report with CBCL Total Problems in female TBI patients need to be 

replicated in a larger sample. However, this discovery was only possible with the relatively large sample that 

we had, and demonstrates the potential of ENIGMA analyses to generate hypotheses that future research can 

interrogate in greater depth. The ENIGMA Pediatric msTBI group will conduct follow-up analyses once we 

establish harmonization procedures that enable us to measure behavioral and psychological disruption across 

measures (e.g., K-SADS-PL ​(Kaufman ​et al.​, 2013)​ and VABS ​(Sparrow ​et al.​, 2012)​). Another limitation is the 

inability to control for preinjury behavioral problems and psychiatric diagnoses. The broad variability across 

sites in the timing of assessments may limit results, as the first year post-injury is especially dynamic from a 

neural reorganization perspective. We attempted to address this by establishing post-injury intervals but 

biological changes occur along more of a continuum rather than in discrete periods during recovery from injury, 

and the scale and granularity of this continuum differ across patients. Variability in study parameters is, to 

some extent, a strength, as it supports the generalizability of our results. Our analysis includes a good portion 

of the dMRI data that currently exists for pediatric msTBI cohorts, but it is a small field. Future data collection 

(ideally with a greater degree of harmonization) will be necessary to move the field forward. 

Conclusion 

We conducted a harmonized analysis across cohorts to examine WM organization after TBI.​ ​In this 

analysis of 507 children and adolescents, we report widespread disruption in WM organization following 

complicated mild to severe TBI. These alterations appear to persist and encompass a larger number of WM 

regions with time post-injury, although future longitudinal analyses are needed to map true changes in the 

measures examined, and to identify subsets of patients who fare better. Future analyses employing more 
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16 
complex harmonization and machine learning approaches may reveal clinically-significant patient subtypes 

based on demographic, clinical, and imaging variables.  
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Table and Figure Legends 
Table 1. Demographic and clinical details of cohorts. ​For each cohort, the design (longitudinal - Long, or 
cross-sectional - CSX), chronicity of injury (acute/sub-acute=less than 2 months post-injury, post-acute=2-6 
months post-injury, chronic=more than 6 months post-injury), GCS (average and standard deviation - SD, 
NA=not available), total N, number of TBI and control participants, number of male and female participants, 
age range (average and SD), and the type of control group (HC=healthy controls, OI=orthopedically injured) 
used are listed.  
Figure 1. Group differences in FA in the acute/sub-acute, post-acute, and chronic phases. ​Effect sizes 
are shown for significant results from the primary group comparison, covarying for sex, age, and age ​2​. Cohen’s 
D​ statistics for midline and bilateral ROIs are displayed according to the color bar below. As TBI was coded as 
“1” and controls as “0”, negative effect sizes indicate lower FA in the TBI group. Only regions surviving 
correction for multiple comparisons are shown (​p​<0.005), statistical details for all ROIs are shown in ​Table 2. 
Table 2. Group differences in FA in the acute/sub-acute, post-acute, and chronic phases. ​Cohen’s ​d 
values, uncorrected ​p​ values, the 95% confidence interval for the ​d​ statistic, and the ​I ​2​ (heterogeneity) are 
shown for the group comparisons. Bolded results are significant when corrected for multiple comparisons, 
italicized​ results are marginally significant (based on the Li and Ji adjusted Bonferroni correction, 
0.05>​p​>0.005). 
Figure 2. Site effects for the ROIs showing significant group differences in the acute/sub-acute phase ​. 
Forest plot shows the effect sizes (Cohen’s D) for the 2 cohorts/sites, scaled by sample size, with bars for 95% 
CI. The effect size and 95% CI of the meta-analysis is shown at the bottom of the figure. 
Figure 3. Site effects for the ROIs showing significant group differences in the post-acute phase ​. Forest 
plot shows the effect sizes (Cohen’s D) for each of the 6 cohorts/sites, scaled by sample size, with bars for 
95% CI. The effect size and 95% CI of the meta-analysis is shown at the bottom of the figure. 
Figure 4. Site effects for the ROIs showing significant group differences in the chronic phase ​. Forest 
plot shows the effect sizes (Cohen’s D) for each of the 10 cohorts/sites, scaled by sample size, with bars for 
95% CI. The effect size and 95% CI of the meta-analysis is shown at the bottom of the figure. 
Figure 5. Group-by-sex interactions. ​Results are shown for the post-acute phase. Shown are 
unstandardized regression betas for 23 ROIs and average FA (left bottom). Dark orange bars indicate 
significance (​p​<0.005), light orange bars indicate effects that did not withstand multiple comparisons correction 
(0.05>​p​>0.005), and blue are not significant (​p​>0.05). Error bars are 95% CI. A plot probing the significant 
interaction effect in the uncinate is shown in the right panel. 
Figure 6. Associations with CBCL Total Problems Score. ​Linear associations with CBCL Total Problems 
score in the full TBI group (left) and in the female TBI subset (middle). Shown are unstandardized regression 
𝞫s for 23 ROIs and average FA. ROI abbreviations are explained in Supplementary Note 1. Dark orange bars 
indicate significance (​p​<0.005), light orange bars indicate effects that did not withstand multiple comparisons 
correction (0.05>​p​>0.005), and blue are not significant (​p​>0.05). Error bars are 95% CI. A plot probing the 
association between total problems and uncinate FA in the female TBI group is shown in the right panel. 
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Table 1. Demographic and clinical details of cohorts. ​For each cohort, the design (longitudinal - Long, or 
cross-sectional - CSX), chronicity of injury (acute/sub-acute=less than 2 months post-injury, post-acute=2-6 
months post-injury, chronic=more than 6 months post-injury), GCS (average and standard deviation - SD, 
NA=not available), total N, number of TBI and control participants, number of male and female participants, 
age range (average and SD), and the type of control group (HC=healthy controls, OI=orthopedically injured) 
used are listed.  
 

Cohort Design Chronicity GCS Total 
N 

TBI (M/F) Avg Age 
(SD) 

Control (M/F) Avg Age 
(SD) 

Age 
range 

Control 
Type 

RAPBI Long 
Post-acute (2-6 

months) 8.9 (4.1) 
91 38 (29/9) 14.7 (2.7) 53 (27/26) 15.5 (2.7) 8-19 

HC 
Chronic (7-19 months) 68 34 (27/7) 16.4 (2.2) 34 (23/11) 16.3 (2.7) 9-20 

Baylor-1 Long 

Post-acute (3-5 
months) 

7.0 (4.3) 
70 29 (20/9) 14.1 (2.4) 41 (29/12) 12.3 (2.2) 7-18 

OI 
Chronic (12-26 

months) 60 34 (23/11) 14.7 (2.8) 26 (20/6) 13.9 (3.0)  8-19 

Baylor-2 CSX 
Acute (1-7 weeks) 

7.3 (4.9) 
24 13 (9/4) 16.2 (2.0) 11 (6/5) 13.1 (1.6) 10-18 

OI Post-acute (3-4 
months) 8 2 (1/1) 14.1 (2.3) 6 (5/1) 13.4 (2.9)  11-19 

Baylor-3 CSX 

Acute (2-4 weeks) 

10.2 (4.8) 

8 6 (5/1) 16.5 (3.0) 2 (2/0) 13.8 (1.0) 10-18 

OI 
Post-acute (3-4 

months) 15 12 (7/5) 15.2 (2.4) 3 (2/1) 17.2 (1.8) 11-18 

Chronic (12-15 
months) 8 4 (4/0) 14.2 (2.9) 4 (2/2) 15.6 (0.4)  10-17 

Loma Linda 
University Long 

Acute (1-3 weeks) 
7.5 (4.2) 

58 25 (20/5) 11.8 (3.6) 33 (20/13) 13.2 (3.3) 5-18 
HC Chronic (11-14 

months) 53 22 (15/7) 12.7 (3.1) 31 (17/14) 14.6 (3.1) 6-19 

Kennedy 
Krieger Long 

Acute (4-7 weeks) 

8.0 (3.2) 

16 3 (2/1) 13.6 (1.7) 13 (8/5) 15.4 (1.6) 11-18 

HC Post-acute (2-4 
months) 24 11 (7/4) 14.7 (2.3) 13 (8/5) 15.4 (1.6) 11-18 

Chronic (1-14 years) 33 20 (13/7) 15.4 (2.4) 13 (8/5) 15.4 (1.6) 10-18 

Deakin-1 CSX Chronic (6 months-10 
years) NA 41 16 (9/7) 14.1 (3.1) 25 (11/14) 14.5 (2.3) 9-18 HC 

Deakin-2 CSX Chronic (>6 months) NA 18 8 (6/2) 16.1 (2.8) 10 (4/6) 12.3 (2.0) 9-20 HC 

NCH CSX Chronic (1-8 years) 10.7 (4.7) 39 19 (12/7) 12.5 (2.6) 20 (13/7) 12.1 (2.0) 8-17 OI 

Amsterdam 
UMC CSX Chronic (1-6 years) 8.2 (2.8) 43 16 (10/6) 9.9 (1.4) 27 (12/15) 10.2 (1.5) 8-13 OI 

Total    507 244 (170/74) 14.1 (3.0) 263 (150/113) 13.6 (2.9)   
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Figure 1. Group differences in FA in the acute/sub-acute, post-acute, and chronic phases. ​Effect sizes 
are shown for significant results from the primary group comparison, covarying for sex, age, and age ​2​. Cohen’s 
D​ statistics for midline and bilateral ROIs are displayed according to the color bar below. As TBI was coded as 
“1” and controls as “0”, negative effect sizes indicate lower FA in the TBI group. Only regions surviving 
correction for multiple comparisons are shown (​p​<0.005), statistical details for all ROIs are shown in ​Table 2. 
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Table 2. Group differences in FA in the acute/sub-acute, post-acute, and chronic phases. ​Cohen’s ​d 
values, uncorrected ​p​ values, the 95% confidence interval for the ​d​ statistic, and the ​I ​2​ (heterogeneity) are 
shown for the group comparisons. Bolded results are significant when corrected for multiple comparisons, 
italicized​ results are marginally significant (based on the Li and Ji adjusted Bonferroni correction, 
0.05>​p​>0.005). 
 
 

  Acute Post-acute Chronic 

ROI Meta ​d 
Meta ​p ​ value 

(uncorr.) 95% CI I ​2 Meta ​d 
Meta ​p ​ value 

(uncorr.) 95% CI I​2 Meta ​d 
Meta ​p ​ value 

(uncorr.) 95% CI I​2 
Average 

FA -1.15 1.7E-06 [-1.63,-0.68] 14.11 -1.10 1.7E-06 [-1.55,-0.65] 0 -1.08 4.1E-07 [-1.50,-0.66] 37.63 
ACR -1.37 3.2E-08 [-1.86,-0.89] 62.66 -1.07 0.0071 [-1.85,-0.29] 0 -0.86 1.0E-05 [-1.24,-0.48] 39.84 
ALIC -0.28 0.57 [-1.24,0.68] 0 -0.44 0.11 [-0.98,0.10] 9.03 -0.34 0.011 [-0.60,-0.08] 34.93 
BCC -1.02 1.7E-05 [-1.49,-0.56] 0 -0.85 0.0013 [-1.37,-0.33] 46.69 -0.95 4.2E-08 [-1.29,-0.61] 45.37 
CC -1.33 0.0011 [-2.13,-0.53] 0 -1.00 0.00047 [-1.56,-0.44] 34.17 -1.05 2.6E-08 [-1.42,-0.68] 16.28 

CGC -0.19 0.40 [-0.63,0.25] 75.74 -0.60 0.012 [-1.07,-0.13] 0 -0.72 2.0E-06 [-1.02,-0.42] 38.34 
CGH -0.02 0.97 [-1.08,1.04] 36.64 -0.28 0.072 [-0.58,0.02] 22.47 -0.30 0.044 [-0.59,-0.01] 45.42 
CR -1.12 0.0065 [-1.93,-0.31] 58.93 -0.92 0.0043 [-1.56,-0.29] 66.89 -0.78 2.0E-05 [-1.13,-0.42] 29.16 
EC -0.58 0.011 [-1.03,-0.14] 0 -0.22 0.29 [-0.64,0.19] 0 -0.70 0.0016 [-1.13,-0.26] 53.98 
FX -0.75 0.0011 [-1.21,-0.30] 65.76 -0.37 0.076 [-0.78,0.04] 16.64 -0.71 0.00047 [-1.11,-0.31] 6.11 

FXST -0.75 0.0012 [-1.20,-0.29] 68.46 -0.51 0.031 [-0.96,-0.05] 37.92 -0.37 0.038 [-0.72,-0.02] 29.17 
GCC -1.36 3.8E-08 [-1.85,-0.88] 19.44 -1.47 0.047 [-2.92,-0.02] 29.94 -1.11 6.7E-10 [-1.46,-0.76] 28.59 

IC -0.34 0.19 [-0.85,0.17] 0 -0.90 8.2E-06 [-1.30,-0.51] 93.33 -0.50 0.00016 [-0.77,-0.24] 47.46 
PCR -0.61 0.16 [-1.48,0.25] 0 -0.64 0.0024 [-1.05,-0.23] 44.93 -0.53 9.3E-05 [-0.79,-0.26] 51.88 
PLIC -0.01 0.99 [-0.83,0.81] 0 -0.69 9.9E-05 [-1.04,-0.34] 38.99 -0.22 0.054 [-0.44,0.00] 66.79 
PTR -1.08 5.9E-06 [-1.55,-0.62] 0 -1.14 2.6E-12 [-1.46,-0.82] 40.77 -0.73 2.1E-05 [-1.07,-0.39] 71.92 
RLIC -0.43 0.27 [-1.19,0.33] 61.40 -1.19 0.00012 [-1.80,-0.58] 71.28 -0.65 1.7E-06 [-0.92,-0.39] 58.63 
SCC -0.90 0.0036 [-1.51,-0.29] 78.90 -0.54 0.0034 [-0.90,-0.18] 1.19 -0.77 1.2E-06 [-1.08,-0.46] 41.67 
SCR -0.56 0.26 [-1.55,0.43] 0 -0.40 0.0093 [-0.69,-0.10] 51.95 -0.41 0.0041 [-0.69,-0.13] 41.33 
SFO -0.51 0.024 [-0.95,-0.07] 58.36 -0.43 0.032 [-0.82,-0.04] 62.43 -0.28 0.021 [-0.52,-0.04] 59.35 
SLF -0.52 0.022 [-0.96,-0.08] 0 -0.67 0.0031 [-1.12,-0.23] 58.69 -0.71 5.8E-06 [-1.02,-0.40] 53.05 
SS -1.09 4.8E-06 [-1.56,-0.63] 0 -1.01 5.4E-09 [-1.35,-0.67] 41.50 -0.89 8.2E-10 [-1.18,-0.61] 67.93 
TAP -0.51 0.045 [-1.01,-0.01] 74.79 -0.29 0.053 [-0.59,0.00] 63.85 -0.55 0.00020 [-0.84,-0.26] 29.67 
UNC -0.67 0.0084 [-1.17,-0.17] 0 -0.16 0.30 [-0.45,0.14] 80.24 -0.51 0.00045 [-0.79,-0.22] 62.96 
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28 
Figure 2. Site effects for the ROIs showing significant group differences in the acute phase ​. Forest plot 
shows the effect sizes (Cohen’s D) for the 2 cohorts/sites, scaled by sample size, with bars for 95% CI. The 
effect size and 95% CI of the meta-analysis is shown at the bottom of the figure. 
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Figure 3. Site effects for the ROIs showing significant group differences in the post-acute phase ​. Forest 
plot shows the effect sizes (Cohen’s D) for each of the 6 cohorts/sites, scaled by sample size, with bars for 
95% CI. The effect size and 95% CI of the meta-analysis is shown at the bottom of the figure. 
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Figure 4. Site effects for the ROIs showing significant group differences in the chronic phase ​. Forest 
plot shows the effect sizes (Cohen’s D) for each of the 10 cohorts/sites, scaled by sample size, with bars for 
95% CI. The effect size and 95% CI of the meta-analysis is shown at the bottom of the figure. ROI 
abbreviations are explained in Supplementary Note 1. 
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Figure 5. Group-by-sex interactions. ​Results are shown for the post-acute phase. Shown are 
unstandardized regression coefficients for 23 ROIs and average FA (left bottom). Dark orange bars indicate 
significance (​p​<0.005), light orange bars indicate effects that did not withstand multiple comparisons correction 
(0.05>​p​>0.005), and blue are not significant (​p​>0.05) Error bars are 95% CI. Top left: a plot probing the 
interaction, where uncinate FA for each subject has been scaled by average site FA (average of the skeleton 
averages within a given site). Panels on the right show the interaction effect for each contributing cohort. 
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Figure 6. Associations with CBCL Total Problems Score. ​Linear associations with CBCL Total Problems 
score in the full TBI group (left) and in the female TBI subset (middle). Shown are unstandardized regression 
𝞫s for 23 ROIs and average FA. ROI abbreviations are explained in Supplementary Note 1. Dark orange bars 
indicate significance (​p​<0.005), light orange bars indicate effects that did not withstand multiple comparisons 
correction (0.05>​p​>0.005), and blue are not significant (​p​>0.05). Error bars are 95% CI. A plot probing the 
association between total problems and uncinate FA in the female TBI group is shown in the right panel. 
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