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Abstract18

Background DNA methylation is an essential epigenetic modification which is19

set and maintained by DNA methyl transferases (Dnmts) and removed via active20

and passive mechanisms involving Tet mediated oxidation. While the molecular21

mechanisms of these enzymes are well studied, their interplay on shaping cell specific22

methylomes remains less well understood. In our work we model the activities of23

Tets and Dnmts at single CpGs across the genome using a novel type of high24

resolution sequencing data.25

Results To accurately measure 5mC and 5hmC levels at single CpGs we devel-26

oped RRHPoxBS, a reduced representation hairpin oxidative bisulfite sequencing27

approach. Using this method we mapped the methylomes and hydroxymethylomes28

of wild type and Tet triple knockout mouse embryonic stem cells. These com-29

prehensive datasets were then used to develop an extended Hidden Markov model30

allowing us i) to determine the symmetrical methylation and hydroxymethylation31

state at millions of individual CpGs, ii) infer the maintenance and de novo methy-32

lation efficiencies of Dnmts and the hydroxylation efficiencies of Tets at individual33

CpG positions. We find that Tets exhibit their highest activity around unmethylated34

regulatory elements, i.e. active promoters and enhancers. Furthermore, we find that35

Tets’ presence has a profound effect on the global and local maintenance and de36

novo methylation activities by the Dnmts, not only substantially contributing to37

a universal demethylation of the genome but also shaping the overall methylation38

landscape.39

Conclusions Our analysis demonstrates that a fine tuned and locally controlled in-40

terplay between Tets and Dnmts is important to modulate de novo and maintenance41
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activities of Dnmts across the genome. Tet activities contribute to DNA methyla-42

tion patterning in the following ways: They oxidize 5mC, they locally shield DNA43

from accidental de novo methylation and at the same time modulate maintenance44

and de novo methylation efficiencies of Dnmts across the genome.45

Background46

Genetic information encoded in the DNA is regulated by epigenetic mechanisms,47

such as DNA methylation [1, 2, 3, 4]. In mammals, the methylation of DNA is48

restricted to cytosine and is almost exclusively found in a palindromic CpG di-49

nucleotide context [5, 6, 7]. Generation of 5-methylcytosine (5mC) is catalyzed50

by the DNA methyltransferases Dnmt1, Dnmt3a, Dnmt3b and Dnmt3c. These51

enzymes catalyze the transfer of a methyl group from s-adenosyl methionine to the52

fifth carbon atom of cytosine.53

Even though under certain conditions Dnmt1 has been shown to methylate also54

unmethylated CpGs [16, 17, 18], this enzyme is mainly responsible for maintain-55

ing existing methylation patterns after replication. Via interaction with Uhrf1 and56

PCNA, Dnmt1 is tightly associated with the replication machinery [8, 9]. Further-57

more, the cooperation with Uhrf1 modulates Dnmt1 to be receptive for hemimethy-58

lated DNA generated after replication [10, 11]. Thus, the protein complex post-59

replicatively copies the methylation pattern from the inherited to the newly synthe-60

sized DNA strand [12, 13].61

Dnmt3a, Dnmt3b and Dnmt3c methylate DNA independently of its methyla-62

tion status (hemimethylated or unmethylated) and are mainly responsible for the63

establishment of new methylation patterns during development [14, 15].64

Once established, 5mC can be further processed by a family of di-oxigenases, the65

ten-eleven translocation enzymes Tet1, Tet2 and Tet3 [19, 20, 21]. These Fe(II) and66

oxo-glutarate-dependent enzymes consecutively oxidize 5mC to 5-hydroxymethyl cy-67
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tosine (5hmC), 5-formyl cytosine (5fC) and ultimately to 5-carboxy cytosine (5caC)68

[22, 23]. 5hmC is the most abundant oxidative variant and can be found in numer-69

ous cell types [24, 25, 26]. Each oxidation step changes the chemical properties of70

the base and with it its biological function [27, 28, 29]. Several mechanisms have71

been proposed in which oxidative cytosine derivatives (oxC) serve as an intermedi-72

ate during the course of active or passive demethylation [30, 31, 32, 33, 34]. Such73

removal of 5mC occurs locally during cell differentiation, but also on a genome-74

wide scale in the zygote, as well as during the maturation of primordial germ cells75

(PGCs) [35, 36, 37]. Global loss of 5mC has been observed in cultivated mouse76

embryonic stem cells (ES cells) during their transition from Serum to 2i medium77

(2i). Under classical Serum/LIF conditions, ES cells exhibit DNA hypermethylation,78

whereas upon transition to GSK3β and Erk1/2 inhibitors (2i containing medium),79

the cells experience a gradual genome-wide loss of 5mC [38, 39, 40]. Even though80

the enzymatic mechanisms of oxCs generation are well characterized, the question81

how oxCs are inherited across replication, as well as the impact of Tets and oxCs82

on maintaining or changing an existing methylome remains elusive.83

To address these questions we developed and applied Reduced Representation84

Hairpin oxidative Bisulfite Sequencing (RRHPoxBS), which combines three fea-85

tures: (i) a genome-wide detection of a representative number of CpGs (RRBS),86

(ii) a strand-specific detection of 5mC by using a short hairpin oligo (HPBS) and87

lastly, (iii) the localization of 5mC and 5hmC, respectively, by combining regular and88

oxidative bisulfite sequencing (oxBS) [41, 42, 43, 44, 45]. We use then these deep89

RRHoxBS data as input for an extended version of a Hidden Markov Model (HMM)90

first presented in [46, 47], to predict the levels and the strand specific distribution91

of 5mC and 5hmC and estimate the enzymatic activities of Dnmts for maintenance92

methylation, de novo methylation, and hydroxylation of Tets in 2i over time. Finally93

we interpret these data in the context of the genome and other epigenetic features.94
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We find a very specific spatial distribution of Tet activity and show that DNA95

methylation and hydroxylation efficiencies of Dnmts and Tets are negatively corre-96

lated throughout the genome in a very consistent fashion. Finally, we infer that the97

absence of Tet enzymes in Tet triple knockout (TKO) cells changes maintenance98

and de novo efficiency profiles in regions, which are protected by Tet enzymes in99

wild type (WT) ES cells.100

Methods101

Reduced Representation Hairpin oxidative Bisulfite Sequencing102

(RRHPoxBS)103

1.2µg DNA was divided equally into three 0.5ml reaction tubes and digested in a104

20µl reaction using 20U of HaeIII (NEB), AluI (NEB) and 10U HpyCH4V (NEB),105

respectively. The reactions were incubated overnight for a minimum of 12h at 37�.106

Restriction enzymes were inactivated at 80� for 30min. The reactions were pooled107

and purified using 2x AmpureXP beads (120µl) from Beckman Coulter. DNA was108

eluted in 18µl ddH2O and subjected to A-tailing by adding 1µl dATP(1mM) and 1µl109

Klenow exo-(5U/µl, NEB), incubated at 37� followed by an inactivation at 75� for110

30min. Next, hairpin linker and sequencing adapter were ligated to opposed ends of111

each restriction fragment. For this, 1µl biotin labeled hairpin linker (100µM), 0.5µl112

sequencing adapter(100µM), 2.5µl ATP(10mM), as well as 1µl T4 DNA Ligase113

(200U/µl, NEB) were added to the A-tailed DNA and incubated for 16h at 16�.114

The reaction was purified using AMPureXP(2x) beads followed by enrichment for115

hairpin containing fragments with streptavidin beads (Dynabeads�M-280 Strepta-116

vidin, ThermoFischer). The library was then subjected to BS/oxBS work-flow of the117

TrueMethyl kit from CEGX according to manufacturer’s instructions. Amplification118

of the library was done using HotStarTaq® polymerase (Qiagen) and sequencing119
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was performed on an Illumina HiSeq2500 platform in a 150bp paired-end sequencing120

mode. We generated six hairpin libraries (BS and oxBS, respectively) for WT ES121

cells at three distinct time points - Serum/Lif(d0), 2i 72h (d3) and 2i 144h (d6), as122

well as four libraries for TetTKO cells (BS only) - Serum/LIF, 2i 48h (d2), 2i 96h123

(d4) and 168h (d7).124

Read Mapping and Methylation Calling125

The sequences were aligned as suggested by Porter et al. [48]. In detail; reads126

were trimmed for adapter, hairpin-linker and 3’ quality (Q≥20) with TrimGalore!127

[49] and cutadapt [50]. Trimmed read pairs were aligned with the Smith-Waterman128

algorithm allowing for bisulfite induced mismatches. The two bisulfite converted129

strands were used to deduce the original genomic sequence. Mismatches other than130

G-to-A and T-to-C were replaced with N. The resulting sequences were aligned to131

the mouse genome (mm10) with GEM-mapper (beta build 1.376) [51], after which132

the methylation information was reintroduced with a custom pileup function based133

on HTSJDK [52] and ratios for the four methylation states were calculated for each134

cytosine. The pipeline was implemented with the Ruffus pipeline framework [53].135

Statistical Modeling136

Estimation of (hydroxy-)methylation levels137

For CpGs with observations at up to two time points we combined information from138

BS and oxBS experiments to arrive at maximum likelihood estimates (MLEs) for139

strand specific (hydroxy-)methylation levels for each observation time point. The140

derived MLEs take into account the conversion errors of each experiment and we141

estimate their accuracy by approximating the corresponding standard deviations.142

For details see SI Sec. 1 and Sec. 2.143
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Estimation of Enzymatic Efficiencies144

For CpGs for which the maximal number of three observation time points is available,145

we defined an underlying discrete time Markov process that shapes the demethy-146

lation dynamics. The state space of the process is the set of possible CpG’s site147

state s ∈ S = {u,m, h}2, where state s encodes whether the upper and the lower148

strand of the site is unmethylated (u), methylated (m) or hydroxylated (h). E.g.149

in state (h, u) the upper strand is hydroxylated and the lower strand is unmethy-150

lated. The model’s time parameter corresponds to the number of cell divisions and151

the transitions of a state are being triggered by consecutive division or (hydroxy-)152

methylation events. Getting measurements along with the conversion errors from153

two different experiments (BS and oxBS) allows us to define one HMM for each154

experiment and get accurate estimates for the model’s parameters. The latter are155

linear functions that represent the enzymes’ efficiencies over time. In addition, a156

parameter related to the recognition of 5hmC by Dnmts (passive demethylation) is157

being estimated for each CpG. For a detailed presentation of the above model we158

refer the reader to Giehr et al. 2016 [47, 46] and to SI Sec. 1 and 2.159

In case of an adequate number of samples per time point when a very deep se-160

quencing is possible, the MLE provides accurate estimates with narrow confidence161

intervals [47]. On the other hand, MLE is known to give imprecise results for a162

smaller number of samples [54, 55] and in particular in cases where the true values163

are close to the boundary constraints [56]. Since a consistently deep sequencing164

(≥100x) is under the current methods impossible on a genome-wide level, we de-165

velop here a combination of MLE and Bayesian Inference (BI) methods in order to166

get accurate estimates even in case of a lower coverage, common for genome wide167

applications. In particular, we use a MLE step as initial information to be given to168

a Metropolis-Hastings MCMC sampler from which we get the posterior distribution169

of the parameters. The approach is being described in detail in SI Sec. 3.170
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Clustering of Single CpG Efficiencies171

To identify CpGs with similar enzymatic profiles we cluster the genome-wide output172

of our model, meaning the efficiencies of the enzymes responsible for maintenance173

methylation, de novo methylation and hydroxylation over time for 1.5 · 106 CpGs174

uniformly located across the entire genome. Since we aim to cluster parameter175

estimates we consider k-error, a sophisticated clustering approach that takes into176

account the uncertainty, i.e., posterior’s covariance matrix, around the BI estimators,177

i.e., posterior’s mean. The clustering approach we apply here returns different178

and probably more “natural” clusters than a typical k-means clustering algorithm179

would return. We determine the optimal number of clusters based on two different180

criteria, Davies-Bouldin Criterion and the elbow method. For details of the individual181

clustering approaches we refer to SI Sec. 3.1.182

Segmentation183

The whole genome bisulfite data of primed mouse ES cells (Ficz et al. 2013) was184

segmented into low methylation regions (LMRs), unmethylated regions (UMRs) and185

partially methylated domains (PMDs) [38], using MethylSeekR [57]. The rest of186

the genome, after filtering gaps annotated by UCSC, was called highly methylated187

regions (HMRs) [58]. The aggregated strand information per CpG was used as188

an input for MethylSeekR. The applied parameters were the following; coverage of189

≥5x, ≤50% methylation and FDR <0.05 for calling hypomethylation regions and190

consequently a cutoff of ≥ 4 CpGs per LMR.191

LOLA Analysis192

We performed a standard LOLA analysis against the regular LOLA universe, ex-193

tended by ChIP-Seq profiles from von Meyenn et al. 2016 (GSE70724, GSE77420),194

Walter et al. 2016 (GSE71593) and Encode. [40, 59, 60].195
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Chip-Seq Data Processing196

Low quality read tails (Q¡20) and adapter sequences were trimmed using TrimGalore!197

(version 0.4.2) (http://www.bioinformatics.babraham.ac.uk/projects/trim_198

galore). Trimmed reads were aligned to the mouse reference genome (mm10) using199

GEM mapper (version 1.376 beta) (Marco-Sola et al., 2012). Samtools (version 1.3)200

(Li et al., 2009) was used to convert SAM to BAM format. MarkDuplicate (ver-201

sion 1.115) from Picard tools (http://broadinstitute.github.io/picard/)202

was used to mark the PCR duplications. Normalized coverage files with respect203

to library size were generated using deepTools v1.5.9.1 (Raḿırez et al., 2014) with204

bamCoverage command.205

Hi-C Data Processing206

Homer tool was used to process Hi-C data (PMID: 20513432, PMID:30146161).207

Reads were trimmed considering DpnII (GATC) as a restriction enzyme in the Hi-208

C assay. Mates were aligned separately to mosue genome (mm10) using bowtie2209

(https://doi.org/10.1038/nmeth.1923). PCR duplicates were removed. A tag210

directory was generated with makeTagDirectory command which was used after-211

wards by runHiCpca.pl command to identify A/B compartments at 25kb resolution212

and 50kb window (super resolution). Positive values were assigned to A compart-213

ments while the negative ones were assigned to B compartments.214

Results215

In our study we used a well established ES cell system to precisely map 5mC and216

5hmC across the genome in a time series of experiments and to study the en-217

zymatic contribution of Tets and Dnmts for the progressive genome wide DNA218

(de)methylation. For this we first needed to generate a high resolution data set219

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2020. ; https://doi.org/10.1101/2020.08.06.236307doi: bioRxiv preprint 

http://www.bioinformatics.babraham.ac.uk/projects/trim_galore
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore
http://broadinstitute.github.io/picard/
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1101/2020.08.06.236307
http://creativecommons.org/licenses/by-nc-nd/4.0/


based on a novel genome wide hairpin sequencing approach, Reduced Representation220

Hairpin oxidative Bisulfite Sequencing (RRHPoxBS). The design of the RRHPoxBS221

approach covered up to 4 million CpG dyads for which we could infer the precise222

distributions of 5mC and 5hmC. Following a strict read and conversion quality con-223

trol, we filtered for sufficient sequencing depth and ended up with about 2 million224

CpGs per sample for subsequent comparative modeling. To follow the dynamics of225

the enzymes over time we generated six data sets for WT ES cells, i.e. BS and226

oxBS libraries for three different time points, starting with Serum/Lif (d0), followed227

by 72h 2i (d3) and 144h 2i (d6). For a comparison we also generated four datasets228

for Tet TKO cells starting with Serum/Lif (d0) followed by 48h in 2i (d2), 96h in229

2i (d4) and 168h in 2i (d7).230

Impaired loss of 5mC in Tet TKO ES cells231

Under primed conditions (Serum/LIF) WT ES cells show a overall level of 78%232

methylation. About 56% of CpGs are fully methylated while ≈ 22% are found233

in a hemimethylated state (Fig.: 1a). Among cultivation in 2i medium the DNA234

becomes progressively demethylated, such that after 6 days in 2i only 30% of CpGs235

retain a methylated state (fully or hemimethylated). For all time points, we find236

that hemimethylation is equally distributed among both DNA strands (Fig.: 1a and237

SI Sec. 4.3 Figure 23).238

In addition, we observe that oxBS samples always display lower methylation levels239

than BS samples (Fig.: 1a). This difference corresponds to the amount of 5hmC of240

each sample. We detect the main difference in the hemimethylated proportion, indi-241

cating that a considerable amount of 5hmC might exist in a hemi(hydroxy)methylated242

(5hmC/C or C/5hmC) state (Fig.: 1a). Initially, the amount of 5hmC is quite low243

but we observe a notable increase at d3, while later (d6) the amount of 5hmC244

decreases again (Fig.: 1a).245
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ES cells lacking Tet enzymes (Tet TKO) show a marginal increase of methylated246

CpG dyads (82% fully- or hemimethylated, Fig.: 1c) in comparison to WT under247

primed conditions (Serum/LIF). However, in relation to WT the TKO cells show a248

higher frequency of fully methylated CpGs (≈ 72%) and a reduced proportion of249

hemimethylated CpGs (hemiCpGs; ≈ 10%) (Fig.: 1c). We concluded that in WT250

ES cells, the enhanced presence of hemiCpGs is directly coupled to 5mC oxidation251

by Tets.252

On a first glimpse Tet TKO ES cells might show similar kinetics of DNA253

demethylation as WT ES cells (Fig.: 1c). However, in contrast to previous data254

[60] the RRHoxBS data allow us to precisely estimate the demethylation kinetics re-255

vealing that in WT ES cells the generation of unmethylated cytosine is 8% per day,256

while in Tet TKO cells it drops to 4.2% (SI Sec. 4.4 Figure 24). This indicates that257

the presence of Tets has a considerable influence on DNA demethylation kinetics.258

RRHPoxBS sequencing also allowed us to accurately determine the amount,259

location and distribution of non-CpG methylation in (WT and Tet TKO) ES cells.260

In both, WT and TKO, we find CpA to be the most frequent methylated non-CpG261

motif (SI Sec. 4.7 Figure 32 and 33). Over time, non-CpG methylation becomes262

gradually reduced upon cultivation in 2i. In WT ES cells the number of methylated263

non-CpGs was identical in BS and oxBS libraries, indicating that non-CpGs are not a264

substrate for Tet oxidation (Fig.: 1b). In Tet TKO cells, the number of methylated265

non-CpGs is approximately doubled as compared to WT ES cells. Since non-CpG266

methylation is strictly dependent on the presence of de novo methylation activities267

by Dnmt3a/b, the higher non-CpG methylation in TKO cells, both under primed268

(= 2%) and naive (= 0.6% after 168h 2i) conditions (Fig.: 1d), points clearly269

towards an increased de novo methylation activity by Dnmt3a/b in the absence of270

Tet enzymes.271
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Tet TKO ES cells retain de novo methylation activity272

The genome wide observations in WT and TKO cells prompted us to deeper exam-273

ine the relative contributions of Dnmts and Tets at individual CpGs. The developed274

HMM approach considers conversion errors of BS and oxBS treatment and esti-275

mates accurate 5mC and 5hmC levels, as well as the strand specific distribution276

of both cytosine forms. Furthermore, combining the strengths of MLE and BI our277

model estimates at every individual CpG the enzyme efficiencies of i) maintenance278

methylation, ii) de novo methylation and iii) hydroxylation enzymes that explain279

the observed dynamics of the (hydroxy-)methylation patterns over time.280

The estimated methylation levels for WT and Tet TKO ES cells fit nicely to281

the hairpin methylation data (SI Sec. 3, Fig.: 3), indicating a high accuracy of our282

model. Consequently, we observe a constant decline of fully methylated CpGs in283

WT ES cells over time (Fig.: 2a). Moreover, in WT ES cells, the HMM estimates284

a notable amount of 5hmC at all time points. Note that the displayed amount of285

5hmC (yellow) refers to the sum of all possible 5hmC states, i.e., 5hmC/5hmC,286

5hmC/5mC, 5mC/5hmC, 5hmC/C, C/5hmC. The highest amount of 5hmC is ob-287

served at d3, meaning that WT ES cells display a transient increase of 5hmC after288

cultivation in 2i. We observe a similar behaviour for hemiCpGs in WT ES cells. The289

parameter estimation by our model illustrates a mean maintenance methylation ef-290

ficiency of about 61.4% at d0, which remains almost constant over time (60.1% at291

d6) (Fig.: 2b). In contrast, de novo methylation efficiency shows a strong decrease292

(from 14.1% to 4.5% at d6) and the hydroxylation efficiency an increase (from293

22.2% at d0 to 29.1% at d6) over time. This observation is in agreement with294

previous observations which demonstrated a reduction in RNA and protein levels295

of Dnmt3a/b in 2i, but an increased expression of Tet1/2 on a genome wide level296

[38, 60].297

In Tet TKO cells maintenance efficiency lies by 58.8% at d0, which represents298
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a marginal reduction compared to WT ES cells. Similarly to WT, maintenance299

efficiency remains stable over time (58.6% at d7) also in Tet TKO cells.300

The most pronounced difference between WT and Tet TKO cells we see in de301

novo methylation efficiency. More specifically in Tet TKO de novo begins from302

(20.3%) at day 0 and exhibits only a slight decrease over time (16.2% at d7).303

Finally, the model output also confirms the observed by the hairpin methylation304

data reduced demethylation rate of Tet TKO cells and suggests a substantial contri-305

bution of 5hmC and Tet enzyme on DNA demethylation. In fact, the model favors a306

scenario in which 5hmC is less well recognized (probability of non recognition equals307

p = 0.66, SI Sec. 1.1) by the maintenance machinery after replication, promoting a308

faster demethylation process.309

Tets prevent the spreading of DNA methylation310

We next related the model estimates to genomic, enzymatic and epigenetic features311

first focusing on Dnmt and Tet enzyme efficiencies across large genome segments312

with distinct methylation states.313

We used MethylSeekR [57], to partition the genome into four states: highly314

methylated regions (HMRs), partially methylated domains (PMDs), low methy-315

lated regions (LMRs) and unmethylated regions (UMRs). The segmentation was316

performed on whole genome bisulfite sequencing (WGBS) data from WT ES cells317

cultivated under Serum/Lif conditions (Ficz et al. 2013) on the identical cell batch318

used for our study [38]. The estimated methylation levels (sum of 5mC and 5hmC)319

for WT ES cells by our model fully agreed with those derived from WGBS (SI320

Sec. 4.8, Fig.: 35.C and 35.E). This not only confirmed the accuracy of our model321

output but also denoted that we can use the precise WGBS segmentation for further322

analysis. We found that the majority of the WT ES cell genome (86%) consists of323

large HMRs (SI Sec. 4.8, Fig.: 35.A and Fig.: 35.B) followed by shorter (≈ 13%)324
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PMDs. The residual 2% of the genome are found to be LMRs (0.4%) or UMRs325

(1.5%)(SI Sec. 4.8, Fig.: 35.A and Fig.: 35.B).326

Next we assigned the 5mC and 5hmC modification levels, their distribution at327

CpG dyads and the corresponding Dnmt/Tet enzyme efficiencies determined by our328

model to CpGs in the individual segments (Fig.: 3a and 3b). In WT ES cells, all329

segments show a continuous reduction in DNA methylation over time. This is par-330

ticularly evident in segments with initial high 5mC levels, i.e., HMRs and PMDs.331

HMRs and PMDs also exhibit the highest amount of 5hmC and hemiCpGs which332

transiently increases at d3 and d4 (Fig.: 3a). LMRs and UMRs show different ki-333

netics as both the amounts of 5hmC and hemiCpGs constantly decline over time.334

The increase of hemiCpGs in HMRs and PMDs is a clear sign of impaired mainte-335

nance methylation in naive ES cells linked to the reported temporal increase in Tet336

expression and loss of Dnmt1 activity [38, 60].337

Based on the methylation data, our model predicts high maintenance methy-338

lation efficiency in HMRs (≈ 69%) and PMDs (≈ 61%), but low maintenance339

efficiency in LMRs (≈ 32%) and UMRs (≈ 26%). Additionally, we observe a rel-340

atively high de novo methylation efficiency at HMRs (≈ 18%) in primed ES cells.341

Overall, de novo methylation efficiency strongly decreases upon cultivation in 2i,342

which corresponds well with the previous described loss of Dnmt3a/b under these343

conditions. In contrast, hydroxylation efficiency is high in UMRs (≈ 63%) and344

LMRs (≈ 55%), but low in HMRs (≈ 13%) and PMDs (≈ 24%). Together, our345

results indicate regional differences and an antagonistic behaviour of Dnmts and346

Tets. This antagonism has been validated by estimating a robust spatial correlation347

measure between the efficiencies of Dnmts and Tets across the whole genome (SI348

Sec. 3.3, Fig.: 12).349

Both WT and TKO ES cells show overall a decline of DNA methylation across350

all segments over time (Fig.:3a). However, in TKO cells, all segments retain a351
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substantial higher frequency of fully methylated CpG dyads across all time points.352

This observation indicates a reduced demethylation rate in all segments under the353

absence of Tets. Surprisingly, under primed conditions (d0) Tet TKO cells show a354

higher number of unmethylated CpGs in HMRs as compared to WT ES cells.355

Most importantly, comparing the Tet TKO with WT ES cells, we observe a356

strong change in Dnmt efficiencies. Maintenance methylation efficiency shows a357

reduction in HMRs and PMDs of TKO cells, while it clearly increases in LMRs and358

UMRs (Fig.: 3b), resulting in almost equal maintenance activity across all segments.359

In the case of de novo methylation efficiency, we observe a more stable and slightly360

increased activity in all segments.361

Tet efficiency marks active and poised regulatory regions362

To deeper dwell into the spatial distribution of the various enzymatic profiles accross363

the genome we performed a clustering of all CpGs based on their individual enzy-364

matic efficiencies (along with their temporal changes) in WT ES cells. Following365

our approach (SI Sec. 3.1, 3.2) we identified three clusters with distinct profiles of366

enzymatic activity (Fig.: 4).367

Cluster 1 comprises 255492 CpGs (SI Sec. 4.2, Fig.: 37.A) which are charac-368

terized by low methylation levels (5mC of 14%, 5hmC of 11% at d0) (Fig.: 4b).369

Accordingly, these CpGs are located mainly in UMRs and, to a lesser extent, in370

LMRs (SI Sec. 4.8, Fig.: 37.B). CpGs of Cluster 1 exhibit relatively low maintenance371

methylation (40% at d0) and almost no de novo activity. Over time, maintenance372

methylation slightly increases to 45% at d6. In addition, these CpGs display a very373

high hydroxylation efficiency which remains stable over time (66% at d0 to 64% at374

d6) (Fig.: 4a).375

Cluster 2 contains 202562 CpGs (SI Sec. 4.8, Fig.: 37.A) and initially displays a376

high methylation level (60% fully methylated CpGs). In addition, CpGs of Cluster377
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2 also show a considerable amount of 5hmC (21%). While the level of 5mC rapidly378

declines upon transition to 2i, 5hmC displays a mild transient increase at d3 (24%)379

(Fig.: 4b). CpGs of Cluster 2 are dispersed across HMRs and PMDs (SI Sec. 4.8,380

Fig.: 37.B). At d0 CpGs assigned to Cluster 2 display a high de novo methylation381

efficiency (20%) but relatively low maintenance methylation (27%), as well as an382

average hydroxylation efficiency (20%). Upon cultivation in 2i, de novo methylation383

efficiency continuously declines to almost zero percent at d6. In contrast, both384

maintenance methylation and hydroxylation efficiency display a notable increase385

over time (Fig.: 4a).386

Cluster 3 comprises 1073476 CpGs (SI Sec. 4.8, Fig.: 37.A) and among the387

three clusters, displays the highest amount of 5mC and 5hmC (64% fully methylated388

CpGs, 20% 5hmC at d0) (Fig.: 4b). Similar to Cluster 2, we observe a constant389

decrease of 5mC, while 5hmC shows a transient increase at d3 (> 26%). CpGs of390

Cluster 3 exhibit both high maintenance (69%), as well as high de novo methylation391

efficiency (25%) at d0. Overtime, we observe a mild reduction in maintenance392

(60% at d6) and strong reduction of de novo methylation efficiency (4% at d6).393

In addition, Cluster 3 exhibits a low hydroxylation efficiency (14% at d0), which394

slightly increases over time (20% at d6) (Fig.: 4a). CpGs of Cluster 3 are mainly395

located in HMRs and PMDs but also appear frequently in UMRs (SI Sec. 4.8, Fig.:396

37.B).397

An enrichment analysis for CpGs of all three clusters using the LOLA package398

[59] provided a deeper insight into their association with genomic and epigenetic399

features (Fig.: 4c). CpGs of Cluster 1 were found to be enriched in regions with400

clear regulatory signatures. This included a broad enrichment for euchromatic his-401

tone marks (H3K4me3, H3K9ac, H3K27ac), binding sites for epigenetic modifiers402

(Ez2H, Kdm2a, Kdm2b, Yy1) and Tet1, general and specific transcriptional regula-403

tors (Myc, Sin3A, Tbp, Taf1, Taf3, Polr2a), as well as stem cell markers (Pou5f1,404
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Sox2, Myc and Nanog) (Fig.: 4c). In addition, we find a strong overlap of CpGs405

from Cluster 1 with UMRs, CpG islands and low complexity repeats. Thus, the406

enrichment profile of Cluster 1 indicates that Tet enzymes are more active at open407

and accessible chromatin.408

CpGs of Cluster 2 and 3 are mainly located within repetitive elements (SINEs,409

LINEs, LTRs etc.), HMRS and PMDs, as well as domains with broad heterochro-410

matic marks such as H3K9me2/3 (Fig.: 4c). However, while Cluster 3 displays411

exclusively heterochromatic signatures, CpGs of Cluster 2 are also partially located412

at transcription factor binding sites (TFBS), as well as domains containing bivalent413

and euchromatic histone marks such as H3K4me3 and H3K4me1, respectively (Fig.:414

4c).415

In Tet TKO ES cells, we observe considerable changes in the enzymatic efficien-416

cies across all three clusters which are accompanied by changes in their methylation417

patterns. CpGs in Cluster 1 exhibit a notable increase in maintenance- (50% at d0)418

and to a smaller extent de novo methylation efficiency (5% at d0) which results in a419

higher frequency of fully methylated CpGs (27% at d0) and hemimethylated CpGs420

at later time points (12% at d4 and d6) (Fig.: 4a). Cluster 2 also shows a clear421

increase in maintenance methylation efficiency (d0: 59%), but at the same time a422

mild reduction in de novo methylation efficiency (d0: 18%). Moreover, we observe423

an increase in fully- and hemimethylated CpGs for all time points (from 75% at d0424

to 35% day7). However, at d0, Tet TKO cells display a higher frequency of un-425

methylated CpGs (15%) in Cluster 2 compared to WT ES cells (Fig.: 4b). Cluster 3426

exhibits a reduction in both maintenance- (60%) and de novo methylation efficiency427

(22%) in Tet TKO cells. Similar to Cluster 2 we observe a higher frequency of fully-428

and hemimethylated CpGs across all time points, but at the same time a higher429

frequency of unmethylated CpGs at d0 (12%). Overall, comparing the enzymatic430

activity between WT and Tet TKO cells we end up with similar observations as in431
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segments comparison. Under the absence of Tets Dnmt1 spreads uniformly across432

all clusters, while Dnmt3a/b activity remains stable over time.433

Tets regulate Dnmts at TSS and TFBS434

The genome wide antagonistic effects of Dnmts’ and Tets’ activity across segments435

and clusters prompted us to plot the enzymatic efficiencies of CpGs across genes,436

histone marks and ChIP profiled TFBS using DeepTools [62] (Fig.: 5) in order to437

investigate regularities and general local dependencies. In WT cells the enzymes’438

efficiencies across genes and TFBS show once more an opposing behavior: At tran-439

scription start sites (TSS) and TFBS, high hydroxylation efficiency is coupled to440

reduced methylation (both maintenance and de novo) efficiency. This inverse be-441

havior at TSS remains upon 2i cultivation. De novo methylation almost disappears442

across the entire gene including the gene body. Under primed conditions de novo443

methylation is absent in TSS but has a strong presence in the gene body and it444

almost disappears from the entire gene over time after the transition to 2i. The445

observed efficiency profiles for maintenance methylation, de novo methylation and446

hydroxylation, correspond nicely to Uhrf1, Dnmt3a/b, as well as Tet1 ChIP profiles,447

respectively (SI Sec. 4.6 Fig. 30 and 31).448

In Tet TKO ES cells the TSS associated drop in maintenance methylation is449

much less pronounced and almost absent at d6/d7. In addition, de novo methylation450

is only mildly reduced upon cultivation in 2i and clearly maintained across the451

gene body (Fig.: 5a). Regulatory regions marked by Sox2, H3K4me3 and Tet1452

enrichment show a strong hydroxylation activity in WT cells which is inversely453

linked to an impaired maintenance and de novo methylation activity. Interestingly,454

the lack of Tet activity in TKO cells does not change de novo methylation but455

maintenance activity across regulatory regions (Fig.: 5b).456
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Discussion457

In our study, we provide a comprehensive genome wide DNA-methylation modeling458

approach that allowed us to infer how the activity of Dnmts and Tets contribute459

to modify CpGs and non-CpGs across the genome in a functional context. This460

approach was only possible by applying a novel sequencing method generating high461

resolution methylome data at a single CpG resolution and in double stranded DNA.462

Our RRHPoxBS data are well in line with previous described overall methylation463

levels of mouse ES cells determined by classical RRBS or WGBS [38, 60]. In addi-464

tion, RRHPoxBS data comprise three important new features: (i) a genome-wide465

representation of up to 4 million CpGs uniformly distributed across the genome, (ii)466

a precise determination of 5mC and 5hmC levels at a single CpG dyad and (iii) a467

precise mapping of hemimethylated states and positions of non-CpG methylation.468

The overall evaluation of our RRHPoxBS data showed that hemiCpGs are al-469

most equally distributed on both DNA strands following the behavior of symmetric470

CpG methylation. This suggests that hemimethylation is most likely the result471

of (strand-) undirected de novo methylation or active and passive demethylation472

events, respectively. Furthermore, we detect more hemimethylation in WT com-473

pared to Tet TKO cells, which indicates that Tet enzymes enhance the passive loss474

of 5mC. Indeed, our model predicts that 5hmC is probably less well recognized by475

Dnmt1 after replication, such that hydroxylation enhances passive demethylation.476

In contrast to equally distributed hemimethylation we observe a slight increase in477

the minus strand presence of non-CpG methylation. We cannot find a simple bio-478

logical (sequence context) or technical (calling/mapping) explanation for this bias.479

Non-CpG methylation is always occurring in close vicinity to CpG methylation but480

in contrast to CpGs we find that non-CpGs are not a substrate for Tet enzymes,481

i.e., we do not find any indication of 5hmC in the non-CpG context. The amount of482

non-CpG methylation however is strongly enhanced in the absence of Tet enzymes,483
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which is in line with our observation that de novo methylation by Dnmt3a/b is484

responsible for the non-CpG methylation is enhanced in Tet TKO cells.485

Our model provides strong evidence that Dnmts and Tets do not act indepen-486

dently at a given CpG, but clearly in an opposed manner. Generally, we observe487

a high maintenance and de novo efficiency at the majority of the genome, i.e.,488

HMRs and PMDs (or inter-/intragenic regions), while the activity of Tet enzymes489

is highest at UMRs and LMRs, such as promoters, TFBS (Sox2, Pou5f1) and TSS.490

Recent studies based on chromatin immunoprecipitation support our findings, re-491

vealing binding of Dnmt3a/b at the gene body and HMRs, whereas Tet1 binding492

was observed across methylation valleys (LMRs and UMRs) [63, 64].493

The impairment of maintenance methylation has been identified so far as the494

main driver of 2i induced DNA demethylation [60] and a role for Tet or oxidative495

cytosine forms, on the other hand, has only been recognized for selected loci [38, 60].496

The comparison of WT and Tet TKO ES cells in the present study, however, disclose497

a notable reduction within the demethylation rate of Tet TKO, compared to WT ES498

cells. On average, we detect a reduction in the demethylation rate of almost 50%499

from around 8% to 4% loss per day. In our view this is enough to demonstrate that500

Tets and their oxidized cytosine products are essential for an effective demethylation501

during the Serum-to-2i shift and probably other biological demethylation processes502

with similar enzymatic compositions.503

The loss of Tet enzymes is naturally expected to result in an impaired removal504

of 5mC and it does at least for CpGs located in LMRs and UMRs, where we observe505

a notable increase in their methylation level. Nevertheless, under primed conditions506

and within HMRs we paradoxically observe more unmethylated CpGs (hypomethy-507

lation) in Tet TKO ES cells compared to WT ES cells. Recently, López-Moyado et508

al. conducted a systematic investigation of genome wide methylation profiles from509

various cell types carrying distinct Tet KO genotypes [61]. Similar to our obser-510
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vations they detected a pronounced loss of DNA methylation in heterochromatic511

compartments (i.e., HMRs and PMDs) of Tet TKO mouse ES cells.512

López-Moyado et al. propose a mutual exclusive localization of Dnmts and513

Tets in WT ES cells, while in Tet KO cells Dnmts invade domains which were514

previously occupied by Tets. Indeed, in the absence of Tets, our model predicts a515

clear misregulation in both maintenance and de novo methylation efficiency. In Tet516

TKO ES cells, we see an increase in maintenance methylation efficiency, but at the517

same time a reduction in HMRs and PMDs. Moreover, we observe an increase in518

de novo methylation efficiency at PMDs. Together, this indicates a displacement519

of Dnmt1, as well as Dnmt3a/b, which fits to the hypothesized model by López-520

Moyado et al.. In addition, Tet TKO cells exhibit a more stable, almost persistent521

de novo methylation efficiency under naive conditions. The increased non-CpG522

methylation of Tet TKO cells detected by RRHPoxBS further supports this finding.523

This shows that in the absence of Tets, ES cells also fail to effectively down-regulate524

de novo methylation efficiency in 2i.525

Taken together, we hypothesize that Tet enzymes work against methylation in526

three ways. (i) They guarantee an efficient conversion of 5mC at accessible regions527

and act against its establishment during a cell replication either via passive or active528

demethylation, (ii) They inhibit the effectiveness of the maintenance machinery over529

regions that should remain unmethylated. (iii) Finally, they ensure an efficient down-530

regulation of the de novo enzymes, which can not be observed in their absence.531

Conclusion532

We describe a novel combination of experimental and computational approaches533

to investigate the contributions of Tets and Dnmts to the establishment of distinc-534

tive DNA methylation patterns across the genome. Our analysis shows that Dnmts535

and Tets exhibit clear antagonistic efficiencies at individual CpGs. The comparison536

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2020. ; https://doi.org/10.1101/2020.08.06.236307doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.06.236307
http://creativecommons.org/licenses/by-nc-nd/4.0/


of WT and Tet TKO ES cells demonstrates that Tet enzymes contribute notably537

to the loss of DNA methylation in the present model system. Moreover, Tet en-538

zymes seem to protect unmethylated regions against both de novo and maintenance539

methylation efficiency and to restrict the activity of Dnmts in highly methylated re-540

gions, guaranteeing the formation and maintenance of cell type specific methylation541

patterns.542
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Figures543

(a) WT CpGs (b) WT non-CpGs

(c) TKO CpGs (d) TKO non-CpGs

Figure 1: Demethylation of WT and Tet TKO ES cells. (A) Average strand
specific CpG methylation of WT ES cells in Serum/LIF (d0) and 2i (d3, d6). (B)
Average strand specific non-CpG methylation of WT ES cells in Serum/LIF and 2i.
(C) Average strand specific CpG methylation of Tet TKO ES cells in Serum/LIF
and 2i (d2, d4, d7). (D) Average strand specific non-CpG methylation of Tet TKO
ES cells in Serum/LIF and 2i.
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(a) Genome wide estimated methylation levels

(b) Genome wide estimated enzymatic efficiencies

Figure 2: Hidden Markov model output. (A) average estimated 5mC/5hmC level
across the genome (B) average estimated maintenance efficiency, de novo efficiency
and hydroxylation efficiency.
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(a) Methylation Pattern

(b) Enzyme Efficiencies

Figure 3: Methylome Segmentation. Based on previous published WGBS data,
the genome was partitioned in highly methylated regions (HMRs), partially methy-
lated domains (PMDs), low methylated regions (LMRs) and unmethylated regions
(UMRs); (A) DNA methylation patterns of HMRs, PMDs, LMRs and UMRs derived
from HM modeling of RRHPoxBS data; (B) HMM estimated enzyme efficiencies
of Dnmts (maintenance and de novo) and Tets (hydroxylation) for HMRs, PMDs,
LMRs and UMRs.
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(c) Enrichment Analysis

Figure 4: Clustering of individual CpGs based on their Efficiency Profile. CpGs
were assigned to three clusters based on their combination of enzyme efficiencies,
as well as the changes of enzyme efficiencies over time. (A) HMM estimated en-
zyme efficiencies of Dnmts (maintenance and de novo) and Tets (hydroxylation)
for Cluster 1 to 3. (B) DNA methylation patterns of Cluster 1 to 3 derived from
HM modeling of RRHPoxBS data; (C) Enrichment analysis of genomic and epige-
netic features within the three distinct clusters using LOLA. Colored tiles indicate
enrichment with oddsRatio ≥ 1.
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(b) Histone marks and protein binding sites

Figure 5: Average efficiency profiles across genes and protein binding sites.
(A) Average maintenance, de novo and hydroxylation efficiency of WT and Tet TKO
cells across genes; (B) Average maintenance, de novo and hydroxylation efficiency
across selected chromatin marks and protein binding sites. red = maintenance
methylation efficiency, blue = de novo methylation efficiency, yellow = hydroxylation
efficiency. Dark colors indicate the enzyme efficiencies in WT ES cells, light colors
refer to the enzyme efficiencies of Tet TKO ES cells.
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profiling of dna methyltransferases reveals a role for dnmt3b in genic methyla-

tion. Nature, 520(7546):243, 2015.

[64] Tianpeng Gu, Xueqiu Lin, Sean M Cullen, Min Luo, Mira Jeong, Marcos

Estecio, Jianjun Shen, Swanand Hardikar, Deqiang Sun, Jianzhong Su, et al.

Dnmt3a and tet1 cooperate to regulate promoter epigenetic landscapes in

mouse embryonic stem cells. Genome biology, 19(1):88, 2018.

38

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2020. ; https://doi.org/10.1101/2020.08.06.236307doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.06.236307
http://creativecommons.org/licenses/by-nc-nd/4.0/

