
 1 

Evidence for an extreme founding effect in a highly successful invasive species 2 

 3 

Kateryna V. Kratzer1, Annemarie van der Marel1, Colin Garroway1, Marta López-Darias2, 4 

Stephen D. Petersen1,3, Jane M. Waterman1.  5 

 6 

1Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada 7 

2Instituto de Productos Naturales y Agrobiología, IPNA-CSIC, San Cristóbal de La Laguna, 8 

Tenerife, Spain 9 

3Conservation and Research Department, Assiniboine Park Zoo, Winnipeg, Manitoba, Canada 10 

 11 
  12 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2020. ; https://doi.org/10.1101/2020.08.04.236695doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.04.236695
http://creativecommons.org/licenses/by-nd/4.0/


Abstract 13 

The adaptive potential of invasive species is thought to decrease during founding events due to 14 

reduced genetic diversity, limiting the new population’s ability to colonize novel habitats. 15 

Barbary ground squirrels (Atlantoxerus getulus) were purportedly introduced as a single breeding 16 

pair to the island of Fuerteventura but have expanded to over a million individuals spread across 17 

the island in just over 50 years. We estimated the number of founders and measured the level of 18 

genetic diversity in this population using the mitochondrial displacement loop and microsatellite 19 

markers. Island samples (n = 19) showed no variation in the d-loop, suggesting a single founding 20 

female, while Moroccan samples (n = 6) each had unique mitochondrial haplotypes. The 21 

microsatellite data of the island population (n = 256 individuals) revealed a small effective 22 

population size, low levels of heterozygosity, and high levels of inbreeding, supporting a 23 

founding population size of two to three individuals. Our results suggest that A. getulus has 24 

undergone an intense genetic bottleneck during their colonization of the island. They are one of 25 

the few species where introduction effort does not explain invasion success, although further 26 

investigation may explain how they have avoided the worst expected effects following an 27 

extreme genetic bottleneck. 28 
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1. Introduction  35 

Extreme population bottlenecks can produce inbreeding and subsequent inbreeding depression 36 

[1, 2] because genetic drift becomes more powerful than selection in small populations. When 37 

drift is strong, beneficial alleles can be lost and detrimental alleles fixed due to random chance. 38 

As homozygosity increases due to drift, phenotypes associated with deleterious alleles that are 39 

hidden in heterozygote states become exposed to selection, and inbreeding depression occurs [for 40 

reviews, see 3, 4]. The strength of drift is often not apparent from the census size of a population, 41 

as not all individuals contribute equally to the next generation and population size can recover 42 

from a bottleneck much faster than the population’s genetic diversity. However, a population 43 

experiences drift at the rate of its effective population size, which underscores the fact that even 44 

large populations can continue to experience strong effects of drift and continued loss of genetic 45 

diversity [5,6].  46 

 47 

In some cases, the effects of inbreeding following extreme bottlenecks are not noticeable; thus, 48 

understanding the nature of such populations is important for conservation. Within invasive 49 

species ecology, many populations are paradoxically founded by a small number of individuals 50 

with reduced genetic diversity due to the small size of the available gene pool [7-9]. The ability 51 

of these species to adapt to and colonize novel environments can be jeopardized by low levels of 52 

genetic diversity [10]. But a sufficiently large founder population (number of individuals or 53 

genotypes) [e.g. 11, 12], or multiple introduction events, which introduce new alleles into the 54 

population [e.g. 13, 14; see also 7, 15] often characterize successful invasions. Bottlenecked 55 

populations that retain sufficient levels of variation may regain some genetic variability through 56 

mutation [10, 16, 17], increasing their likelihood of survival. Small founder populations without 57 
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subsequent introductions should, therefore, have decreased fitness and face difficulty when 58 

attempting to establish in novel environments. No successful establishment of an invasive 59 

mammal from either one breeding pair or one pregnant female has been recorded; an invasive 60 

population founded by either scenario would be an ideal study model for the founder effect [18]. 61 

 62 

Here we quantify genetic diversity and estimate the effective population size of the invasive 63 

population of Barbary ground squirrels (Atlantoxerus getulus) on the island of Fuerteventura, 64 

Spain. Purportedly introduced as a breeding pair from Sidi Ifni, Morocco in 1965 [19], the 65 

current island population has had remarkable success in population growth (estimated one 66 

million) and range expansion [20, 21]. We examined the mitochondrial and nuclear diversity of 67 

A. getulus to resolve any discrepancies between the two differently inherited genomes [22-24]. 68 

We targeted the mitochondrial displacement loop and nuclear microsatellites, as any variation in 69 

this recently established population would likely be found in the most rapidly evolving areas of 70 

the two genomes [25]. We expected to find a single mitochondrial haplotype, high levels of 71 

inbreeding, one to four microsatellite alleles at each nuclear locus, and a small effective 72 

population size on the island due to the exclusive presence of alleles from a single founding pair. 73 

With this research, we intend to contribute to the general knowledge on the role of genetic 74 

diversity and bottlenecks in explaining the success of biological populations. 75 

 76 

2. Methods 77 

(a) Study species, trapping locations and methods  78 

We trapped A. getulus according to previously described methods in various locations on 79 

Fuerteventura and Morocco [see 26-29] and stored tissue samples in 95% ethanol. Mitochondrial 80 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2020. ; https://doi.org/10.1101/2020.08.04.236695doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.04.236695
http://creativecommons.org/licenses/by-nd/4.0/


d-loop sequences were obtained from 45 animals, and 256 animals were genotyped at eleven 81 

microsatellite loci (see S.I. for details).  82 

We tested for inbreeding and variation from Hardy-Weinberg equilibrium using the “adegenet” 83 

package v.2.1.1 [30, 31] and the “pegas” package x.0.11 Monte Carlo exact test with 1000 84 

replicates [32], respectively, in R v.3.5.1 [33]. Alleles were determined to have been introduced 85 

by founders rather than mutation (i.e. “founding alleles”) if they had a frequency > 0.05 and were 86 

more than one repeat unit away from a common allele [12]. We performed a principal 87 

component analysis (PCA) using the “ade4” package v.1.7-13 [34] to determine whether there 88 

was any genetic structure in the population. We then calculated effective population size (Ne) 89 

using the LDNE method, assuming random mating and setting the minor allele frequency to 0.05 90 

[35]. 91 

 92 

3. Results 93 

(a) Mitochondrial DNA 94 

We found no variation among island squirrels, whereas all six individuals from Morocco had 95 

unique haplotypes and showed 16 variable nucleotide sites compared to island samples, despite 96 

the limited sample size of the Moroccan source (Fig. 1, Table 1). We found four variable sites 97 

(0.389%) between Fuerteventura sequences and M10, the Moroccan sequence most similar to 98 

those on the island (Fig. 1).  99 

(b) Nuclear DNA 100 

We found no evidence of large allele dropout or scoring error due to stuttering [36]. Null alleles, 101 

indicated by homozygote excess, were present at five loci that were removed from the analysis 102 

[37, 38]. All remaining loci were in HWE (p > 0.05). Each locus had between two and nine 103 
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alleles (4.36 ± 2.11, mean ± SD), the number of founding alleles ranging from one to five (2.73 ± 104 

0.65). Mean observed heterozygosity (HO = 0.57) was greater than expected (HE = 0.55; Table 1 105 

supplemental information) and the average level of inbreeding was high (Fig. 2: average F = 106 

0.23 [0.10 – 0.60, min - max]). Since we found no evidence of population structure (S.I. Fig. 1), 107 

we assumed that our sample was representative of the entire island population. We estimated Ne 108 

to be 77.2 (95% CI: 56.3, 109.5).  109 

 110 

4. Discussion  111 

We characterized segments of the mitochondrial and nuclear genomes of a highly successful 112 

invasive island population of A. getulus to determine its genetic diversity and number of 113 

founders. We observed low genetic diversity, evidence of inbreeding in mitochondrial and 114 

nuclear DNA, and a single mitochondrial haplotype suggesting the presence of only one 115 

founding female. We found variation between each mitochondrial d-loop sequence of Moroccan 116 

samples despite a small sample size (n = 6), whereas the island population did not show variation 117 

with a larger sample size (n = 19).   118 

Microsatellite data also supported the hypothesis that this island population was founded by a 119 

small number of individuals but data from marker Aget19 suggest that there may be more than 120 

two founders (S. I. Table 2). Of nine alleles at this locus, five are present at a frequency greater 121 

than 5% [12], which is incongruous with the hypothesis that the island population was founded 122 

by two individuals. However, two of these alleles (repeat lengths 319 and 339) have frequencies 123 

just above the threshold of being counted as true founder alleles (0.0573 and 0.0553, 124 

respectively; S. I. Table 2). It is possible these alleles were introduced by a founder, but the 125 

potential that 319 and 339 are due to rare double mutations, genotyping error, or an early 126 
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mutation that was propagated over the threshold cannot be overlooked. Another microsatellite 127 

marker, Aget1, also has a high number of alleles but only two are present at high frequency (> 128 

5%). An interesting allele at this marker is repeat length 152, which is two repeat units away 129 

from a founder allele and therefore does not comply with the recommended criteria [12]. 130 

However, it is present at low frequency (0.0108), and multiple mutations in the same location, 131 

while unlikely, are not impossible [12]. Further investigation may confirm the true origin of 132 

these alleles.  133 

With an average inbreeding coefficient F of 0.23, the A. getulus population should be at a 134 

survival or range expansion disadvantage [39, 40], as an increased probability of extinction 135 

exists when F values are at or just below “intermediate” levels (0.30 – 0.40; 11, 41]. However, 136 

the species has successfully established and spread across the island [20, 21] in a genetic paradox 137 

of invasion [9]. Atlantoxerus getulus invasion success may be due to extrinsic habitat factors [22, 138 

29], or other species-level [42, 43], behaviour [28], or life-history traits [44]. Alternatively, 139 

inbreeding may have benefitted the population by purging deleterious founding alleles [41, 45]. 140 

Despite an estimated population size of one million, the effective population size was 141 

approximately 77 individuals (0.0077%), which is very low compared to other infamously 142 

bottlenecked mammals. Northern elephant seals survived near extinction and experienced steady 143 

population growth from about 100 to over 200,000 individuals, with an Ne of approximately 144 

40,000 (>20%) [12, 46, 47]. Cheetahs are estimated to number 6674 individuals with an Ne of 145 

between 1001–2937 (15–44%) [48, 49]. Some re-introduced populations of European bison 146 

(Bison bonasus) have Ne/N values as low as 0.05 (5%) [50]. The island population of A. getulus, 147 

therefore, has one of the smallest recorded effective population sizes relative to their census size.  148 
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One caveat of our study was the sampling regime. The sampling density for mtDNA was low 149 

although samples were collected from sites across the entire island of Fuerteventura, whereas 150 

sampling density for nuclear DNA was higher but restricted to a single area. As such, we found 151 

no evidence of population structure. However, there are no geographic barriers to dispersal 152 

across the island, as squirrels have been observed in all regions [20, 21], thus population 153 

structure may be absent altogether. Better coverage of the island or perhaps the collection of 154 

whole genomes may provide further insight into this recent founding event.  155 

We have shown that the A. getulus population on Fuerteventura has undergone an intense genetic 156 

bottleneck during their colonization of the island. However, despite their lack of genetic diversity 157 

and low effective population size, they have successfully established and spread across the 158 

island, providing an ideal example of the founder effect.   159 
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Figures and Tables 338 

Figure 1. Evolutionary relationships between island (blue) and mainland (red) Atlantoxerus 339 
getulus based on the mitochondrial DNA displacement loop. Relationships inferred using the 340 
Neighbour-Joining method with 1000 bootstrap replicates. Evolutionary distances calculated 341 
using the Tamura-Nei method. All codon positions were included (total 1027 positions). Made in 342 
MEGA7 [53].  343 
 344 

Figure 2. Average inbreeding coefficients of 256 Atlantoxerus getulus individuals based on 345 
microsatellite markers of nuclear DNA. The F values ranged from 0.097 – 0.596 (mean F = 346 
0.233).  347 
  348 
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Table 1. Nucleotide differences within the mitochondrial d-loop of six Atlantoxerus getulus 349 
haplotypes from Sidi Ifni, Morocco.  350 
 351 

352 
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Figure 1. 356 
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Figure 2.  360 
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