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Abstract  22 

Individuals exhibit differences in their microbial composition that have important implications for both 23 

population dynamics and ecological processes. The gut microbiome of animals can vary by age, 24 

reproductive status, diet, and habitat quality, and directly influences an individual’s health and fitness. 25 

Likewise, variation in an individual’s home range can lead to differences in reproductive behaviour, 26 

feeding strategies, and fitness. Ungulates (hooved mammals) exhibit species-specific microbiomes and 27 

habitat use patterns that differ by season, sex, and age-class, leading to variation among individuals 28 

occupying a similar geographic area. Here, we combined fecal microbiome and movement data to assess 29 

the relationship between space use and the gut microbiome in a specialist and a generalist ungulate. We 30 

captured and GPS radiocollared 24 mountain goats (Oreamnos americanus) and 34 white-tailed deer 31 

(Odocoileus virginianus). During captures we collected fresh fecal samples and conducted high-throughput 32 

sequencing of the fecal microbiome (i.e. 16S rRNA gene) to quantify gut microbial diversity. We 33 

generated Brownian Bridge Movement Models from the GPS location data to estimate core (50%) and 34 

home range (95%) sizes and calculated the proportion of use for several important habitat types. An 35 

increase in Firmicutes to Bacteroides ratios corresponded to an increase in core range area in both species. 36 

In mountain goats we observed a negative relationship between gut diversity and use of both escape terrain 37 

and treed habitat, both critical features for this alpine specialist. There were no relationships between 38 

habitat use and the gut microbiome in the more generalist white-tailed deer. We hypothesize that larger 39 

Firmicutes to Bacteroides ratios confer body size or fat advantages that allow for larger home ranges, and 40 

that relationships between gut diversity and disproportionate use of particular habitats is stronger in 41 

mountain goats due to their restricted niche relative to white-tailed deer. This is the first study to relate core 42 

range size to gut diversity in wild ungulates and is an important proof of concept that advances the 43 

potential type of information that can be gleaned from non-invasive sampling.  44 
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Introduction 45 

The gastrointestinal tract of animals contains trillions of microbes that influence each individual’s health. 46 

Gut bacteria, hereafter termed the gut microbiome, can modify immune responses (Arnolds & Lozupone, 47 

2016), improve and modulate metabolism (De Angelis et al., 2020), and affect behaviour (Shreiner, Kao, & 48 

Young, 2015; Zhang, Ju, & Zuo, 2018). While largely stable over time (Coyte, Schluter, & Foster, 2015; 49 

Faith et al., 2013), disturbance of gut microbiome can lead to disease (Duvallet, Gibbons, Gurry, Irizarry, 50 

& Alm, 2017) and impacts metabolic versatility, meaning the ability to survive equally well when 51 

presented with a wide range of dietary compositions and habitat (Esposti & Romero, 2017; Tinker & 52 

Ottesen, 2016). Gut microbiome diversity has been shown to impact behaviour; for example, gut 53 

microbiome manipulation in mice resulted in higher memory as measured using a passive-avoidance test 54 

(Mao et al., 2020). Leitão-Gonçalves et al., (2017) showed that the presence of key gut bacteria species 55 

suppressed protein appetite, indicating the ability of the gut microbiome to drive dietary decisions.  The 56 

mechanistic links are not totally understood, but are thought to follow the microbiota-gut-brain axis where 57 

bacteria have the ability to, for example, generate neurotransmitters that influence cognition (Cryan & 58 

Dinan, 2012). 59 

 60 

Differences in gut microbiome composition have also been correlated to the landscape; percent urban 61 

landcover in ibises is positively correlated with gut microbiome composition (Pelecaniformes spp; Murray, 62 

et al., 2020) and in multiple bird species, microbial community was significantly correlated to habitat type 63 

(San Juan et al., 2019). Individuals in farmland habitats also exhibited higher diversity relative to 64 

individuals in natural habitats, reflecting the link between gut microbiome composition and ecosystem 65 

alteration (Chang, Huang, Lin, Huang, & Liao, 2016).  Levels of daily activity and foraging appear to be 66 

influenced by the gut microbiome (Jones et al., 2018; Schretter et al., 2018) and distinct diet types, such as 67 

herbivory and carnivory, are associated with unique microbiome profiles (Ley et al., 2008). Herbivores in 68 

particular exhibit specific gut bacterial compositions, as certain bacteria allow them to extract energy and 69 

nutrients from food and detoxify plant defense compounds (Dearing & Kohl, 2017). 70 
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Mammalian herbivores are typified by specific gut microbial taxa as they rely on these bacteria to extract 71 

energy and nutrients from food, synthesize vitamins, and detoxify plant defense compounds (Dearing & 72 

Kohl, 2017). Ungulates, and ruminants in particular, have specialized anatomical and physiological 73 

adaptations to accommodate the cellulolytic fermentation of low-nutrition, high-fiber plant materials (De 74 

Tarso, Oliviera, & Bastos Alfonso, 2016). A specialized gut microbiome allows ruminants to digest 75 

typically indigestible plant biomass (Kruger Ben Shabat et al., 2016) and as a result exploit novel 76 

environments. Mountain goats (Oreamnos americanus) are large alpine ruminants that are endemic to the 77 

mountainous regions of northwestern North America (Festa-Bianchet and Côté 2008). Mountain goats use 78 

lower elevation, forested, and warmer aspect habitat during the winter and higher elevation, mountainous 79 

terrain in summer (Poole & Heard, 2003; Poole et al., 2009; Taylor et al., 2014; White, 2006). They are 80 

considered intermediate browser and eat a variety of forage, with diets generally dominated by grasses 81 

(Festa-Bianchet & Côté, 2003; Hofmann, 1989). In contrast, white-tailed deer (Odocoileus virginianus) 82 

exploit a variety of habitat and food resources and cover a large geographic range that stretches across most 83 

of North America and includes part of Central and South America (Hewitt, 2011). White-tailed deer use 84 

woody cover habitats year-round, but can also thrive in urban and rural settings (Grund, McAninch, & 85 

Wiggers, 2002; Van Deelen, Campa III, Hamady, & Haulfer, 1998); they maintain distinct seasonal ranges 86 

in the northern parts of their range and are considered browsing ruminants as well as both habitat and 87 

dietary generalists (Berry, Shipley, Long, & Loggers, 2019). 88 

  89 

Our study integrated high-throughput sequencing and GPS telemetry to evaluate the relationship between 90 

gut microbiome, home range area, and use of different habitat classes of two ungulates living in contrasting 91 

environments. We quantified the relationship between key microbiome diversity metrics on home range 92 

size and relative use of different habitat classes inferred from GPS tracking of individuals. From an 93 

evolutionary perspective this link between variation in phenotype or behaviour and the gut microbiome 94 

assumes selection operates on both the genomes of the constituents (microbiome) and host, otherwise 95 

known as the holobiome (Bordenstein & Theis, 2015).We hypothesized that an increase in gut diversity 96 
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would be linked with an increase in area used, as greater gut diversity would reflect, and possibly drive 97 

larger use of space and a more resource-diverse home range, similar to the findings of Ma et al., (2019). 98 

High Firmicutes to Bacteroides ratios correspond to larger body size and fat stores; levels of Firmicutes 99 

increase and promote more efficient calorie absorption and subsequent weight gain (Duvallet et al., 2017; 100 

Koliada et al., 2017; Ley, 2010). As such, we hypothesized that larger Firmicutes to Bacteroides ratios 101 

would be correlated with larger home ranges, as individuals building up fat stores for winter would 102 

generally use more space to forage. This relationship may be impacted by resource distribution, as 103 

specialists prefer homogenously distributed resources, while generalists prefer heterogeneously distributed 104 

resources, which can impact space use (Marrotte et al., 2020) Consequently, we hypothesized that 105 

relationships between proportional habitat use and the gut microbiome would be stronger in specialists as 106 

they have a more restricted niche with deviations from this having larger consequences, whereas 107 

generalists can make use of a variety of habitat areas.  108 
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Methods 109 

Animal captures, sample collection and DNA extraction 110 

We captured and radio-collared male and female mountain goats on three adjacent mountain complexes 111 

using aerial net-gun capture northeast of Smithers, British Columbia, Canada (Blunt Mountain, Netalzul 112 

Mountain, and Goat Mountain) (Fig. 1). We captured and radio-collared 34 female white-tailed deer 113 

(Odocoileus virginianus) using baited Clover traps southwest of Ottawa, Ontario, Canada (Fig. 1). For 114 

more information on animal captures, see Wolf, Kriss, MacAulay, & Shafer (2020) and Munro (2020). 115 

VERTEX Plus and VERTEX Lite Global Positioning System (GPS) collars (VECTRONIC Aerospace, 116 

Germany) were used for mountain goats, while store-on-board (G2110D, Advanced Telemetry Solutions, 117 

Isanti, MN) or GSM-upload (Wildcell SG, Lotek Wireless Wildlife Monitoring, Newmarket, ON) GPS 118 

collars were used for white-tailed deer. Collars recorded locations every four hours for mountain goats and 119 

five hours for white-tailed deer. During captures we took fecal pellets from each individual and stored 120 

them at -20°C; all captures took place during winter. Lab surfaces were sterilized with 90% EtOH and 10% 121 

bleach solution and a small portion of a single fecal sample (~1/4 including exterior and interior portions) 122 

was digested overnight at 56°C in 20 ul proteinase K and 180 ul Buffer ATL from the Qiagen DNeasy 123 

Blood & Tissue Kit (Qiagen, Valencia, California, USA). DNA was extracted from the digest with the 124 

QIAamp PowerFecal DNA Kit (Qiagen, Valencia, California, USA).  125 

 126 

High-throughput sequencing and bioinformatics  127 

The validated Illumina 16S rRNA Metagenomic Sequencing Library Preparation (#15044223 rev. B) 128 

protocol was followed for library preparation using slight modifications (Haworth, White, Côté, & Shafer, 129 

2019). The V3 and V4 regions of the 16S ribosomal ribonucleic acid (16S rRNA) hypervariable region 130 

were targeted with four variants of 341F and 805R primers designed by Herlemann et al., (2011). A unique 131 

combination of Nextera XT indexes, index 1 (i7) and index 2 (i5) adapters were assigned to each sample 132 

for multiplexing and pooling. Four replicates of each sample of fecal DNA were amplified in 25 µl PCR 133 

using the 341F and 805R primers. The replicated amplicons for each sample were combined into a single 134 
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reaction of 100 µl and purified using a QIAquick PCR Purification Kit (Qiagen, 28104) and quantified on 135 

the Qubit Fluorometer. Sample indexes were annealed to the amplicons using an 8-cycle PCR reaction to 136 

produce fragments approximately 630 bp in length that included ligated adaptors; the target amplicon is 137 

approximately 430 bp in length (Illumina 16S rRNA Metagenomic Sequencing Library Preparation; 138 

#15044223 rev. B). Samples were purified with the QIAquick PCR Purification Kit and the final purified 139 

library was validated on a TapeStation (Agilent, G2991AA) and sequenced in 300 bp pair-end reads on an 140 

Illumina MiSeq sequencer at the Genomic Facility at The University of Guelph (Guelph, Ontario). 141 

 142 

The quality of the raw sequences was assessed using FastQC v 0.11.9 (Andrews, 2010) and we determined 143 

the low-quality cut-off for forward and reverse reads (see Haworth et al., 2019). Forward and reverse reads 144 

were imported into QIIME2 v 2019.4 (Boylen et al., 2019) for quality control, sequence classification, and 145 

diversity analysis. Merged, forward, and reverse reads were analyzed independently using the quality 146 

control function within QIIME2 and DADA2 to perform denoising and detect and remove chimeras. 147 

QIIME2 follows the curated DADA2 R library workflow (https://benjjneb.github.io/dada2/) that requires 148 

zero mismatches in overlapping reads for successful merging, since reads are denoised and errors are 149 

removed before merging occurs. The taxonomy, to the species level, of all sample reads were assigned 150 

using Silva 132 reference taxonomy database (https://docs.qiime2.org/2019.4/data-resources/). We 151 

calculated the relative proportion of Firmicutes to Bacteroidetes for each of the grouped data. Estimates of 152 

diversity included Shannon’s Index, observed Operational Taxonomic Units (OTUs) and Pielou’s 153 

evenness, a measure of diversity that is the ratio of observed diversity to the maximum possible in a sample 154 

having the same number of species (Pielou, 1966); these were screened for correlation to one-another and 155 

read-depth. Pielou’s evenness and the ratio of Firmicutes to Bacteroidetes were retained for subsequent 156 

analyses. We rarefied sample reads to the sample with the least number of reads.  157 

GPS filtering, home range, and proportional habitat use analysis 158 

We used different filtering approaches and seasonal delineations for each species due to the differences in 159 

landscapes occupied by mountain goats and white-tailed deer. For the mountain goat data, any N.A. or 160 
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mortality signals were filtered out as were any GPS points outside of 600 m-2500 m in elevation, as this 161 

reflects the maximum and minimum for the study area. Dilution of precision (DOP) values over 10 were 162 

plotted against elevation and landscape type, to ensure there was no patterns in distribution, and that 163 

filtering would not bias downstream analyses. Movement rates between successive GPS points were also 164 

calculated, and any movement rates beyond 15 km/hr were also removed from analyses as these were 165 

deemed spurious. Seasons were defined as follows: Summer - May 1st to October 31st and Winter- 166 

December 1st to April 30th (Cadsand, 2012; Mountain Goat Management Team, 2010; Poole & Heard, 167 

2003; Richard & Côté, 2016). November was excluded from seasonal data as White (2006) noted a large 168 

increase in male mountain goat home ranges due to the rut. In white-tailed deer filtering occurred as above, 169 

but with no elevation restrictions as the topography of Marlborough Forest is effectively flat. As 170 

considerable variation in migration dates was observed, movement trajectories for each individual deer 171 

were examined to identify the dates of migration movements to and from Marlborough Forest to 172 

differentiate between winter and summer ranges. A migration movement was defined as when a deer 173 

moved between non-overlapping seasonal ranges and then occupied one seasonal range until the following 174 

migration movement (Munro 2020). As movements to and from Marlborough forest were relative to each 175 

individual deer’s movement, there was no hard date range. No seasonal GPS data were excluded for white-176 

tailed deer as changes in movement patterns and home range size during the rut are minimal in females 177 

(Hölzenbein & Schwede, 1989). 178 

 179 

We used Brownian Bridge Movement Models (BBMMs) to generate individual home ranges using the 180 

BBMM package in R (Nielson, Sawyer, & McDonald 2015). A BBMM is a continuous-time stochastic 181 

movement model that uses probabilistic and maximum likelihood approaches where observed locations are 182 

measured with error to model home ranges (Horne, Garton, Krone, & Lewis, 2007). A minimum of 275 183 

GPS points was required to generate a BBMM and individual home ranges were calculated with a 184 

maximum lag time between successive locations of two times the expected fix rate. A location error of 20 185 

m was used as per Sawyer et al., (2009), with a cell size of 25 m2. We generated 50% and 95% isopleths 186 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 5, 2020. ; https://doi.org/10.1101/2020.08.04.236638doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.04.236638


9 
 

representing the core and home ranges. Isopleths were generated separately for each individual during both 187 

summer and winter, as ungulates exhibit sex-specific habitat use patterns, that varies both seasonally and 188 

by age-class (Festa-Bianchet & Côté, 2008; Lesage et al., 2000; Mountain Goat Management Team, 2010; 189 

Webb, Hewitt, & Hellickson, 2007; White, 2006). We focused on summer isopleths, as deer were baited in 190 

winter, which has been shown to bias movement and shift core ranges (Kilpatrick & Stober, 2002). We 191 

report only the 50% isopleths, hereafter termed core ranges, to maximize seasonal differences, as they were 192 

highly correlated to the 95% isopleths (t46=9.3, r=0.81, p<0.0001) and results were similar between 193 

summer 50% and 95% isopleths (Fig. S1). We generated BBMM isopleths using the R package rgdal 194 

(Bivand et al., 2019) and all analyses were conducted in R v.3.6.1. Shapefiles were imported into ArcGIS 195 

Pro 2.5.0 and home range and core areas were calculated in km2 for further analyses.  196 

 197 

Proportional use of habitats was assessed by calculating the number of GPS points in a given habitat type 198 

within an isopleth, relative to the total number of GPS points located in that isopleth. Similar to Johnson’s 199 

third-order habitat selection, proportional habitat use in this study refers to how specific habitat types are 200 

used within a core range (Johnson, 1980). Proportion values in the 50% isopleths were highly correlated to 201 

the 95% isopleths (t117=106, r=0.99, p <2.2e-16, Table S1, S2). We selected ecologically relevant features 202 

that showed previous evidence for use in both species. Features used in mountain goat models were treed 203 

habitat, Heat Load Index (HLI), and escape terrain (landscape where slope is ≥ 40º; Shafer et al., 2012). 204 

These features have shown evidence for disproportionate usage/selection in previous research on mountain 205 

goats (Shafer et al., 2012). In the white-tailed deer models, we used forested habitat, treed swamp, and 206 

thicket swamp, as each of the three habitat features exhibited >20% core landcover composition in Munro 207 

(2020), and thus, were available for usage in the majority of individuals (Massé & Côté, 2013). For the 208 

HLI (Mccune & Keon, 2002), the average value of HLI for all GPS points within an isopleth for a given 209 

individual was calculated. The Southern Ontario Land Resource Information System (SOLRIS) data set 210 

version 2.0 (OMNRF, 2019) was used to determine land cover types for white-tailed deer, while we used 211 
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the Biogeoclimactic Ecosystem Classification (BEC) dataset (GeoBC, 2019) to determine terrestrial 212 

landcover type for mountain goats. 213 

Generalized linear models 214 

We analyzed the associations between core range size, gut microbiome metrics, and age class for both 215 

species individually using Generalized Linear Models (GLMs) with the Gaussian family distribution and 216 

identity link function. The core range GLMs consisted of core range size as a response variable, a single 217 

microbiome metric (Firmicutes to Bacteroidetes ratio or Pielou’s evenness) and age class (adult or 218 

subadult) as fixed explanatory effects. The proportional habitat use GLMs consisted of proportion of 219 

habitat used as a response variable, a single microbiome metric (Firmicutes to Bacteroidetes ratio or 220 

Pielou’s evenness) and age class, as fixed explanatory effects. One exception to this was the HLI GLM, as 221 

the response variable was the mean HLI value for GPS points in the isopleth, while the explanatory 222 

variables were the same as described above. Individuals 0 - 2 years of age were considered subadults for 223 

white-tailed deer, while individuals 0 - 3 years of age were considered subadults for mountain goats 224 

(Delgiudice, Fieberg, Riggs, Powell, & Pan, 2006; Festa-Bianchet & Côté, 2008). Effect size and 225 

confidence intervals are reported for each model. We conducted five-fold linear model cross validation 226 

using the Caret package in R (Kuhn et al., 2020) to test for overfitting of our models and quantify the 227 

model’s predictive ability. We reported the Scatter Index (SI) and Root Mean Square Error (RMSE): low 228 

values in RMSE and SI are indicative of a good model fit and low residual variance.  229 
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Results 230 

Bioinformatic filtering and taxonomic analysis 231 

Twenty-three mountain goat and twenty-five white-tailed deer fecal sample sequences passed QC and a 232 

total of ~8.17 million paired-end reads (nMG=5,488,856, nWTD=2,679,668) were generated (SRA accession 233 

number PRJNA638162). FastQC analysis indicated that both forward and reverse reads lost quality > 259 234 

bp in length (Phred score <25), so all reads were trimmed to a length of 259 bp. Following DADA2 strict 235 

quality filtering, ~1.16 million paired-end reads (nMG=709,457, nWTD=457,541) were kept for taxonomic 236 

and diversity analyses. Losing this many reads to quality filtering is typical (see Haworth et al., 2019), as 237 

permitted error rates are extremely low in DADA2, resulting in high certainty among retained reads 238 

(Callahan et al., 2016). White-tailed deer had higher averages of both Pielou’s evenness (mean 0.95, min 239 

0.92, max 0.96, SD 0.012) and Firmicutes to Bacteroidetes ratio (mean 8.3, min 1.49, max 21.5, SD 6.22) 240 

than mountain goats (Pielou’s evenness mean 0.92, min 0.84, max 0.95, SD 0.028;  Firmicutes to 241 

Bacteroidetes ratio mean 6.90, min 3.51, max 12.10, SD 2.43). Age class and sex averages, in addition to 242 

winter data, are shown in Table S3.  243 

Core range and proportional habitat use  244 

Data filtering resulted in 84,932 GPS points for mountain goats (mean per individual 3,679, range 277 - 245 

6,704, SD 761), and 63,900 GPS points for white-tailed deer (mean per individual 2,556, range 831 - 246 

3,558, SD 906). One individual mountain goat was removed due to a small number of GPS points (n = 16). 247 

Mountain goats exhibited slightly larger summer core range size of 0.40 km2 (min 0.01 km2, max 0.72 km2, 248 

SD 0.17), compared to 0.36 km2 (min 0.13 km2, max 0.81 km2, SD 0.16) for white-tailed deer. Proportional 249 

use of habitat values was variable, ranging from 0.05 to 0.91 (means ranged from 0.41 to 0.63) in mountain 250 

goats and from 0.00 to 0.84 (means ranged from 0.13-0.34) in white-tailed deer. The mean proportional 251 

habitat use values are reported in Table S4.  252 

Generalized linear models 253 

Sex was not included in the final model as there were no strong differences in core range sizes between 254 

sexes in mountain goats (t17.58=0.374, p>0.05) and all white-tailed deer samples were obtained from 255 
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females. We compared 50% isopleths from summer and winter; summer core ranges were reported here, as 256 

winter core ranges produced qualitatively similar results, albeit with weaker signals (Table S6). In both 257 

species, a greater Firmicutes to Bacteroidetes ratio was associated with larger core ranges with both 258 

models explaining an equal amount of variance (Nagelkerkes’s R2~0.27; Table 1; Fig. 2). Mountain goat 259 

gut diversity increased with core range size, while a decrease in white-tailed deer was associated with 260 

larger core ranges; here the mountain goat model explained a relatively large portion of the variance 261 

(R2=0.47; Table 1; Fig. 2). Age-class was a significant predictor in both mountain goat GLMs, but neither 262 

of the white-tailed deer models. The use of escape terrain and treed areas were moderately correlated in 263 

mountain goats (t20=2.94, p<0.01, r=0.55), and were significant predictors of Pielou’s evenness; effect size 264 

confidence intervals did not overlap zero in models that measured the relationship between use of escape 265 

terrain and treed areas and Pielou’s evenness (Table 2). Specifically, a larger Pielou’s evenness value was 266 

seen in individuals using less treed habitat and less escape terrain (Fig. 3). In HLI GLMs, confidence 267 

intervals overlapped zero and exhibited a relative ~2x decrease in R2 value relative to other mountain goat 268 

habitat use models (β= 0.91, R2=0.12, Table 2). All GLM estimates in the white-tailed deer models had 269 

confidence intervals overlapping zero. Cross validation of linear models supported retaining age class and 270 

microbiome metric as a predictor variable of core range size. RMSE values in models with core range size 271 

as the response variable ranged from 0.12 to 0.18, and SI values ranged from 0.30 to 0.51, whereas in 272 

proportional habitat use models, RMSE values ranged from 0.11 to 0.33 and SI values from 0.033 to 1.14 273 

(Table S5); this suggests moderate to high support for the models.  274 

  275 
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Discussion 276 

The link between gut microbiome and host space use and has implications for foraging, activity levels, and 277 

ability to use energetically costly habitats. We showed that differences in the gut microbiome between a 278 

generalist ungulate and specialist ungulate were linked to patterns of habitat use and home range size. 279 

Although the patterns are nuanced, there were some commonalities that collectively suggest the gut 280 

microbiota plays a role in determining space use patterns. An increase in Firmicutes to Bacteroidetes ratios 281 

in both species was correlated to an increase in core range sizes (Fig. 2). Increased Firmicutes to 282 

Bacteroidetes ratios are linked to increased Body Mass Index (BMI) and obesity (Duvallet et al., 2017).  283 

Both Firmicutes and Bacteroidetes are involved in energy resorption and carbohydrate metabolism; 284 

Firmicutes can act as a more effective energy source, leading to more efficient calorie absorption and 285 

weight gain, while Bacteroidetes are involved with energy production and conversion as well as amino 286 

acid transport and metabolism (Krajmalnik-Brown, Ilhan, Kang, & DiBaise, 2012; Ottman, Smidt, de Vos, 287 

& Belzer, 2012; Turnbaugh et al., 2006). In a comparable study home range size was not correlated with 288 

the Firmicutes to Bacteroidetes ratio in wild rodents (Jameson, Réale, & Kembel, 2020), however, 289 

seasonal weight changes are more dynamic in small mammals (Lynch, 1973; Merritt & Zegers, 1991), and 290 

we suspect this pattern might be more ubiquitous across temperate ungulates given their specialized gut 291 

microbiomes and need to put on fat stores. An individual’s gut that is comprised of more Firmicutes, 292 

bacteria that acts as an effective energy source, may be able to increase body fat more efficiently relative to 293 

individuals with lower Firmicutes to Bacteroidetes ratios, with an increase in Firmicutes to Bacteroidetes 294 

ratios helping individuals to accumulate fat stores to survive the winter by increasing their home range 295 

size. 296 

 297 

In large ungulates, increasing levels of body fat is important to survive the winter, when forage is limited 298 

relative to the other seasons. In muskoxen (Ovibos moschatus), the abundance of Firmicutes stayed similar 299 

across seasons, while Bacteroidetes increased in the summer months, meaning the ratio of Firmicutes to 300 

Bacteroidetes is lower in the summer (Bird et al., 2019). Additionally, an increase in microbial diversity in 301 
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yak (Bos grunniens) was noted in spring (Ma et al., 2020). Increased bacterial diversity in spring relative to 302 

summer suggests species are capable of modulating bacterial diversity; but note lower ratios of Firmicutes 303 

to Bacteroidetes does not necessarily correspond to higher diversity. The ability to conserve bacteria 304 

necessary for adding fat, namely high levels of Firmicutes and low levels of Bacteroidetes, while 305 

exhibiting increases in gut diversity suggests ungulates can prepare for the winter even though the level of 306 

gut bacterial diversity is shifting (see Haworth et al. 2019). This concept is of importance to white-tailed 307 

deer, as diet turnover between summer and winter is pronounced in Ontario. Shifting from herbaceous 308 

vegetation in the spring to woody browse in the winter may similarly result in increased diversity, while 309 

simultaneously conserving bacteria necessary for adding fat. 310 

  311 

Both specialists and generalists tend to shift habitats seasonally, as mountain goats move from alpine 312 

summer habitat to subalpine winter areas and white-tailed deer exhibit distinct winter and summer ranges 313 

(Grund et al., 2002; Lesage et al., 2000; Poole & Heard, 2003). There was considerably more variation in 314 

proportion of habitat used in the generalist white-tailed deer (Table S2), likely a function of their ability to 315 

use multiple habitat types and diet sources. Here proportion habitat use-microbiome models had no 316 

relationship (Fig. 3, Fig. S1), as all proportion habitat use coefficients in white-tailed deer had confidence 317 

intervals overlapping zero (Fig. 3, S1, Table 2). Interestingly, the two habitat variables in mountain goats 318 

with clear signals were escape terrain and treed areas (Fig. 3), which are related to the defining habitat 319 

characteristics of this species: the use of alpine terrain (i.e. no trees) and steep slopes, (Gross, Kneeland, 320 

Reed, & Reich, 2002; Festa-Bianchet & Côté, 2008). Deviations from their specialized and preferred 321 

habitat type comes at cost, as ungulates typically exhibit trade-offs with respect to forage quality and 322 

predation risk; avoiding predation can lead to decreased forage quality and abundance (Hamel & Côté, 323 

2007; Hebblewhite & Merrill, 2009). In mountain goats and bighorn sheep (Ovis canadensis), energy 324 

expenditures increased when travelling uphill or downhill - termed a vertical cost (Dailey & Hobbs, 1989). 325 

A lower Firmicutes to Bacteroidetes ratio could be linked to the vertical cost associated with spending 326 

more time in escape terrain, meaning less-fat or prime conditioned individuals spend more time in escape 327 
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terrain. Conversely, using more forage-available treed habitat may be correlated with an increase in 328 

Firmicutes to Bacteroidetes ratio, as individuals have increased access to forage, with minimal vertical 329 

cost. Collectively, the habitat models had stronger signals in the specialist species compared to the 330 

generalist, that we suggest is reflective of their more restricted habitat niche relative to generalists, where 331 

microbial deviations generate more prominent shifts in behaviour.  332 

  333 

The potential for the gut microbiome to modulate habitat use patterns is especially important in a specialist, 334 

as they have a more restricted niche, where deviations from the usage of important habitat types has larger 335 

consequences. While there is potential for modulation of proportion of specific habitat usage, the impact of 336 

the gut microbiome on the amount of space used may be more explicit.  A lower Pielou’s evenness value 337 

indicates that a given individual has decreased diversity relative to another individual with the same 338 

number of gut microbial species. The relationship between Pielou’s evenness and core range size differed 339 

in direction between species; greater gut diversity in mountain goats was correlated with a larger core 340 

range, while a negative relationship was noted in white-tailed deer (Fig. 2). Increased gut diversity might 341 

promote individuals moving through and foraging in larger areas, resulting in a positive relationship 342 

between diversity and core range size. This is of added importance in a specialist, as the ability to utilize 343 

and forage in a more diverse array of habitat types might allow individuals to access and subsist in areas 344 

that other conspecifics cannot, thus increasing their competitive ability (Blake & Karr, 1987; McPeek, 345 

1996; Rodewald & Vitz, 2005). Higher relative gut microbiome diversity might allow specialists to forage 346 

more like generalists, while lower diversity may limit specialists to their typical niches. The reverse trend 347 

in white-tailed deer might reflect the difference in feeding and habitat-use strategies; white-tailed deer are 348 

generalists, and thus by definition, all deer can effectively use a variety of habitat and food sources. The 349 

negative relationship observed between gut diversity and range size in white-tailed deer might suggest that 350 

deer with higher gut microbiome diversity are able to use more diet sources overall and thus can meet their 351 

nutritional requirements within a smaller area relative to individuals with less diverse gut microbiomes. As 352 

generalists, deer are not as constrained by specific food and habitat types, and thus, their space use may be 353 
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less heavily influenced by gut microbiome composition. It is possible that winter baiting had an impact on 354 

the gut microbiome in white-tailed deer, which could have led to weaker relationships.  355 

 356 

We built our models assuming the microbiome predicts habitat and home range patterns; but this need not 357 

be cause and effect, and the relationship is likely one of back-and-forth (Cryan et al., 2019). For example, 358 

diet-microbiome covariance has been observed in multiple large-herbivores, and seasonal diet turnover and 359 

seasonal microbiome turnover are positively correlated (Kartzinel, Hsing, Musili, Brown, & Pringle, 2019). 360 

In this example, our model would assume the gut microbiome impacts diet choice (e.g. Leitão-Gonçalves 361 

et al., 2017) and in turn, the correlation between diet turnover and the microbiome drives habitat use of a 362 

given species.  Assessing this relationship clearly needs experimental testing, and we view our study as a 363 

proof-of-concept that provides a testable hypothesis. Still, we demonstrated that quantifying the gut 364 

microbiome yields information related to space use and linking these two highly complex components of 365 

biology aids in our understanding of selection on the hologenome through the interplay between the 366 

individual and its microbial genomes and potential traits under selection (e.g. home range size and 367 

proportional habitat use). These findings also demonstrate that using pellet sampling is useful in 368 

determining space and habitat use in managed populations, as it is conceivable with a large enough 369 

database and validation, one could predict the distribution and behaviour of animals on the landscape from 370 

non-invasively sampled pellets. Ultimately, we utilized a specialist and generalist ungulate to explore the 371 

link between the gut microbiome and movement to generate quantitative findings surrounding the impact 372 

of the gut microbiome on space use in wild populations. Similar analyses of this kind should clarify the 373 

extent to which space use is linked to the gut microbiome in other ungulates and in turn, aid in assessing 374 

the utility of pellets to predict animal distribution and behaviour.   375 
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Figures 611 
 612 

 613 
Fig. 1 An example of habitat of both mountain goat (Oreamnos americanus) and white-tailed deer 614 
(Odocoileus virginianus) along with inset sample maps. Colors are reflective of relative elevation and 615 
topography. Average elevation of mountain goat habitat was 1614.7m, relative to 113.3m for white-tailed 616 
deer. 617 
  618 
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 619 
Fig. 2 Microbiome metrics for mountain goats (Oreamnos americanus, n=22) northeast of Smithers, 620 
British Columbia, and white-tailed deer (Odocoileus virginianus, n=25) Southwest of Ottawa, Ontario, 621 
relative to core summer range size. Females are represented by circles and only mountain goats have 622 
mixed-sex data. Adults (≥3 years of age) are represented in yellow, and subadults in blue. Significant 623 
Generalized Linear Models (GLMs) are denoted with a black line. 624 
  625 
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 626 
Fig. 3 Microbiome metrics for mountain goats - Oreamnos americanus northeast of Smithers, British 627 
Columbia, relative to habitat selection coefficients of both Heat Load Index (HLI) and treed habitat (n=21).  628 
Females are represented by circles and only mountain goats have mixed-sex data. Adults (≥3 years of age) 629 
are represented in yellow, and subadults in blue. Significant Generalized Linear Models (GLMs) are 630 
denoted with a black line.  631 
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Tables 632 
 633 
Table 1. Generalized linear models for core summer range size of mountain goat - Oreamnos americanus 634 
and white-tailed deer - Odocoileus virginianus (nMG=22, nWTD=25). The further left column refers to the 635 
model where Firmicutes to Bacteroides ratios was a predictor, while the right column refers to the model 636 
where Pielou’s evenness was a predictor 637 
 638 

Mountain goat 

  Core range size Core range size 

Predictors Estimates CI  Estimates CI  

(Intercept) 0.29 0.10 - 0.49  -2.3 -4.1 - -0.42 
 

F:B Ratio 0.010 -0.020 - 0.040  - - 
 

Pielou's 

evenness 

- -  2.8 0.85 - 4.8  

Age class 

(Subadult) 

0.20 0.020 - 0.38  0.17 0.020 - 0.32  

R2 Nagelkerke 0.27 0.47 

White-tailed deer 

  

  Core range size Core range size 

Predictors Estimates CI  Estimates CI  

(Intercept) 0.22 0.11 - 0.33 
 

5.4 0.62 - 10 

F:B Ratio 0.020 0.00 - 0.03 
 

- - 

Pielou's 

evenness 
- -  -5.3 -10 - -0.32 

Age class 

(Subadult) 
0.010 -0.12 - 0.14 

 
0.050 -0.08 - 0.17 

R2 Nagelkerke 0.28 0.21 

  639 
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Table 2. Generalized linear models for habitat proportion use for mountain goats (Oreamnos americanus) 640 
and white-tailed deer (Odocoileus virginianus) (nMG=22, nWTD=25) The further left column refers to the 641 
model where Firmicutes to Bacteroides ratios was a predictor, while the right column refers to the model 642 
where Pielou’s evenness was a predictor 643 
 644 

Mountain goat 

  Escape terrain proportion use Escape terrain proportion use 

Predictors Estimates CI  Estimates   CI  

(Intercept) 0.48 0.28 – 0.69  2.36 0.43 – 4.28  

F:B Ratio -0.01 -0.05 – 0.02  - - 
 

Age class (Subadult) 0.14 -0.04 – 0.32  0.15 -0.01 – 0.31  

Pielou's evenness - - 
 

-2.14 -4.24 – -0.05  

R2 Nagelkerke 0.127 0.252 

 645 

  Treed proportion use Treed proportion use 

Predictors Estimates   CI  Estimates   CI  

(Intercept) 0.56 0.16 – 0.97  4.84 1.23 – 8.45  

F:B Ratio -0.00 -0.06 – 0.06  - - 
 

Age class (Subadult) -0.04 -0.40 – 0.32 
 

0.04 -0.25 – 0.34  

Pielou's evenness - - 
 

-4.69 -8.63 – -0.76  

R2 Nagelkerke 0.0050         0.24 

  Heat Load Index Average Heat Load Index Average 

Predictors Estimates   CI  Estimates   CI  

(Intercept) 0.58 0.41 – 0.76  -0.23 -2.02 – 1.55  

F:B Ratio 0.01 -0.02 – 0.04  - - 
 

Age class (Subadult) -0.07 -0.23 – 0.08  -0.06 -0.22– 0.08  

Pielou's evenness - - 
 

0.91 -0.99 – 2.90  

R2 Nagelkerke 0.052        0.074 

 646 

White-tailed deer 

  Forest proportion use Forest proportion use 

Predictors Estimates  CI  Estimates   CI  
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(Intercept) 0.29 0.11 – 0.47  2.86 -4.64 – 10.36 
 

F:B Ratio 0.00 -0.02 – 0.01  - - 
 

Age class (Subadult) 0.02 -0.18 – 0.22  0.01 -0.19 – 0.20 
 

Pielou's evenness - - 
 

-2.74 -10.63 – 5.16 
 

R2 Nagelkerke 0.025 0.017 

  Thicket Swamp proportion use Thicket Swamp proportion use 

Predictors Estimates   CI  Estimates   CI  

(Intercept) 0.19 0.08 – 0.30  -0.85 -5.37 – 3.67  

F:B Ratio -0.00 -0.01 – 0.01  - - 
 

Age class (Subadult) -0.10 -0.23 – 0.02  -0.10 -0.22 – 0.02  

Pielou's evenness - - 
 

1.10 -3.66 – 5.86  

R2 Nagelkerke 0.12 0.13 

 647 

  Treed Swamp proportion use Treed Swamp proportion use 

Predictors Estimates   CI  Estimates     CI  

(Intercept) 0.35 0.17 – 0.53  -3.57 -11.02 – 3.89  

F:B Ratio 0.00 -0.02 – 0.02  - - 
 

Age class (Subadult) 0.05 -0.15 – 0.25  0.06 -0.13 – 0.26  

Pielou's evenness - - 
 

4.14 -3.71 – 11.99  

R2 Nagelkerke 0.012 0.059 

 648 
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