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Abstract 10 

Calculations of entropy of a signal or mutual information between two variables are valuable 11 

analytical tools in the field of neuroscience. They can be applied to all types of data, capture 12 

nonlinear interactions and are model independent. Yet the limited size and number of recordings 13 

one can collect in a series of experiments makes their calculation highly prone to sampling bias. 14 

Mathematical methods to overcome this so called ―sampling disaster‖ exist, but require 15 

significant expertise, great time and computational costs. As such, there is a need for a simple, 16 

unbiased and computationally efficient tool for reliable entropy and mutual information 17 

estimation. In this paper, we propose that application of entropy-coding compression algorithms 18 

widely used in text and image compression fulfill these requirements. By simply saving the 19 

signal in PNG picture format and measuring the size of the file on the hard drive, we can reliably 20 

estimate entropy through different conditions. Furthermore, with some simple modifications of 21 

the PNG file, we can also estimate mutual information between a stimulus and the observed 22 

responses into multiple trials. We show this using White noise signals, electrophysiological 23 

signals and histological data. Although this method does not give an absolute value of entropy or 24 

mutual information, it is mathematically correct, and its simplicity and broad use make it a 25 

powerful tool for their estimation through experiments. 26 

1 Introduction 27 

Entropy is the major component of information theory, conceptualized by Shannon in 1948 28 

(Shannon, 1948). It is a dimensionless quantity representing uncertainty about the state of a 29 

continuous or discrete system or a collection of data. It is highly versatile as it applies to many 30 

different types of data, it can capture nonlinear interactions, and is model independent (Cover 31 

and Thomas, 2006). It has been widely used in the field of neurosciences, see (Borst and 32 

Theunissen, 1999; Timme and Lapish, 2018) for a more complete review of work; for example 33 

in the field of synaptic transmission (London et al., 2002), information rate of Action Potentials 34 
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(APs) (Bialek et al., 1991; Juusola and de Polavieja, 2003; Street, 2020) or connectivity studies 35 

(Ito et al., 2011; Vicente et al., 2011).  36 

 37 

However, estimating the entropy of a signal can be a daunting task. The entropy H of a signal X 38 

is calculated with the well-known Shannon’s formula: 39 

      ∑               
 
                                          (eq.1) 40 

Where p(xi) is the probability that the signal will take the xi configuration in the probability 41 

distribution (x1, x2, x3,…, xN)  of the signal. It is considered that if        , then 42 

                  as                 . And using a base 2 logarithm, entropy will be 43 

expressed in bits (Cover and Thomas, 2006; Shannon, 1948).  44 

However, correctly estimating a probability distribution works only if each configuration 45 

happens many times. And by definition, one cannot know beforehand the number of needed 46 

experiments. This recording bias is even amplified by the fact that without making assumptions, 47 

there is no way to determine the relevant quantization and sampling of the data. The same 48 

recordings could be divided in any quantization bins and sampled by any interval, all giving 49 

different probability distributions and thus different entropy values. 50 

As an example, let us consider the chain of characters A=‖04050405‖. It is unchanged with a 51 

quantization range ―v‖ of 5, but will become ―01010101‖ with a quantization range ―v‖ of 2. If 52 

we now sample it with a bin ―T‖ of 1 character, this will give a probability distribution of: p(0) = 53 

0.5, p(4) = p(5) = 0.25 in the first scenario (v = 5) and: p(0) = p(1) = 0.5 in the second scenario 54 

(v = 2). We thus obtain different entropy values in the two scenarios:                 55 

and             . Now, if we take a sampling bin of T = 2 we obtain p(04) = p(05) = 0.5 for v 56 

= 5 and p(01) = 1 for v = 2. The calculated entropies thus are:               and           57 

  .  58 

Without making assumptions on the data, there is no way to determine which value of entropy is 59 

the correct one. Therefore, quantization and sampling are crucial to determine the entropy of a 60 

signal. In an ideal case, we would need a method able to correct for the sample bias without 61 

making assumptions about the signal, meaning for any length of acquisition, any binning of 62 

width ―‖ and any quantization level ―v‖ of the recorded data. 63 

Thankfully there are multiple ways to use the direct formula and compensate for this bias, but 64 

none of them can be called trivial. There are for example the quadratic extrapolation method 65 

(Juusola and de Polavieja, 2003; de Polavieja et al., 2005; Strong et al., 1998), the Panzeri-66 

Treves Bayesian estimation (Panzeri and Treves, 1996), the Best Universal Bound estimation 67 

(Paninski, 2003), the Nemenman-Shafee-Bialek method (Nemenman et al., 2004) or some more 68 

recent methods using statistic copulas (Ince et al., 2017; Safaai et al., 2018). Each method has its 69 
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advantages and downsides (see (Panzeri et al., 2007) for a comparison of some of them), which 70 

leaves the experimenter puzzled and in dire need of a mathematician (Borst and Theunissen, 71 

1999; Magri et al., 2009; Timme and Lapish, 2018). 72 

However, there is another way to calculate the entropy of a signal, through what is called the 73 

Source Coding Theorem (Cover and Thomas, 2006; Larsson, 1996, 1999; Shannon, 1948; 74 

Wiegand, 2010) that to our knowledge has been used only once in the field of neurosciences, by 75 

(London et al., 2002) to calculate the information efficacy of a given synapse. 76 

In signal processing, data compression is the process of encoding information using fewer bits 77 

than the original representation. In case of lossless compression, it does so by sorting parts of the 78 

signal by their redundancy and replacing them by shorter code words (Huffman, 1952; Shannon, 79 

1948). However, the source coding theorem specifies that it is impossible to compress a signal of 80 

size N such that the length of the compressed signal is smaller than the entropy of the original 81 

signal multiplied by N. Therefore, with a perfect compression method the size of the compressed 82 

signal is proportional to the original signal entropy (Cover and Thomas, 2006; Larsson, 1996, 83 

1999; Shannon, 1948; Wiegand, 2010).  84 

When choosing this way of calculating entropy, the choice of the compression algorithm thus 85 

become critical as the compressed signal must be the smallest possible in order to represent the 86 

entropy of the original signal. It is of course possible to craft its own compression algorithm (see 87 

(London et al., 2002)), but thankfully this application has been broadly used in the domain of 88 

informatics, in order to compress text and images efficiently on the hard drive of a computer or 89 

before sending data through a network. In particular, this led to the development of two principal 90 

entropy-coding compression algorithms: the Huffman coding algorithm (Huffman, 1952) and the 91 

the Lempel–Ziv–Storer–Szymanski algorithm (Storer and Szymanski, 1982), both used to 92 

compress text and image files. 93 

Portable Network Graphics (or PNG, see specifications at https://www.w3.org/TR/PNG/ or 94 

http://www.libpng.org/pub/png/) is a graphic file format supporting lossless data compression. 95 

Its high versatility and fidelity made it widely used for saving and displaying pictures. Its lossless 96 

compression is based on the combination of the Lempel–Ziv–Storer–Szymanski and Huffman 97 

algorithms and is called DEFLATE (Deutsch, 1996). Its great efficacy made it a reference for 98 

comparison with other entropy-encoding image compression methods (Bian et al., 2019; Cover 99 

and Thomas, 2006; Hou et al., 2020; Mentzer et al., 2020) and it is even used directly to estimate 100 

image entropy (Wagstaff and Corsetti, 2010).  101 

In this paper, we propose that measurement of PNG file output size of neuroscientific data 102 

compressed using the PNG DEFLATE algorithm (in Bytes on the hard drive) is a reliable and 103 

unbiased proxy to estimate the entropy of different neuronal variables. From this simple step and 104 

by applying this method to electrophysiological and histological data we show that output data 105 

file size and entropy are related in a linear fashion and are robust enough to estimate entropy 106 
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changes in response to different conditions. Further, with minimal modifications of the PNG file, 107 

we validate estimation of the mutual information between a stimulation protocol and the 108 

resulting experimental recording.  109 

2 Materials and Methods 110 

1 Neuronal modeling 111 

A single compartment model was simulated with NEURON 7.7 112 

(https://www.neuron.yale.edu/neuron/). All simulations were run with 100-μs time steps and had 113 

duration of 5 seconds. The nominal temperature was 37°C. The voltage dependence of activation 114 

and inactivation of Hodgkin-Huxley–based conductance models were taken from (Hu et al., 2009) 115 

for gNav and gKDR. The equilibrium potentials for Na
+
, K

+
, and passive channels were set to +60, 116 

−90 and −77 mV, respectively. The conductances densities were set to 0.04 S/cm
2
, 0.01 S/cm

2
 117 

and 3.33*10
-5

 S/cm
2
 for gNav and gKDR and passive channels, respectively. The model was 118 

stimulated using various numbers of excitatory synapses using the AlphaSynapse PointProcess 119 

of the NEURON software. The time constant and reversal potential were the same for every 120 

synapses and were set to 0.5 ms and 0 mV, respectively. The size of EPSPs produced by the 121 

synapses were randomly chosen using a lognormal distribution of EPSPs amplitude 122 

experimentally described in L5 pyramidal neurons (Lefort et al., 2009). Each synapse stimulated 123 

the model once during a simulation and the time onset was randomly chosen. 124 

For the simulations of Figures 3A and 3B, the number of synapses simulating the model 125 

depended on the spiking frequency desired. For example, to calculate the information rate in the 126 

case of a 1 Hz spike train, we simulated the model with 400 of the synapses described above. We 127 

ran 20 trials of the simulation with the same train of synapses (Figure 2A). In order to introduce 128 

some jitter in the spiking times, we also injected a small gaussian current with a mean of 0 nA 129 

and a standard deviation of 0.0005 nA during the 5 seconds of the simulation. We reproduced 130 

this whole protocol for others desired spiking frequency, using increasing number of synapses 131 

(for example: 1900 synapses for a 19 Hz spiking). 132 

For the simulations of Figure 3C, we stimulated the model with 750 of the synapses described 133 

above to get a spiking frequency around 5Hz. The time onsets and the amplitude of the synapses 134 

were randomly chosen at each simulation. We also added one supplementary synapse (Syn_supp) 135 

which stimulates the model every 200 ms (i.e 25 times in 5 s). The size of the EPSP size 136 

produced by this synapse was called wSyn_supp. When wSyn_supp was weak, this synapse did 137 

not drive the spiking of the model (Figure 3C, up left). When wSyn_supp was strong, this 138 

synapse drove the spiking of the model (Figure 3C, down left). We ran 100 simulations for each 139 

wSyn_supp. 140 
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2 Direct calculation of information rate via the quadratic extrapolation method 141 

We calculated the entropy and information rates using the direct method and quadratic 142 

extrapolation, as described by (Juusola and de Polavieja, 2003; Panzeri et al., 2007; de Polavieja 143 

et al., 2005; Strong et al., 1998).  144 

The first step of this method is to calculate the different values of entropy of the signal with 145 

different portions ―Size‖ of the signal, different quantizations ―v‖ of the signal values and 146 

different samplings bin ―T‖. As described in the introduction, each modification of ―Size‖, ―v‖ or 147 

―T‖ will give a different value for the entropy. For example, in figures 3A and B, the parameter 148 

―Size‖ was successively set as 1, 0.9, 0.8, 0.7, 0.6, 0.5; ―v‖ successively set as 2, 4, 8, 16, 32, 64, 149 

128, 256 and the parameter ―T‖ was successively set as 1, 2, 3, 4, 5, 6, 7, 8, which produced 6 * 150 

8 * 8 = 384 distinct values of entropy for every trial. Entropy values for different trials of the 151 

same condition were averaged together. These values were then plotted against 1/Size and the 152 

intersections to 0 estimated by quadratic fit of the data. This gave us the entropy values for every 153 

―v‖ and ―T‖, corrected for infinite size of the recordings. These values were then quadratic fitted 154 

against 1/v. The intersection to 0 gave us entropy values for every parameters of ―T‖, corrected 155 

for infinite Size and infinite number of bins ―v‖. Finally, these new values were fitted against 1/T 156 

and the extrapolation to 0 was estimated, to obtain the entropy value for infinite Size of the 157 

signals, infinite number of quantization levels ―v‖ and infinite number of combination bins ―T‖ 158 

(example in Fig. 1B). By performing this triple extrapolation and dividing by the time sampling, 159 

we can estimate the entropy rate R of the signal for theoretical infinite size, infinite number of 160 

quantization levels and infinite combination of sampling bins as 161 

     
   

 

 
   
   

   
   

          

To obtain RN, the entropy rate of the noise, instead of calculating H along the length of the signal, 162 

we did it at every time point across the successive trials. This is equivalent to simply transpose 163 

the signal and re-applying the same method than for RS. Finally, we obtained the information rate 164 

by subtracting RN to RS as  165 

            
   

 

 
   
   

   
      

(  
            

        ) 

For Figure 3A, simulated recordings were down-sampled to 10 kHz before calculation of 166 

information rate. For Figure 3C, middle, simulated recordings were down-sampled to 3 kHz and 167 

binned as 0 & 1 depending of the presence of Action Potentials or not, similar to (London et al., 168 

2002). 169 

For figures 1B, 1C, 1D, 2, 3A and 3B, The parameter ―Size‖ was successively set as 1, 0.9, 0.8, 170 

0.7, 0.6, 0.5; ―v‖ successively set as 2, 4, 8, 16, 32, 64, 128, 256 and the parameter ―T‖ was 171 

successively set as 1, 2, 3, 4, 5, 6, 7, 8. For figure 3C, the parameter ―Size‖ was successively set 172 
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as 1, 0.9, 0.8, 0.7, 0.6, 0.5; ―v‖ set as 2 and the parameter ―T‖ was successively set as 1, 2, 5, 10, 173 

20, 30, 40. RS, RN and Information rate were calculated by successive quadratic extrapolations, 174 

as described above. 175 

All of this was done by custom scripts written in Python 3.7 Anaconda with Numpy, Pandas and 176 

pyABF modules. These scripts are available at https://github.com/Sylvain-Deposit/PNG-Entropy. 177 

3 Export to PNG format 178 

Export to PNG was made with 3 different softwares: i) Anaconda 3.7 179 

(https://www.anaconda.com/) and the pyPNG package (https://pypi.org/project/pypng/) for 180 

Figures 1, 2A, 3A, 3B ; ii) Labview 2017  and Vision 2017 (National Instruments) for Figures 181 

2B, 3C, 4A and 4B; iii) the FIJI distribution of ImageJ software (Rueden et al., 2017; Schindelin 182 

et al., 2012) for figure 4C. Signals were normalized to 256 values from 0 to 255 simply by 183 

subtracting the minimal value of the signal, then dividing by the maximal value and multiplying 184 

by 255. It was then saved as PNG format in 8-bits range (256 grey values). For figure 2B and 3C, 185 

as the signal was binnarized we saved it with a 1-bit range (2 grey values). 186 

A minimal file of PNG format is composed of a header and several parts of data, named critical 187 

chunks (https://www.w3.org/TR/PNG/#5DataRep). To these minimum requirements it is 188 

possible to add ancillary chunks (https://www.w3.org/TR/PNG/#11Ancillary-chunks) containing 189 

various information such as Software name, ICC profile, pixels dimensions, etc… If useful, this 190 

is hindering the estimation of entropy as it represents an overhead to the final size of the file. To 191 

estimate this overhead for each of our software we saved an image of 100 * 100 values of zeros, 192 

which corresponds to black in 8-bits grey levels and has an entropy of 0. With pyPNG, Fiji and 193 

Labview we obtained three PNG files of size 90, 90 and 870 Bytes, respectively. When repeating 194 

the experiment of figure 1, we obtained really similar linear fits of slopes 1.21 (R
2
 = 0.99), 1.18 195 

(R
2
 = 0.99) and 1.21 (R

2
 = 0.99) respectively. 196 

For Figure 4C, we used Fiji for every image of the collection and we: i) extracted the channel 197 

number 2 containing the MAP2 staining; ii) converted the file to 8-bits grey levels; iii) 198 

thresholded it to remove every intensity values under 10 to remove most of the background; iv) 199 

saved the new file as PNG format, v) checked the size of this new file and vi) divided the size in 200 

kBytes by the number of soma visible in the field. 201 

3 Results 202 

1 Entropy and application to Gaussian noise 203 

To test the usability of the PNG format to represent entropy, we started by generating 10 000 204 

points of uniform white noise with an amplitude N of 2. As we are using white noise, we fully 205 

know the probability distribution (in that case,            ) and we can apply the eq. 1 and 206 

obtain an entropy H of 1 bit. We then repeated this noise model progressively increasing the 207 
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amplitude by squares of 2 until 256, which corresponds to a maximum entropy of 8 bits (Figure 208 

1A).  The entropy rate R is defined as   
 

 
  with T being the sampling of the signal. In this 209 

model case, we can take T = 1 to finally obtain an entropy rate in bits per samples. 210 

As a control way to calculate the entropy of our signals, we used the quadratic extrapolation 211 

method which compensate for the sampling disaster (Juusola and de Polavieja, 2003; Panzeri et 212 

al., 2007; de Polavieja et al., 2005; Strong et al., 1998). Briefly, this method requires slicing our 213 

signal by multiple factors ―Size‖, quantizing it into multiple levels ―v‖ of amplitudes, creating 214 

the probability distribution of words made of multiple combinations ―T‖ of bins and finally 215 

calculating the entropy of the signal from this probability distribution. We thus obtain a great 216 

number of entropy values that we plot successively against 1/Size, 1/v and 1/T in order to fit 217 

them with quadratic extrapolations and find the intersection to 0 (Figure 1B, see Methods).  By 218 

this triple extrapolation, we can estimate the entropy rate of the signal for theoretical infinite size, 219 

infinite quantization levels and infinite combination of sample bins as 220 

 221 

        
 

 
                                                              (eq.2) 222 

In our simple model, we can see that when using only 2 different values, the final extrapolation 223 

to 0 gives an entropy rate really close to 1 as expected (Figure 1B, right panel). 224 

However, when increasing the number of possible values until 256 (entropy H of 8) we start to 225 

unravel the so-called ―sampling disaster‖ (Figure 1C). When performing the last extrapolation 226 

(Figure 1C, right panel), even if the upper bound has the correct value of 8 (most right point), a 227 

linear fit can be done only on the 2 last points and the intersection to 0 gives a value of around 228 

5.7, far from the expected one. This is easily explained by the number of data points we have in 229 

our model signal. The last extrapolation concerns the ―T‖ combinations of values to calculate the 230 

entropy rate and when using Gaussian white noise and with T equal to 1, it means we need 2
8 

= 231 

256 samples to properly estimate the probability distribution. However, if T increases to 2 we 232 

then need 2
8*2

 = 65536 samples to estimate the probability distribution, when we had only 10000. 233 

The probability distribution is thus insufficient to properly estimate the entropy rate of this signal 234 

with 256 values. Even by using quadratic extrapolations to compensate for the sampling bias, we 235 

can see that the direct method gives a wrong result for high entropy values and few data points 236 

(red arrowheads in Figure 1D, left panel). 237 

As a comparison, we simply saved the 10 000 samples data of increasing noise as PNG image 238 

file with a depth of 8 bits (and thus 256 possible values) and measured the space taken by these 239 

files on the hard drive (Figure 1D, right panel). We obtained a linear increase versus the ideal 240 

entropy value of equation (                 , R
2
 = 0.99). The PNG compression algorithm 241 

works with linearized data, which means there is no difference when saving pictures as a 100 * 242 

100 square format (figure 1D, right panel, squares plot) or saving a 10 000 single line (same 243 
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panel, crosses plot). Noticeably, there is no sampling disaster when using this method. From this 244 

first test, we can conclude that the size of a PNG file of a model signal has a linear relationship 245 

with its entropy rate. And that this measure is not biased by the sampling disaster. 246 

As another example to better illustrate the concept of entropy and the effect of PNG conversion, 247 

we choose to generate 10 000 points of uniform white noise of amplitude 4 (thus an entropy H of 248 

2 bits. Figure 2A, top left) and compare it to the really same signal, but with sorted values 249 

(Figure 2A, bottom left). These two signals look drastically different but they have the same 250 

probability distribution and if we use the Shannon’s formula (eq. 1), they both have the same 251 

entropy. However, when the signal is sorted the uncertainty of each value is drastically reduced. 252 

By knowing any value we have a good guess of what will be the next one, so its entropy should 253 

be close to 0. This is exactly what happens when using the quadratic extrapolation to correct the 254 

sampling bias: the signal made of uniform white noise keeps its entropy of 2 bits, but the sorted 255 

signal sees its entropy reduced to 0.0048 bits per pixel (Figure 2A, middle). We then multiplied 256 

the size of the signal by 2 and 4 (thus 20 000 and 40 000 points): this does not change the 257 

probability distribution of the values and thus the entropy values stay low (Entropy of 0.0001 and 258 

0.0016 bits per pixel, respectively) (Figure 2A, middle). 259 

The PNG algorithm works by removing statistical redundancy in the signal, but by definition 260 

there is no redundancy in a signal made of uniform white noise. As a result, when we increase 261 

the size of the random signal by a factor 2 or 4 we increase the size of the corresponding file by 262 

the same factor (File sizes of 3.2, 7.1 and 14 kB, respectively) (Figure 2A, right). If we use the 263 

sorted signal, the redundancy is maximal and thus the file size is much smaller, showing the 264 

decrease in entropy. If we increase the size of this signal, we increase the redundancy and thus 265 

the file size stays low (File sizes of 0.13, 0.12 and 0.16 kB, respectively) (Figure 2A, right). 266 

The entropy of a signal is independent of the mean value of this signal, as it is calculated from a 267 

probability distribution of values and not from the values themselves. To demonstrate that the 268 

PNG format behaves in the same way, we generated 10 000 points of uniform white noise with 2 269 

possible values (0 and 1) and progressively increased the percentage of 1 in this signal, from 0 to 270 

100% (Figure 2B, left). If we calculate the entropy of this signal by the Shannon’s formula (eq.1), 271 

we obtain the classical bell-shaped curve as described by (Shannon, 1948) (Figure 2B, right). We 272 

simply saved these signals to PNG format and measured the size of the file on the hard drive, and 273 

we could see that this size follows the same curve than the entropy (Figure 2B, right). 274 

From these examples, we conclude that correcting the sampling bias is critical to capture the 275 

entropy of a signal. We showed that the PNG conversion method does capture the intrinsic 276 

organization of a signal, that it follows its entropy and is independent of the values of the signal 277 

itself. However, the different signals need to be of the same size if we want to estimate their 278 

entropy by PNG conversion.  279 
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2 Mutual Information and application to electrophysiological data 280 

Most of the time, the experimenter is not interested in the entropy itself, but in the mutual 281 

information between two variables X and Y. The mutual information ―IXY‖ measures the 282 

statistical dependence by the distance to the independent situation (Cover and Thomas, 2006; 283 

Shannon, 1948) given by   284 

    ∑  (     )     (
 (     )

      (  )
)

   

                                    (eq.3) 285 

Therefore, when X and Y are independent  (     )         (  ), so       bits. 286 

The mutual information can also be rewritten as the difference between the entropy of X and the 287 

conditional entropy of X given Y:  288 

                                                                (eq.4) 289 

Where H(X) is the entropy already described (eq.1) and 290 

        ∑  (  )
 

∑  (     )       (     )
 

                          (eq.5) 291 

Interestingly, if we consider a neuron stimulated repetitively by the same stimulus, we can define 292 

X as the response of the neuron to the stimulus and Y as the stimulus received by the neuron 293 

(Borst and Theunissen, 1999). In that case, H(X) can be interpreted as the total entropy 294 

(quantifying the average variability of the neuron response during one trial), also called HS. 295 

H(X/Y) can be interpreted as the noise entropy HN, quantifying the variability of the neuron 296 

response across the trials. In that case, 297 

                                                                 (eq.6) 298 

Where Hs is the average entropy of every trial and: 299 

      〈∑                   〉                                         (eq.7) 300 

where        is the probability of finding the configuration xi at a time  over all the acquired 301 

trials of an experiment (Juusola and de Polavieja, 2003; de Polavieja et al., 2005; Strong et al., 302 

1998). Finally, we can obtain the information rate R, by using the quadratic extrapolation method 303 

and dividing by the time sampling, as: 304 

               
 

 
               (  

            
        )                        (eq.8) 305 

In practical terms, this means to acquire multiple recordings of the same experiments, apply the 306 

quadratic extrapolation method first on each trial and average the results to obtain RS. Then, to 307 
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apply the same method across the trials for every time and average the results to obtain RN. The 308 

information rate R is thus the mutual information between the stimulation protocol and the 309 

acquired trials.  310 

In order to apply this method to electrophysiological signals, we created a single compartment 311 

model in NEURON 7.7. The model was stimulated using various numbers of EPSPs with 312 

amplitudes chosen randomly in a log-normal distribution described in (Lefort et al., 2009). Each 313 

synapse stimulated the model once during a simulation and the time onset was randomly chosen. 314 

We ran 20 trials of the simulation with the same train of synapses (Figure 3A, left). In order to 315 

introduce some randomness in the spiking, a small Gaussian noise current was also injected 316 

(Figure 3A, left, See Methods). We calculated RS and RN using the quadratic extrapolation 317 

method. (Figure 3A, middle) and subtracting RN to RS to obtain the information rate (Figure 3A, 318 

right). We then reproduced this protocol with increasing numbers of synapses to obtain different 319 

spiking frequencies. As expected, when we increased the number of synapses we increased the 320 

spiking frequency and the mutual information between our stimulation and the response (Figure 321 

3A, right). This measures follows a linear trend, really similar to what was already described in 322 

literature (Juusola and de Polavieja, 2003; de Polavieja et al., 2005). 323 

As already described, the PNG format is line-wise. The compression algorithm will thus be 324 

sensitive to the orientation of the image we have to compress. To estimate the entropy of the 325 

signal, we started by converting our voltage signals to an 8-bits PNG image (256 levels of grey). 326 

As our signals are 20 trials of 5s at 10 kHz sampling, this yielded a 50 000 * 20 pixels of 256 327 

grey scale image (Figure 3B, left). We saved this first version of the image and measured the size 328 

of the files on the hard drive. To estimate the entropy of the noise, we simply rotated the image 329 

90 degrees and saved it again to PNG format. This constrains the algorithm to calculate the 330 

entropy through the acquired trials and not through the signal itself, thus estimating the entropy 331 

of the noise through every trials (Figure 3B, middle). We measured the size of the newly 332 

generated file and subtracted it to the previously measured for the signal entropy. As we can see, 333 

this difference of file size follows a linear behavior, increasing with AP frequency similarly to 334 

the direct measure of the information rate (Figure 3B, right). 335 

As a second example, we reproduced the protocol made by (London et al., 2002) to estimate the 336 

information transfer between one synapse and the postsynaptic neuron. We stimulated the model 337 

with 750 of the synapses described above to get a spiking frequency around 5Hz and added a 338 

supplementary synapse stimulating the model every 200 ms. The EPSP size of this synapse 339 

(wSyn_supp) was modified at each simulation. When wSyn_supp was weak, this synapse did not 340 

drive the spiking of the model (Figure 3C, up left). When wSyn_supp was strong, this synapse 341 

drove the spiking of the model (Figure 3C, down left). We made 100 trials for each wSyn_supp 342 

and at each trial the onset time and amplitude of the others synapses were chosen randomly. We 343 

down-sampled our signal to 3 kHz and binarized it to 0 and 1, depending on the presence of APs 344 

or not similarly to (London et al., 2002). After calculating the Information rate using the 345 

quadratic extrapolation method, we obtained a sigmoid curve similar to what they described 346 
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(London et al., 2002) (Figure 3C, middle). In a similar way than above, we converted our voltage 347 

signals to a 1-bit PNG image (2 levels of grey). As our signals are 100 trials of 5s at 3 kHz 348 

sampling, this yielded an image of 15 000 * 100 pixels of 2 possible values. We measured the 349 

size of the file, then rotated the image 90 degrees, saved it again and measured the size of this 350 

new file. As expected, the difference between the sizes of these two files follows a sigmoid curve 351 

really similar to the one calculated by the quadratic extrapolation method (Figure 3C, right). 352 

From this second test, we conclude that by saving multiple trials of the same experiment as a 353 

single PNG file, we can estimate the entropy of the signal. And by simply rotating this same file 354 

90 degrees and saving it again, we can estimate the entropy of the noise. The difference between 355 

those two values follows the same behavior than measuring the Mutual Information between the 356 

stimulation protocol and the multiple recorded responses. 357 

3 Application to 2D images  358 

Another way to understand entropy is that it is a representation of complexity of a signal (Cover 359 

and Thomas, 2006). For example, (Wagstaff and Corsetti, 2010) used the PNG compression 360 

algorithm to evaluate the complexity of biogenic and abiogenic stromatolites.  As a quick 361 

example, we took one of the famous drawings of a cortical column by Santiago Ramon y Cajal 362 

(Cajal, 1899) (Figure 4A, top, Wikimedia Commons). We saved each 1-pixel column of this 363 

picture as an 8-bits PNG file and measured its size on the hard drive. As we see, the size of the 364 

columns as PNG files changes with the different layers of the cortical stack, illustrating the 365 

differences in cell density and dendrites arborizations (Figure 4A, bottom). 366 

In the same spirit, we used the ddAC Neuron example from the FIJI distribution of the ImageJ 367 

software (Schindelin et al., 2012). This reconstructed drosophila neuron (Figure 4Ba) is a classic 368 

example used for Sholl analysis (Ferreira et al., 2014; Sholl, 1953), (see 369 

https://imagej.net/Sholl_Analysis). This analysis estimates the complexity of an arborization by 370 

drawing concentric circles centered on the soma of the neuron and counting the number of 371 

intersections between those circles and the dendrites. The more intersections, the more complex 372 

is the dendritic tree. As we need PNG files with the same dimensions to be able to compare their 373 

sizes, we realized a cylindrical anamorphosis centered on the soma of the ddAC neuron (Figure 374 

3Bb) and saved each column of this new rectangular image as PNG files. As a result, the size of 375 

those files grew with the distance from soma, reaching the same peak than a Sholl analysis made 376 

with default settings in Fiji (Figure 4Bc). Of course, it is also possible to simply tile the original 377 

image in smaller PNG files and save them independently. The size of these files will give an idea 378 

of the complexity of the area covered by the tile (Figure 4Bd). 379 

In a final example, we used a group of images made by Dieter Brandner and Ginger Withers 380 

available in the Cell Image Library (http://cellimagelibrary.org/groups/3006). These images are 381 

under Creative Common Attribution Licence and show the growth of neuronal cultures from 2 to 382 

7 days In-Vitro. They show two stainings, for tubulin and MAP2. They are suitable to our needs 383 
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as all the images have the same dimensions and resolution. We kept only the MAP2 channel as it 384 

reveals the dendrite morphology, converted the images to 8-bits grey scale (256 grey levels) and 385 

thresholded them to remove the background (Figure 4C, left and middle). We then saved all the 386 

images to PNG, measured the size of the files on the hard drive and divided this number by the 387 

number of visible somas, in order to make a quick normalization by the culture density. As 388 

expected, this ratio File Size / Number of Cells increases with the number of days in culture, 389 

revealing the dendrite growth (Figure 4C, right). 390 

From this third test, we showed that we can use the PNG format to estimate the entropy of 2D 391 

images as well, and this can be used to estimate dendrite growth or local complexity of an image. 392 

4 Discussion 393 

Entropy measurement can be a tool of choice in neuroscience, as it applies to many different 394 

types of data; it can capture nonlinear interactions, and is model independent. However, an 395 

accurate measure can be difficult as it is prone to a sampling bias depending of the size of the 396 

recorded signal, its quantization levels and its sampling. There are multiple ways to compensate 397 

for it, but none them trivial. In this paper, we showed that it is possible to estimate the entropy 398 

rate of neuroscience data simply by compressing them in PNG format and measuring the size of 399 

the file on the hard drive. The principle relies on the Source Coding Theorem specifying that one 400 

cannot compress a signal more than its entropy multiplied by its size. We showed first that the 401 

size of PNG files correlates linearly with the entropy of signals made of Uniform white noise. 402 

Then that we can estimate the information transfer rate between a stimulation protocol and the 403 

measured response simply by saving the responses as a PNG file, measuring the size and 404 

subtracting the size of the same file rotated 90 degrees. And finally, that we can generally use the 405 

PNG format to estimate complexity of two-dimensional data like neuronal arborization and in 406 

histological stainings.  407 

1 Drawbacks 408 

The main drawback of this method is that the PNG file size is not the absolute value of the 409 

entropy of the signal. Even if entropy bits and computer bytes do share similar names, in no 410 

cases should we exchange one for the other. A PNG file size is a way to estimate the evolution of 411 

entropy, considering all other parameters unchanged. As so, PNG files must be all of the same 412 

dimensions, of the same dynamic range and saved with the same software. A PNG file is 413 

composed of a header, critical chunks and non-essential ancillary chunks (See Methods). 414 

Different software will save different data in the ancillary chunks and thus will change the size of 415 

the file, independently of the compressed signal. 416 
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2 Advantages 417 

The main advantage of this method is that it relies on previously developed compression 418 

algorithms that were already shown as optimal (Huffman, 1952). Moreover, it does not need any 419 

specialized software or any knowledge in programming language, as the PNG format is 420 

ubiquitous in informatics. For example, the ImageJ software is widely used in neuroscience and 421 

can export data as PNG.  422 

A second advantage is the speed of execution. As an example, the Information Rate of neuronal 423 

signals (Figure 3A & B) took a bit more than 2 hours of calculation for the quadratic 424 

extrapolation method. Saving the same signals in PNG took less than 30 seconds.  425 

As so, this method is extremely easy, quick, and does not need any knowledge in mathematics 426 

for correcting the sampling bias. It is interesting to note that an experimenter will often acquire 427 

multiple recordings of the same protocol in order to infer proper statistics. This means that most 428 

of the times no supplementary experiments are needed to calculate the entropy of a signal, or the 429 

information transfer rate between a stimulation protocol and its recorded result.  430 

In conclusion, we propose this method as a quick-and-easy way to estimate the entropy of a 431 

signal or the information transfer rate between stimulation and recorded signals. It does not give 432 

the exact value of entropy or information, but it is related to it in a linear way and its evolution 433 

through different parameters follows a linear trend as well. And it is not affected by the sampling 434 

bias inherent to the direct way of calculating entropy. 435 

3 Developments 436 

We see multiple ways to improve this method. First, we saved our data as 8-bits PNG files, 437 

which limits the dynamic range of the file to 256 values. However, it is possible to save PNG 438 

natively as 1, 4, 8, 16 and 24 bits range, thus greatly increasing the dynamic range of the saved 439 

signal. Second, with some programming skills it is possible to remove the header and ancillary 440 

chunks of the PNG format, thus removing the size overhead (but the file will be unreadable by 441 

standard softwares). Finally, one possible way of improving the estimation of entropy rate would 442 

be to choose a better compression algorithm. We choose the PNG format as it is widely used by 443 

common softwares and it is based on LZSS and Huffman algorithms, which have been proven 444 

optimal. However, some algorithms may give a better compression rate depending on the quality 445 

of the data. As an example, the Rice compression algorithm was originally developed for the 446 

NASA Voyager missions (Rice and Plaunt, 1971). It is suboptimal but is better suited for noisy 447 

signals of low values.  448 

In a more general direction, it is important to note that this method works with any entropy-449 

coding compression algorithm, as long as they are loss-less. This is the case of GZip algorithms 450 

for example, used in many compression softwares such as WinRAR, PKZIP, ARJ, etc… It is 451 
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thus not limited to pictures in PNG, although this format is useful for rotating the file and 452 

estimating the mutual information easily. Moreover, we apply these algorithms to 2D images, 453 

when actually the algorithm linearizes the data and works only in linear way on one dimension. 454 

There are some attempts to generalize Shannon entropy to 2D space (Larkin, 2016), but they are 455 

out of the scope of this paper. 456 
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Figure Legends 547 

1 Figure 1: comparison of entropy and PNG file size on a model case. 548 

A) Examples of 10 000 data points of uniform white noise with growing number of grey levels 549 

and growing entropy (here showed as square picture signals). Left: 2 possible grey values, or 550 

entropy of 1. Right: 256 possible grey values, or entropy of 8. 551 

B) Direct calculation and quadratic extrapolations to 0 to calculate the entropy rate of the left 552 

signal in A). Left: Plotting all the entropy values to 1/Size and extrapolating to 0 to get the value 553 

for infinite size (white arrowhead). For clarity, only the condition for v = 2 is shown. Middle: 554 

plotting the obtained values at left to 1/v and extrapolating to 0 to get the value for infinite 555 

number of binning (white arrowhead). Right: plotting the final values to 1/T and extrapolating to 556 

0 to get the value for infinite number of combinations of letters (black arrowhead). Note that this 557 

value is really close to 1, as expected when using a signal made of uniform white noise with 2 558 

possible values. 559 

C) Direct calculation and quadratic extrapolations to 0 to calculate the entropy rate of the right 560 

signal in A). Left: Only the condition for v = 2 is shown. Note that in the final graph (right), 561 

points do not follow a linear trend. When using the last 2 points for extrapolation to 0, the value 562 

is far from the expected value of 8 (red arrowhead). 563 

D) Left: when plotted against the known entropy value, the quadratic extrapolation method 564 

shows examples of sampling disaster for high values of entropy (red arrowheads). Right: when 565 

simply saving all the signals described in A), the file size in kBytes shows a linear relationship 566 

with the signal entropy (                 , R
2
 = 0.99). Not that this true for pictures made 567 

either of square signals (squares plot) or linearized signals (crosses plot) and there is no sampling 568 

disaster with this method. 569 

2 Figure 2: Effect of redundancy and signal size on entropy and PNG file 570 

size. 571 

A) Left, Top: Example of 10 000 data points of uniform white noise with 4 levels (entropy of 2 572 

bits, here showed as square picture signals). Left, Bottom: the same signal, with sorted values. If 573 

we use the Shannons’s formula for calculating entropy, both signals have an entropy of 2 bits. 574 

Middle: Effect of sampling bias correction and size of the signal on the entropy value. With the 575 

Shannon’s formula, both random and sorted signals have the same entropy value (crosses plot). 576 

If we correct the sampling bias with the quadratic extrapolation method, the entropy of the sorted 577 

signal decreases dramatically (squares plot). In both cases, changing the size of the signal does 578 

not change the entropy value, as it does not change the probability distribution of each value in 579 

the signal. Right: As the PNG algorithm compresses by removing statistical redundancy in the 580 

signal, the file size will grow with the size of the random signal. A sorted signal has a maximal 581 

redundancy and thus its file size will stay almost constant when increasing the signal size. 582 
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B) Left: Example of multiple signals of 10 000 data points (here showed as square picture signals) 583 

with 2 possible grey levels (or 0 and 1) and a growing percentage of white (or 1). Right: Direct 584 

entropy calculation of these signals (grey dashed line) and normalized PNG file size as a 585 

comparison (black line).  586 

3 Figure 3: Comparison of information rate and PNG file size on a 587 

neuronal model. 588 

A) Left: example of 20 generated trials with the same synaptic activity. Due to the injection of a 589 

small Gaussian noise current, we obtain variability in the spiking of the different trials. Arrows 590 

show the direction used with the quadratic extrapolation method to calculate the signal entropy 591 

(RS) and noise entropy (RN). Middle:  calculation of the Entropy Rate of the Signal (Rs) and the 592 

noise (Rn) for the full voltage of the cell for each condition. The Information transfer Rate R is 593 

the difference between Rs and Rn. Right: Information transfer Rate between the synaptic 594 

stimulation and the neuronal activity, versus the spiking frequency. This follows a linear trend 595 

(                   , R
2
 = 0.97). 596 

B) Left: Conversion of the modeled trials in A) as a 256 grey values PNG file. As the PNG 597 

conversion algorithm is line-wise, we have to save the image a first time, then rotate it 90 598 

degrees and save it a second time (Middle). Arrows show the direction of compression. Right: 599 

the subtraction of the 2 images sizes follows a linear trend with the spiking frequency (  600 

             , R
2
 = 0.98). 601 

C) Left: examples of rastergrams showing the impact of the supplementary synapse on our 602 

neuronal model. With a low synaptic strength (wSyn_supp = 2 mV, top), this synapse barely 603 

drives the model. With a high synaptic strength (wSyn_supp = 6, bottom), the neuron spiking 604 

starts to synchronize with the occurrence of the synapse. Middle: Information transfer Rate 605 

between the activity of the supplementary synapse and the neuronal spiking. As expected, it 606 

follows a sigmoidal behavior. Right: rastergrams were saved as PNG files, rotated 90 degrees 607 

and saved again. The difference of the 2 files sizes follows a similar curve than the Information 608 

transfer Rate. 609 

4 Figure 4: Application to 2D data. 610 

A) Top: original drawing of a cortical column by Santiago Ramon y Cajal. Arrow: each column 611 

of pixel was saved as a PNG file. Bottom: File size of each column as PNG, revealing the change 612 

in organization and complexity of the different layers. 613 

B) a: ddAC Neuron from Fiji examples. b: The same neuron after a circular anamorphosis 614 

centered on the soma. Note how the complexity of the dendritic arbor changes versus distance 615 

from soma. Arrow: each column of pixel was saved as a single PNG file. c: file size of these 616 

columns as PNG, showing the growth in complexity of the dendritic arborization (black line). As 617 

a comparison, we performed a Sholl analysis of the same image with default FIJI parameters 618 
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(grey line). d: the original image was tiled in 10 squares, and each square saved as a PNG file. 619 

The sizes of these files reveal the heterogeneity of the dendritic arborization. 620 

C) Left and Middle: examples of MAP2 stainings of Brandner and Withers neuronal cultures at 2 621 

and 7 Days In Vitro. Note the growth in dendritic arborization through time. Right: Each image 622 

was saved into a PNG file, and the file size divided by the number of visible somas. This gives 623 

us a file size normalized by the density of the culture. This value increases with the number of 624 

Days In-Vitro, revealing the dendrite growth. 625 
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