1	Fitness benefits of providing services to others: Sociality predicts survival in a
2	neotropical primate
3	
4	
5	Kotrina Kajokaite ^{*a} , Andrew Whalen ^b , Jeremy Koster ^{a,c} , and Susan Perry ^{d,e}
6	
7	
8	a. Department of Human Behavior, Ecology and Culture, Max Planck Institute for
9	Evolutionary Anthropology, Leipzig, Germany
10	b. The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of
11	Edinburgh, Edinburgh, UK
12	c. Department of Anthropology, University of Cincinnati, Cincinnati, OH, USA
13	d. Department of Anthropology, University of California, Los Angeles, CA, USA
14	e. Behavior, Evolution and Culture Program, Department of Anthropology, University of
15	California, Los Angeles, USA
16	
17	
18	* Corresponding author: Kotrina Kajokaite, Department of Human Behavior, Ecology and
19	Culture, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6 04103
20	Leipzig, Germany
21	
22	

23 ABSTRACT

24 Across multiple species of social mammals, evidence is accumulating that 25 sociality is associated with fitness. In long-lived species, like primates, lifespan is one of 26 the main fitness components. Here, we provide the first direct evidence that females 27 who provide more in social services live longer. We used 18 years of data from the 28 Lomas Barbudal Monkey project to quantify sociality in 11 capuchin (*Cebus capucinus*) 29 social groups using three interaction types: grooming, support in coalitionary 30 aggression, and foraging in close proximity. We analyzed each domain separately to 31 understand how giving and receiving social favors impact survivorship. To estimate 32 female sociality in each of these domains, we built an adaptation of the Social Relations 33 Model. This approach enabled us to estimate individual rates of giving and receiving 34 interactions and take into account the uncertainty in these estimates due to varying 35 amounts of observations of each individual. Subsequently, we modeled adult females' 36 survival as a function of their sociality estimate, rank, age, group size, and maternal kin 37 presence using a Bayesian Cox proportional hazards model. We found that females who 38 provide more grooming to other group members survive longer. There was no strong 39 evidence that females who receive more grooming, participate more often in 40 coalitionary aggression, and forage more often in close proximity of others also have 41 higher survivorship. These results add a neotropical primate species to the growing list 42 of mammals, including humans, where greater sociality is associated with longevity.

43

45 INTRODUCTION

46	A key question for understanding the evolution of animal sociality is: Do animals
47	that are more social enjoy greater fitness benefits? A number of studies link
48	components of reproductive success, such as fecundity (white-faced capuchins, Cebus
49	capucinus: Fedigan et al., 2008; Assamese macaques, Macaca assamensis: Schülke et
50	al., 2010; chimpanzees, Pan troglodytes schweinfurthii: Gilby et al., 2013) and offspring
51	survival (yellow baboons, Papio cynocephalus ursinus: Silk, 2009; savannah baboons,
52	Papio cynocephalus: Silk et al., 2003; white-faced capuchins, Cebus capucinus: Kalbitzer
53	et al., 2017), to differences in the social behavior of individuals.
54	In long-lived species, lifespan is also an important component of reproductive
55	success contributing to fitness variation (Clutton-Brock, 1998). The most abundant
56	evidence that individual sociality affects lifespan has accumulated in human literature.
57	Both the presence and the absence of social relationships affects lifespan. That is, being
58	socially connected is associated with a lower probability of dying (Holt-Lunstad et al.,
59	2010; Shor and Roelfs, 2015; Shor et al., 2013), while having few and poor social
60	relationships is associated with a higher risk of death (Roelfs et al., 2011).
61	In nonhuman species there is similar evidence that individual sociality is
62	associated with lifespan. Among baboons, females who maintain stable social
63	relationships with other males and females live longer (chacma baboons, Papio
64	hamadryas ursinus, Silk et al., 2010; Archie et al., 2014). Prime-aged female macaques of
65	Cayo Santiago who have more living adult female relatives live longer (Brent et al.,
66	2017). Blue monkey females (Cercopithecus mitis stuhlmanni) who have strong and

67	enduring social relationships consistently with the same partners tend to live longer in
68	comparison to females whose strong partnerships are inconsistent across years
69	(Thompson and Cords, 2018). Female rats who cultivate reciprocal affiliations with their
70	sisters survive longer (Yee et al., 2008), and brown bear cubs who play longer during
71	summer survive better (Ursus arctos) (Fagen and Fagen, 2004). More social juvenile feral
72	horses (Equus caballus) live longer than their less social peers. However, facultatively
73	social yellow-bellied marmots (Marmote flaviventer) show the opposite pattern: more
74	social marmots live shorter lives than less social marmots (Blumstein et al., 2018).
75	Neotropical primates are not represented among the studies that report the link
76	between sociality and longevity. Capuchin monkeys are an excellent neotropical primate
77	species for the investigation of these associations: Despite the long evolutionary history
78	that separates them from humans and cercopithecines (Porter et al., 1997), their social
79	structure is similar to cercopithecine primates (Perry, 2012).
80	In this paper, we investigate whether more social white-faced capuchin females
81	live longer than less social females. We analyzed eighteen years of capuchin monkeys'
82	social interactions taken from the Lomas Barbudal Monkey dataset. To quantify
83	individual sociality, we selected interactions from three domains to represent the
84	variety of social behaviors that capuchin monkeys engage in: grooming, coalitionary
85	aggression, and foraging in proximity to others. To deal with different amounts of
86	observations for each individual, we used the multilevel Social Relations Model (Snijders
87	and Kenny, 1999; Koster et al. 2019) to decompose the observations of exchanges of
88	these interactions into separate individual giving, individual receiving, and dyadic

89	relationship components. This approach allowed us to estimate the uncertainty in
90	sociality estimates, which can be substantial for individuals with small numbers of
91	observations. Then, we used the individual giving and individual receiving posterior
92	means and standard deviations (SD) from these models as sociality measures to model
93	adult female longevity using the Bayesian Cox proportional hazards model.
94	We found that adult female capuchins provide most of the grooming in the
95	population. However, they display considerable variation in their propensity for
96	grooming others, and some adult females are among the least frequent groomers in the
97	population. The variation in giving grooming measures predicts longevity: Females who
98	provide more grooming live longer than the females who provide less grooming.
99	Measures in other interactions – receiving of grooming, giving and receiving of
100	coalitionary support, and foraging in close proximity – were similar in their distribution
101	to the rest of the population. In addition, females were more similar to each other in
102	these interactions, especially in how much grooming they received, i.e. the females who
103	were the most and the least likely to be groomed were not very different from an
104	average monkey in the population. The females who engaged more in these interactions
105	seemingly experienced some benefits associated with longevity, but the model
106	estimates were uncertain. Therefore, the evidence does not support a strong
107	association between longevity and the sociality measures we considered (grooming
108	receiving, participating in coalitionary support, and foraging in close proximity of
109	others).

111 METHODS

112 Study subjects and the dataset

113	We studied members of the wild white-faced capuchin population at the Lomas
114	Barbudal Biological Reserve and surrounding private lands in Guanacaste, Costa Rica
115	(Perry et al., 2012). The Lomas Barbudal Monkey Project dataset has longitudinal
116	records on individuals living in 11 capuchin social groups. It contains detailed records
117	including demographic information, pedigree information, and data regarding social
118	interactions that are necessary for quantifying individual sociality.
119	White-faced capuchins live in multimale, multifemale social groups (Perry, 2012).
120	Females are philopatric – they stay in their natal groups for their entire lives – which
121	allows researchers to collect data about the social interactions from large portions of
122	their lives (Fragaszy et al., 2004; Perry et al., 2008). As a result, females' demographic
123	and behavioral records are more complete than males' records because males transfer
124	to different groups multiple times in their lives and often leave the study area. This
125	makes female capuchins more suitable subjects for the investigation of the relationships
126	between individual sociality and survival.
127	The records on capuchin behavior were collected between January 2002 and
128	December 2019. The subjects were 132 adult females, living in eleven different social
129	groups over 146 group years (average years of observation per group = 13.27; range = 7
130	– 18 years). The females were considered adults once they reached the age of 5 years.
131	The behavioral and demographic data on each group were collected by experienced

132 observers during censuses lasting at least 6 hours/day.

133 Measuring Sociality

134	To measure female sociality, we chose three behavioral domains: grooming,
135	coalitionary aggression, and foraging. We treated grooming and coalition formation as
136	directed behaviors, and we used observations of individuals as both initiators and
137	recipients of the behavior. We did not have information about which individual had
138	initiated the proximity when foraging, and therefore foraging in proximity was treated
139	as an undirected behavior. In calculating the frequency with which adult females
140	engaged in these interactions, we used behavioral records from all the individuals who
141	resided in the 11 groups during the study period. There were a total of 563 monkeys,
142	residing in 11 social groups, comprising 13,770 dyads. We treated each of the five
143	interaction types (grooming giving, grooming receiving, support giving, support
144	receiving, forage in proximity) as a separate measure of sociality.
145	Grooming (groom giving and groom receiving)
146	Allogrooming, or social grooming, is a common behavior in capuchin monkeys
147	(Perry, 1996). Grooming serves a hygienic and social bonding function and is thought to
148	impose costs on groomers of loss of time and increased vigilance (Manson et al., 2004).
149	These features of grooming behavior make it a good candidate for providing information
150	regarding an individual's sociality.
151	Grooming rates were estimated using data collected during 10-minute focal
152	follows. To estimate individual grooming rates, we calculated dyadic counts of grooming
153	and dyadic opportunities for grooming. The opportunity for a dyad, A-B, to engage in
154	grooming, was calculated as the sum of the focal follows of A and the focal follows of B

155 at times when A and B were residents of the same social group. The dyadic counts of 156 giving and receiving grooming were assigned as follows: a count of 1 was assigned if A groomed B at least once during a focal follow, otherwise 0 was assigned. The same was 157 158 done when evaluating if B groomed A. 159 Joining a coalitionary conflict (support giving and support receiving) 160 Coalitionary aggression is frequent in capuchin monkeys (Perry, 2012). 161 Intergroup encounters are characterized by high rates of coalitionary lethal aggression 162 (Gros-Louis et al., 2003), and coalitions play an important role in male competition for 163 reproductive opportunities (Perry, 2012). Intragroup conflicts are far less dangerous; they often do not result in physical fighting, and individuals are rarely injured (Perry, 164 165 2012). Capuchins have stereotyped signals for recruiting allies in conflicts (Perry, 2012), 166 and participation in coalitionary aggression is likely based on social relationships 167 between the partners (Kajokaite et al., 2019). The behavior of joining a coalitionary conflict was defined as an individual 168 169 intervening on one side during an ongoing aggressive conflict. This definition only 170 indicates the functional aspect of joining a side; it entails no inferences about internal 171 psychological states such as the intent to help a specific individual. Since aggressive 172 interactions are salient and harder to miss than quiet activities like grooming or foraging 173 in proximity, aggressive interactions were collected both *ad libitum* and during focal 174 follows. The chronological stream of aggressive behaviors was divided into 5 min. segments. In order to identify instances of joining a coalitionary conflict, monkey A is 175 176 identified as joining monkey B if A performed an aggressive behavior toward either

monkey B's opponent or victim within the context of the 5-minute segment. Even if
multiple instances of A joining monkey B were observed during the 5 min segment, we
scored only one instance of A joining B. To calculate the opportunities to join a
coalitionary conflict, all individuals who were co-resident during the aggressive conflict
were counted as having had an opportunity to join on either side during the conflict. *Foraging in proximity*

183 Although foraging is a seemingly asocial behavior, the way individuals 184 distribute themselves across space can be indicative of their social relationships with 185 group members. It can be costly to tolerate another individual near you (more competition for food) and monkeys might only tolerate proximity of individuals with 186 187 whom they maintain good social relationships. 188 Foraging in close proximity was estimated from group scans that occurred in 189 the context of foraging. In group scans, the identity of the scanned individuals, their 190 activity and their proximity to other individuals within 10 body lengths (~2 m) was 191 noted. We considered individuals to be foraging in close proximity if they were scanned 192 within 5 body lengths (~1m) of each other. For each dyad, we scored whether they were 193 observed foraging within close proximity in 10 min. segments (i.e. if they were observed 194 doing this more than once within 10 min., only one instance was counted). The number

195 of opportunities that the dyad had to forage within close proximity is a sum of group

scans in the foraging context that are 10 min. apart, where one of the individuals is a

197 subject of a group scan.

198 The Social Relations Model and Individual sociality measures

Detailed longitudinal behavioral records are necessary for relating an individual's social behavior patterns to longevity (Clutton-Brock, 1988). Such data is hard to collect and resources are limited; therefore the more individuals we observe, the less information we collect on each one of them. The data for these analyses were collected across eighteen years and the number of social groups and individuals observed increased over time. As a result, data density is uneven across time periods, social groups, and individuals.

206 We incorporated uneven distribution of the data into our analyses as follows. 207 First, we aggregated the data annually and used adaptations of the multilevel Social 208 Relations Model (Snijders and Kenny, 1999; Koster et al. 2019) to estimate individual 209 annual rates of grooming, coalitionary support, and foraging. This provided us with 210 mean and standard deviation of individual sociality measures (see the supplemental 211 material). Second, we used these distributions of individual sociality measures as 212 predictors of longevity and to investigate the effects of social behavior on survivorship. 213 The Social Relations Model (Snijders and Kenny, 1999) decomposes the variance 214 in giving and receiving behaviors into separate giving, receiving, and dyadic relationship 215 components. We fitted a Bayesian multilevel Social Relations Model with the following 216 parameters: the intercept parameter (base rate), social group-level, individual giving, 217 individual receiving, dyadic symmetric, and dyadic asymmetric random effects 218 parameters (see Koster at al. 2015). We used data collected on the entire population 219 (i.e. adult males, females, and immatures) since the Social Relations Model is a 220 multilevel model and can take advantage of additional data to estimate the average

rates of interactions in the population (McElreath, 2020). Although we estimated the
random effects for all the individuals in the population, we used the adult female annual
individual posterior mean and SD of *grooming giving, grooming receiving, support giving, support receiving,* and non-directional *foraging in proximity* rate estimates as our
five measures of annual individual sociality.

226 The posterior estimates of mean and SD of female giving and receiving random 227 effects capture the extent to which an individual female deviates from the estimated 228 average rate of engaging in this behavior in the population. The individual sociality 229 measures are centered on zero, which represents the population mean (an average 230 monkey). Each behavior domain has its own population average estimate. For example, 231 the individual estimates of *grooming giving* ranges from –3.14 to 3.27 across the entire 232 population. For a particular individual, a posterior mean closer to the minimum (-3.14)233 indicates that this individual grooms others much less than the average monkey grooms 234 her partners in the population. The inverse is true for a posterior mean estimate close to 235 the maximum of the range (3.27). The SD reflects the measurement uncertainty from 236 heterogenous sampling effort, where individuals who were observed less have posterior 237 estimates with wider distributions around the posterior mean estimate. 238 Modeling survival as a function of individual sociality measure 239 To investigate whether sociality is associated with adult female longevity, we 240 used Bayesian Cox proportional hazards models. In separate models, each of the five individual sociality measures was modeled as a predictor of survival probability over 241

242 one-year periods. These models included the following time-varying (calendar year-

specific) covariates: the female's age, her dominance index, the average number of

- individuals in her group, the proportion of time during that year that her mother was
- alive, and the number of adult daughters that she had.
- 246 *Age:* Focal female ages were assigned based on demographic records of births
- and deaths collected from 1990 2019. The ages of females who were born before
- 248 1990 were estimated in part by retroactively comparing photos taken then with photos
- of known-aged females collected later in the study. In addition, we inferred
- 250 reproductive histories via genetic maternity data. We assumed that the age of first birth
- 251 for each mother was six years, and each mother had a two-year interbirth interval
- 252 (Fedigan and Rose, 1995; Perry, 2012).

253 <u>Average number of individuals in her group</u>: This is the mean number of adult 254 females, adult males, and immatures that resided in the female's group during the days 255 when researchers spent at least six hours of observation with the group, averaged for 256 the year.

257 <u>Mother's presence</u>: The proportion of the year that the female's mother was 258 alive and co-resided with her. The measure varies from 0 to 1, where 1 indicates that 259 the mother was alive and co-resident with the focal female for the entire year, and 0 260 indicates that the mother died in some previous year.

261 <u>Number of daughters</u>: The number of daughters that a focal female had was 262 very highly correlated with her age (0.72). To control for the effect of age on the 263 number of daughters, we grouped all of the females that were the same age together 264 and centered the number of daughters for each age group. For every age group we 265 subtracted the mean number of daughters for that age group to reduce the confounding 266 between age and number of daughters. The resulting variable was not correlated with age (~0). This is equivalent to modeling an interaction between age and number of 267 268 daughters, with age treated as a categorical variable. 269 Annual dominance index: The annual dominance index represents the proportion 270 of group members that the female dominated, on average, that year. For each 271 observation day that the female (the focal) resided in a social group, we identified all of 272 the other co-resident individuals (alters). To assess whether the female was dominant to 273 an alter on a particular day, 274 we first identified the dominance interaction immediately preceding and following the 275 day of interest for each focal-alter dyad. The total number of these interactions across 276 all focal–alter dyads represents the number of opportunities for the focal to dominate 277 someone. For each interaction, we identified that the focal individual was dominant if 278 she was either the animal performing the supplanting, or being cowered at, or being 279 avoided, or fled from. The daily dominance index, DDI_i, of a focal individual, *i*, is a sum of dominance interactions where focal was dominant to their alters, w_{i-a} , divided by the 280 281 total number of dominance interactions that the focal had with her alters, s_{i-a} : 282

$$DDI_i = \frac{\sum w_{i-a}}{\sum s_{i-a}}.$$
 (1)

284

283

Then, the average annual dominance index, *ADI*_i, is an average of daily dominanceindices:

287

$$ADI_i = \frac{1}{n} \sum_{i=1}^n DDI_i .$$
⁽²⁾

289

288

In some cases, either one or no dominance interactions were available for a focal-alter
dyad. As a result, the individuals who did not have dominance interactions with the
focal did not contribute to the calculation of the daily dominance index.

293 We included the covariates, because each of them is likely to influence

294 females' probability of survival. An adult female's probability of dying in a given year is

expected to increase with age (Archie et al. 2014; Brent et al. 2017). Females who live in

296 larger groups might experience greater survival rates due to reduced predation risks

297 (Sterk et al., 1997). Higher-ranking females possibly enjoy reduced mortality in

298 comparison to lower-ranking females due to their central position in the group

299 (Kalbitzer et al., 2017), which also reduces risks of predation. The presence of a mother

300 and/or adult daughters approximate female's close kin network benefits: Females who

301 have a more extensive kin network might experience reduced mortality (Brent et al.,

302 2017).

Having many covariates in the model can result in "included variable bias" (McElreath, 2020) where predictors are not only causally influencing the outcome, but also influencing each other. This can result in predictor induced statistical selection within the model and manifest itself through misleading statistical, but not causal, associations between the variables we are interested in (McElreath, 2020). A female's rank and age are likely to influence how much the female participates in social

309	interactions. Females who reside in larger groups are likely to have different interaction
310	networks in comparison to females in smaller social groups due to a larger number of
311	social partners available (Archie et al., 2014). To check if the above assumed
312	relationships justify the inclusion of all of the predictor variables in the model, we drew
313	a directed acyclical graph (DAG) using the package <i>daggity</i> (v.3.0) and analyzed implied
314	functional relationships. The DAG assumed is provided in the supplemental materials.
315	Modeling approach
316	To take into account that some females contributed different numbers of
317	years to the analysis, we modeled individual differences using a random effect term.
318	Models were run using Stan (v.2.19.1) and the <i>rethinking</i> package (v. 1.93: McElreath
319	2020) in <i>R</i> (v. 3.6.2; R Core Team 2019).
320	More formally, we specified the following model for the number of days
321	before death, D_i ,. The probability for the number of days before death come from the
322	cumulative probability distribution:
323	
324	$\Pr(D_i \mid \lambda_i) = \lambda_i \exp(-\lambda_i D_i). $ (3)
325	
326	For females who did not die during the observation period, the probability of waiting D_i
327	without dying comes from the complementary cumulative probability distribution:
328	
329	$\Pr(D_i \mid \lambda_i) = \exp(-\lambda_i D_i). $ (4)

331 We model the rate of dying, λ_i , as follows

$$\lambda_i = 1/\mu_i \,. \tag{5}$$

333 where μ_i is the expected number of days till death

 $\log(\mu_i) = \alpha + a[id] + b_{sociality} * true \ sociality \ estimate[id] + b_{rank} * rank_s \tag{6}$

$$+ b_{age} * age + b_{daughters} * daughters$$

$$+ b_{mother} * mother + b_{grsize} * group size$$

337

 α denotes the intercept or the base rate of number of days survived, $\alpha[id]$ denotes 338 339 individual female random effects corresponding to the observation period. The model 340 coefficients $b_{sociality}$, b_{rank} , b_{age} , $b_{daughters}$, b_{mother} , b_{arsize} describe the impact of 341 sociality, rank, age, number of daughters, mother's presence, and group size, 342 respectively. We took a latent variable approach to model the sociality estimates, since individual sociality estimates are not point estimates, but rather posterior distributions 343 344 with mean and SD reflecting measurement uncertainty about the true rate. Under this 345 approach, we assumed that each female had some true underlying sociality measure, 346 true sociality estimate[id], which was normally distributed with mean and SD equal to 347 the mean and SD of the individual estimate of sociality drawn from the Social Relations Model results. 348 We used the Bayesian approach to fit Cox proportional hazard model (Singer 349 and Willett 2003). We assumed Normal (8, 0.5) prior for a base rate of survival, α , which 350

351 places most of the prior mass between 0 to 20 years with the mean of 8 years and a

long tail allowing more extreme values. For fixed effects, we assumed Normal (0, 1)

353	prior. For individual-level random effects, $lpha[id]$, we compared three types of models:
354	one with no random effects and two with individual-level random effect priors assumed
355	as Normal (0, 0.2) or Normal (0, 1). All three model types resulted in similar estimates;
356	therefore here we are reporting the results with individual-level random effect prior
357	Normal (0, 1), while the results of the other two types of models are reported in the
358	supplemental material (Table S1 and Table S2). All of the covariates, except the number
359	of daughters, were standardized by subtracting the mean and dividing it by the standard
360	deviation. As noted previously, the number of daughters was centered by subtracting
361	the mean number of daughters for each age.
362	
363	RESULTS
364	(1) Measures of sociality: How do adult females compare to the rest of the population?
365	Females differ the most from the other age-sex classes in their distribution of
366	grooming giving measures. A majority of the females (80%) groom more than an
367	average monkey in the population, while a majority of the adult males and immatures
368	(78%) groom less than an average monkey (Figure 1, panel A). The female distributions
369	for the rest of the behavioral domains are very similar to the other age-sex distributions,
370	indicating that females behave similarly to adult males and immatures in those domains.
371	Figure 1 illustrates how the individual sociality measures of grooming,
372	coalitionary support, and foraging in proximity by adult females compare to the
373	estimates for other age-sex classes. The distribution in orange represents adult female
374	posterior means estimated by the Social Relations Model, while the distribution in white

375 represents a combination of adult males and immature capuchins. The zero represents

an average individual in the population.

377	Grooming behavioral domain distributions show both the greatest and the
378	smallest amount of variation. Females display the greatest range in grooming giving
379	posterior estimates (grooming giving variance=2.02), and the narrowest range in
380	grooming receiving posterior estimates (grooming receiving variance=0.12). The
381	difference in variation suggests that the most avid groomers and the least enthusiastic
382	groomers differ a lot from an average monkey. However, as recipients of grooming,
383	both females who receive the most and the least amount of grooming are much more
384	similar to an average monkey in the population in comparison to any other type of
385	interaction that we measured.
386	
387	
388	
389	
390	
391	
392	
393	
394	
395	
396	

Figure 1. Posterior mean distributions of annual individual sociality measures for each

398 type of behavior. The orange density represents adult females whereas the white

density represents the rest of the population. The population base rate is at

400 approximately zero.

403	(2) Measure of sociality: Do females behave similarly across the behavioral domains?
404	Each female has five annual sociality measures. We plotted the pairwise
405	correlations between each of the sociality measures in Figure 2 in order to investigate if
406	female profiles are similar across all five measures, i.e. is a frequent groomer also a
407	frequent recipient of grooming and coalitional support? Within the coalitionary
408	aggression domain, estimates of female giving and receiving coalitionary support were
409	highly correlated ($r=0.97$). Females who intervene on someone's side during a conflict
410	also tend to receive a lot of support from others. This suggests that there is a small
411	subset of females that participate in coalitionary aggression more frequently than
412	others. However, females vary less in their support receiving than in their support giving
413	estimates (Figure 1, Panel C–D). In the grooming domain, the correlation between giving
414	and receiving estimates was moderate ($r=0.57$). Some of the females who groom others
415	the most are not among those who receive the most grooming. In addition, Figure 1
416	panel B shows a narrow distribution of the receiving measurements, which implies that
417	females overall distribute their grooming evenly among their group members.
418	The correlation across behavioral domains is smaller than within a domain,
419	between 0.15 and 0.37: If a female is among those who engage a lot in coalitionary
420	aggression, she is not necessarily involved a lot in grooming interactions and in foraging
421	in close proximity. The pairwise correlations show that females have different profiles of
422	interactions depending on the behavioral domain.
423	

425 Figure 2. Bi-variate correlations of individual sociality measures. Each point represents426 an annual observation of an individual female.

427

428 (3) Do more social females survive better?

Table 1 presents the Cox proportional hazards model posterior mean estimates and the 95% Highest Posterior Density Interval (HPDI), representing the narrowest interval containing the 95% probability mass. Independent of the effects of covariates (age, dominance rank, group size, number of adult daughters, co-residence with mother), females who groomed others more survived at higher rates than other females. The other sociality measures had mean estimates consistent with sociality

- 435 predicting greater survival, but their HPDI intervals were wide and included zero
- 436 indicating that the models are uncertain about these estimates.
- 437

438 **Table 1.** Estimates of fixed effects of each of the Cox proportional hazards models:

439 posterior means and 95% HPDI.

Sociality measure					
Parameter	Grooming giving	Grooming receiving	Support giving	Support receiving	Foraging in proximity
Intercept	9.20 [8.86,9.56]	9.13 [8.78,9.52]	9.07 [8.74,9.42]	9.06 [8.73,9.41]	9.08 [8.74,9.42]
β sociality	0.49 [0.26,0.70]	0.19 [–0.09,0.45]	0.11 [-0.21,0.45]	0.06 [–0.28,0.40]	0.16 [-0.18,0.47]
β rank	-0.20 [-0.51,0.11]	-0.11 [-0.45,0.24]	-0.10 [-0.45,0.24]	-0.10 [-0.47,0.28]	-0.16 [-0.54,0.23]
β age	-0.57 [-0.88,-0.25]	-0.66 [-0.96,-0.37]	-0.66 [-0.96,-0.37]	-0.68 [-0.99,-0.38]	-0.69 [-0.98,-0.39]
β daughters	-0.08 [-0.45,0.28]	-0.08 [-0.45,0.31]	-0.07 [-0.44,0.31]	-0.06 [-0.43,0.30]	-0.05 [-0.43,0.32]
β mother	0.26 [-0.09,0.63]	0.31 [-0.02,0.66]	0.33 [–0.01,0.67]	0.32 [-0.01,0.65]	0.33 [-0.01,0.66]
β group size	0.19 [-0.1,0.49]	0.18 [-0.10,0.46]	0.19 [-0.10,0.48]	0.18 [-0.1,0.46]	0.18 [-0.09,0.46]

440

441

442	We plotted the posterior means and their standard errors across five Cox
443	proportional hazard models in Figure 3 to better illustrate how model estimates
444	compare across all five models. Apart from sociality, all of the covariates have mean
445	estimates with wide HPDI intervals that include zero. The only exception is age,
446	indicating that female survival declines with age.
447	
448	
449	

451 Figure 3. Posterior means and standard deviations of 5 Cox proportional hazards models

452 in which annual survivorship varied as a function of five measures of sociality (*foraging*

- 453 in proximity, support receiving, support giving, grooming receiving, and grooming giving)
- 454 and covariates.

Intercept Foraging in proximity Support receiving Support giving Grooming receiving Grooming giving						
Sociality Foraging in proximity Support receiving Support giving Grooming receiving Grooming giving		►				
Rank Foraging in proximity Support receiving Support giving Grooming receiving Grooming giving						
Age Foraging in proximity Support receiving Support giving Grooming receiving Grooming giving						
Daughters Foraging in proximity Support receiving Support giving Grooming receiving Grooming giving						
Mother Foraging in proximity Support receiving Support giving Grooming receiving Grooming giving	· · · · · · · · · · · · · · · · · · ·	• • •				
Group size Foraging in proximity Support receiving Support giving Grooming receiving Grooming giving		•				
	0		2	4	6	8

456	To facilitate the interpretation of the Cox proportional hazards model
457	coefficients, we plotted model predictions showing the probability of dying in a given
458	year (Figure 4). We have varied females' sociality measure to compute the predictions.
459	Figure 4 illustrates the annual probability of dying as a function of a female's sociality
460	level measure where a yellow line represents a 10-year-old female and a blue line
461	represents a 30-year-old female (holding all other covariates fixed at the values
462	described above).
463	Across all five sociality measures, the less social females have a greater
464	probability of dying than more social females, but only the slopes for groom giving
465	confidently suggest a beneficial effect on survivorship (Figure 4, panel A). Predictions for
466	groom receiving likewise suggest a beneficial effect of sociality, but the model
467	predictions are less certain (Figure 4, panel B). Meanwhile, the slopes for coalitionary
468	support and foraging in close proximity are quite shallow, indicating that the survival
469	varies little as a function of these sociality measures (Figure 4, panels C, D, and E). These
470	model predictions reflect the uncertainty associated with these estimates (Table 1 and
471	Figure 3). Overall, there is less certainty in the estimates for older females, partly owing
472	to their scarcity in the sample.
473	
474	
475	
476	

Figure 4. Cox proportional hazard model predicted annual probabilities of dying at two
representative ages (10 and 30) as a function of the sociality levels in five behavioral
domains. For both ages, we assumed median group size, median rank, and average
number of daughters for the age. For 10-year-old females, we assumed a co-resident
mother, while predictions for the 30-year-old assume the mother is deceased.

485 DISCUSSSION

486	In female white-faced capuchin monkeys, providing grooming to others is
487	associated with greater survival rates. Females who provide more grooming die at lower
488	rates than females who engage in this behavior less often. By contrast, there was no
489	strong evidence that females who receive more grooming, participate more often in
490	coalitionary aggression, and forage more often in close proximity of others also have
491	higher survivorship. Our results in the grooming domain are consistent with findings
492	that social integration is associated with longevity in humans (Holt-Lunstad et al., 2010)
493	and adds a neotropical primate species to the list of mammalian species where a similar
494	association between sociality and longevity has been demonstrated (Silk et al., 2010;
495	Archie et al., 2014; Brent et al., 2017; Yee et al., 2008; Nuñez et al., 2014; Fagen &
496	Fagen, 2004).
497	Despite great interest by primatologists in studying social relationships and their
498	impact on primate lives, there is no established consensus on how to measure the
499	properties of social relationships in primates (Silk et al., 2013). The conceptual
500	foundation for studying primate social relationships dates back to Robert Hinde's
501	seminal paper (1976), where he argued that analyses of multiple types of interactions
502	should be included in measuring social relationships. However, the details of how to
503	combine these interactions into a meaningful measure have been under-theorized.

- 504 There are some well-established measures that combine the rates of behaviors from
- 505 different domains into a single measure of sociality (reviewed in Silk, 2013), but the

implications of averaging over multiple rates of different behaviors have not beenanalyzed.

508 We do not suggest that combining information about interactions from multiple 509 domains should not be our goal in principle, but we want to draw attention to the idea 510 that doing so imposes inferential tradeoffs. For example, we demonstrated that the 511 distributions of the rates for each interaction type are very different (Figure 1) and, for 512 example, the females who frequently groom others are not always the same females 513 who frequently participate in coalitionary aggression (Figure 2). Averaging estimates 514 across all five behaviors would result in the same point estimates for females who have very different profiles. For example, it is possible that a female who is an avid groomer 515 516 and seldom participates in coalitionary aggression through simple averaging could 517 appear identical to a female who rarely grooms others, but who often joins coalitionary 518 aggression. The interpretation of such measures is problematic because sociality indices 519 that draw on multiple behaviors may conceal important differences between 520 individuals. We suggest that it is useful to understand the variation of these behaviors 521 within a population before constructing a single measure. 522 We selected three behavioral domains, each of which represents a different 523 type of social engagement in capuchins – grooming, coalitionary conflicts, and foraging – 524 and estimated the individual sociality measures separately. We argue that doing so: (1) 525 enabled us to incorporate the uncertainty about our measures, and (2) aided our 526 interpretation of the results.

527	Incorporating the uncertainty. One of the challenges in analyzing observational
528	longitudinal datasets is data resolution as a result of uneven sampling. Data from the
529	natural habitats are notoriously difficult to gather. Inevitably, the records for social
530	interactions are sparse (Farine 2015) and some individuals are observed more often
531	than others for multiple reasons (Silk et al., 2013). Analysts therefore face a high risk of
532	false negatives when estimating dyadic relationships, i.e. some pairs are inferred to
533	have no social relationship at all, whereas if behavioral sampling were sufficiently dense,
534	they would be observed to interact, although rarely (Farine, 2015).
535	To address the uneven sampling of individuals and social groups in our dataset,
536	we used a Social Relations Model (Snijders and Kenny, 1999). This approach allowed us
537	to estimate individual rates of giving and receiving interactions and the uncertainty
538	associated with those estimates due to the varying number of observations. To increase
539	data resolution, we did not focus on adult female interactions with only other adult
540	females (e.g. Silk et al., 2010; Kalbitzer et al., 2017; Archie et al., 2014) or with only adult
541	males (e.g. Archie et al., 2014). We used to use each female's entire observation history
542	with her group members to ensure as complete as possible a picture of a female's true
543	sociality (Farine and Whitehead, 2015). As a multilevel model (McElreath 2020), the
544	Social Relations Model takes advantage of partial pooling across the entire population
545	when estimating individual female estimates (McElreath, 2020), which reduces
546	overfitting on the available data. To reflect the latent uncertainty in observational data,
547	our sociality measures were modeled as distributions, rather than point estimates,
548	which we subsequently used to model female survival.

549	Interpretation of results. Our analysis reveals several insights about grooming,
550	coalitionary support, and foraging interactions by showing how adult females compare
551	to each other and to the rest of the population (Figures 1–2). The most informative
552	behavior is grooming. Adult females are the most avid groomers in the capuchin
553	population with the majority of the females grooming more than an average monkey.
554	However, some of the individuals who groom the least are also adult females.
555	Knowing how an individual female's measures in one behavior correlate with
556	other behaviors that same year provides additional insights into the heterogenous
557	effects that the respective sociality measures exhibit on survivorship. As noted,
558	grooming giving measures are reliably associated with longevity. Yet, because grooming
559	giving is only weakly correlated with support in coalitionary aggression and foraging in
560	close proximity, females who are providing the most grooming are usually not the same
561	females who participate most often in coalitionary aggression or most often foraging in
562	close proximity of others.
563	Within the grooming domain, our results make sense in light of the respective
564	grooming distributions (Figure 1). Grooming giving and grooming receiving are
565	moderately correlated ($r = 0.57$, Figure 2), suggesting that many females occupy a
566	similar position relative to other females within the grooming network when quantifying
567	their grooming rates with other group members. However, there is substantially more
568	variation in how much grooming females provide, i.e. the most and the least avid
569	groomers are much more different from an average monkey in the population than the

570 females who receive the most and the least grooming. The narrow distribution of groom

571 receiving estimates suggests that grooming is somewhat equally distributed within the 572 population and that individuals do not differ from each other a lot in how likely they are 573 to be groomed by a group member. Unsurprisingly, these relatively small differences are 574 not reliably associated with survival. 575 Finally, a biologically interesting question deals with the mechanisms that 576 facilitate the relationship between sociality and longevity. Recently there has been a call 577 for understanding exactly how sociality is affecting fitness in primates (Ostner and 578 Schülke 2018; Thompson, 2019). Individual sociality as a construct is likely to be 579 composed of the many types of relationships that an animal has: affiliative, agonistic 580 and others. The lifespans that we observe are a consequence of many decisions that 581 animals make and there is arguably more than one pathway through which sociality can 582 affect survival in a particular species (Ostner & Schülke, 2018; Thompson, 2019). 583 Behaviors such as grooming, coalitionary support and foraging in proximity of others 584 indicate social relationships that individuals cultivate, but are probably not the sole 585 indicators of those relationships. 586 Our study was not designed with the purpose of identifying a mechanism linking 587 sociality and longevity. It is possible that females derive direct benefits from grooming 588 others, such as social bonding through the release of hormones (Dunbar 2010). 589 Indirectly, grooming interactions might contribute to structuring a female's overall social 590 life. Capuchin monkeys spend a lot of time grooming, and providing grooming to multiple partners might allow females to develop social relationships which eventually 591 592 structure other types of interactions. For example, the distributions of coalitionary

593	aggression interactions suggest that a small group of individuals participate in
594	coalitionary aggression because female estimates of giving and receiving support are
595	very highly correlated (Figure 2). Since the females who groom others the most are
596	usually not the same females who participate in coalitionary aggression the most, it is
597	possible that the frequent groomers experience less aggression and, as a result, fewer of
598	the detrimental consequences associated with it. Alloparenting might be another
599	domain where frequent groomers receive more help from other group members. To
600	better understand the mechanisms that contribute to the relationship between sociality
601	and longevity and to design studies to test them, we need to investigate the interaction
602	patterns themselves. Understanding the natural structure of different types of
603	interaction types can help in developing better sociality measures and further our
604	understanding how sociality contributes to fitness.
605	DATA AND CODE ACCESSIBILITY
606	The data and code used to produce the analyses in this paper are available at:
607	www.doi.org/10.5281/zenodo.3961479
608	
609	ACKNOWLEDGEMENTS
610	The following field assistants contributed significant amounts of data to the Lomas
611	Barbudal Monkey Project dataset: C. Angyal, A. Autor, B. Barrett, L. Beaudrot, M.
612	Bergstrom, R. Berl, A. Bjorkman, L. Blankenship, T. Borcuch, J. Broesch, D. Bush, J. Butler,

- 613 F. Campos, C. Carlson, A. Cobden, M. Corrales, J. Damm, B. Davis, C. deRango, N. Donati,
- 614 C. Dillis, G. Dower, R. Dower, A. Duchesneau, K. Feilen, J. Fenton, S. Fiello, K. Fisher, A.

615	Fuentes J., M. Fuentes A., T. Fuentes, C. Gault, H. Gilkenson, I. Godoy, I. Gottlieb, J.
616	Griciute, L.M. Guevara R., L. Hack, R. Hammond, S. Herbert, C. Hirsch, M. Hoffman, A.
617	Hofner, C. Holman, J. Hubbard, S. Hyde, M. Jackson, O. Jacobson, E. Johnson, L. Johnson,
618	S. Lee, S. Leinwand, T. Lord, M. Kay, E. Kennedy, D. Kerhoas-Essens, E. Johnson, S.
619	Kessler, B. Krimmel, W. Lammers, S. Lopez, S. MacCarter, J. Mackenzie, M. Mayer, F.
620	McKibben, W. Meno, A. Mensing, M. Milstein, C. Mitchell, Y. Namba, A. Neyer, C.
621	O'Connell, J. C. Ordoñez, J., N. Parker, B. Pav, R. Popa, K. Potter, K. Ratliff, K. Reinhardt,
622	N. Roberts Buceta, E. Rothwell, J. Rottman, H. Ruffler, S. Sanford, M. Saul, E. Seabright, I.
623	Schamberg, S. Schembari, N. Schleissman, C. Schmitt, S. Schulze, A. Scott, S. Sita, J. Shih,
624	K. Stewart, W. Tucker, E. Urquhart, K. van Atta, J. Vandermeer, L. van Zuidam, J. Verge,
625	V. Vonau, A. Walker-Bolton, E. Wikberg, E. Williams, L. Wolf, and D. Wood. We thank H.
626	Gilkenson and W. Lammers for long-term management of the field site during 2002-
627	2013. We thank the Costa Rican park service (Sistema Nacional de Áreas de
628	Conservación and Área de Conservación Tempisque), Hacienda Pelon de la Bajura,
629	Hacienda Brin D'Amor, and the residents of San Ramon de Bagaces for permission to
630	work on their land. K.K. was supported by a University of California-Los Angeles (UCLA)
631	Pauley Fellowship, a UCLA Dissertation Year Fellowship, and by the Max Planck Institute
632	for Evolutionary Anthropology. This material is based on data collection supported by
633	funding provided to S.E.P. by the National Science Foundation (under grant numbers
634	1638428, 0613226, 0848360, and 1232371), the Max Planck Institute for Evolutionary
635	Anthropology, the L.S.B. Leakey Foundation (5 grants), the National Geographic Society
636	(5 grants), the Templeton World Charity Foundation (grant #0208), the Wild Capuchin

637	Foundation, and multiple Committee on Research grants from UCLA. D. Cohen assisted
638	with database management and queries. This paper has benefited from helpful
639	discussions with H. C. Barrett, D. Cohen, J. Manson, and M.B. McElreath.
640	
641	
642	
643	
644	
645	
646	
647	
648	
649	
650	
651	
652	
653	
654	
655	
656	
657	
658	

659 REFERENCES

660	Archie, E. A., Tung, J., Clark, M., Altmann, J., & Alberts, S. C. (2014). Social affiliation
661	matters: Both same-sex and opposite-sex relationships predict survival in wild
662	female baboons. Proceedings of the Royal Society B: Biological Sciences,
663	<i>281</i> (1793), 20141261.
664	Blumstein, D. T., Williams, D. M., Lim, A. N., Kroeger, S., & Martin, J. G. (2018). Strong
665	social relationships are associated with decreased longevity in a facultatively
666	social mammal. Proceedings of the Royal Society B: Biological Sciences,
667	<i>285</i> (1871), 20171934.
668	Brent, L. J. N., Ruiz-Lambides, A., & Platt, M. L. (2017). Family network size and survival
669	across the lifespan of female macaques. Proceedings of the Royal Society B:
670	Biological Sciences, 284(1854), 20170515.
671	Clutton-Brock, T. H. (1988). Reproductive success: Studies of individual variation in
672	contrasting breeding systems. University of Chicago Press.
673	Dunbar, R. I. M. (2010). The social role of touch in humans and primates: Behavioural
674	function and neurobiological mechanisms. Neuroscience & Biobehavioral
675	<i>Reviews</i> , <i>34</i> (2), 260–268. https://doi.org/10.1016/j.neubiorev.2008.07.001
676	Fagen, R., & Fagen, J. (2004). Juvenile survival and benefits of play behaviour in brown
677	bears, Ursus arctos. Evolutionary Ecology Research, 6(1), 89–102.
678	Farine, D. R. (2015). Proximity as a proxy for interactions: Issues of scale in social
679	network analysis. Animal Behaviour, 104, e1–e5.

680	Farine, D. R., & Whitehead, H. (2015). Constructing, conducting and interpreting animal
681	social network analysis. Journal of Animal Ecology, 84(5), 1144–1163.
682	Fedigan, L. M., Carnegie, S. D., & Jack, K. M. (2008). Predictors of reproductive success in
683	female white-faced capuchins (Cebus capucinus). American Journal of Physical
684	Anthropology, 137(1), 82–90.
685	Fedigan, L. M., & Rose, L. M. (1995). Interbirth interval variation in three sympatric
686	species of neotropical monkey. American Journal of Primatology, 37(1), 9–24.
687	https://doi.org/10.1002/ajp.1350370103
688	Fragaszy, D. M., Visalberghi, E., & Fedigan, L. M. (2004). The complete capuchin: The
689	biology of the genus Cebus. Cambridge University Press.
690	Gilby, I. C., Brent, L. J., Wroblewski, E. E., Rudicell, R. S., Hahn, B. H., Goodall, J., & Pusey,
691	A. E. (2013). Fitness benefits of coalitionary aggression in male chimpanzees.
692	Behavioral Ecology and Sociobiology, 67(3), 373–381.
693	Gros-Louis, J., Perry, S., & Manson, J. H. (2003). Violent coalitionary attacks and
694	intraspecific killing in wild white-faced capuchin monkeys (Cebus capucinus).
695	<i>Primates, 44</i> (4), 341–346.
696	Hinde, R. A. (1976). Interactions, relationships and social structure. <i>Man</i> , 1–17.
697	Holt-Lunstad, J., Smith, T. B., & Layton, J. B. (2010). Social relationships and mortality
698	risk: A meta-analytic review. PLoS Medicine, 7(7), e1000316.
699	Kajokaite, K., Whalen, A., Panchanathan, K., & Perry, S. (2019). White-faced capuchin
700	monkeys use both rank and relationship quality to recruit allies. Animal
701	Behaviour, 154, 161–169.

702	Kalbitzer, U., Bergstrom, M. L., Carnegie, S. D., Wikberg, E. C., Kawamura, S., Campos, F.
703	A., Jack, K. M., & Fedigan, L. M. (2017). Female sociality and sexual conflict shape
704	offspring survival in a Neotropical primate. Proceedings of the National Academy
705	of Sciences, 114(8), 1892–1897.
706	Koster, J., Leckie, G., Miller, A., & Hames, R. (2015). Multilevel modeling analysis of
707	dyadic network data with an application to Ye'kwana food sharing. American
708	Journal of Physical Anthropology, 157(3), 507–512.
709	Koster, J., Leckie, G., & Aven, B. (2019). Statistical methods and software for the
710	Multilevel Social Relations Model. Field Methods, 1525822X19889011.
711 712	Manson, J. H., Navarrete, C. D., Silk, J. B., & Perry, S. (2004). Time-matched grooming in
713	female primates? New analyses from two species. Animal Behaviour, 67(3), 493–
714	500.
715	McElreath, R. (2020). Statistical rethinking: A Bayesian course with examples in R and
716	Stan. CRC press.
717	McElreath, R. (2020). rethinking: Statistical rethinking book package (R package Version
718	1.93). https://github.com/rmcelreath/rethinking.
719 720	Nuñez, C. M., Adelman, J. S., & Rubenstein, D. I. (2014). Sociality increases juvenile
721	survival after a catastrophic event in the feral horse (Equus caballus). Behavioral
722	Ecology, 26(1), 138–147.

723	Ostner, J., & Schuelke, O. (2018). Linking sociality to fitness in primates: A call for
724	mechanisms. In Advances in the Study of Behavior (Vol. 50, pp. 127–175).
725	Elsevier.
726	Perry, S. (1996). Female-female social relationships in wild white–faced capuchin
727	monkeys, Cebus capucinus. American Journal of Primatology, 40(2), 167–182.
728	Perry, S. (2012). The behavior of wild white-faced capuchins: Demography, life history,
729	social relationships, and communication. In Advances in the study of behavior
730	(Vol. 44, pp. 135–181). Elsevier.
731	Perry, S., Godoy, I., & Lammers, W. (2012). The Lomas Barbudal Monkey Project: Two
732	decades of research on Cebus capucinus. In Long-term field studies of primates
733	(pp. 141–163). Springer.
734	Perry, S., Manson, J. H., & Perry, S. (2009). Manipulative monkeys. Harvard University
735	Press.
736	Porter, C. A., Page, S. L., Czelusniak, J., Schneider, H., Schneider, M. P. C., Sampaio, I., &
737	Goodman, M. (1997). Phylogeny and Evolution of Selected Primates as
738	Determined by Sequences of the ϵ -Globin Locus and 5' Flanking Regions.
739	International Journal of Primatology, 18(2), 261–295.
740	https://doi.org/10.1023/A:1026328804319
741	R Core Team. (2020). R: A language and environment for statistical computing. Vienna,
742	Austria: R Foundation for Statistical Computing.
743	

744	Roelfs, D. J., Shor, E., Kalish, R., & Yogev, T. (2011). The rising relative risk of mortality for
745	singles: Meta-analysis and meta-regression. American Journal of Epidemiology,
746	174(4), 379–389.
747	Schülke, O., Bhagavatula, J., Vigilant, L., & Ostner, J. (2010). Social bonds enhance
748	reproductive success in male macaques. Current Biology, 20(24), 2207–2210.
749	Shor, E., & Roelfs, D. J. (2015). Social contact frequency and all-cause mortality: A meta-
750	analysis and meta-regression. Social Science & Medicine, 128, 76–86.
751	Shor, E., Roelfs, D. J., & Yogev, T. (2013). The strength of family ties: A meta-analysis and
752	meta-regression of self-reported social support and mortality. Social Networks,
753	<i>35</i> (4), 626–638.
754	Silk, J. B. (2009). Nepotistic cooperation in non-human primate groups. <i>Philosophical</i>
755	Transactions of the Royal Society B: Biological Sciences, 364(1533), 3243–3254.
756	Silk, J. B., Alberts, S. C., & Altmann, J. (2003). Social bonds of female baboons enhance
757	infant survival. Science, 302(5648), 1231–1234.
758	Silk, J. B., Beehner, J. C., Bergman, T. J., Crockford, C., Engh, A. L., Moscovice, L. R.,
759	Wittig, R. M., Seyfarth, R. M., & Cheney, D. L. (2010). Strong and consistent social
760	bonds enhance the longevity of female baboons. Current Biology, 20(15), 1359–
761	1361.
762	Silk, J., Cheney, D., & Seyfarth, R. (2013). A practical guide to the study of social
763	relationships. Evolutionary Anthropology: Issues, News, and Reviews, 22(5), 213–
764	225.

703 31110013 , $1.7.9$, α (11110 , β , γ , 1233), 110 $300101101101101101101101101101101010101$	765	Snijders, T. A.	., & Kenny, D. A.	(1999). The social	relations model	for family	data:
--	-----	-----------------	-------------------	--------------------	-----------------	------------	-------

- 766 multilevel approach. *Personal Relationships*, *6*(4), 471–486.
- 767 Stan Development Team. (2020). RStan: The R interface to Stan (Version 2.19.1).
- 769 Sterck, E. H. M., Watts, D. P., & van Schaik, C. P. (1997). The evolution of female social
- relationships in nonhuman primates. *Behavioral Ecology and Sociobiology*, 41(5),
- 771 291–309. https://doi.org/10.1007/s002650050390
- Thompson, N. A. (2019). Understanding the links between social ties and fitness over
- the life cycle in primates. *Behaviour*, 1(aop), 1–50.
- Thompson, N. A., & Cords, M. (2018). Stronger social bonds do not always predict
- greater longevity in a gregarious primate. *Ecology and Evolution*, 8(3), 1604–
- 776 1614.
- Yee, J. R., Cavigelli, S. A., Delgado, B., & McClintock, M. K. (2008). Reciprocal affiliation
- among adolescent rats during a mild group stressor predicts mammary tumors
- and lifespan. *Psychosomatic Medicine*, 70(9), 1050.

780