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ABSTRACT  31 

Categorical perception (CP) of audio is critical to understand how the human brain perceives 32 

speech sounds despite widespread variability in acoustic properties. Here, we investigated the 33 

spatiotemporal characteristics of auditory neural activity that reflects CP for speech (i.e., 34 

differentiates phonetic prototypes from ambiguous speech sounds). We recorded high density 35 

EEGs as listeners rapidly classified vowel sounds along an acoustic-phonetic continuum. We 36 

used support vector machine (SVM) classifiers and stability selection to determine when and 37 

where in the brain CP was best decoded across space and time via source-level analysis of the 38 

event related potentials (ERPs). We found that early (120 ms) whole-brain data decoded speech 39 

categories (i.e., prototypical vs. ambiguous speech tokens) with 95.16% accuracy [area under the 40 

curve (AUC) 95.14%; F1-score 95.00%]. Separate analyses on left hemisphere (LH) and right 41 

hemisphere (RH) responses showed that LH decoding was more robust and earlier than RH 42 

(89.03% vs. 86.45% accuracy; 140 ms vs. 200 ms). Stability (feature) selection identified 13 43 

regions of interest (ROIs) out of 68 brain regions (including auditory cortex, supramarginal 44 

gyrus, and Brocas area) that showed categorical representation during stimulus encoding (0-260 45 

ms). In contrast, 15 ROIs (including fronto-parietal regions, Broca’s area, motor cortex) were 46 

necessary to describe later decision stages (later 300 ms) of categorization but these areas were 47 

highly associated with the strength of listeners’ categorical hearing (i.e., slope of behavioral 48 

identification functions). Our data-driven multivariate models demonstrate that abstract 49 

categories emerge surprisingly early (~120 ms) in the time course of speech processing and are 50 

dominated by engagement of a relatively compact fronto-temporal-parietal brain network.   51 

 52 

Keywords: Auditory event-related potentials (ERPs); categorical perception; decision process; 53 

behavioral slope; machine learning; stability selection; support vector machine (SVM).  54 
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1. INTRODUCTION  55 

The human brain can map an incredibly large number of stimulus features into a smaller 56 

set of groups (Chang et al., 2010; Holt & Lotto, 2010), a process known as categorical perception 57 

(CP). Categories allow listeners to extract, manipulate,  and  precisely respond to sounds (C. T. 58 

Miller & Cohen, 2010; E. K. Miller et al., 2002, 2003; Russ et al., 2007; Tsunada & Cohen, 59 

2014) despite wide variability in their acoustic properties. CP emerges in early life (Eimas et al., 60 

1971) but is further modified by native language experience (Bidelman & Lee, 2015a; Kuhl et 61 

al., 1992; Xu et al., 2006). As such, CP plays an important role in understanding receptive 62 

communication and the building blocks of speech perception and language processing across the 63 

lifespan.   64 

Event-related potentials (ERPs) are particularly useful for examining the brain 65 

mechanisms of phoneme and speech perception (Celsis et al., 1999; Molfese et al., 2005) given 66 

their excellent temporal resolution and the rapid time course required to process speech signals. 67 

Indeed, several ERP studies have documented neural correlates for CP via the ERPs (Bidelman, 68 

2015; Binder et al., 2004; Chang et al., 2010). In particular, several studies have shown that the 69 

efficiency of listeners’ speech categorization varies in accordance with their underlying brain 70 

activity (Bidelman et al., 2013a; Bidelman & Alain, 2015; Bidelman & Lee, 2015b; Perlovsky, 71 

2011). For example, Bidelman et al. demonstrated that brain responses in the time frame of 180-72 

320 ms were more robust for phonetic prototypes vs. ambiguous speech tokens, thereby 73 

reflecting category-level processing (Bidelman et al., 2020a). Other studies have shown links 74 

between N1-P2 amplitudes of the auditory cortical ERPs and the strength of listeners’ speech 75 

identification (Bidelman & Walker, 2017a) and labeling speeds (Al-Fahad et al., 2020) in speech 76 

categorization tasks (Bidelman et al., 2014; Bidelman & Alain, 2015). These findings are 77 
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consistent with the notion that the early N1 and P2 waves of the ERPs are highly sensitive to 78 

speech processing and auditory object formation that is necessary to map sounds to meaning 79 

(Alain, 2007; Bidelman et al., 2013b; Wood et al., 1971).   80 

The neural organization of speech categories also varies spatially, recruiting a widely 81 

distributed system across a number of brain regions. Neural responses are elicited by prototypical 82 

speech sounds (i.e., those heard with a strong phonetic category) differentially engage Heschl’s 83 

gyrus (HG) and inferior frontal gyrus (IFG) compared to ambiguous speech depending on a 84 

listeners perceptual skill level (Bidelman et al., 2013b; Bidelman & Lee, 2015a; Bidelman & 85 

Walker, 2017b; Mankel et al., 2020). This suggests emergent categorical representations within 86 

the early auditory-linguistic pathways. Similarly, Alho et al. found that category-specific 87 

representations were activated in left IFG (Alho et al., 2016) at an early-latency (115-140 ms). 88 

Collectively, in terms of the time course of processing, M/EEG studies agree that the neural 89 

underpinnings of speech categories emerge within the first few hundred milliseconds after 90 

stimulus onset and reflect abstract “category level-effects”(Toscano et al., 2018) and “phonemic 91 

categorization” (Liebenthal et al., 2010a). 92 

Beyond conventional auditory-linguistic brain regions, neuroimaging also demonstrates a 93 

variety of additional areas important to speech perception and language processing (Hickok et 94 

al., 2011; Lee et al., 2012; Novick et al., 2010). Among them, superior partial lobe is associated 95 

with writing (Menon & Desmond, 2001) and supramarginal gyrus with phonological processing 96 

(Deschamps et al., 2014; Oberhuber et al., 2016) during speech and verbal working tasks. 97 

Relevant to CP, several studies have found that the left inferior parietal lobe is more activated 98 

during auditory phoneme sound categorization (Desai et al., 2008; Dufor et al., 2007; Husain et 99 

al., 2006). Indeed, auditory categorical processing has been shown to recruit superior temporal 100 
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gyrus/sulcus, middle temporal gyrus, premotor cortex, inferior parietal cortex, planum temporal, 101 

and inferior frontal gyrus (Bidelman & Walker, 2019a; Guenther et al., 2004).  Some other 102 

neuroimaging and electrocorticography studies have however shown that rostral anterior 103 

cingulate cortex is associated with speech control (Paus et al., 1993; Sahin et al., 2009; Tankus et 104 

al., 2012) and the orbitofrontal cortex in speech comprehension (Sabri et al., 2008). Under some 105 

circumstances (e.g., highly skilled listeners), speech categories can emerge as early as auditory 106 

cortex (Bidelman & Lee, 2015b; Bidelman & Walker, 2019a; Chang et al., 2010).   107 

While category representations seem to emerge early in the time course of speech 108 

perception, the task of categorizing sounds can be further separated into pre- and post-perceptual 109 

stages of processing (i.e., stimulus encoding vs. decision mechanisms). “Early” vs. “late” stage 110 

models of category formation have long been discussed in the literature (Fox, 1984; McClelland 111 

& Elman, 1986; Noe & Fischer-Baum, 2020; Norris et al., 2000). However, few empirical 112 

studies have actually separately examined encoding and decision stages of CP. The human brain 113 

encodes speech stimuli within ~250 ms after stimulus onset (Masmoudi et al., 2012) and decodes 114 

~300 ms after stimulus onset (Domenech & Dreher, 2010; Mostert et al., 2015). Previous studies 115 

have largely focused on these specific time windows (e.g., ERP waves) and brain regions when 116 

attempting to describe the neural basis of CP. While informative, such hypothesis-based testing 117 

can be restrictive and potentially miss the broader and distributed networks associated with 118 

speech-language processing that unfold on different time scales (Du et al., 2016; Rauschecker & 119 

Scott, 2009).  120 

In this regard, machine learning (ML) techniques are increasingly used to “decode” high 121 

dimensional neuroimaging data and better understand different states of brain functionality as 122 

measured via EEG. ML is a branch of artificial intelligence that “learns a model” from the past 123 
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data to predict future data (Cruz & Wishart, 2006). Moreover, data mining approaches in ML 124 

identify important properties in neural activity with high accuracy without intervention from 125 

human observers. It would be meaningful if brain functioning that has been linked with speech 126 

processing (e.g., CP) could be decoded from neural data without, or at least with minimal, a 127 

priori assumptions on when and where those representation emerge. Indeed, laying the 128 

groundwork for the present work, we have recently shown that the speed of listeners’ 129 

identification in speech categorization tasks can be directly decoded from their full-brain EEGs 130 

using an entirely data-drive approach (Al-Fahad et al., 2020). We have also shown that ML can 131 

decode age-related changes in speech processing that occur in older adults (Mahmud et al., 132 

2020). 133 

Departing from previous hypothesis-driven studies (Bidelman & Alain, 2015; Bidelman 134 

& Walker, 2019a, 2017a), the current work used a comprehensive, data-driven approach to 135 

examine the neural mechanisms of speech categorization during encoding and decision stages of 136 

processing using whole-brain, electrophysiological data. We analyzed speech-evoked ERPs from 137 

high density EEGs recorded during a rapid speech categorization task in young, normal hearing 138 

listeners. Our approach applied state-of-the-art ML techniques including neural classifiers and 139 

feature selection methods (i.e., stability selection) to source-level ERPs to investigate the 140 

spatiotemporal dynamics of speech categorization. We aimed to determine when and where 141 

neural activity from full-brain EEGs differentiated phonetic from phonetically ambiguous speech 142 

sounds, and thus showed the strongest evidence of categorical processing using an entirely data-143 

driven, machine learning approach.   144 

2. MATERIALS & METHODS  145 

2.1 Participants 146 
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       Forty-nine young adults (male: 15, female: 34; aged 18 to 33 years) were recruited as 147 

participants from the University of Memphis student body to participate into our ongoing studies 148 

on the neural basis of speech perception and auditory categorization (Bidelman et al., 2020b; 149 

Bidelman & Walker, 2017b; Mankel et al., 2020). All participants had normal hearing sensitivity 150 

(i.e., <25 dB HL between 500-2000 Hz). Listeners were-right handed (Oldfield, 1971) and had 151 

achieved a collegiate level of education. None reported any history of neurological disease. All 152 

participants were paid for their time and gave informed written consent in accordance with the 153 

declaration of Helsinki and a protocol approved by the Institutional Review Board at the 154 

University of Memphis. 155 

2.2 Stimuli & task 156 

We used a synthetic five-step vowel token continuum to assess the most discriminating 157 

spatiotemporal features while categorizing prototypical vowel speech from ambiguous speech 158 

(Bidelman et al., 2013b, 2014). Speech spectrograms are represented in Fig. 1A. Each token of 159 

the continuum was separated by equidistant steps acoustically based on the first formant 160 

frequency (F1) and perceived to categorically from /u/ to /a/. Each speech token was 100 ms, 161 

including 10 ms rise/fall to minimize the spectral splatter in the stimuli. Each speech token 162 

contained an identical voice fundamental frequency (F0), second (F2), and third formant (F3) 163 

frequencies (F0:150 Hz, F2: 1090 Hz, and F3:2350 Hz). To create a phonetic continuum that 164 

varied in percept from /u/ to /a/, F1 frequency was parameterized over five equal steps from 430 165 

Hz to 730 Hz (Bidelman et al., 2013b). 166 

Stimuli were presented binaurally at an intensity of 83 dB SPL through earphones (ER 2; 167 

Etymotic Research). Participants heard each token 150-200 times presented in random order. 168 

They were asked to label each sound in a binary identification task (“/u/” or “/a/”) as fast and 169 
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accurately as possible. Their response and reaction time were logged. The interstimulus interval 170 

(ISI) was jittered randomly between 400 and 600 ms (20 ms step and rectangular distribution) 171 

following listeners' behavioral responses to avoid anticipating the next trial (Luck, 2005). 172 

 173 

Figure 1: Speech stimuli and behavioral results. A) Acoustic spectrograms of the speech 174 

continuum from /u/ and /a/.  B) Behavioral slope. C) Psychometric functions showing % “a” 175 

identification of each token. Listeners’ perception abruptly shifts near the continuum midpoint, 176 

reflecting a flip in perceived phonetic category (i.e., “u” to “a”). D) Reaction time (RT) for 177 

identifying each token. RTs are fastest for category prototypes (i.e., Tk1/5) and slow when 178 

classifying ambiguous tokens at the continuum midpoint (i.e., Tk3). Errorbars = ±1 s.e.m. 179 
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2.3 EEG recordings and data pre-procedures 180 

      During the behavioral task, EEG was recorded from 64 channels at standard 10-10 electrode 181 

locations on the scalp (Oostenveld and Praamstra 2001). Continuous EEGs were digitized using 182 

Neuroscan SynAmps RT amplifiers at a sampling rate of 500 Hz. Subsequent preprocessing was 183 

conducted in the Curry 7 neuroimaging software suite, and customized routines coded in 184 

MATLAB. Ocular artifacts (e.g., eye-blinks) were corrected in the continuous EEG using 185 

principal component analysis (PCA) (Picton et al., 2000) and then filtered (1-100 Hz bandpass; 186 

notched filtered 60 Hz). Cleaned EEGs were then epoched into single trials (-200 to 800 ms, 187 

where t = 0 was stimulus onset). 188 

2.4 EEG source localization 189 

        To disentangle the sources of CP-related EEG activity, we reconstructed the scalp-recorded 190 

responses by performing a distributed source analysis in the Brainstorm software package (Tadel 191 

et al., 2011). All analyses were performed on single-trial data. We used a realistic boundary 192 

element head model (BEM) volume conductor and standard low-resolution brain electromagnetic 193 

tomography (sLORETA) as the inverse solution within Brainstorm (Tadel et al., 2011). A BEM 194 

model has less spatial errors than other existing head models (e.g., concentric spherical head 195 

model). We used Brainstorm’s default parameter settings (SNR=3.00, regularization noise 196 

covariance = 0.1). From each single-trial sLORETA volume, we extracted the time-courses 197 

within 68 functional regions of interest (ROIs) across the left and right hemispheres defined by 198 

the Desikan-Killiany (DK) atlas (Desikan et al., 2006) (LH: 34 ROIs and RH: 34 ROIs). Single-199 

trial data were then baseline corrected to the epoch’s pre-stimulus interval (-200-0 ms).  200 

Since we were interested to decode prototypical (Tk1/5) from ambiguous speech (Tk3)—201 

a marker of categorical processing (Bidelman, 2015; Bidelman & Walker, 2019b; Liebenthal et 202 
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al., 2010b)—we merged Tk1 and Tk5 responses since they reflect prototypical vowel categories 203 

(“u” vs. “a’). In contrast, Tk3 reflects a bistable percept—an category-ambiguous sound listeners 204 

sometimes label as “u” or “a” (Bidelman et al., 2020a; Bidelman & Walker, 2017b; Mankel et 205 

al., 2020).  To ensure an equal number of trials and signal to noise ratio (SNR) for prototypical 206 

and ambiguous stimuli, we considered only 50% of the data from the merged (Tk1/5) samples.   207 

 208 

Figure 2: Grand averaged butterfly plots of scalp ERPs (64 channels) to prototypical (A; Tk1/5) 209 

vs. category-ambiguous (B; Tk3) vowels. Vertical lines demarcate segments for the stimulus 210 

encoding (0-260 ms) and decision period (300 ms-800 ms) analysis windows. t=0 marks 211 

stimulus onset.  212 

2.5 Feature extraction 213 

Previous computational studies have found that ERPs averaged over 100 trials provided the 214 

best classification of data while maintaining reasonable signal SNR and computational efficiency 215 

(Al-Fahad et al., 2020; Mahmud et al., 2020). We quantified source-level ERPs with a mean 216 
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bootstrapping approach (James et al., 2013) by randomly averaging over 100 trials (with 217 

replacement) 30 times (Al-Fahad et al., 2020) for each stimulus condition per participant. For 218 

each resample and ROI time course, we measured the mean amplitude within a 20 ms sliding 219 

window (without overlapping) in the post-stimulus interval (i.e., 0 to 800 ms). In post hoc 220 

analysis, we parsed the epoch into “encoding” (0-260 ms) and “decoding/decision process” 221 

intervals (>300 ms) to investigate neural decoding related to pre- and post-perceptual processing, 222 

respectively.  The sliding window resulted in 40 (800ms/20ms) ERP features (i.e., mean 223 

amplitude per window) for each ROI waveform, yielding a total of 68*40=2720 features per 224 

token (e.g., Tk1/5 vs. Tk3) from each listeners’ data. Thus, the encoding and decision windows 225 

contained 13*68=884 (encoding) and 25*68=1700 (decision) ERP features. ERPs features were 226 

then used as input to an SVM classifier to access the temporal dynamics of the data and 227 

determine when in time CP was decodable from brain activity. State-of-the art variable selection 228 

(stability selection; see Section 2.7) (Meinshausen & Bühlmann, 2010) was then applied for 229 

identifying where in the brain (e.g., which ROIs) were involved in encoding and decision 230 

processes with regard to the categorization of speech. Before submitting to the SVM classifier, 231 

the data were z-score normalized to ensure all features were on a common scale range (Casale et 232 

al., 2008). 233 

2.6 SVM classification to identify temporal dynamics of CP 234 

Parameter optimized Support Vector Machine (SVM) classifiers provide better performance 235 

with small sample sizes data which is common in human neuroimaging studies. Classifier 236 

performance is greatly affected by tunable parameters in the SVM model (e.g., kernel, C, γ)1 237 

 
1 Parameters γ and C in the SVM used in this study gives a measure of the influence of training data points on decision boundary and a measure 

of miss-classification tolerance. The first parameter γ comes from the radial basis function kernel (e.g., 𝐾(𝑥, 𝑥′) = exp (−
||𝑥−𝑥′||2

2𝜎2
) or 
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(Hsu et al., 2003). To avoid bias in parameter selection, we used a grid search approach during 238 

the training phase to find optimal kernel, C, and γ values. We randomly split the data into 239 

training (80%) and test (20%) sets (Park et al., 2011). During the training phase (e.g., using 80% 240 

data), we fine-tuned the C, and γ parameters using grid search to find the optimal values such 241 

that the resulting classifier accurately distinguished prototypical vs. ambiguous speech in the test 242 

data that models never seen. The grid search process was conducted with five-fold cross 243 

validation, kernels = ‘RBF’, fine-tune 20 different values of (C and γ) in the following range C = 244 

[1e-2 to 1e3], and γ = [1e-4 to 1e2] (Mahmud et al., 2020). The SVM learned the support vectors 245 

from the training data that comprised the attributes (e.g., ERP features) and class labels (e.g., 246 

Tk1/5 vs. Tk3). Then we selected the best model that has maximum margin with the optimal 247 

value of C and γ for predicting the unseen test data (only by providing the attributes but no class 248 

labels). The classification performance metrics (accuracy, F1-score, precision, and recall) are 249 

calculated from standard formulas (Saito & Rehmsmeier, 2015). 250 

2.7 Stability selection to identify spatial dynamics of CP 251 

          Our data included a large number (~2700) of ERP measurements for each stimulus 252 

condition of interest (e.g., Tk1/5 vs. Tk3). Larger numbers of variable/features can lead to 253 

overfitting and weak generalization in classification problems since the majority of features from 254 

brain activity (i.e., different ROIs, time segments) do not provide discriminative power for 255 

decoding CP.  Consequently, we aimed to select a limited set of the most salient discriminating 256 

 
equivalently 𝐾(𝑥, 𝑥′) = exp(−𝛾||𝑥 − 𝑥′||2) with a parameter γ) where 𝛾 =

1

2𝜎2
 . In this study, the radial basis kernel is used as a 

transformation function. A larger value of γ implies smaller σ, which means that the classifier takes into account the effect of samples 

closer to the decision boundary. On the other hand, smaller γ means that the classifier considers the effect of samples farther from the 
decision boundary. The C is a parameter of SVM that acts as regularization. It provides the classifier a trade-off between the margin of 

decision boundary and miss- classification. A larger value of C produces a narrower (smaller-margin) hyperplane if that obtains less or no 

miss-classification. Whereas the smaller value of C allows drawing a wider (bigger-margin) hyperplane even if there are some miss-
classifications. The optimal value of γ and C depends on data which is why we used a grid search to tune these parameters in our 

classification model. 
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features. Stability selection is a state-of-the art feature selection method that works well in high 257 

dimensional or sparse data based on the Lasso (least absolute shrinkage and selection operator) 258 

(Meinshausen & Bühlmann, 2010; Yin et al., 2017). Stability selection can identify the most 259 

stable (relevant) features out of a large number of features over a range of model parameters, 260 

even if the necessary conditions required for the original Lasso method are violated 261 

(Meinshausen & Bühlmann, 2010).   262 

In stability selection, a feature is considered to be more stable if it is more frequently 263 

selected over repeated subsampling of the data (Nogueira et al., 2017). Basically, the 264 

Randomized Lasso randomly subsamples the training data and fits a L1 penalized logistic 265 

regression model to optimize the error.  Over many iterations, feature scores are (re)calculated. 266 

The features are shrunk to zero by multiplying the features’ co-efficient by zero while the 267 

stability score is lower. Surviving non-zero features are considered important variables for 268 

classification. Detailed interpretation and mathematical equations of stability selection are 269 

explained in (Meinshausen & Bühlmann, 2010).  The stability selection solution is less affected 270 

by the choice of the initial regularization parameters. Consequently, it is extremely general and 271 

widely used in high dimensional data even when the noise level is unknown. 272 

     In our implementation of stability selection, we used a sample fraction = 0.75, number of 273 

resamples = 1000, and tolerance = 0.01 (Meinshausen & Bühlmann, 2010). In the Lasso 274 

algorithm, the feature scores were scaled between 0 to 1, where 0 is the lowest score (i.e., 275 

irrelevant feature) and 1 is the highest score (i.e., most salient or stable feature). We estimated 276 

the regularization parameter from the data using the least angle regression (LARs) algorithm 277 

(Efron et al., 2004; Friedman et al., 2010).  Over 1000 iterations, Randomized Lasso provided 278 

the overall feature scores (0~1) based on the number of times a variable was selected. We ranked 279 
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stability scores to identify the most important, consistent, stable, and invariant features that could 280 

decode speech categories via the EEG (i.e., correctly classify Tk1/5 vs. Tk3). We submitted 281 

these ranked features and corresponding class labels to an SVM classifier with different stability 282 

thresholds and observed the model performance.  283 

3. RESULTS 284 

3.1 Behavioral results 285 

Behavioral identification (%) functions and reaction time (ms) for speech categorization are 286 

depicted in Fig. 1C, Fig. 1D, respectively. Listeners responses abruptly shifted in speech identity 287 

(/u/ vs. /a/) near the midpoint of the continuum, reflecting a change in perceived category. The 288 

behavioral speed of speech labeling (e.g., reaction time (RT)) were computed listeners’ median 289 

response latency for a given condition across the all trials. RTs outside of 250-2500 ms were 290 

deemed outliers and excluded from further analysis (Bidelman et al., 2013a; Bidelman & Walker, 291 

2017a). Listeners spent more time classifying the ambiguous (Tk3) than prototypical speech tokens 292 

(e.g., Tk1/5), further confirming categorical hearing (Pisoni & Tash, 1974). For each continuum, 293 

the identification scores were fit with a two parameters sigmoid function; 𝑃 =
1

[1+𝑒−𝛽1(𝑥−𝛽0)]
 , 294 

where P is the proportion of the trial identification as a function of a given vowel, x is the step 295 

number along the stimulus continuum, and β0 and β1 the location and slope of the logistic fit 296 

estimated using the nonlinear least-squares regression (Bidelman et al., 2014; Bidelman & Walker, 297 

2017a). The slopes of listeners’ sigmoidal psychometric function, reflecting the strength of their 298 

CP, is presented in Figure 1B.  299 

3.2 Decoding the time-course of speech categorization from ERPs 300 

We first examined how well categorical speech information could be decoded from whole-301 

brain and individual hemisphere (e.g., LH and RH) ERPs data. During pilot modeling, we carried 302 
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the grid search approach (mentioned in method). The optimal values of C and γ parameters 303 

corresponding to the maximum speech decoding reported in Table 1 were: [C=10, γ=0.05 for 304 

whole-brain data; C=20, γ=0.01 for LH data; C=20, γ=0.01 for RH data].  We then selected the 305 

best model and predicted the class labels (e.g., Tk1/5 vs. Tk3) by feeding the feature vectors only 306 

from the unseen test data. The performance metrics were calculated from predicted class labels 307 

and true class labels. Time-varying accuracy of the SVM classifier (i.e., distinguishing Tk1/5 vs. 308 

Tk3 responses) is shown in Figure 3.   309 

Decoding was generally at chance level (54%) at stimulus onset (i.e., t = 0) but increased 310 

rapidly to a maximum accuracy of 95.16% by 120 ms. The individual hemispheres alone were 311 

less accurate and decoded speech categories later in time compared to whole-brain data (LH: 312 

89.03% at 140 ms; RH: 86.45% at 200 ms) (Fig. 3B). Other important performance metrics of 313 

the SVMs at maximum decoding are reported in Table 1. Collectively, the earlier and improved 314 

ability of LH compared to RH in decoding phonetic categories is consistent with a left 315 

hemisphere bias in speech and language processing (Hickok & Poeppel, 2000). More critically, 316 

the early time course of decoding (120-150 ms) confirms that category level information, an 317 

abstract code, emerges very early in the neural chronometry of speech processing and well 318 

before listeners’ execute their behavioral decision (cf. reaction times in Fig. 1D) (Alho et al., 319 

2016; Bidelman et al., 2013c; de Taillez et al., 2020).  320 
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  321 

Figure 3: SVM classifier accuracy decoding speech categories from source ERPs. A) Decoding 322 

using whole-brain vs. hemispheres-specific data (LH and RH) across the epoch window. B) 323 

Maximum classifier accuracy was observed at ~120 ms suggesting category representations 324 

emerge early, ~200 ms before listeners’ behavioral categorization decisions (cf. Fig. 1C).  325 

 326 

Table 1: Performance metrics of the SVM classifier corresponding to maximal decoding of 327 

prototypical vs. ambiguous vowels from ERPs. 328 

Metric (%) 
Whole-brain  

features 

LH  

features 

RH 

features 

Accuracy 95.16 89.03 86.45 

AUC 95.14 89.18 86.45 

F1-score 95.00 89.00 86.00 

Precision 95.00 89.00 87.00 

Recall 95.00 89.00 86.00 

 329 
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3.3 Decoding the spatial regions underlying categorization: stimulus encoding vs. decision 330 

We used stability selection to find the most critical brain ROIs that were associated with 331 

categorical organization in the encoding (pre-perceptual) vs. decision (post-perceptual) periods 332 

of the task structure (see Fig. 2). ERP features were considered stable (relevant) if they yielded a 333 

decoding accuracy performance >80%. The effect of stability threshold selection in the encoding 334 

and decision windows is illustrated in Figure 4. Each bin of histogram demonstrates the number 335 

of features in a range of stability threshold. The x-axis has four labels. The first line represents 336 

the stability score (0 to 1); the second and third line show the number of features and percentage 337 

of the selected features in the corresponding bin; line four represents the cumulative unique ROIs 338 

up to the lower boundary of the bin. The solid black and dotted red semi bell-shaped curves of 339 

Figure 4 represent classification accuracy and AUC, respectively for the different stability 340 

thresholds. In this analysis, the number of unique brain ROIs represents distinct functional brain 341 

ROIs of the DK atlas and the number of features represents different time windows extracted 342 

from source ERPs. Features selected at each stability threshold were then submitted to an SVM 343 

classifier separately for the stimulus encoding and response decision periods.  344 

During stimulus encoding (0-260 ms), 75% of features yielded stability scores 0 to 0.1. 345 

Thus, the majority of spatiotemporal ERP features were selected less than 10% out of 1000 346 

model iterations and therefore carry weak importance in terms of describing categorical speech 347 

processing during stimulus encoding. In contrast, at a more conservative stability score of 0.3, 348 

102 (11%) out of 884 ERP features selected from 52 ROIs were able to encode prototypical from 349 

ambiguous speech at near-ceiling accuracy (95.8%). Accuracy decreased precipitously with 350 

higher (more conservative) stability thresholds resulting in fewer (though more informative) 351 

brain ROIs describing category processing. For example, a stability score of 0.6—selecting only 352 
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the most behaviorally-relevant features—still encoded speech categories well above chance 353 

(66.8%) with only 5 features from 5 ROIs. At stability score 0.5, speech encoding accuracy 354 

82.6% only using 15 features from 13 unique ROIs. A BrainO visualization (Moinuddin et al., 355 

2019) of relevant ROIs for the encoding period (threshold stability score ≥  0.5) is shown in 356 

Figure 5 with additional details in Table 2.   357 

During the decision period following stimulus encoding (> 300 ms), corresponding to the 358 

stability score 0.4, only 92 (5%) out of 1700 ERP features were selected, and the classifier 359 

showed decoding accuracy of 93.5% (AUC 93.6%). At a stability score 0.5 (corresponding to 360 

83.2% accuracy), only 21 (1%) out 1700 ERP features from 15 unique ROIs were needed to 361 

describe categorical processing.  362 

 363 

Figure 4: Effect of stability score threshold on model performance during (A) encoding and (B) 364 

decision period of the CP task. The bottom of the x-axis has four labels; Stability score 365 

represents the stability score range of each bin (scores: 0~1); Number of features, number of 366 
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features under each bin; % features, the corresponding percentage of selected features; ROIs, 367 

number of cumulative unique brain regions up to the lower boundary of the bin.  368 

 369 

Figure 5: Stable (most consistent) neural network during the encoding period of CP. 370 

Visualization of brain ROIs corresponding to ≥ 0.50 stability threshold (13 top selected ROIs 371 

which show categorical organization (e.g., Tk1/5 ≠ Tk3) at 82.6%. (A) LH (B) RH (C) Posterior 372 

view (D) Anterior view. Color legend demarcations show high (pink), moderate (blue), and low 373 

(white) stability scores. l/r = left/right; SUPRA, supramarginal; CAC, caudal anterior cingulate; 374 

IP, inferior parietal; POB, pars orbitalis; TRANS, transverse temporal; SF, superior frontal; POP, 375 

pars opercularis; LOF, lateral orbitofrontal; PT, pars triangularis; SP, superior parietal; CMF, 376 

caudal middle frontal; FUS, fusiform. 377 
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 378 

Figure 6: Stable (most consistent) neural network during the decision period of CP. 379 

Visualization of brain ROIs corresponding to ≥ 0.50 stability threshold (15 top selected ROIs 380 

which decode Tk1/5 from Tk3 at 83.2%. Otherwise as in Figure 5. SP, superior parietal; INS, 381 

Insula; POP, pars opercularis ; SF, superior frontal; CMF, caudal middle frontal; IST, isthmus 382 

cingulate; PT, pars triangularis; CMF, caudal middle frontal; ENT, entorhinal;  PARAC,  383 

paracentral; IP, inferior parietal; PHIP, para hippocampal ;POC, postcentral. 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 
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Table 2: Most important brain regions describing speech categorization during stimulus 392 

encoding (13 ROIs) and response decision (15 ROIs) at a stability threshold ≥ 0.5. 393 

 394 

3.4 Brain-behavior correspondences 395 

Multivariate regression analysis is widely used to investigate when more than one predictor 396 

simultaneously influences an outcome variable (Hanley, 1983; Royston & Sauerbrei, 2008).  To 397 

evaluate the behavioral relevance of the brain regions identified via stability selection, we 398 

 

Rank 

Encoding (82.6% total accuracy) Decision (83.2% total accuracy) 

ROI name 

ROI 

abbrev. 

Stability 

score ROI name 

ROI 

abbrev. 

Stability 

score 

1   Supramarginal L lSUPRA 0.73 Superior parietal L lSP 0.63 

2 

Caudal anterior cingulate 

R rCAC 0.66          Insula L lINS 0.60 

3 Inferior parietal L lIP 0.65 Isthmus cingulate R rIST 0.58 

4   Pars orbitalis R rPOB 0.61 Pars opercularis R rPOP 0.58 

5 Transverse temporal L lTRANS 0.61 Superior frontal L lSF 0.57 

6 Superior frontal R rSF 0.58 

Caudal middle frontal 

R rCMF 0.57 

7 Pars opercularis L lPOP 0.57 Isthmus cingulate L lIST 0.56 

8 Lateral orbitofrontal L lLOF 0.57 Pars triangularis R rPT 0.54 

9 Superior frontal L lSF 0.55 

Caudal middle frontal 

L lCMF 0.54 

10 Pars triangularis R rPT 0.54      entorhinal L lENT 0.53 

11 Superior parietal R rSP 0.53 Pars opercularis L lPOP 0.53 

12 Caudal middle frontal R rCMF 0.53     Paracentral R rPARAC 0.52 

13        fusiform L lFUS 0.52 Inferior parietal L lIP 0.51 

14    Parahippocampal R rPHIP 0.51 

15        Postcentral L lPOC 0.51 
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conducted multivariate regression using weighted least squares (WLS) regression (Ruppert & 399 

Wand, 1994). Regressions were computed between the 15 ROI ERPs identified in the decision 400 

interval and listeners’ behavioral slopes (Fig. 1B), which indexes their degree of categorical 401 

hearing. We computed the mean neural response (i.e., ERP) within each selected region across 402 

the stimuli [mean ERP of (Tk1/5 & Tk3)] and then regressed the 15 ROI responses 403 

simultaneously against listeners’ behavioral slope. The inverse of the absolute error values of the 404 

ordinary least squares were used as weights in the WLS to reduce the effect of heteroscedasticity 405 

(Seabold & Perktold, 2010; Weighted Regression in SAS, R, and Python, n.d.). The multivariate 406 

model robustly predicted listeners’ behavioral CP from neural data (R2 = 0.85, p<0.00001; Table 407 

3), demonstrating the selected 15 ROIs identified via ML (i.e., stability selection) carried 408 

behaviorally relevant information regarding CP.  409 

Table 3: WLS regression results describing how individual brain ROIs predict behavioral CP. 410 

 ROI name 

ROI 

abbrev. 

Coefficient t-value p-value 

1 Superior parietal L lSP -0.2163 -3.008 0.004920 

2          insula L lINS 0.1808 5.188 0.000010 

3 Isthmus cingulate R rIST -0.2679 -3.764 0.000633 

4 Pars opercularis R rPOP 0.1231 4.429 0.000093 

5 Superior frontal L ISF -0.1726 -3.190 0.003055 

6 Caudal middle frontal R rCMF 0.1544 2.367 0.023774 

7 Isthmus cingulate L lIST 0.2259 2.792 0.008545 

8 Pars triangularis R rPT -0.0214 -0.679 0.501925 

9 Caudal middle frontal L ICMF 0.0153 0.345 0.732223 

10      entorhinal L lENT 0.1170 5.009 0.000013 

11 Pars opercularis L lPOP 0.1475 3.892 0.000441 
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 411 

4. DISCUSSION 412 

 We conducted machine learning analyses on EEG to examine the spatiotemporal dynamics 413 

of speech processing during rapid speech sound categorization. We found that speech categories 414 

are best decoded via patterned neural activity occurring within 120 ms and no later than 200 ms. 415 

We also identified the most relevant brain regions that are involved in encoding and decision 416 

stages of the categorization process. Our findings show a small set of brain areas (15 ROIs) 417 

robustly predicts listeners’ categorical decisions, accounting for 85.0% of the variance in 418 

behavior. 419 

4.1 Speech categories are decoded early (<150 ms) in the time course of perception  420 

We replicate and extend previous work by using whole-brain EEG and SVM neural 421 

classifiers to examine the time-course and hemispheric asymmetry as the brain decodes the 422 

identity of speech sounds. We found optimal speech decoding in the time frame of the N1 wave 423 

(120 ms) of the auditory ERPs using full-brain data. Analysis by hemisphere further showed that 424 

LH yielded better and earlier decoding than the RH, where optimal decoding occurred 20-80 ms 425 

later (LH: 140 ms; RH: 200 ms). These latencies are compatible with the N1-P2 waves of the 426 

auditory ERPs and suggest a rapid speed to phonetic categorization (Alho et al., 2016; Bidelman 427 

et al., 2013c; de Taillez et al., 2020). Our results are consistent with previous neuroimaging 428 

studies that have shown the N1 and P2 ERPs are sensitive to auditory perceptual object 429 

identification (Alain, 2007; Bidelman et al., 2013b; Wood et al., 1971). The better decoding by 430 

12     paracentral R rPARAC 0.2223 3.308 0.002226 

13 Inferior parietal L lIP -0.1017 -1.364 0.181508 

14 Parahippocampal R rPHIP -0.0422 -2.097 0.043540 

15     Postcentral L lPOC 0.1809 2.749 0.009512 
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LH as compared to RH activity is consistent with the dominance of LH in phoneme 431 

discrimination and speech sound processing (Bidelman & Howell, 2016; Bidelman & Walker, 432 

2019b; Frost et al., 1999; Tervaniemi & Hugdahl, 2003; Zatorre et al., 1992). Our neural 433 

decoding results also corroborate previous hypothesis-driven work (Bidelman et al., 2013c, 434 

2014; Chang et al., 2010) by confirming speech sounds are converted to an abstract, categorical 435 

representation within the first few hundred milliseconds after stimulus onset  436 

4.2 Differential brain-networks involved in encoding and decision processing  437 

Our results help identify the most stable, relevant, and invariant functional brain ROIs that 438 

support the brain-networks involved in encoding and decision processes of speech categorization 439 

using an entirely data-driven approach (stability selection coupled with SVM). During stimulus 440 

encoding, stability selection have identified 13 consistent ROIs that differentiate speech 441 

categories (82.6% accuracy; 0.5 stability threshold). Out of these 13 regions, eight of the ROIs 442 

are critically involved in the dorsal-ventral pathway for speech-language processing (Hickok & 443 

Poeppel, 2004). These included areas in frontal lobe including Broca’s area [BA 44, (i.e., pars 444 

opercularis L, pars triangularis R)], three regions from parietal and two regions from temporal 445 

lobe including primary auditory cortex (i.e., transverse temporal L). For later decision stages of 446 

the task, the same criterion of decoding performance (83.2% @ 0.5 stability threshold) have 447 

identified 15 ROIs that showed categorical neural organization. Out of these 15 regions, eight 448 

areas are from frontal lobe including Broca’s area [BA 44, (i.e., pars opercularis L, pars 449 

opercularis R), and BA 45 (i.e., pars triangularis R)], four regions from parietal lobe, and three 450 

regions from temporal lobe. Our data reveal two, relatively sparse, and partially overlapping 451 

neural networks that support different stages of speech categorization process.  452 
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Among the encoding and decision networks identified from our EEG data, five regions were 453 

common between the two topologies. Notably were the inclusion of BA44/45 (i.e., canonical 454 

Brocas’ area) that are heavily involved in speech-language processing (Hickok et al., 2011; Lee 455 

et al., 2012; Novick et al., 2010). The left inferior parietal lobe also appears as a common hub 456 

among the two networks. Superior parietal areas have been linked with auditory, phoneme, 457 

sound categorization, particularly when listeners are asked to resolve context or ambiguity 458 

(Dufor et al., 2007; Feng et al., 2018; Myers & Blumstein, 2008).  Involvement of superior 459 

frontal lobe in both networks is perhaps consistent with its role in higher cognitive functions and 460 

working memory (Klingberg et al., 2002; Nyberg et al., 2003). The fact that these extra-sensory 461 

regions can decode category structure even during stimulus encoding (< 150 ms) suggests that 462 

the formation of speech categories might operate nearly in parallel within lower-order (sensory) 463 

and higher-order (cognitive-control) brain structures (Toscano et al., 2018). However, these 464 

category representations need not be isomorphic across the brain. For example, category 465 

formation might reflect a cascade of events where speech units are reinforced and further 466 

discretized by a recontact of acoustic-phonetic with lexical representation of the speech category 467 

(Myers & Blumstein, 2008).    468 

Notable among the non-overlapping regions between stages were left primary auditory cortex 469 

(transverse temporal) and supramarginal gyrus, both of which were exclusive to the stimulus 470 

encoding period.  Both regions have been implicated in the early acoustic analysis of the speech 471 

signal and related phonological processing (Deschamps et al., 2014; Geiser et al., 2008; Hickok 472 

et al., 2000; Oberhuber et al., 2016; Whitwell et al., 2013; Zatorre et al., 1992). Intuitively, their 473 

absence during the decision stage further suggests the categorical representation of speech, while 474 
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present early in time (< 150 ms), might take different forms in auditory-sensory cortex before 475 

being broadcast to decision mechanisms downstream.  476 

Left postcentral gyrus is also exclusive during decision. Activation of this area proximal to 477 

the behavioral response execution most probably reflects motor planning and/or speech 478 

reconstruction (Martin et al., 2014). Additional non-overlapping ROIs included pars opercularis 479 

in the RH. Right IFG has been implicated in attentional control and response imbibition 480 

(Hampshire et al., 2010), which is consistent with its exclusive involvement in the decision stage 481 

of our task. Presumably, the other non-overlapping regions identified via stability selection 482 

(superior parietal L, insula L, Isthmus cingulate (l/rIST), caudal middle frontal L, entorhinal L, 483 

paracentral R, parahippocampal R) are also involved in decision processes, though as of yet, in 484 

an unknown way. Minimally, the involvement parahippocampal regions implies putative 485 

memory and retrieval processes. Still, more detailed localization studies (e.g., using fMRI) are 486 

needed to validate our EEG data, which offers a much coarser spatial resolution.   487 

It is noticeable that during encoding, 7 out of 13 ROIs are from LH; for decoding, 9 out of 15 488 

ROIs. The left hemisphere bias in our decoding data is perhaps expected given the LH 489 

dominance in auditory language processing (Caplan, 1994; Hull & Vaid, 2006; Tzourio et al., 490 

1998). Moreover, our results support previous studies by confirming a bilateral fronto-parietal 491 

network involved in auditory attentional, working memory (Belin et al., 2002; Schneiders et al., 492 

2012), sound discrimination tasks (Hickok & Poeppel, 2000), and phoneme categorization 493 

(Bidelman & Walker, 2019a; Lee et al., 2012; Loui, 2015). Interestingly, our study shows that 494 

only 15 brain regions (during decision) are needed to predict listeners’ behavior CP with 85.0% 495 

accuracy.  496 
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