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Abstract 23 

     Energy and habitat distribution are inherently linked. Energy is a major driver of the 24 

distribution of consumers, but estimating how much specific habitats contribute to the energetic 25 

needs of a consumer can be problematic. We present a new approach that combines remote 26 

sensing information and stable isotope ecology to produce maps of energetic resources (E-27 

scapes). E-scapes project species specific resource use information onto the landscape to classify 28 

areas based on energetic importance and successfully predict the biomass and energy density of a 29 

consumer in salt marsh habitats in coastal Louisiana, USA. Our E-scape maps can be used alone 30 

or in combination with existing models to improve habitat management and restoration practices 31 

and have potential to be used to test fundamental movement theory. 32 
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Introduction 37 

     The availability of energetic resources and habitat distribution are inherently linked. Habitats 38 

produce specific resources that are available to consumers, and energy is a major driver of 39 

consumer production, movement, and distribution (Wallace et al. 1999; Ware & Thomson 2005; 40 

Pyke 2019). The distribution of habitats, and therefore energy, is heterogeneous, and there is a 41 

substantial body of theoretical and empirical work that demonstrates how organisms respond to 42 

patterns of habitat and energy across landscapes (Wright 1983; Currie 1991; Guégan et al. 1998; 43 

Brown et al. 2004; Stein et al. 2014; Pyke 2019). This framework provides a link for how 44 

consumers are influenced by the distribution of energy and, coupled with technological advances 45 

in remote sensing and geographical information systems (GIS), provide an exciting opportunity 46 

to answer critical questions in spatial ecology and influence how we manage and restore rapidly 47 

changing ecosystems (Merkle et al. 2015; Fryxell et al. 2020). 48 

     An accurate species specific representation of resource availability at the landscape scale is 49 

required to test theories linking energy availability and species foraging or distribution. Spatial 50 

primary production estimates (e.g. normalized difference vegetation index (NDVI), chlorophyll-a 51 

concentration) and prey habitat suitability models are some of the approaches used to map 52 

resource availability for consumers across landscape and regional spatial scales (i.e., from 10s to 53 

100s of kilometers) (Mosser et al. 2014; Abrahms et al. 2019; Geary et al. 2020). For example, a 54 

habitat suitability model of the dominant prey of brown pelicans (which included chlorophyll-a 55 

concentration as a model parameter) was used to test how foraging behavior changed during the 56 

breeding season (Geary et al. 2020). Landscape resource maps have typically focused on a single 57 

resource or prey species, which is accurate when a consumer specializes on that resource. 58 

However, in many cases, a consumer is integrating multiple resources from different habitat 59 
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types across the landscape. When a consumer is using multiple resources, mapping energy 60 

distribution is more difficult because resources are not produced evenly amongst habitats and 61 

consumers typically do not use all resources equally. Thus, in order to accurately represent 62 

energy distribution, information is needed on where resources are being produced across the 63 

landscape and the proportion each resource used by the consumer.  64 

    Remote sensing has long been used to produce landscape-level imagery of habitats, and digital 65 

platforms provide access and availability of satellite and aerial imagery more than ever before 66 

(Xie et al. 2008). Satellite programs like Landsat and Sentinel provide free multispectral imagery 67 

of the globe, and commercial satellites and unmanned aircraft systems (UAS) are becoming more 68 

affordable for providing high-resolution imagery (Tucker et al. 2004; Irons et al. 2012; Harris et 69 

al. 2019). GIS software can easily convert remotely sensed imagery into habitat cover maps, and 70 

remote sensing has helped in the mapping of different systems across multiple spatiotemporal 71 

scales. These new remote sensing products/maps can be combined with other spatially explicit 72 

data such as biogeochemical tracers, population information, or physical parameters to generate 73 

novel data products that can answer a wide array of ecological, management, and conservation 74 

questions (West et al. 2007; Effati et al. 2012).  75 

     Stable isotope ratios, typically of 13C/12C, 15N/14N, and 34S/32S, have been used for decades to 76 

determine the relative contributions of primary production sources in food webs (Peterson & Fry 77 

1987; Fry 2007; Nelson et al. 2015). The general principle hinges literally upon the age-old 78 

adage “you are what you eat”. Organisms consume food and rearrange the consumed material to 79 

create new tissue. The stable isotope values, typically defined in del notation and expressed in 80 

per mil, of primary producers are controlled by a number of physical and biological processes 81 

that impart characteristic isotope values (Chanton et al. 1987; Farquhar et al. 1989). These 82 
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characteristic values can then be traced as they are assimilated in the food web using Bayesian 83 

stable isotope mixing models (Stock et al. 2018). All plants fix carbon from the same 84 

atmospheric reservoir of CO2, currently -8 ‰ δ13C. For example, in coastal ecosystems carbon 85 

stable isotope values can be most useful in differentiating between C3 plants, such as mangroves, 86 

which fix carbon with a net fractionation of about -20 ‰ relative to the atmosphere and C4 87 

plants, such as tropical and temperate salt tolerant grasses, which have a net fractionation of 88 

about -5 ‰ (Fry 2007). In the same systems sulfate reduction in sediments has large 89 

fractionation factor (30-70 ‰) and can be used as a strong indicator of pelagic vs. benthic 90 

primary production (Chanton et al. 1987; Nelson et al. 2012).  91 

     Here we present a method that combines stable isotope analysis, Bayesian mixing models, 92 

and remote sensing to build a landscape of energetic resources, or E-scape, for white shrimp 93 

(Litopenaeus setiferus) in Port Fourchon, LA. An E-scape combines the spatial locations where 94 

resources are being produced (habitat cover map) and how much of each resource the consumer 95 

is using (stable isotope analysis) to generate a species specific map of areas that contain habitats 96 

producing the resources being used by that species. Using our E-scapes, we investigated the 97 

relationship between energy distribution and white shrimp distribution and how the scale used to 98 

generate the E-scape mediated this relationship. 99 

Methods 100 

     Samples of white shrimp (Litopenaeus setiferus) were collected using a 1-m2 drop sampler at 101 

55 randomly selected sampling locations in Port Fourchon, LA (Figure 1A) (Zimmerman et al. 102 

1984; Nelson et al. 2019). We collected all of the white shrimp within the drop sampler to 103 

determine the abundance and biomass at each sampling location. Samples for stable isotope 104 
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analysis and bomb calorimetry were removed, placed on ice, and frozen upon returning to the 105 

laboratory. 106 

107 

Figure 1. The Port Fourchon, LA A) habitat cover map showing the sampling locations of white shrimp (red points) 108 

and B) the corresponding white shrimp E-scape map. Warmer colors (HRI values > 1) are better energetically for 109 

white shrimp, and cooler colors (HRI values < 1) are worse energetically. The E-scape was generated at a cell size 110 

of 400 m x 400 m (similar area to a 200 m circle) 111 

 112 

     Primary production source and animal tissue samples were frozen at - 20°C in the laboratory 113 

until they could be processed for isotope analysis and bomb calorimetry. At each location, 5 114 

individuals were pooled to create one composite sample. Samples were dried at 50�C for 48 115 

hours and ground. We determined the energy density (calories/g) of each sample using a Parr 116 

6725 bomb calorimeter (Parr Instrument Company, Moline, IL, USA). We shipped samples to 117 

the Washington State University Stable Isotope Core Facility for C, N, and S content and stable 118 

isotope analysis. Carbon, nitrogen, and sulfur isotope values were calculated using the standard 119 

formula (Fry 2007). PeeDee Belemnite (PDB), atmospheric nitrogen, and Canyon Diablo Troilite120 

(CDT) were used as the reference standards for C, N, and S, respectively. No C:N ratio was 121 

above 3.5; therefore, no lipid correction was applied (Layman et al. 2007; Nelson et al. 2011).  122 

 

ite 
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     Bayesian mixing models were run in R using the package MixSIAR (Stock et al. 2018) to 123 

determine the relative basal resource contributions to shrimp at each sampling location. Each 124 

model was run with a Markov chain Monte Carlo algorithm that consisted of three chains, chain 125 

length of 3,000,000, burn-in of 1,500,000, and thin of 500 to ensure model convergence. 126 

Corrections were made for the elemental concentration in each source, and the trophic 127 

enrichment for each element was C = 1.0 ± 0.63 (mean ± sd), N = 3.0 ± 0.74, and S = 0.5 ± 0.2 128 

(Phillips et al. 2014). 129 

     The E-scape of Port Fourchon, LA for white shrimp was made using the methods outlined in 130 

Figure 2. High-resolution aerial imagery from https://atlas.ga.lsu.edu was used to generate a 131 

habitat cover map of Port Fourchon, LA using the ‘Maximum Likelihood Classification’ tool in 132 

ArcGIS (v 10.5). This tool uses supervised classification maximum likelihood to assign a habitat 133 

class to each pixel of the image based on mean and variances of the habitat classes of the training 134 

data set. Four habitat classes were used: water, marsh, mangrove, and other. The ‘marsh’ class 135 

was comprised mainly of Spartina alterniflora, the ‘mangrove’ class was comprised mainly of 136 

Avicennia germinans, and the ‘other’ class was comprised mainly beach area and port facilities. 137 

Habitat cover areas were calculated using buffers with circle radius lengths of 50, 75, 100, 150, 138 

200, 250, 300, 400, 500, 750, 1000, and 1500 m around the collection locations using the 139 

‘landscapemetrics’ packages in R (Hesselbarth et al. 2019). White shrimp have a home range 140 

similar to that of the area of a 200 m radius circle (Rozas & Minello 1997; Webb & Kneib 2004; 141 

Nelson et al. 2019). The other size buffers were chosen to test the sensitivity of the E-scape at 142 

different scales. Edge habitat was calculated by measuring the linear distance between the water 143 

and vegetation (marsh and mangrove) habitat cover classes and multiplying by 2 m to generate 144 

an area. Edge area was calculated this way because benthic algae production is highest at the 145 
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marsh edge (Wainright et al. 2000; Litvin et al. 2018), and benthic microalgae have recently 146 

been shown to have similar biomass at the edge habitat of both marsh and mangrove vegetation 147 

(Walker et al. 2019).   148 

Figure 2. General methods for generating an E-scape 
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    Habitat cover areas were combined with consumer resource use to calculate the index of 149 

energetic importance (IEI) for each basal resource and habitat type combination. Each IEI was 150 

calculated with the following formula:  151 

���� �  ��������
��	
��	��

 

where ��������
is the fraction of the contribution of source i to the total source use based on the 152 

results of the mixing model and ��	
��	��  is the fraction of habitat i that produces source i to the 153 

overall area within the movement range of the consumer (area of the circle around the sampling 154 

point). An example of resource/habitat combination is amount of Spartina alterniflora derived 155 

production and the cover area of S. alterniflora marsh habitat. IEI values were calculated for 156 

phytoplankton/water, Spartina/marsh, and benthic algae/edge source/habitat combinations. The 157 

mangrove habitat source combination was not used in the analysis because resource use of 158 

mangrove was < 0.01. Each IEI is a measurement of how much energy of a resource a consumer 159 

is derived from relative to the amount of habitat that produces that resource where the consumer 160 

is foraging. An IEI around one means that the consumer is using a resource (��������
) around the 161 

same amount as the proportion of the habitat that produces that resource relative to total area 162 

where that consumer is foraging over. An IEI greater than one means that the consumer is using 163 

that source more than expected based on the proportion of that habitat in the total foraging area, 164 

while the opposite is true for an IEI below one.  165 

     IEI values were combined with habitat cover areas to calculate the habitat resource index 166 

(HRI). HRI was calculated with the following formula:  167 

��� �  � ����	 
 ��	
��	��


���
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where ����	  is the median of the IEI for the source/habitat combination i and ��	
��	��  is the 168 

fraction of habitat i to the overall area within the movement range of the consumer. HRI is an 169 

index that represents a relative measurement of the quality of the habitats for producing the 170 

resources used by the consumer based on stable isotope analysis. An HRI value of 1 means that 171 

the area is producing the average amount of resources for the consumer. HRI values > 1 mean 172 

that the area is better for producing resources (i.e. more energy) for the consumer and the 173 

opposite is true for HRI values < 1 (Figure 1). The minimum possible HRI = 0, and the 174 

theoretical maximum for HRI is infinity, although it is very unlikely that this value will occur in 175 

nature because �������� and ��	
��	��  range between 0-1. Therefore, a unit of change is not linear 176 

for HRI, and log(HRI) should be used for linear modeling purposes so that unit change is the 177 

similar throughout the possible range of values. 178 

     One HRI value was calculated for each sampling location for the area enclosed within a 179 

circular buffer with the equation above. HRIs were calculated within a circular buffer with a 180 

radius length of 200 m based on field movement ranges of white shrimp in the field (Rozas & 181 

Minello 1997; Webb & Kneib 2004; Nelson et al. 2019). HRI values were also calculated at 50, 182 

75, 100, 150, 250, 300, 400, 500, 750, 1000, and 1500 m radius circles around the sample points 183 

to test for the effect of scale. The HRI values were calculated using the mean IEIs that were 184 

calculated at the same scale (i.e. the IEIs calculated at 100 m were used in the calculation of the 185 

HRI at 100 m). A GLM with a gaussian error was used to test the relationship between log(HRI) 186 

and energy density (cal/g). GLMs with a gamma error and log link function were used to test the 187 

relationship between HRI and biomass, abundance, total calories (cal/g * biomass), and mean 188 

size (biomass/abundance). For each GLM outliers were removed if the value was outside of 1.5 189 

± the interquartile range. All analyses were done in R (R Core Team 2020). 190 
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Results 191 

     White shrimp used benthic algae more than any other source (mean ± sd; 0.49 ± 0.04), 192 

followed by phytoplankton (0.38 ± 0.07), and Spartina (0.13 ± 0.04; Figure 3). Mangroves had a 193 

source contribution of < 0.01 of white shrimp (Figure 3).  194 

  195 

Figure 3. Bayesian mixing model results for white shrimp in Port Fourchon, LA. 
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     The index of energetic importance (IEI) values are a representation of how much the white 196 

shrimp are using a resource relative to the amount of habitat that produces that resource (Table 197 

1). Edge had consistently the highest IEI across all scales, with much smaller IEI values for both 198 

water and marsh (Table 1). Edge IEI values were highest at the smallest scale and declined until 199 

the 300 m radius, the lowest IEI value, where it increased as scale increased. Water IEI values 200 

were highest at the smallest scale and decreased as scale increase. Marsh IEI values were lowest 201 

at all scales of the three habitats and increased in value as scale increased.  202 

Table 1. The index of energetic importance (IEI) values and interquartile ranges (IQR) for each 203 

source/habitat combination: benthic algae/edge, phytoplankton/water, and Spartina/marsh and 204 

the habitat resource index (HRI) values (mean ± SD) at varying scales of consumer foraging 205 

(size circle calculated around sampling location). HRI values > 1 are better than average 206 

energetically for white shrimp, while the opposite is true for HRI values < 1.  207 

Size Edge IEI (IQR) Water IEI (IQR) 
Marsh IEI 
(IQR) 

HRI (mean ± 
SD) 

50 11.27 (6.61-28.12) 3.02 (1.03-14.35) 0.18 (0.14-0.25) 1.38 ± 0.90 

75 11.00 (6.91-14.13) 1.72 (1.04- 4.71) 0.19 (0.15-0.26) 1.16 ± 0.57 

100  9.19 (6.54-14.38) 1.48 (1.01- 2.72) 0.20 (0.15-0.27) 1.07 ± 0.42 

150  8.50 (6.66-12.97) 1.36 (0.89- 1.87) 0.21 (0.17-0.27) 1.07 ± 0.36 

200  8.19 (6.72-11.26) 1.26 (0.98- 1.75) 0.21 (0.18-0.26) 1.04 ± 0.32 

250  8.28 (6.48-10.79) 1.29 (0.98- 1.69) 0.22 (0.18-0.25) 1.07 ± 0.30 

300  8.16 (6.58-10.49) 1.20 (0.92- 1.52) 0.21 (0.18-0.26) 1.04 ± 0.26 

400  8.38 (6.95-10.36) 1.14 (0.90- 1.37) 0.22 (0.19-0.27) 1.03 ± 0.22 

500  8.42 (7.02-10.89) 1.10 (0.85- 1.34) 0.24 (0.18-0.27) 1.02 ± 0.20 

750  9.16 (7.29-11.34) 0.96 (0.78- 1.12) 0.25 (0.18-0.30) 1.02 ± 0.14 

1000  9.38 (7.84-11.54) 0.87 (0.74- 1.06) 0.27 (0.20-0.34) 0.99 ± 0.11 

1500  9.92 (8.33-11.87) 0.79 (0.69- 0.98) 0.31 (0.23-0.38) 0.99 ± 0.11 
 208 

     Habitat resource index (HRI) values at the 200 m scale were 1.04 ± 0.32 (mean ± SD) around 209 

the sampling locations (Table 1). HRI values are a relative metric of quality of the habitats for 210 

producing resources used by the white shrimp and were highest in areas that contained the most 211 

edge habitat (Figure 1). There was a significant relationship between HRI value and body size (t-212 

value = 4.8, p < 0.001), abundance (t-value = 2.5, p = 0.018), biomass (t-value = 5.4, p < 0.001), 213 

and total calories (t-value = 5.1, p < 0.001) at the 200 m scale (Figure 4, Table S1). The 214 
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relationship between HRI values and energy density (calories/g) was not significant (p > 0.05). 215 

For the other scales, the relationship between HRI values and body size was significant (p < 216 

0.05) at intermediate scales (100 – 750 m, Table S1). At the 150-250 m scales, there was a 217 

significant relationship with HRI values and abundance (Table S1). There was a signification 218 

relationship (p < 0.05) between HRI value and biomass for all but the 1500 m scale. The same 219 

was true for total calories (Table S1). There was no significant relationship between HRI value 220 

and Calories/g at any scale.    221 

  222 
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 223 

 224 

Figure 4. The relationship between habitat resource index and white shrimp A) body size, B) abundance, C) 225 

biomass, and D) total calories. HRI values were calculated within a 200 m radius circle around sampling locations. 226 

 227 

Discussion 228 

     Our results demonstrate that E-scapes can predict the spatial distribution of biomass and 229 

energetic density of a consumer by combing spatial habitat and resource use data (Figure 4). 230 

White shrimp size, abundance, biomass, and total calories increased as the habitat resource index 231 

increased across the marsh seascape (Figure 4). Individual white shrimp energy density (cal/g) 232 

was not related to energy distribution. These results are supported by previous work that showed 233 
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white shrimp energy density did not change depending on the habitat type of the shrimp (Nelson 234 

et al. 2019).  235 

      Habitat resource index (HRI) values predicted white shrimp distribution within its foraging 236 

range (200 m), but not at all scales tested. At scales less than 200 m the areas sampled failed to 237 

include all the habitats and resources used by shrimp creating an oversampling artifact. At the 238 

larger scales, the opposite is true, and the forage areas were over aggregated leading to poor 239 

representation of foraging habitat. These results demonstrate that choosing the right scale for 240 

generating the E-scape is important and should correspond to the foraging range of the 241 

consumer. For example, consumers that are foraging over much larger areas than shrimp (e.g. 242 

whale or bird), would require a larger E-scape sampling unit on the order kilometers instead of 243 

meters (Abrahms et al. 2019; Geary et al. 2020). New tracking techniques can be used to inform 244 

these scales which were previously poorly understood (Abrahms et al. 2019; Geary et al. 2020). 245 

      The index of energetic importance (IEI) represents how much a consumer is using a resource 246 

relative to the amount of habitat that is producing that resource. White shrimp are derived of 247 

49% benthic algae and 38% phytoplankton, but since there is much less edge habitat (the habitat 248 

where benthic algae is produced), the IEI for edge is almost an order of magnitude larger than the 249 

IEI for water (Table 1). Therefore, the habitats that contain the most edge habitat are of the 250 

highest energetic importance for white shrimp (Figure 1). The IEI for marsh is < 1 at all scales 251 

indicating that white shrimp use energetic resources from the marsh at a lower rate than their 252 

availability in the system (Table 1). Although areas that contain a high amount of marsh habitat 253 

are less favorable energetically than the average habitat (HRI < 1), these habitats are still 254 

producing energy being used by white shrimp and are more energetically favorable than areas of 255 

high mangrove habitat (which white shrimp are not using as an energy source, Figure 3,(Nelson 256 
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et al. 2019). Thus, the maps can differentiate between habitats suitable to occupy vs habitats that 257 

are producing energy.  258 

      In our calculation of HRI and IEI values, the fraction of habitat (��	
��	��) is based on the 259 

area of habitat cover. This calculation assumes that all areas of a given habitat type have an equal 260 

chance of producing a resource. For example, we make the assumption that all areas of water in 261 

our habitat cover map (Figure 1A) have an equal chance of producing phytoplankton. This 262 

assumption may not be acceptable in all applications, especially when applying these methods to 263 

consumers that have very large foraging ranges (Geary et al. 2020). For these cases, 264 

modifications can be made to ��	
��	��  to incorporate the spatial differences in production such as 265 

incorporating chlorophyll-a maps or lidar data to incorporate the three dimensional structure of 266 

the habitats. One limitation to our approach is that phytoplankton is produced in three 267 

dimensions, unlike the other sources, and we are presently not able to account for the three-268 

dimensional structure of water across the seascape with the available data. Accounting for water 269 

volume will be especially important in systems that are stratified or in which phytoplankton 270 

production is integrated over a significant depth (Cole & Cloern 1984). One way to incorporate 271 

volume into ��	
��	��  is to modify by accounting for the depth of the habitat in relation to the 272 

euphotic zone of the system (Cole & Cloern 1984). Unfortunately, this type of data is not always 273 

available and was not available in our study area. Other modifications could include parameters 274 

that include temporal differences in access to habitats which can be major drivers of foraging 275 

behaviors of consumers (Nelson et al. 2015). 276 

     These E-scape maps allow users to identify key areas of the landscape in terms of their 277 

importance to the energetic requirements of a consumer. Researchers could apply E-scape maps 278 

to conservation, management, or restoration questions to identify areas of importance and to take 279 
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management action. In combination with other parameters, E-scape maps could improve habitat 280 

suitability models and integrate energetics into existing modelling frameworks. Similar 281 

approaches have been applied to terrestrial ecosystems to investigate population and movement 282 

responses of large-bodied herbivores (Merkle et al. 2015; Fryxell et al. 2020). For example, the 283 

population viability of caribou was determined by modeling the response to resource distribution 284 

as well as other environmental and biological factors (Fryxell et al. 2020). Field observations of 285 

diet and grazing amount to determine digestible energy content and combined with habitat cover 286 

maps were used quantify the distribution of energy (Fryxell et al. 2020). Although effective, this 287 

technique requires extensive field work and data, and is limited to terrestrial herbivores where 288 

the direct measurements of grazing can occur. Our method improves upon previous methods by 289 

using stable isotope analysis, which provides a representation of the assimilated energy for which 290 

a consumer is derived (Layman et al. 2012). With stable isotope analysis and Bayesian mixing 291 

models, estimates of consumer resource use are not limited to consumers where direct 292 

consumption can be observed (e.g. terrestrial herbivores), expanding the number of ecosystems 293 

and types of consumers that can studied.  294 

    Our study links energy to population and energetic distribution of white shrimp, but if paired 295 

with tracking data E-scapes have the capability to further our understanding of consumer 296 

movement and foraging. Optimal Foraging Theory predicts that consumers will optimize net 297 

energy intake per unit time foraging and consumers would be expected to spend more time 298 

foraging in areas of greater resources (MacArthur & Pianka 1966).  Therefore, E-scape maps 299 

describe a “null model” to test Optimal Foraging Theory for a particular consumer. Tracking 300 

data can be used in combination of E-scapes to test foraging strategies in the context of energy 301 

distribution (e.g. even vs patchy distribution) or paired with other spatial environmental (e.g. 302 
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salinity, temperature) or biotic factors (e.g. predation risk) to identify key drivers of movement 303 

and test hypotheses on variations of OFT. Recent studies have focused on consumers optimizing 304 

foraging by tracking temporal resource waves but have been limited to systems with discrete 305 

waves of a dominant energy source (Mosser et al. 2014; Abrahms et al. 2019). Because our 306 

approach quantifies which energy sources a consumer is using, it is an improvement of mapping 307 

energy distribution. E-scapes will expand the systems where foraging patterns can be tested in 308 

the field, especially when resources do not have discrete waves and spatial and spatiotemporal 309 

variation dominate where resources are located, expanding our understanding of consumer 310 

foraging. E-scapes can be used alone or in combination with existing models to test fundamental 311 

movement theory and improve habitat management and restoration practices. 312 
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Supporting information. Model results for GLMs testing the relationship between the log(HRI) and different biomass and energy 432 

measurements of for white shrimp at each scale tested. Significant (p < 0.05) model results in bold. T = t-vale, AIC = Akaike 433 

information criterion 434 

 435 

  Size Abundance Biomass  Calories/g Total calories 

Size T P value AIC T P value AIC T P value AIC T P value AIC T P value AIC 

50 1.0 0.317 -68.8 0.3 0.780 436.8 2.7 0.009 265.6 0.3 0.733 698.2 2.6 0.013 951.6 

75 1.5 0.132 -69.6 1.2 0.219 435.6 2.6 0.012 265.4 0.6 0.545 697.9 2.3 0.024 951.9 

100 1.8 0.078 -70.5 1.4 0.158 435.1 2.2 0.031 266.1 1.1 0.292 697.2 2.0 0.049 952.3 

150 4.1 0.000 -76.1 2.4 0.019 432.5 4.5 0.000 260.0 0.5 0.627 698.1 4.3 0.000 946.8 

200 4.8 0.000 -78.6 2.5 0.018 432.3 5.4 0.000 256.9 0.6 0.555 698.0 5.1 0.000 943.7 

250 4.2 0.000 -76.9 2.0 0.049 433.6 5.0 0.000 258.0 0.8 0.413 697.6 4.9 0.000 944.3 

300 3.2 0.003 -73.9 1.6 0.126 434.9 4.1 0.000 261.5 1.0 0.324 697.3 4.0 0.000 947.3 

400 2.8 0.007 -72.9 1.2 0.232 435.7 3.8 0.001 262.9 0.8 0.408 697.6 3.7 0.001 948.6 

500 3.0 0.005 -72.9 0.9 0.382 436.2 3.8 0.000 262.8 0.9 0.389 697.5 3.8 0.001 948.2 

750 2.4 0.020 -71.1 0.0 0.995 436.9 3.0 0.004 265.3 0.8 0.453 697.7 2.9 0.006 950.9 

1000 2.0 0.054 -70.0 -0.8 0.416 436.3 2.2 0.037 267.5 1.1 0.267 697.0 2.1 0.046 953.2 

1500 1.2 0.225 -68.9 -1.1 0.277 435.9 1.0 0.302 269.0 1.4 0.154 696.2 1.0 0.303 954.6 
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