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ABSTRACT 
 
Deep neural networks (DNNs) can accurately recognize objects in clear viewing conditions, 
leading to claims that they have attained or surpassed human-level performance. However, 
standard DNNs are severely impaired at recognizing objects in visual noise, whereas human 
vision remains robust. We developed a noise-training procedure, generating noisy images of 
objects with low signal-to-noise ratio, to investigate whether DNNs can acquire robustness that 
better matches human vision. After noise training, DNNs outperformed human observers while 
exhibiting more similar patterns of performance, and provided a better model for predicting 
human recognition thresholds on an image-by-image basis. Noise training also improved DNN 
recognition of vehicles in noisy weather. Layer-specific analyses revealed that the 
contaminating effects of noise were dampened, rather than amplified, across successive stages 
of the noise-trained network, with greater benefit at higher levels of the network. Our findings 
indicate that DNNs can learn noise-robust representations that better approximate human visual 
processing.  
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Introduction 
 
Research in vision science has demonstrated that people excel at recognizing objects quickly, 
accurately, and across a diversity of viewing conditions 1, 2, 3, 4. In most domains, human vision 
has constituted the gold standard for evaluating visual performance, whether in the context of 
everyday tasks such as searching for a friend in a crowd, navigating through a busy city street, 
or when performing specialized tasks that require considerable expertise, such as diagnostic 
radiology 2, 5, 6, 7.  
 
However, recent advances in deep learning have led to a seismic shift in what might be 
considered the gold standard of visual performance. There is a growing body of evidence that 
many diverse tasks of visual recognition can be solved given a suitable and sufficiently deep 
neural architecture, extensive opportunities for supervised learning, and a large, heterogeneous 
set of data for training 8. The original convolutional neural network (CNN) model was inspired by 
functional architecture of the primary visual cortex 9, and performs a series of operations akin to 
spatial filtering (or convolution) followed by local spatial pooling 10, 11, 12, 13. Following the success 
of AlexNet 13, deeper and more sophisticated CNNs have been developed, leading to more 
powerful and accurate performance at recognizing images of real world objects from large data 
bases 14, 15, 16. Recent comparisons between deep networks and humans have led to claims that 
state-of-the-art CNNs have achieved or even surpassed human-level performance at object 
recognition 8, 17, 18 and other challenging visual tasks 19, 20, 21. 
 
In parallel, research in basic neuroscience has suggested that the visual object representations 
learned by these deep neural networks (DNNs) share a strong resemblance with those found in 
the primate visual system. Indeed, the response preferences of neurons in the inferotemporal 
cortex of monkeys can be well fitted by an appropriately weighted combination of units sampled 
from higher layers of deep neural networks that have been trained to recognize objects 22. 
Likewise, the response patterns of DNNs to diverse objects have been successfully linked to the 
patterns of activity found in occipitotemporal cortex of humans 23, 24, 25. An emerging view in 
cognitive neuroscience is that DNNs offer a compelling model of human visual function, and that 
the development of future DNNs will lead to more biologically realistic models of the visual 
system 18, 26, 27, 28. 
 
However, a potential shortcoming of current DNNs is their tendency to become overspecialized 
within a narrow range of training conditions, such that they are unable to generalize to new 
stimuli that are noisy, variable or ambiguous. In particular, there is some evidence to suggest 
that DNNs for object recognition are unusually susceptible to visual noise and clutter, and that 
human observers may be better at recognizing objects in noisy viewing conditions 29, 30, 31. If 
such a performance gap exists, this may bring into question existing claims that DNNs have 
attained human-level object recognition performance or that they process visual information in a 
manner that closely resembles human vision. 
 
The goal of our study was to evaluate the performance of DNNs and human observers when 
tasked to recognize objects presented at the very limits of perceptual visibility. Object images 
were presented with varying levels of visual noise by manipulating the signal-to-signal-plus-
noise ratio (SSNR), which is bounded between 0 (noise only) and 1.0 (signal only). This allowed 
us to quantify changes in performance accuracy as a function of SSNR level. We further 
compared recognition accuracy for objects in pixelated Gaussian noise (i.e., white noise) and 
spatially correlated Fourier phase-scrambled noise (akin to pink noise) to test for the possibility 
of qualitative differences in performance between DNNs and human observers (Figure 1a).  
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We found that humans outperform well-known DNNs by a considerable margin, and that 
standard DNNs are unusually susceptible to pixelated noise, whereas human vision is more 
severely disrupted by spatially structured noise. However, we go on to show that a noise-
training protocol can allow DNNs to acquire considerable robustness to noise, such that they 
can outperform human observers. Of particular interest, these noise-trained DNNs exhibit more 
human-like patterns of performance than standard DNNs, in response to different types of noise 
and to individual images. Moreover, these noise-trained networks exhibit some ability to 
generalize to real world conditions, allowing for improved classification of vehicles in noisy 
weather conditions. A network-level analysis indicated that noise training led to widespread 
changes in the robustness of the network, especially in the middle and higher layers. Our 
findings suggest that noise-trained DNNs provide a viable model of the noise-robust nature of 
human visual processing. 
 
 
Results 
We evaluated the performance of 8 pre-trained DNNs (AlexNet, VGG-F, VGG-M, VGG-S, VGG-
16, VGG-19, GoogLeNet, and ResNet-152) and 20 human observers at recognizing object 
images presented in either pixelated Gaussian noise or spatially correlated noise (Figure 1, see 
Methods). Performance was assessed using images from 16 object categories (8 animate, 8 
inanimate) obtained from the validation data set of the ImageNet database 32. These images 
were novel to participants and never used for DNN training.  
 
Figure 2a shows the mean performance accuracy of DNNs and humans plotted as a function of 
SSNR level, with the performance of individual DNNs shown in Figure 2b. Although DNNs 
could match the performance of human observers under noise-free conditions, consistent with 
previous reports 17, DNN performance became severely impaired in the presence of moderate 
levels of noise. Most DNNs exhibited a precipitous drop in recognition accuracy as SSNR 
declined from 0.6 to 0.4, whereas human performance was much more robust across this 
range.  
 
Of particular interest, the DNNs appeared to be impaired by noise in a manner that qualitatively 
differed from human performance. Spatially correlated noise proved more challenging to human 
observers, whereas the DNNs were more severely impaired by pixelated Gaussian noise (in 7 
out of 8 cases). We fitted a logistic function to the performance accuracy data of each 
participant and each DNN to determine the threshold SSNR level at which performance reached 
50% accuracy. This analysis confirmed that human observers outperformed DNNs by a highly 
significant margin at recognizing objects in pixelated noise (t(26) = 15.94, p < 10-14) and in 
Fourier phase-scrambled noise (t(26) = 12.29, p < 10-11). Moreover, humans showed 
significantly lower SSNR thresholds for objects in pixelated noise as compared to spatially 
correlated noise (0.255 vs. 0.315; t(19) = 13.41, p < 10-10), whereas DNNs showed higher 
SSNR thresholds for objects in pixelated noise as compared to spatially correlated noise (0.535 
vs. 0.446; t(7) = 3.81, p = 0.0066).  
 
The fact that spatially independent noise proved more disruptive for DNNs was unexpected, 
given that a simple spatial filtering mechanism, such as averaging over a local spatial window, 
should allow a recognition system to reduce the impact of spatially independent noise while 
preserving relevant information about the object. Instead, these DNNs are unable to effectively 
pool information over larger spatial regions in the presence of pixelated Gaussian noise.  
 
We performed additional analyses to compare the patterns of errors made by DNNs and human 
observers, plotting confusion matrices for each of four SSNR levels (Supplementary Figure 1). 
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Human performance remained quite robust even at SSNR levels as low as 0.2, as the majority 
of responses remained correct, falling along the main diagonal. Also, error responses were 
generally well distributed across the various categories, though there was some degree of 
clustering and greater confusability occurred among animate categories. In contrast, DNNs 
were severely impaired by pixelated noise when SSNR declined to 0.5 or lower, and showed a 
strong bias towards particular categories such as "hare", " cat" and "couch". For objects in 
spatially correlated noise, the DNNs exhibited a preponderance of errors at SSNR levels of 0.3 
and below, with bias towards "hare", "owl" and "cat".  
 
Development and evaluation of a noise-training protocol to improve DNN robustness 
We devised a noise-training protocol to determine whether it would be possible to improve the 
robustness of DNNs to noisy viewing conditions. For these computational investigations, we 
primarily worked with the VGG-19 network, as this pre-trained network performed quite 
favorably in comparison to much deeper networks (e.g., GoogLeNet, ResNet-152), and could be 
trained and evaluated in an efficient manner to evaluate a variety of manipulations.  
 
First, we investigated the effect of training VGG-19 on images from the 16 object categories 
presented at a single SSNR level with either type of noise. After training, the noise-trained 
network was tested on a novel set of object images presented with the corresponding noise type 
across a full range of SSNR levels. We observed that training the DNN at a progressively lower 
SSNR level led to a consistent leftward shift of the recognition accuracy by SSNR curve (Figure 
3a). However, this improvement in performance for noisy images was accompanied by a loss of 
performance accuracy for noise-free images. The latter was evident from the prominent 
downward shift in the recognition accuracy by SSNR curve. Such loss of accuracy for noise-free 
images would be unacceptable for any practical applications of this noise-training procedure, 
and clearly deviated from human performance. 
 
Next, we investigated whether robust performance across a wide range of SSNR levels might 
be attained by providing intermixed training with both noise-free and noisy images. Figure 3b 
indicates that such combined training was highly successful, with the strongest improvement 
observed for noisy images presented at challenging SSNR level of 0.2. When the training SSNR 
was reduced to levels as low as 0.1, the task became too difficult and the learning process 
suffered. 
 
Given the excellent performance of VGG-19 after training with images at 0.2 and 1.0 SSNR, we 
sought to compare these noise-trained DNNs with human performance. Figure 4a shows that 
noise-trained VGG-19 performed far better than standard DNNs at recognizing objects in either 
type of noise. Moreover, the noise-trained networks now showed an advantage at recognizing 
objects in pixelated Gaussian noise as compared to spatially correlated noise, in a manner that 
better matched the qualitative performance of human observers. It was also striking that the 
noise-trained networks appeared to perform better than the human observers on average.  
 
To analyze these performance differences in detail, we fitted a logistic function to identify the 
SSNR thresholds of each DNN and human observer, separately for each noise condition. A 
histogram of SSNR thresholds revealed that noise-trained VGG-19 outperformed all 20 human 
observers and all 8 original DNNs at recognizing objects in noise (Figure 4b). These results 
indicate that the noise-training protocol can greatly enhance the robustness of DNNs, such that 
they can match or surpass human performance when tasked to recognize objects in extreme 
levels of visual noise.  
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Although the benefits of noise training were specific to the noise type encountered during 
training (Supplementary Figure 2), we found that it was possible to train a single DNN to 
acquire robustness to both pixelated Gaussian noise and spatially structured noise concurrently 
(Supplementary Figure 3). Likewise, we confirmed that other networks (e.g., ResNet-152) 
showed similar improvements in robustness after noise training with these 16 object categories 
(Supplementary Figure 4). We also evaluated the impact of training VGG-19 on the full 1000-
category image set from ImageNet with both types of noise, and found that the network was 
capable of recognizing objects in noise when discerning among a large number of possible 
categories (Supplementary Figure 5).  
 
Using the 1000-category noise-trained VGG-19, we developed another test to determine 
whether noise training might improve the robustness of DNNs at recognizing novel real-world 
examples of objects in noisy weather conditions (e.g., snow, rain, fog). We evaluated 
classification performance for 8 types of vehicles in the ImageNet data set. A web-based search 
protocol was used to gather candidate images of vehicles in noisy weather conditions, and test 
images were selected based on the ratings of three independent observers. The final test set 
consisted of 102 noisy vehicle images and 102 noise-free vehicle images (see Supplementary 
Figure 6 for examples). Figure 5a shows that both standard and noise-trained versions of 
VGG-19 performed equally well at recognizing noise-free images of vehicles. In contrast, noise-
trained VGG-19 outperformed the standard DNN at recognizing vehicles in noisy weather 
conditions. Performance was further analyzed according to the human-rated noise level of 
individual vehicle images. This analysis indicated that noise-trained VGG-19 performed 
significantly better with images rated as containing moderate or strong noise (Figure 5b). Our 
findings indicate that DNNs trained on images with artificially generated noise can successfully 
generalize, to some degree, to real-world examples of noisy viewing conditions.  
 
Characterizing network changes caused by noise-training  
To identify the stages of DNN processing that are most affected by noise training, we devised a 
layer-specific noise sensitivity analysis. Specifically, we calculated the correlation strength 
between the layer-specific pattern of activity evoked by a noise-free image and the pattern of 
activity evoked by that same image when presented at varying SSNR levels (Figure 6a). 
Correlation strength will monotonically increase with increasing SSNR level (from an expected 
value of 0 to 1.0), and the threshold SSNR level needed to reach a correlation value of 0.5 can 
be identified. Here, a lower threshold SSNR indicates greater robustness, whereas a higher 
threshold SSNR indicates greater noise susceptibility. As can be seen in Figure 6b, the 
standard VGG-19 network exhibits a gradual increase in noise susceptibility in progressively 
higher layers, implying that the contaminating effects of visual noise tend to become amplified 
across successive stages of feedforward processing.  
 
After the noise-training protocol, however, the network shows considerable improvement, 
especially in the middle and higher layers where the difference between noise-trained and 
standard networks most clearly diverges. For pixelated Gaussian noise, the responses of the 
noise-trained DNN actually become more robust across successive stages of processing. In 
effect, the convolutional processing that occurs across successive stages of the noise-trained 
network leads to a type of de-noising process. This finding is consistent with the notion that the 
disruptive impact of spatially independent noise can be curtailed if signals over progressively 
larger spatial regions are pooled together in an appropriate manner to dampen the impact of 
random, spatially independent noise. This can be contrasted with the results found for spatially 
correlated noise. Here, the threshold SSNR level appears quite stable across successive layers 
for the noise-trained network, and noise-training allows the network to avoid an increase in 
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noise susceptibility as information is passed from one layer to the next, in contrast with standard 
network.  
 
As a complementary analysis, we measured classification-based SSNR thresholds by applying 
a multi-class support vector machine (SVM) classifier to the activity patterns of each layer of a 
given network. Each SVM was trained on activity patterns evoked by noise-free training images, 
and then tested on its ability to predict the object category of test stimuli presented at varying 
SSNR levels. The SSNR level at which classification accuracy reached 50% was identified as 
the classification-based SSNR threshold. For standard DNNs, we found that classification 
accuracy for noise-free test images gradually improved across successive layers of the network 
(Supplementary Figure 7), and this trend largely accounted the improvement (i.e., decrease) in 
the classification-based SSNR threshold in the middle and higher layers (Figure 6c). Of greater 
interest, the divergence between standard and noise-trained networks became more 
pronounced in the middle and higher layers due to the benefits of noise training. These results 
provide further evidence that noise robustness is largely achieved through the modification of 
learned representations in the middle and higher layers of the noise-trained network.  
 
Comparison of human and DNN performance for individual object images 
It has been suggested that DNNs represent visual object information in a manner that strongly 
resembles the human visual system 18, 23, 24, 25. However, we found that standard DNNs process 
noisy object images in a qualitatively different manner than human observers (e.g., Figure 2). 
We devised a follow-up behavioral experiment to test whether noise-trained DNNs can provide 
a suitable model of human performance and predict people’s recognition thresholds on an 
image-by-image basis.  
 
Twenty observers were shown each of 800 object images (50 per category), which slowly 
emerged from pixelated Gaussian noise. The SSNR level gradually increased from an initial 
value of 0 in small steps of 0.025 every 400ms, until the observer pressed a key to pause the 
dynamic display in order to make a categorization decision. A reward-based payment scheme 
provided greater reward for correct responses made at lower SSNR levels. After the 
categorization response, participants used a mouse pointer to demarcate the portions of the 
image that they relied on for their recognition judgment. 
 
The resulting data allowed us to compare the similarity of humans and DNNs in their SSNR 
thresholds, as well as the portions of each image that were diagnostic for recognition 
judgments. Mean performance accuracy was high (90.3%), and human SSNR thresholds for 
each image were calculated based on responses for correct trials only. Accordingly, SSNR 
thresholds were calculated for standard and noise-trained VGG-19 by requiring accuracy to 
reach 90%. As can be seen in the scatterplot in Figure 7, noise-trained DNNs provided a much 
better fit of human SSNR thresholds for individual images (r = 0.55, slope = 0.67) than standard 
DNNs (r = 0.27, slope = 0.32). That said, it should be noted that human-to-human similarity was 
greater still (mean r = 0.94, based on a split-half correlation analysis), indicating that further 
improvements can be made by future DNN models to account for human recognition 
performance.  
 
To complement the diagnostic regions reported by human observers, we used layer-wise 
relevance propagation 33 to identify what portions of each image were important for the 
decisions of DNNs (see Figure 8a). We calculated the spatial correlation and amount of overlap 
between diagnostic regions reported by humans and those used by trained DNNs for their 
classification responses across a range of SSNR levels. Both standard and noise-trained DNNs 
performed reasonably well at predicting the diagnostic regions used by human observers under 
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noise-free conditions (Figure 8b). However, only the noise-trained DNN could reliably predict 
the diagnostic regions used by human observers in noisy viewing conditions.  
 
Taken together, our findings indicate that noise-trained DNNs provide a superior model to 
account for people’s ability to recognize objects in severely degraded viewing conditions. 
Moreover, their ability to generalize to real world conditions of visual noise suggests that noise-
trained DNNs can successfully acquire a certain degree of the robustness that is exemplified by 
human vision.  
 
 
Discussion 
 
In this study, we evaluated whether DNNs can provide a viable model of the robust nature of 
human vision. This was done by tasking DNNs and humans to recognize objects in visual noise, 
often presented at the threshold of visibility. We found that standard DNNs lack robustness; 
moreover, their performance qualitatively differed from that of humans, as human observers find 
spatially correlated noise to be more disruptive than pixelated Gaussian noise. In comparison, 
our noise-trained DNNs provided a better qualitative match to human performance, and indeed, 
could outperform human observers by a modest but highly reliable margin. Moreover, noise 
training allowed DNNs to acquire better performance at recognizing novel images of vehicles in 
noisy weather. Thus, augmented training with artificial noise can support some generalization to 
real world examples of noisy viewing conditions.  
 
The ability to predict human recognition performance at the individual image level remains a 
major challenge in neuroscience 27. We showed that noise-trained DNNs provide a better model 
than standard DNNs at predicting SSNR thresholds for human recognition on an image-by-
image basis. Likewise, the noise-trained DNNs relied on diagnostic regions that overlapped to a 
significant degree with those reported by human observers. Although there is certainly room for 
further improvement in the fitting of human performance data, we find that noise-trained DNNs 
provide a compelling model to account for human recognition of objects in noisy viewing 
conditions.  
 
A network-level analysis revealed that noise training led to widespread changes in the 
robustness of the network, especially in the middle and higher layers. With respect to spatially 
uncorrelated noise, visual representations gradually became more noise-robust across 
successive stages of processing, akin to a hierarchical denoising process, with the greatest 
benefit observed at high levels of the network. These findings deviate from traditional notions of 
image processing, which typically rely on the modification of low-level visual filters to achieve 
noise filtering 34. Our findings suggest that robustness to visual noise is acquired, at least in 
part, through learning and experience, with extensive modifications that take place at higher 
stages of visual processing. As a consequence, DNNs that are trained with challenging noisy 
images may acquire visual representations that better approximate human vision.  
 
Previous studies have documented that the object recognition performance of DNNs can be 
disrupted by adding non-random adversarial noise 35, 36 and also by adding randomly generated 
pixelated noise to object images 29, 30, 31. A few recent studies have reported some improvement 
in recognition performance by training DNNs on certain types of noisy object images but these 
studies did not establish strong links between DNN and human performance 29, 30, 31. Concurrent 
with our own work 37, one study investigated the training of DNNs with various types of noise 
(i.e., uniform, salt-and-pepper) and image distortion (e.g., blur), and reported that the benefits of 
training were highly specific and failed to generalize to new conditions 31. Indeed, the 
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researchers used the same set of object images across training and test, whereas in the current 
study, we used novel test images to ensure that any improvements in performance required a 
certain degree of generalization by the network. Although we found that training with either 
pixelated Gaussian noise or Fourier phase-scrambled noise led to noise-specific improvement, 
we also found the DNNs have the capacity to acquire robustness to both types of noise 
concurrently. An ability to generalize from artificial noise to real world conditions was further 
demonstrated by our evaluation of DNN performance with vehicles in noisy weather.  
 
The main focus of this study was to determine whether DNNs, with suitable training, can provide 
a viable model of the noise-robust nature of human vision. Our findings suggest that this is 
indeed the case, thereby supporting our neuroscientific goals. In addition, our procedure for 
training deep neural networks to acquire robustness to noisy viewing conditions may have 
relevance for applications in computer vision and artificial intelligence, including the 
development of autonomous vehicles, visually guided robots, and the analysis of real world 
images with adverse viewing conditions.  
 
In future work, it will be of considerable interest for researchers to investigate whether 
modifications of network architecture, such as the incorporation of lateral interactions, top-down 
feedback or recurrent connections 28, 38, 39, can provide further benefits to the robust 
performance of DNNs when tasked to recognize objects in noise. While it is conceivable that a 
DNN with modified architecture might prove somewhat more robust to noise after training 
exclusively with objects in clear viewing conditions, we suspect that some form of noise training 
will be necessary for DNNs to acquire a high degree of robustness, at least comparable to what 
we have shown here. Our noise-trained DNN outperformed each of 20 human observers in 
terms of SSNR threshold, indicating a marked benefit of DNN noise training. Although we 
cannot say whether humans or noise-trained DNNs are close to optimal at recognizing objects 
in noise, we do know that there must be an upper limit of performance as SSNR levels gradually 
decline towards a value of 0, at which point no object information will remain present in the 
image. Along these lines, our protocol for measuring SSNR thresholds for recognition 
performance may provide a useful metric for evaluating the performance of future DNNs. The 
SSNR threshold provides a measure of the limit at which a recognition system can still classify 
or identify an object, and avoids potential concerns of near-ceiling performance that can be 
more readily achieved for objects in clear viewing conditions. Moreover, performance for 
individual object images can be rigorously quantified, as a multitude of randomly generated 
noise images can be combined with any source image to evaluate performance accuracy, with 
confidence bounds, across a range of SSNR levels. Such methodology can support a rigorous 
evaluation of the correspondence between human and machine vision.  
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Methods 
 
Participants 
We recruited 20 participants for Experiment 1 (15 females, 5 males) and another group of 20 
participants for Experiment 2 (12 females, 8 males); ages ranged from 19 to 33 years old. All 
participants reported having normal or corrected-to-normal visual acuity, and provided informed 
consent. The study was approved by the Institutional Review Board of Vanderbilt University. 
Participants were compensated monetarily or through a combination of course credit and 
monetary payment.  
 
Visual stimuli 
Object images were obtained from the ImageNet database 32, which is commonly used to train 
and test convolutional neural networks on object classification. We selected images from 16 
categories for our experiments, which included a mixture of animate and inanimate object 
categories that would be recognizable to participants (Figure 1B). Both humans and DNNs 
were tested using images from the validation data set of ImageNet, with 50 images per category 
or 800 images in total. The test images were converted to grayscale to remove color cues that 
otherwise might boost the ability to recognize certain object categories in severe noise. DNNs 
were trained using images from the training set (1300 images per category), so the images used 
for testing were novel to both humans and DNNs.  
 
In Experiment 1, objects were presented using two different types of visual noise: pixelated 
Gaussian noise and Fourier phase-scrambled noise (Figure 1A). To create each Gaussian 
noise image, the intensity of every pixel was randomly and independently drawn from a 
Gaussian distribution, assuming that the range of possible pixel intensities (0 to 255) spanned 
±3 standard deviations. For Fourier phase-scrambled noise, we calculated the average 
amplitude spectrum of the 800 images, generated a set of randomized phase values and 
performed the inverse Fourier transform to create each noise image. Such spatially correlated 
noise has some coherent structure that preserves the original power spectrum (close to a 1/F 
amplitude spectrum) but lacks strong co-aligned edges, due to the phase randomization, and 
can be described as having a cloud-like appearance.  
 
To investigate the effect of noise on object visibility, we manipulated the proportion of object 
signal (w) contained in the object-plus-noise images. We describe the proportional weighting of 
this object information as the signal-to-signal-plus-noise ratio (SSNR), which has a lower bound 
of 0 when no object information is present (i.e., noise only) and an upper bound of 1 when the 
image consists of the source object only. SSNR differs from the more conventional measure of 
signal-to-noise ratio (SNR), which has no upper bound. Given a source object defined by matrix 
S and a noise image N, we can create a target image T with SSNR level of w as follows: 
 
  T = w × S  +  (1 – w) × N  
 
 
Behavioral experiment 1 
Participants were tested with either pixelated Gaussian noise or Fourier phase-scrambled noise, 
in two separate behavioral sessions. To control for order effects, half of the participants were 
presented with pixelated Gaussian noise in the first session and while the other half were first 
presented with Fourier phase-scrambled noise. All 20 participants completed both sessions.  
 
In each session, participants were briefly presented with each of 800 object images for 200ms 
at a specified SSNR level, and had to make a 16-alternative categorization response thereafter 
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using a keyboard. Noisy object images were presented at 10 possible SSNR levels (0.05, 0.1, 
0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, and 0.75). The highest SSNR level was informed by a pilot 
study that indicated that human accuracy reached ceiling levels of performance by an SSNR 
level of 0.75. Five images per category were assigned to each SSNR level, and image 
assignment across SSNR levels was counterbalanced across participants. The order of image 
presentation was randomized. The experiment was implemented using MATLAB and the 
Psychophysics Toolbox (http://psychtoolbox.org/).  
 
Behavioral experiment 2 
This study measured participants’ SSNR thresholds for each of 800 object images over a series 
of 4 behavioral sessions. For this experiment, only pixelated Gaussian noise was evaluated. On 
each trial, a single noise image was generated and combined with a source object image, and 
the target image gradually increased in SSNR level by 0.025 every 400ms, until the participant 
felt confident enough to press a key on a number pad to halt the image sequence and then 
make a 16-alternative categorization response. Next, participants used a mouse pointer to 
“paint” the portions of the image that they found to be most informative for their recognition 
response.  
 
After each trial, participants received visual feedback, based on a point scheme designed to 
encourage both fast and accurate responses. For correct responses, up to 200 points could be 
earned at the beginning of the image sequence (SSNR = 0), and this amount decreased with 
increasing SSNR, dropping to just 6 points at an SSNR level of 1. Incorrect responses were 
assigned 0 points. The participants received monetary payment scaled according to the total 
number of points earned across the 4 sessions.  
 
Convolutional neural networks 
We evaluated the performance of 8 pre-trained convolutional neural networks using the 
MatConvNet toolbox 40: AlexNet, VGG-F, VGG-M, VGG-S, VGG-16, VGG-19, GoogLeNet, and 
ResNet-152 13, 14, 15, 16. The training of CNNs with noisy object images was primarily performed 
using MatConvNet, with ancillary analyses performed using PyTorch. The majority of noise 
training experiments were performed using VGG-19, although we also confirmed that similar 
benefits of noise training were observed for AlexNet and ResNet-152. We initially evaluated pre-
trained VGG-19 by training the network with noisy object images presented at a single SSNR 
level (Figure 3A), using images from the 16 categories in the ImageNet training set (20,800 
images in total). Separate networks were trained with either pixelated Gaussian noise or Fourier 
phase-scrambled noise. 
 
For 16-category training, the DNNs were trained using stochastic gradient descent, over a 
period of 20 epochs with a fixed learning rate of 0.001, batch size of 24, weight decay of 0.0005, 
and momentum of 0.9. Training at a single SSNR level led to better performance for noisy 
object images but poorer performance for noise-free objects. Subsequently, we trained VGG-19 
using a combination of noise-free and noisy images, typically using an SSNR level 0.2 for most 
experiments. The VGG-19 model used to approximate human SSNR thresholds in Experiment 2 
was trained with objects in pixelated Gaussian noise across a full range of SSNR levels from 0.2 
to 1.  
 
We trained a 1000-category version of VGG-19 with the full set of training images from 
ImageNet; these were presented either noise-free, with pixelated Gaussian noise (SSNR 0.2) or 
with Fourier phase-scrambled noise (SSNR 0.2).	Color information from these images was 
preserved but the same achromatic noise pattern was added across 3 RGB channels for noise 
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training. The network was trained over 10 epochs using a batch size of 64. All other training 
parameters were the same as those used in training the 16-category-trained VGG-19.  
 
We quantified the accuracy of standard and noise-trained CNNs at each of 20 SSNR levels 
(0.05, 0.1, 0.15, … 1). Unlike the human behavioral experiments, CNN performance could be 
repeatedly evaluated tested without concerns about potential effects of learning, as network 
weights were frozen during the test phase. The CNN was presented with all 800 object test 
images at every SSNR level to calculate the accuracy by SSNR performance curve. The CNN’s 
decision was determined based on the highest softmax value found the classification layer for 
the 16 categories that were tested. A 4-parameter logistic function was fitted to the accuracy by 
SSNR curve and the SSNR level at which accuracy reached 50% was identified as the SSNR 
threshold for Experiment 1.  
 
For the layer-specific noise sensitivity analysis, we evaluated the stability of the activity patterns 
evoked by objects presented in progressively greater levels of noise, by calculating the Pearson 
correlation coefficient between responses to each noise-free test image and to that same image 
presented at varying SSNR levels. Analyses were performed on each convolutional layer after 
rectification, the fully connected layers and the softmax layer of VGG-19. A logistic function was 
fitted to the correlation by SSNR data for each layer, and the SSNR level at which the 
correlation strength reached 0.5 was identified as the SSNR threshold. If some positive 
correlation was still observed when SSNR level was 0, then the range of correlation values were 
linearly rescaled to span a range of 0 to 1, prior to calculating the SSNR threshold.  
 
For the layer-specific classification analysis, multi-class support vector machines (SVM) were 
trained on the activity patterns evoked by noise-free objects from each of the 16 categories, 
using data obtained from individual layers of the DNN. After training, the SVMs were tested 
using the 800 novel test images presented at varying SSNR levels. The SSNR level at which 
classification accuracy reached 50% (chance level performance, 1/16 or 6.25%) was identified 
by fitting a logistic function, and served as the classification-based SSNR threshold.  
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Pixelated Gaussian noise

Figure 1. a Examples of an object image in pixelated Gaussian noise or Fourier phase-scrambled noise, 
shown at varying SSNR levels. b Example images from the 16 object categories used in this study: bear, 
bison, elephant, hamster, hare, lion, owl, tabby cat, airliner, couch, jeep, schooner, speedboat, sports car, 
table lamp, teapot.
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Figure 2. a Mean performance accuracy in a 16-alternative object classification task plotted as a function of SSNR 

level for human observers (black curves) and 8 standard pre-trained CNNs (red curves) with ± 1 standard deviation in 

performance indicated by the shaded area around each curve. Separate curves are plotted for pixelated Gaussian 

noise (solid lines with closed circles) and Fourier phase-scrambled noise (dashed lines with open circles). b Classifi-

cation accuracy plotted as a function of SSNR level for individual pre-trained CNN models. 
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Figure 3. a Impact of training VGG-19 with object images presented at a single SSNR level (1.0, 0.7, 0.5, 

0.3, 0.2, or 0.1) when evaluated with novel test images presented at multiple SSNR levels. Accuracy of 

standard VGG-19 (red curve) serves as a reference in each plot. b Impact of training VGG-19 with a 

combination of noise-free images (SSNR 1.0) and noisy images at a specified SSNR level. 
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Figure 4. a Mean classification accuracy of noise-trained VGG-19 (blue), human observers (gray), and standard CNNs 

(red) for objects in pixelated Gaussian noise (solid lines, closed circles) and Fourier phase-scrambled noise (dashed 

lines, open circles). b Frequency histograms comparing the SSNR thresholds of noise-trained VGG-19 (blue), 

individual human observers (gray), and 8 standard pre-trained CNNs (red). 
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Figure 5. a Top1 and top5 accuracies of standard VGG-19 (red) and noise-trained VGG-19 (blue) at classifying 
vehicles in noise-free or noisy weather conditions. Noise-trained VGG-19 outperformed standard VGG-19 at recogniz-
ing noisy vehicle images (top1 accuracy, χ2 = 10.29, p = .0013; χ2 = 10.26, p = .0014). b Top1 and top5 accuracies 
sorted by noise-level rating. A statistical difference in performance was observed between models when the noise level 
was moderate or strong (χ2 > 4.5, p < 0.05 in all cases). Asterisks indicate * p < .05, ** p < .01.
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Figure 6. a Depiction of the method used for layer-specific noise sensitivity analysis. b Correlation-based SSNR 
thresholds for every convolutional layer (including fully-connected layers and the last classification layer) were mea-
sured for object images in pixelated Gaussian noise and Fourier phase-scrambled noise. The thresholds of standard 
(red) and noise-trained (blue) VGG-19 were compared. c Classification-based SSNR thresholds plotted by layer for 
standard and noise-trained networks. Multi-class support vector machines were used to predict object category from 
layer-specific activity patterns.
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Figure 7. Scatter plot comparing SSNR thresholds of human 

observers with the thresholds of standard VGG-19 (red) and 

noise-trained VGG-19 (blue). Each data point depicts SSNR 

thresholds for an individual object image. Examples of two 

object images, shown at the SSNR threshold obtained from 

standard or noise-trained networks.
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Figure 8. a Examples of diagnostic object features from human observ-
ers, standard VGG-19, and noise-trained VGG-19. The mean SSNR 
level at which human observers correctly recognized the objects is 
indicated. b Correlational similarity and overlap ratio of the spatial profile 
of diagnostic features reported by human observers and those measured 
in CNNs across a range of SSNR levels. Gray dashed lines indicate 
ceiling-level performance based on human-to-human correspondence. 
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