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Abstract  12 

Abnormally altered precipitation patterns induced by climate change have profound 13 

global effects on crop production. However, the plant functional responses to various 14 

precipitation regimes remain unclear. Here, greenhouse and field experiments were 15 

conducted to determine how maize plant functional traits respond to drought, flooding, 16 

and rewatering. Drought and flooding hampered photosynthetic capacity, particularly 17 

when severe and/or prolonged. Most photosynthetic traits recovered after rewatering, 18 

with few compensatory responses. Rewatering often elicited high photosynthetic 19 

resilience in plants exposed to severe drought at the end of plant development, with 20 

the response strongly depending on the drought severity/duration and plant growth 21 

stage. The associations of chlorophyll concentrations with photosynthetically 22 

functional activities were stronger during post-tasselling than pre-tasselling, implying 23 

an involvement of leaf age/senescence in responses to episodic drought and 24 

subsequent rewatering. Coordinated changes in chlorophyll content, gas exchange, 25 

fluorescence parameters (PSII quantum efficiency and 26 

photochemical/non-photochemical radiative energy dissipation) possibly contributed 27 

to the enhanced drought resistance and resilience and suggested a possible regulative 28 

trade-off. These findings provide fundamental insights into how plants regulate their 29 

functional traits to deal with sporadic alterations in precipitation. Breeding and 30 

management of plants with high resistance and resilience traits could help crop 31 

production under future climate change. 32 
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Resilience; Zea mays L. 34 

 35 

Introduction 36 

Global climate change is now leading to an enhanced frequency and intensity of 37 

drought events (Dai, 2012; Trenberth et al., 2014; Donat et al., 2016; Diffenbaugh et 38 

al., 2017),  that are now placing staple crop production and food security at risk 39 

(Lobell et al., 2014; Myers et al., 2017; Leakey et al., 2019; Kimm et al., 2020). 40 

These changes, coupled with the acceleration of industrialisation and the rapid 41 

development of social economy, are now placing agricultural water resources in 42 

tighter supply across the globe. Water availability has now become a bottleneck for 43 

food production and even social and economic development, and lack of water has 44 

triggered a series of environmental and ecological problems that now threaten 45 

sustainable development of crop production and exacerbate global undernutrition (e.g., 46 

Daryanto et al., 2016; Myers et al., 2017; Rosa et al., 2020). 47 

Drought is one of the most crucial environmental factors constraining crop plant 48 

productivity due to its deleterious effects on leaf photosynthetic capacity, plant growth 49 

and crop productivity at regional and global scales (Lobell et al., 2014; Daryanto et 50 

al., 2016; Myers et al., 2017). Plants that experience drought stress have their water 51 

balance destroyed and this leads to plant growth inhibition, stomatal closure, and 52 

decreases in the photosynthetic rate (e.g., Chaves et al., 2003, 2009; Xu and Zhou, 53 

2009; Gupta et al., 2020). However, plants can invoke a number of regulative 54 

strategies to deal with water deficit, including extending the root system, increasing 55 

leaf thickness, and activating an antioxidative defence system (e.g., Trapeznikov et al., 56 

2003), increased leaf thickness (Sack and Grubb, 2002), provoked antioxidative 57 

defense system (Foyer and Noctor, 2005). The responses to water deficit depend on 58 

the duration, severity and time of occurrence of the drought. For example, plants may 59 

not be affected, even favoured under mild or moderate drought, but it can be limited 60 

and even damaged by severe drought (e.g., Fereres and Soriano, 2007; Xu et al., 61 

2014). Under a mild or moderate water deficit, an increased water use efficiency 62 

(WUE), improved nutritional content, and stable grain yield often can be observed, 63 
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which can improve sustainable development by allowing deficit irrigation and 64 

water-saving agricultural practices (Fereres and Soriano, 2007; Geerts and Raes, 2009; 65 

Du et al., 2015; Silveira et al., 2020). Further exploration of crop responses to various 66 

water conditions can therefore provide critical information for optimising crop 67 

management practices, particularly under future climate change (Lobell et al., 2014; 68 

Leakey et al., 2019; Kimm et al., 2020). 69 

Plants exposed to drought will frequently show a restoration of their normal 70 

physiological functions when rewatered, and to a certain degree, they can compensate 71 

for the damage caused by drought by accelerating their growth and enhancing their 72 

photosynthetic capacity (e.g., Xu et al., 2009, 2010; Hofer et al., 2017). An antecedent 73 

condition, such as soil water availability, may also drive the post-stress responses to 74 

other abiotic factors, indicating important complexities in plant responses to 75 

environmental factors (Xu et al., 2009; Guo and Ogle, 2019). This ability to regain a 76 

normal original state after being disturbed is termed resilience (Holling, 1973; Müller 77 

et al., 2016. Resilience Alliance, 2020), and can be represented by the interference 78 

level, recovery time or recovery speed (Müller et al., 2016; Bhaskar et al., 2018; 79 

Harrison et al., 2018; Resilience Alliance, 2020).  80 

A recent report showed that a watering treatment following a drought can lead to a 81 

greater recovery of some key functional traits in plants (Harrison et al., 2018). For 82 

example, both full and partial recoveries of leaf pigment and nitrogen contents were 83 

observed in drought-stressed maize plants following rewatering (Sun et al., 2018). 84 

Similarly, Voronin et al. (2019) documented the physiological responses of maize 85 

plants to drought and rehydration. However, information is lacking regarding the 86 

changes in photosynthetic capacity and their associations with plant growth during 87 

drought and subsequent recovery upon rewatering. The increased frequency of 88 

drought due to global climate change emphasises the importance of understanding the 89 

mechanism underlying the plant responses to drought and rewatering for both 90 

theoretical and practical applications (e.g., Hofer et al., 2017; Abid et al., 2018; Guo 91 

and Ogle, 2019). 92 

Drought has been an important factor in the growth of maize, the most widely 93 
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grown crop in the world. Water deficit causes unstable and low yields in many maize 94 

production areas in the world, seriously hampering plant growth and causing 25–30% 95 

reductions in grain yield in some vulnerable regions (Sharp et al., 2003; Ben-Ari et al., 96 

2016; Beyene et al., 2016; Li et al., 2019; Kimm et al., 2020). For instance, the U.S. 97 

Corn Belt, the world's biggest maize production region, is recognised as being prone 98 

to drought and is therefore sensitive to climate change (Kimm et al., 2020). Similarly, 99 

the Corn Belt of Northeastern China (CBNC) is one of the major maize production 100 

regions in China and it too shows strong sensitivity to climate variations. Drought is a 101 

particularly critical factor constraining maize production in the CBNC (e.g., Liu et al., 102 

2012; Li and Sun, 2016).  103 

Future climate change scenarios envisage an increase in the occurrences of both 104 

drought and flooding during the growth period in maize-growing regions (Roudier et 105 

al., 2016; Kimm et al., 2020). Thus, elucidating the maize plant responses to drought, 106 

rewatering and flooding is crucial for the development of technology for monitoring, 107 

evaluating and minimising the damage caused by drought and flood disasters. This 108 

knowledge can also provide insight to the factors that enhance resilience in maize 109 

plants, while also serving as a feasible reference for corn yield forecasting and field 110 

water management during the growing period. 111 

The aim of the present study was to conduct greenhouse and field experiments to 112 

determine maize plant functional responses to drought, rewatering and flooding. The 113 

greenhouse experiments involved examination of these responses following different 114 

water treatments, including pre-drought, drought, rewatering and flooding. The field 115 

experiment was conducted in a large-sized rain shelter designed to grow maize plants 116 

under 4 irrigation regimes, including pre-drought and subsequent re-irrigation. Our 117 

focus was specifically on assessing the resilience of photosynthetic capacity in 118 

response to drought and rewatering. Three hypotheses were tested: i) drought and 119 

flooding can constrain photosynthetic capacity in maize plants, particularly under 120 

severe, prolonged water stress; 2) rewatering can lead to a full recovery of 121 

photosynthetic capacity with a compensatory mechanism; 3) the resilience of 122 

photosynthetic capacity depends on the degree of drought stress and the plant 123 
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development stage. The findings may improve current knowledge and strengthen 124 

future quests to produce high-yield, drought-resistant and resilient crops (see also 125 

Gupta et al., 2020). 126 

 127 

Materials and Methods 128 

Greenhouse experiment design 129 

The first experimental site was located in a greenhouse (39°48´N, 116°28´E, 67 m 130 

a.s.l.), Institute of Botany, Chinese Academy of Sciences, Beijing, China. The soil was 131 

collected from field soil (0-30 cm soil profile) at Gucheng Ecological Environment 132 

and Agro-meteorology Test Station (39°08′N, 115°40′E, 15.2m a.s.l.), Baoding city, 133 

Hebei province, North China. Plastic pots (diameter 21 cm, height 25 cm) was used. 134 

The maize cultivars is Zhengdan 958, which is currently planted extensively in North 135 

China. The seeds were sown on June 28, 2017. We filled 5.5 kg of soil per pot; and 136 

each pot was applied as 2.54 g of diammonium phosphate compound fertilizer (i.e., 137 

750 kg ha-1). The three seeds were sown in each of the pot with a depth of 2.5 cm. 138 

Soon afterwards, only one healthy plant was left before the third leaf of seedlings 139 

emerged. The seedlings grew in the greenhouse with a day/night mean temperature of 140 

c. 28.0/20.0 ºC and maximum photosynthetic photon flux density (PPFD) of 1,000 141 

μmol m-2s-1). 142 

The greenhouse experiment used four water treatments: 1) Control treatment: the 143 

soil relative water content (SRWC) was maintained at 65–75% throughout the whole 144 

experimental period. 2) Persistent drought stress: SRWC was reduced beginning at the 145 

three-leaf stage and extending to jointing stages to the SRWC of the permanent 146 

wilting point (PWP). 3) Flooding treatment: waterlogging stress was induced at the 147 

three-leaf stage and extended until the jointing stage. 4) Drought-rehydration 148 

treatment: SRWC was reduced initially at the three-leaf stage to 35% of SRWC (the 149 

leaves wilted and the lowermost leaves began to turn yellow and withered); the plants 150 

were then rewatered to 65–75% of SRWC. 151 

 152 

Field experimental design 153 
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The field experimental site was located at the Jinzhou Ecology and Agricultural 154 

Meteorology Center, Liaoning, Northeastern China (N 41°49 ,́ E 121°12 ,́ 27.4m 155 

a.s.l.). The mean annual temperature and the mean annual precipitation over 40 years 156 

were 9.9 °C and 564 mm, respectively, with an average monthly temperature of 157 

20.9 °C and a total precipitation of 468 mm during plant growing season. The soil is 158 

characterised as medium loam type, pH 6.3, with 1.8% organic matter and a soil bulk 159 

density of 1.61 g·cm-3 at the 0–100 cm soil profile. The field capacity (FC) and PWP 160 

were 22.3% and 6.5% (v/v), respectively. The soil had an organic carbon content of 161 

10.44 g kg−1, total nitrogen content of 0.69 g kg−1, phosphorus content of 0.50 g kg−1, 162 

and potassium content of 22.62 g kg−1. The planting date and maturity date were late 163 

April and late September, respectively (Song et al., 2018; Li et al., 2019). 164 

The field experimental design was as detailed previously (Li et al., 2019). In brief, 165 

an electric-powered waterproof shelter (4 m in height) set up in the maize field was 166 

used to establish the various precipitation regimes that we desired (details in Li et al., 167 

2019). In total, 15 plots (15 m2 , 5 m length, 3 m width) were under the rain shelter 168 

when it rained. The following three irrigation regimes were set up: a control (i.e. the 169 

normal irrigation every 7 day); moderate drought (water withholding for 20 days); and 170 

severe drought (water withholding for 27 days from the tasselling to milking stages). 171 

In this design, irrigation water was supplied at 296, 246, and 221 mm across the maize 172 

plant growing period. The SRWC at 0-50 cm soil depth was monitored to reach severe 173 

drought levels at a range of 30–40% at the end of rainfall-withholding, whereas under 174 

normal irrigation, the SWRC was maintained at levels of 70–80% in the control and 175 

rewatering plots. The maize cultivar was Danyu 39, with a seed sowing rate of 6.0 176 

plants m−2 to ensure a planting density of 4.5 plants m−2. A compound fertiliser 177 

(accounting for 28%, 11%, and 12% of N, P2O5, and K2O, respectively), applied at a c. 178 

750 kg·ha−1, was added before sowing (Song et al., 2018; Li et al., 2019). 179 

 180 

Leaf chlorophyll content 181 

We examined leaf chlorophyll concentrations with a SPAD 502 chlorophyll meter 182 

(Minolta Co. Ltd, Japan). This is a nondestructive technique that provides feasible and 183 
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rapid assessment of leaf relative chlorophyll concentrations (a SPAD reading value) 184 

by determining leaf transmittance of red (650 nm) and infrared (940 nm) radiation. 185 

Measurements were made on 1 July (V13, 62 days after sowing [DAS]), 12 July (VT, 186 

tasselling, 73 DAS), 20 July (R1, silking, 81 DAS), 5 August (R2, blistering, 97 DAS), 187 

9 August (R3, milking, 101 DAS), 2 September (R4, dough, 125 DAS). 188 

 189 

Leaf gas exchanges and chlorophyll a fluorescence 190 

In the greenhouse experiment, the leaf gas exchange and chlorophyll a fluorescence 191 

were measured with an open gas exchange system (LI-6400, LI-COR Inc., Lincoln, 192 

NE) equipped with a LI-6400-40 fluorometer. Leaves was illuminated with a red-blue 193 

LED light source. The parameters were initially obtained with acquisition software. 194 

Leaves were acclimated in the chamber for at least 15 min at 28–30 °C with a CO2 195 

concentration of 400 μmol mol−1 and a PPFD of 1200 μmol m−2 s−1. Chlorophyll a 196 

fluorescence was determined with the LI-6400-40 fluorometer. The steady-state 197 

fluorescence (Fs) was recorded at 1200 μmol m−2 s−1, and a second saturating pulse at 198 

~8000 μmol photons m-2s-1 was then given to obtain the maximal light-adapted 199 

fluorescence yield (Fm′). The actinic light was turned off, and the minimal 200 

fluorescence at the light-adapted state (Fo′) was obtained following a 3 s burst of 201 

far-red illumination. 202 

In the field experiment, the leaf chlorophyll a fluorescence was determined with a 203 

miniaturised pulse-amplitude-modulated photosynthesis yield analyser (Mini-PAM, 204 

Walz, Effeltrich, Germany) equipped with a leaf clip holder (2030-Br). Light 205 

intensities (380–710 nm) were measured with the Mini-PAM microquantum sensor. 206 

After a 30 min dark adaptation, the minimal fluorescence yield (Fo) was determined 207 

with a modulated light at a sufficiently low intensity (< 0.1 μmol photon m-2 s-1) to 208 

induce the minimal fluorescence. The maximal fluorescence yield (Fm) was made 209 

with a 0.8 s saturating pulse at a ~7000 μmol photons m-2 s-1. The difference between 210 

the measured values (Fm, Fo) is the variable fluorescence (Fv). Leaves were 211 

continuously illuminated at 300 μmol photons m-2 s-1 with an actinic light for 15 min. 212 

The Fs was recorded, and the second saturating pulse at ~7000 μmol photons m-2s-1 213 

was then exposed to obtain Fm′. The actinic light was turned off and Fo′ was obtained 214 

following a 3 s far-red illumination. The fluorescence parameters were calculated with 215 
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the following formulas (Schreiber et al., 1994; Maxwell and Johnson, 2000; Kramer 216 

et al., 2004): 217 

 218 

Fv/Fm = (Fm-Fo)/Fm 219 

Fv′/Fm′ = (Fm′-Fo′)/Fm′ 220 

ΦPSII = (Fm′-Fs)/Fm′ 221 

qp = (Fm′-Fs)/(Fm′- Fo′)  222 

qL = qp×F0′/Fs 223 

qN = (Fm-Fm′)/(Fm- Fo′)  224 

NPQ = (Fm-Fm′)/Fm′ = Fm/Fm′-1 225 

ΦNPQ = Fs/ Fm′ - Fs/Fm 226 

ΦNO = Fs/Fm 227 

NPQ = (Fm-Fm′)/Fm′ = Fm/Fm′-1 228 

where Fv/Fm is the maximal quantum efficiency of photosystem II (PSII), and Fv′/Fm′ 229 

is the efficiency of excitation captured by open PSII centres in the light-adapted 230 

leaves. ΦPSII is the yield of PSII photochemistry, and qp and qL are photochemical 231 

quenching based on puddle and lake models, respectively. NPQ or qN is 232 

non-photochemical quenching, and both ΦNPQ and ΦNO are light-induced regulated 233 

non-photochemical quenching and quantum yield of non-regulated energy loss in PSII, 234 

respectively  (Kramer et al., 2004). 235 

 236 

Soil relative water content 237 

Soil was placed in an experimental pot with holes at the bottom and weighed 48 h 238 

after excessive watering to reach a saturated weight (SW) point. The soil was then 239 

dried at 110°C for at least 72 h to a constant weight (DW). The FC can be expressed 240 

as FC = (SW–DW) / DW ×100. The SRWC = Current soil water content / FC × 100. 241 

 242 
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Resistance, recovery and resilience 243 

Resistance was expressed as the difference/ratio in functional parameters between 244 

drought stress and ample watering as control treatments. Recovery was indicated by 245 

the difference/ratio in functional parameters between drought/pre-drought and 246 

rewatering. Resilience was calculated as the difference/ratio in functional parameters 247 

between ample watering (control treatment) and rewatering (Van Ruijven and 248 

Berendse, 2010; Ruppert et al., 2015; Bhaskar et al., 2018). Here, we prefer to use the 249 

percentage ratios to express these changes (Ruppert et al., 2015). 250 

 251 

Data statistics 252 

The data were statistically analysed with statistical software package SPSS 20.0 253 

(SPSS Inc., Chicago, Illinois, USA). A one-way analysis of variance (ANOVA) with 254 

Duncan’s multiple comparison was used to test the differences of the functional traits 255 

between the watering treatments. The effects of watering treatment and plant/leaf 256 

developmental stages, and their interaction on the functional traits of plants, were 257 

tested with a two-way ANOVA. The correlations among the functional traits were 258 

tested with Pearson’s correlation analysis, and the relationships of photosynthetically 259 

functional traits with leaf relative chlorophyll content (SPAD readings) at different 260 

plant growth stages were tested by linear regression analysis. The comprehensive 261 

relationships between leaf photosynthetic functional traits, plant growth and their 262 

responses to irrigation regimes and plant/leaf developmental stages were determined 263 

by principal component analysis (PCA). The significance levels were set at P < 0.05 264 

and 0.01, unless otherwise stated. 265 

 266 

Results 267 

Photosynthetic traits in the greenhouse 268 

The greenhouse experiment showed that drought stress led to a slight reduction in the 269 

relative chlorophyll content (SPAD readings) 4 days after withholding water (i.e., 22 270 

days after sowing, DAS), followed by a rise 8 days after the drought-stressed 271 

treatment (Fig. 1). However, the chlorophyll content showed a sharp linear decrease 272 

from 26 DAS to 37 DAS when the relative soil water content (RSWC) fell sharply to 273 
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the severe drought stress level of 35%. After rewatering, the chlorophyll content 274 

sharply increased, with recovery values of 14.2, 15.2 and 25.6% under consecutive 275 

drought at 32, 34 and 37 DAS, respectively, indicating that a greater recovery may 276 

occur at the end of the measurement period. The resilience values were -4.3, -14.0 and 277 

-5.0% at 32, 34 and 37 DAS, respectively, showing that the resilience rose initially 278 

following rewatering, then decreased, and then increased again. Flooding led to sharp 279 

declines in SPAD after 4 days of flooding treatment, indicating that chlorophyll 280 

degradation occurred under the flooded condition. 281 

As shown in Fig. 2a, drought only led to a slight reduction in the net 282 

light-saturated photosynthetic rate (Asat) within one week after withholding water. 283 

However, this rate sharply decreased from 28.8 μmol m-2s-1 to 4.8 μmol m-2s-1 by 85.2% 284 

29 DAS when RSWC dropped to 35%. After rewatering, Asat sharply increased, with 285 

recovery values of 5.53, 1.18 and 5.98 times the values seen under consecutive 286 

drought at 32, 34 and 37 DAS, respectively. The rate approached and even exceeded 287 

the control level at 32, 34 and 37 DAS. The resilience values increased gradually from 288 

-12.1 to 10.2 and 25.4%, indicating a possible escalation of resilience with time after 289 

rewatering. A stimulation of the Asat occurred during the initial 6 days under flooding; 290 

thereafter, flooding induced a decrease compared with the control treatment. However, 291 

Asat under flooding ultimately reached the level of the control treatment. Compared 292 

with the control, stomatal conductance (gs) was significantly decreased (-96.5%) at 29 293 

DAS, just before rewatering (Fig. 2b). A greater recovery was observed, but only 294 

positive resilience was detected at 34 DAS. 295 

The quantum yield of PSII electron transport (ΦPSII) decreased with 296 

drought-treatment time, dropping to its lowest value (by 79.3%) at 29 DAS (Fig. 2c). 297 

The recovery values were 3.05, 3.38 and 4.22 times relative to continuous drought at 298 

3, 5 and 8 days after rewatering, respectively. Flooding also led to an initial 299 

stimulation in ΦPSII; thereafter, the value decreased below the control level. The 300 

photochemical quenching (qP) showed a substantial fluctuation even under the control 301 

treatment (Fig. 2d). However, a dramatic decline of 51.9% was observed after 9 days 302 

of water withholding. We also found recoveries of 1.3-, 16.6- and 14.8-fold at 3, 5 and 303 
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8 days following rewatering, respectively. However, the increases still did not reach 304 

the level of the control, so the resilience values were negative (-5.74, -26.22 and 305 

-15.22 at 3, 5 and 8 days following rewatering). A stimulation of qP was also observed 306 

initially at 2 days after flooding exposure, but this disappeared thereafter and the 307 

value dropped to levels lower than the control levels. 308 

The transpiration rate (E) significantly decreased due to drought stress, dropping 309 

to the lowest point at 29 DAS (a decrease of 94.5% relative to control, Fig. 2e). Rapid 310 

decreases occurred following the rewatering, with recovery values of 9.3-, 8.9- and 311 

4.6-fold the values under continuous drought at 3, 5 and 8 days following rewatering, 312 

respectively. However, the resilience values were -10.4, 6.0, and -15.7% at 3, 5 and 8 313 

days following rewatering, respectively. A stimulation of E also appeared initially by 314 

flooding; thereafter, however, the similar E changes were similar to those of the 315 

control (Fig. 2e). Leaf water use efficiency (WUE) was initially increased by drought, 316 

but subsequently decreased with drought-exposure time, indicating that the 317 

enhancement of WUE may be attenuated by the water deficit intensity and its 318 

persistent duration. Rewatering led to a decline in WUE at the earlier stage, but 319 

thereafter WUE remained stable relative to both the control and continuous drought 320 

plants. WUE was not affected significantly by flooding during the experimental 321 

periods (Fig. 2f). 322 

Similar responses were observed in the mature leaves (Fig. 3a-f). Drought reduced 323 

Asat, with great recovery and a positive resilience noted at the end of the experiment 324 

(Fig. 3a). A sharp rise appeared during the initial flooding, but Asat decreased thereafter. 325 

A drastic gs resilience was evident at 34 DAS (Fig. 3b). A great recovery occurred for 326 

ΦPSII and qp; however, the negative resilience was still maintained (Fig. 3c, d). A rapid 327 

and drastic reduction in E was observed by imposition of drought stress, with great 328 

recovery; however, the resilience remained negative (Fig. 3e). Drought always 329 

elevated the WUE in the mature leaves, whereas flooding did not substantially affect 330 

it. Only a small positive resilience was observed at the end of the experiment (Fig. 3f). 331 

 332 

Photosynthetic traits in the field 333 
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In the field experiment, the upper canopy leaves in the control treatment showed 334 

gradual increases in the relative chlorophyll content (SPAD values) from 1 July (62 335 

DAS, V13), 12 July (73 DAS, VT, tasselling), July 20 (81 DAS, R1, silking), to 336 

August 5 (97 DAS, R2, blistering), until reaching a maximum on 97 DAS; the relative 337 

chlorophyll content then decreased as plant development progressed (Fig. 4a). 338 

Episodic droughts led to dramatic declines, whereas rewatering led to more increases 339 

(i.e., a positive recovery) under moderate drought (MD) than under severe drought 340 

(SD). Negative resilience values were observed under both drought treatments at 101 341 

and 125 DAS. The maximum quantum efficiency of PSII (Fv/Fm) showed a similar 342 

pattern to that seen for the relationship with DAS; i.e., a unimodal curve (Fig. 4b). A 343 

drastic decline occurred under SD; however, recovery was greater following 344 

rewatering. 345 

A high resilience was found with MD at 125 DAS. The ΦPSII values decreased 346 

with plant growth (Fig. 4b). An increase occurred under MD, but SD led to a marked 347 

decline with greater resilience at both 101 and 125 DAS. The changes in qp and its 348 

resilience were similar to those of ΦPSII (Fig. 4d). The changes in non-photochemical 349 

quenching (qN) and the yield of light-induced regulated non-photochemical quenching 350 

(ΦNPQ) and their resilience showed the same changing trends (Fig. 4d): they increased 351 

with DAS, and MD led to a drastic decline with a high resilience at 101 DAS. 352 

In the middle canopy leaves, SPAD values decreased under SD, and no positive 353 

resilience was observed (Fig. 5a). Positive resilience was noted for Fv/Fm at 125 DAS 354 

(Fig. 5b). The ΦPII and qp values decreased with plant development under the control 355 

treatment, but greater resilience appeared under MD at 101 and 125 DAS and under 356 

SD at 125 DAS (Fig. 5c, d). Both qN and ΦNPQ increased with DAS, with greater 357 

resilience under MD at both 101 and 125 DAS (Fig. 5e, f). 358 

In the bottom canopy leaves, the relative chlorophyll content steeply decreased 359 

with DAS under all irrigation regimes, with a marked decline under SD. Rapid 360 

recoveries occurred with rewatering; however, only negative resilience was observed 361 

(Fig. 6a). A severe drought episode resulted in a reduction in Fv/Fm at 97 DAS, but a 362 

rapid recovery occurred at 4 d after rewatering (Fig. 6b). Rewatering resulted in high 363 
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Fv/Fm resilience in the plants exposed to previous MD and SD at the end of plant 364 

development. A decline in ΦPSII was observed from 62 to 81 DAS, but a stable ΦPSII 365 

change remained thereafter during the later plant developmental periods. Marked 366 

resilience appeared for both pre-drought treatments at the two final developmental 367 

stages (Fig. 6c). The changes in qp showed a similar pattern to that of ΦPSII. However, 368 

the marked resilience appeared only at 101 DAS (Fig. 6d). Under ample irrigation, 369 

both qN and ΦNPQ increased until 81 DAS and then remained stable. Drought led to 370 

declines in qN and ΦNPQ with considerable recovery at 125 DAS in the plants exposed 371 

to the SD episode; however, the resilience still remained negative (Fig. 6e, f). 372 

 373 

Relationships between the functional traits 374 

The relationships between fluorescence parameters and chlorophyll contents (SPAD 375 

values) in the maize field are shown in Fig. 7. We separated the data into 376 

sub-categories to explore how their relationships are altered at the two developmental 377 

stages. We only considered the data before/at previous tasselling stages (i.e., VT, a 378 

transitional stage from the vegetative stage to reproductive stage); therefore, the only 379 

significant and strong relationship was observed between Fv/Fm and chlorophyll 380 

content (SPAD readings, R2 = 0.318, P < 0.001; Fig. 4a). The other parameters (i.e., 381 

ΦPSII, qP, qN and ΦNPQ) showed no significant relationships (P > 0.05, Fig. 4c-f), 382 

except for a significant and negative relationship between Fs and the SPAD values 383 

(Fig. 4b). Using the data after VT revealed significant and positive relationships of 384 

SPAD values with fluorescence parameters, including Fv/Fm (R2 = 0.607, P < 0.001, 385 

Fig. 4a), Fs (R
2 = 0.193, P = 0.022, Fig. 4b), ΦPSII (R

2 = 0.210, P = 0.016, Fig. 4c), qP 386 

(R2 = 1.48, P = 0.047, Fig. 4d), qN (R2 = 0.378, P = 0.001, Fig. 4e) and ΦNPQ (R2 = 387 

0.248, P = 0.008, Fig. 4f). This indicates that stronger and closer associations emerged 388 

between chlorophyll content and the key fluorescence parameters, but only at later 389 

developmental stages. 390 

We also performed a PCA to test the relationships between functional traits and 391 

the different patterns (Fig. 8). The first two principal components (PCs) accounted for 392 

70.1 % of the total variations. The loadings of SPAD, Fv/Fm, Fm, FO and FO′ were in 393 
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quadrant I, while those of ΦPSII, Fm′, qP and qL were in quadrant II. The markers most 394 

representative of non-photochemical quenching traits (e.g., NPQ, qN and ΦNPQ) in 395 

relation to non-photochemical radiative energy dissipation capability were sorted into 396 

quadrant III. Projection on the treatment effects showed that the three irrigation 397 

regimes were sorted in the coordinate plane, with control treatment mostly in quadrant 398 

II, and SD scattered in all four quadrants (Fig. 8). 399 

 400 

Discussion 401 

Water cycle changes could substantially impact plant growth, photosynthetic 402 

processes and many crucial physiological functions and nutrient status, thereby 403 

affecting plant productivity and crop yield (e.g., Izanloo et al., 2008; Lobell et al., 404 

2014; Kimm et al., 2020). Drought and rewetting may often occur at intervals and are 405 

predicted to happen more frequently and severely under climatic change (Dai, 2012; 406 

IPCC, 2014; Donat et al., 2016; Diffenbaugh et al., 2017). Indeed, sporadic 407 

precipitation is a critical issue in maintaining ecosystem productivity and its structural 408 

stability, particularly in arid and semi-arid areas and/or in rain-fed planting regions 409 

(Reynolds, 2004; Cooper et al., 2008; Song et al., 2018; Guo and Ogle, 2019). 410 

Maize plays a critical role in meeting the global food demands and is one of the 411 

most widely planted staple crops worldwide (Haarhoff and Swanepoel, 2018; FAO, 412 

2020). In this study, the greenhouse and field experiments demonstrated how maize 413 

photosynthetic functional traits respond to the abnormal precipitation alterations, 414 

including drought, flooding, and rewatering at different growth stages, thereby 415 

providing key information for managing crop production. Our main findings were that 416 

1) drought and flooding severely hampered photosynthetic capacity in maize plants, 417 

particularly under severe and/or long water stress, in support of the first hypothesis; 2) 418 

rewatering could result in partial recovery of some photosynthetic traits, with few 419 

compensatory responses, in partial support of our second hypothesis; and 3) the 420 

photosynthetic resilience to drought was dependent on the drought severity and the 421 

plant developmental stage, largely supporting the third hypothesis. These findings can 422 

shed light on ways to improve regulation of crop functional traits to deal with erratic 423 
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precipitation regimes and may lead to better breeding and management practices for 424 

crops that have high drought resistance and drought-resilience traits (Kromdijk et al., 425 

2016; Song et al., 2018; Gupta et al., 2020). 426 

 427 

Drought and flooding 428 

In agreement with previous work (e.g., Chaves et al., 2003, 2009; Xu et al., 2006; Xu 429 

and Zhou, 2009; Gupta et al., 2020), the results of the present study indicated that 430 

severe drought stress can substantially reduce photosynthetic capacity, as 431 

characterised by declines in chlorophyll content, net light-saturated photosynthetic 432 

rate (Asat), stomatal conductance (gs), and quantum yield of PSII electron transport 433 

(ΦPSII) in both the greenhouse and field experiments. However, the photosynthetic 434 

capacity attenuated more substantially and steeply as the drought stress persisted in 435 

our experiment, indicating a strong dependence on the duration, severity and timing of 436 

droughts. Thus, only mild or moderate or short drought stresses were conducive to the 437 

development of a regulative response of plants for resistance to water deficit in terms 438 

of the changes in the root system (e.g., Trapeznikov et al., 2003), leaf thickness (Sack 439 

and Grubb, 2002) and antioxidative defence system (Foyer and Noctor, 2005). This 440 

observation may aid in implementations of deficit irrigation, water saving agriculture, 441 

and sustainable development (Fereres and Soriano, 2007; Geerts and Raes, 2009; Du 442 

et al., 2015; Silveira et al., 2020; Kimm et al., 2020).  443 

The present findings also demonstrated that flooding led to a decline in SPAD and 444 

Asat, but not gs. Indeed, under an anaerobic environment, plants may have adaptive 445 

responses to flooding stress that include aerenchyma formation in the roots and the 446 

development of adventitious roots (Mano et al., 2006), alteration of the profile of 447 

protein synthesis related to anoxic tolerance (Subbaiah and Sachs, 2003), and 448 

enhanced starch accumulation (Mutava et al., 2015). An involvement of ethylene 449 

regulation is also associated with an enhancement of photochemical and 450 

non-photochemical radiative energy dissipation capability (De Pedro et al., 2020). 451 

Our results also indicated a higher tolerance of maize to flooding stress in terms of 452 

ΦPSII and photochemical quenching (qP), relative to drought stress, highlighting the 453 
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distinct effects of these two stresses (Mutava et al., 2015; Zhu et al., 2020). An 454 

antagonistic effect on gs has been reported (see also Zhu et al., 2020). Maintaining 455 

stomatal opening may promote water release to alleviate the stress due to excessive 456 

water, again highlighting the positive regulation in response to anoxic conditions (Zhu 457 

et al., 2020). 458 

 459 

Recovery and resilience 460 

As previously reported, a depression in photosynthesis potentials by a previous 461 

drought can be markedly stimulated by rewetting; however, whether or how much 462 

these potentials recover depends on drought intensity and/or the persistence period 463 

(e.g., Xu et al., 2009, 2010; Creek et al., 2018). In the current experiment, partial, full 464 

and over recovery of photosynthetic traits were all observed in terms of both recovery 465 

and resilience indices, specifically depending on the duration and persistence of the 466 

drought, the plant developmental stages and the different functional traits, as well as 467 

the crop species and cultivar (Figs 1-6; Xu et al., 2009; Creek et al., 2018). For 468 

instance, an over-compensatory recovery (i.e., a positive percentage of the resilience) 469 

in gs was observed in maize (Figs. 2b, 3b); however, gs only achieved a partial 470 

recovery in a grass species (Xu et al., 2009). Creek et al. (2008) recently reported that, 471 

after rewatering, the Anet of a semiarid species can return to the pre-drought stress 472 

level within 2-4 weeks, whereas gs performs a slower recovery. A recent report by 473 

Johnson et al. (2018) indicated that photosynthesis was not fully recovered in wheat 474 

plants because of the photosynthetic damage due to hydraulic decline in the leaves 475 

subjected to drought. Increased embolism is tightly related to a complete lack of 476 

photosynthetic recovery. However, Creek et al. (2018) found that photosynthetic 477 

recovery can be decoupled from the recovery of plant hydraulics, indicating that the 478 

impaired hydraulic function throughout the recovery period perhaps does not 479 

influence the complete recovery of Anet from drought. Thus, the underlying 480 

mechanism needs to be investigated further. 481 

The enhancement of plant growth due to rewatering has been addressed by many 482 

researchers (Reynolds et al., 2004; Siopongco et al., 2006; Xu et al., 2009; Song et al., 483 
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2018). As recently reported by Abid et al. (2018), tolerant wheat plants showing high 484 

photosynthetic capacity during drought and rapid recovery after re-irrigating did not 485 

show marked yield declines relative to the sensitive cultivars, indicating that the 486 

plant’s ability to maintain/restore growth and physiological functions during 487 

pre/post-drought in the vegetative period might play a crucial role in determining crop 488 

productivity. Upon rewatering, the rapid growth of new tissues, such as a new leaf, 489 

might accelerate plant growth, potentially enhancing CO2 assimilation (Pinheriro et 490 

al., 2004). This may be a result of positive source–sink interactions, as a strong sink 491 

requirement (e.g. new tissue) can enhance the carbon assimilation rate (Minchin and 492 

Lacointe, 2005; White et al., 2015; Parvin et al., 2020). Higher resilience of Asat and 493 

gs occurred in the younger leaves relative to mature ones, implying a greater ability to 494 

recover in the new leaves that serve as both active source–sink organs (Figs 2, 3; 495 

Roitsch, 1999). The maize plants were exposed to drought stress for only several days, 496 

so leaf length after rewatering was restored to a similar level to that of the control 497 

plants, indicating no occurrence of overcompensation (Acevedo et al., 1971; Xu et al., 498 

2009; Hofer et al., 2017). Thus, the extent of compensation for drought by the 499 

triggering of new tissues following rewatering might determine the final plant/crop 500 

production and would depend strongly on the severity, duration, and timing of the 501 

drought stress (Hsiao, 1973; Xu et al., 2009; Hofer et al., 2017). 502 

 503 

Associations between functional traits 504 

The distinct responses of the functional traits such as Asat and gs to drought, flooding 505 

and rewetting suggested that coordinated associations between the functional traits 506 

could reveal the underlying mechanism (see also Creek et al., 2018). For instance, the 507 

SPAD reading (e.g., Ciganda et al., 2009), as an indicator of relative chlorophyll 508 

concentration, has different associations with photosynthetic function activities at 509 

different plant development stages: stronger associations were observed post-VT 510 

(tasselling stage) than pre-VT (Fig. 7). This might indicate that a greater coupling 511 

relationship appears at later plant developmental stages and that leaf age/senescence 512 

could be involved in the responses to drought and rewatering. This finding may 513 
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further improve our understanding of how plants respond to water status changes at 514 

different developmental stages. For instance, many previous studies have indicated 515 

that drought damage increases, while tolerance decreases, with increasing senescence 516 

(e.g., David et al., 1998; Shah and Paulsen, 2003; Chaves et al., 2003; Xu et al., 2008; 517 

Jiang et al., 2020). However, rewatering may lessen the senescence processes (Xu et 518 

al., 2010; Jiang et al., 2020), thereby leading to changes in associations between 519 

functional traits such as coupling and trade-off occurrences. Moreover, as revealed by 520 

the PCA (Fig.8), a distinct pattern of loadings between ΦPSII, ΦNPQ and ΦNO highlights 521 

a feasible trade-off strategy by balancing the yields among photochemical processes 522 

for the energy absorbed by PSII, dissipation of non-photochemical responses and 523 

other non-photochemical losses, which would involve the xanthophyll cycle and PsbS 524 

protein expression (Murchie and Lawson, 2013; Kromdijk et al., 2016; Sacharz et al., 525 

2017). 526 

 527 

Conclusions 528 

Quantifying and defining plant functional traits to assess and predict drought effects 529 

and post-drought recovery are relevant issues due to the pressing needs imposed by 530 

climate change (e.g., Creek et al., 2018; Gupta et al., 2020). In this study, we 531 

conducted greenhouse and field experiments to explore how maize photosynthetic 532 

functional traits respond to drought, flooding, and rewatering at different growth 533 

stages. The main findings were the following: 1) drought and flooding constrains 534 

photosynthetic capacity, particularly under severe and/or long water stress; 2) 535 

rewatering results in a partial recovery of most of the photosynthetic traits, with few 536 

compensatory responses; 3) photosynthetic resilience to drought following rewetting 537 

strongly depends on the drought severity and its persistence and duration, as well as 538 

the plant growth stage. The distinct responses of various functional traits to drought, 539 

flooding, and rewetting can translate to a regulative strategy of trade-off. The 540 

coordinated changes in chlorophyll content, gas exchange, fluorescence parameters 541 

(quantum efficiency of PSII, and photochemical and non-photochemical radiative 542 

energy dissipation) may largely contribute to the enhancements of drought resistance 543 
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and resilience of plants. The associations of chlorophyll concentrations with 544 

photosynthetic functional activities were also stronger post-VT than pre-VT, implying 545 

that leaf age/senescence may be involved in the responses to drought and rewatering. 546 

These findings may further improve our understanding of how plants respond to water 547 

status changes at different plant developmental stages. This knowledge can be helpful 548 

for breeding crops with high drought-resistant and drought-resilience traits and for 549 

establishing management practices when facing climate change (e.g., Kromdijk et al., 550 

2016; Leakey et al., 2019; Kimm et al., 2020; Gupta et al., 2020). 551 
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 762 

 763 

Fig. 1. The changes in leaf relative chlorophyll content (SPAD values) in the youngest and fully 764 

expanded leaves of maize plants subjected to various watering regimes (blue line, ample watering 765 

as the control; grey line, flooding; red line, drought; green line, rewatering; green open triangle, 766 

resilience). The red arrow indicates the rewatering date; the data are shown as means ±SE (n = 767 

3-6). 768 
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 771 

 772 

Fig. 2. The changes in net light-saturated photosynthetic rate (Asat, a), stomatal conductance (gs, b), 773 

quantum yield of PSII electron transport (ΦPSII, c), photochemical quenching (qP, d), transpiration 774 

rate (E, e), and water use efficiency (WUE, f) in the youngest and fully expanded leaves of maize 775 

plants subjected to various watering regimes (blue line, ample watering as the control; grey line, 776 

flooding; red line, drought; green line, rewatering; green open triangle, resilience). Red arrows 777 

indicate the rewatering date; the data are shown as means ±SE (n = 3-6). 778 
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 781 

 782 

Fig. 3. The changes in net light-saturated photosynthetic rate (Asat, a), stomatal conductance (gs, b), 783 

quantum yield of PSII electron transport (ΦPSII, c), photochemical quenching (qP, d), transpiration 784 

rate (E, e), and water use efficiency (WUE, f) in the mature leaves of maize plants subjected to 785 

various watering regimes (blue line, ample watering as the control; grey line, flooding; red line, 786 

drought; green line, rewatering; green open triangle, resilience). Red arrows indicate the 787 

rewatering dates; the data are shown as means ±SE (n = 3-6). 788 
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 791 

 792 

Fig. 4. Chlorophyll a fluorescence in upper leaves under drought and rewatering. Green and red 793 

open triangles represent the resilience of moderate and severe drought at 101 and 125 days after 794 

sowing (DAS), respectively. Red open arrows indicate the DAS of water withholding; while grey 795 

and red close arrows indicate the rewatering DASs of moderate and severe drought treatments, 796 

respectively. The data are shown as means ±SE (n = 3-6). Fv/Fm, maximal quantum efficiency of 797 

photosystem II (PSII); ΦPSII, the yield of PSII photochemistry; qp, photochemical quenching based 798 

on puddle model; qN, non-photochemical quenching; ΦNPQ, light-induced regulated 799 

non-photochemical quenching. 800 
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 803 

 804 

Fig. 5. Chlorophyll a fluorescence in middle leaves under drought and rewatering. Green and red 805 

open triangles represent the resilience of moderate and severe drought at 101 and 125 days after 806 

sowing (DAS), respectively. Red open arrows indicate the DAS of water withholding; while grey 807 

and red close arrows indicate the rewatering DASs of moderate and severe drought treatments, 808 

respectively. The data are shown as means ±SE (n = 3-6). Fv/Fm, maximal quantum efficiency of 809 

photosystem II (PSII); ΦPSII, the yield of PSII photochemistry; qp, photochemical quenching based 810 

on puddle model; qN, non-photochemical quenching; ΦNPQ, light-induced regulated 811 

non-photochemical quenching. 812 
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 815 

 816 

Fig.6. Chlorophyll a fluorescence in bottom leaves under drought and rewatering. Green and red 817 

open triangles represent the resilience of moderate and severe drought at 101 and 125 days after 818 

sowing (DAS), respectively. Red open arrows indicate the DAS of water withholding; while grey 819 

and red close arrows indicate the rewatering DASs of moderate and severe drought treatments, 820 

respectively. The data are shown as means ±SE (n = 3-6). Fv/Fm, maximal quantum efficiency of 821 

photosystem II (PSII); ΦPSII, the yield of PSII photochemistry; qp, photochemical quenching based 822 

on puddle model; qN, non-photochemical quenching; ΦNPQ, light-induced regulated 823 

non-photochemical quenching. 824 
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 826 

Fig. 7. Relationships between fluorescence parameters and chlorophyll content at pre-tasseling 827 

(VT, green parts) and post-VT (red parts) stages in maize field (2015). Fv/Fm, maximal quantum 828 

efficiency of photosystem II (PSII); Fs, steady-state fluorescence; ΦPSII, the yield of PSII 829 

photochemistry; qp, photochemical quenching based on puddle model; qN, non-photochemical 830 

quenching; ΦNPQ, light-induced regulated non-photochemical quenching. 831 
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 833 

 834 

Fig. 8. Principal component analysis on plant functional traits under the three irrigation regimes 835 

[i.e., control, moderate drought (MD), and severe drought (SD)]. The traits’ loadings on the first 836 

two principal components (PCs) are shown, and their projections are sorted by the three irrigation 837 

regimes. Dotted green, orange, and red circles represent the PC scores of control, MD, and SD 838 

treatments, respectively. Fm, maximal fluorescence yield; Fm′, maximal light-adapted fluorescence 839 

yield; Fo, minimal fluorescence yield; Fo′, minimal fluorescence at light-adapted state; Fs, 840 

steady-state fluorescence; Fv/Fm, maximal quantum efficiency of photosystem II (PSII);ΦPSII, yield 841 

of PSII photochemistry; qp, photochemical quenching based on puddle model; qL, photochemical 842 

quenching based on lake models, qN, non-photochemical quenching; ΦNPQ, light-induced regulated 843 

non-photochemical quenching; ΦNO, quantum yield of non-regulated energy loss. 844 
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