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Abstract

Many tasks in statistical genetics involve pairwise estimation of linkage disequilibrium (LD).
The study of LD in diploids is mature. However, in polyploids, the field lacks a comprehen-
sive characterization of LD. Polyploids also exhibit greater levels of genotype uncertainty than
diploids, and yet no methods currently exist to estimate LD in polyploids in the presence of
such genotype uncertainty. Furthermore, most LD estimation methods do not quantify the level
of uncertainty in their LD estimates. Our paper contains three major contributions. (i) We
characterize gametic and composite measures of LD in polyploids. These composite measures
of LD turn out to be functions of common statistical measures of association. (ii) We derive
procedures to estimate gametic and composite LD in polyploids in the presence of genotype
uncertainty. We do this by estimating LD directly from genotype likelihoods, which may be
obtained from many genotyping platforms. (iii) We derive standard errors of all LD estimators
that we discuss. We validate our methods on both real and simulated data. Our methods
are implemented in the R package ldsep, available on the Comprehensive R Archive Network
https://cran.r-project.org/package=ldsep.

1 Introduction

Linkage disequilibrium (LD), the statistical association between alleles at different loci, is a funda-
mental quantity in statistical genetics. Estimates of LD have applications in association mapping
[Devlin and Risch, 1995, Jorde, 1995, Xiong and Guo, 1997, Mackay and Powell, 2007, Farh et al.,
2015, Gur et al., 2017], analyses using summary statistics from genome-wide association studies
(GWAS) [Yang et al., 2012, Benner et al., 2017, Zhu and Stephens, 2018], genomic prediction
[Wientjes et al., 2013, Sun et al., 2016], and population genetic studies [Slatkin, 2008, Zhu et al.,
2015, Van Wyngaarden et al., 2017, Griffiths et al., 2019], among other tasks [Sved and Hill, 2018].

Many of these LD tasks are now being applied to polyploid organisms. Polyploids, organisms
with more than two copies of their genome, are ubiquitous in the plant kingdom [Barker et al.,
2016], predominant in agriculture [Udall and Wendel, 2006], and important drivers of evolution
[Soltis et al., 2014]. As such, researchers started applying polyploid LD estimates to genotype
imputation [Clark et al., 2019, Matias et al., 2019], GWAS [Barreto et al., 2019, Ferrão et al.,
2020], genomic prediction [Ramstein et al., 2016, de Bem Oliveira et al., 2019, de C. Lara et al.,
2019], and various other applications.

Characterizing and estimating LD in diploids is a mature field. Since the various measures of
LD were proposed [Lewontin and Kojima, 1960, Lewontin, 1964, Hill and Robertson, 1968] and the
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basic strategies of estimation implemented [see Weir, 1996, for example], researchers have proposed
extensions spanning many directions. Methods have been created to estimate LD using genotype
data, rather than haplotype data, under the assumption of Hardy-Weinberg equilibrium (HWE)
[Hill, 1974, Weir and Cockerham, 1979, Hui and Burt, 2020]. Composite measures of LD have been
defined that are estimable using genotype data even when HWE is violated [Cockerham and Weir,
1977, Weir, 1979, Hamilton and Cole, 2004, Zaykin, 2004]. Procedures have been devised to estimate
LD in the presence of genotype uncertainty [Li, 2011, Maruki and Lynch, 2014, Bilton et al., 2018,
Fox et al., 2019]. Regularization procedures have been suggested to improve LD estimates [Wen
and Stephens, 2010].

The research on characterizing and estimating LD in polyploids is much more limited. To date,
there have basically been three approaches to estimating LD in polyploids. (i) Researchers assume
they have known haplotypes (through phasing of known genotypes or otherwise) and then estimate
LD using the empirical haplotype frequencies [Simko et al., 2006, Bradbury et al., 2007, Shen et al.,
2016]. (ii) Researchers construct two-way tables of known genotypes and run categorical tests of
association, such as Fisher’s exact test [Raboin et al., 2008, Julier, 2009, Huang et al., 2020]. (iii)
Finally, researchers use standard statistical measures of association, such as the squared Pearson
correlation, on the known genotypes between two loci [Björn et al., 2010, Ramstein et al., 2016,
Vos et al., 2017, Sharma et al., 2018, de Bem Oliveira et al., 2019].

There are many well-developed methods to obtain phased haplotypes in diploids [Scheet and
Stephens, 2006, Browning and Browning, 2007, Li et al., 2010, Swarts et al., 2014], and so method (i)
above is an appealing strategy as it allows the study of association directly at the gametic level.
However, similar advances in polyploids are relatively infant and are just now emerging in force
[Su et al., 2008, Shen et al., 2016, Zheng et al., 2016, Mollinari and Garcia, 2019]. An additional
limitation is that these phasing approaches usually require access to a reference genome, which is
not always available or necessary in many modern next-generation sequencing pipelines [Lu et al.,
2013].

A greater concern is that all of the polyploid LD estimation approaches listed above assume
genotypes are known without error. In polyploids, this assumption is incorrect. Even though there
have been gains in the accuracy of genotyping methods [Voorrips et al., 2011, Serang et al., 2012,
Mollinari and Serang, 2015, Maruki and Lynch, 2017, Schmitz Carley et al., 2017, Blischak et al.,
2018, Gerard et al., 2018, Clark et al., 2019, Gerard and Ferrão, 2019, Zych et al., 2019] the issue
of genotype uncertainty in polyploids is still severe and much more so than in diploids. In Gerard
et al. [2018], we found that genotyping error rates in diploids can be reduced to less than 0.05 at
a read-depth of around 5×, but similar error rates could not be achieved for hexaploids in some
scenarios until one had read-depths in the many-thousands, an unrealistic scenario for most applied
researchers.

In this paper, we provide various methods to estimate LD. After reviewing measures of ga-
metic LD in Section 2.1, in Section 2.2 we derive a procedure to estimate gametic LD in au-
topolyploids in the presence of genotype uncertainty under the assumption of HWE. We do this
by estimating LD directly using genotype likelihoods. In allopolyploids, organisms that exhibit
partial preferential pairing, or populations that violate the random-mating assumption, these es-
timates are not appropriate. Thus, in Section 2.3 we define various “composite” measures of
LD that generalize the composite measures proposed in Cockerham and Weir [1977]. These
measures turn out to be functions of the statistical moments of the genotypes. In Section 2.4
we provide methods to estimate these composite measures of LD in the presence of genotype
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uncertainty by directly using genotype likelihoods. To reduce the number of parameters we
estimate, we propose a novel and flexible class of distributions over the genotypes. We val-
idate our methods both in simulations (Sections 3.1 and 3.2) and on real data (Sections 3.3
and 3.4). All analyses are reproducible (https://github.com/dcgerard/ld_simulations) and
all methods are available in the ldsep R package on the Comprehensive R Archive Network
(https://cran.r-project.org/package=ldsep).

2 Methods

Notation: The following contains the notation conventions used throughout this manuscript. We
will denote scalars by non-bold letters (a or A), vectors by bold lower-case letters (a), and matrices
by bold upper-case letters (A). The matrix transpose is denoted Aᵀ and the matrix inverse is
denoted A−1. We let Latin letters denote gametic measures of LD (D, D′, and r), while we let
Greek letters denote composite measures of LD (∆, ∆′, and ρ). Estimates of population parameters
will be denoted with a hat (D̂).

2.1 Measures of gametic LD

The original definitions of LD quantify the statistical association between alleles located at different
loci on the same gamete. Thus, such associations are sometimes referred to as “gametic LD” [Weir
and Cockerham, 1989]. Various measures of gametic LD have been proposed in the literature, each
possessing relative strengths and weaknesses for interpreting the association between loci [Hedrick,
1987, Devlin and Risch, 1995]. In this section, we briefly review these common measures of gametic
LD.

Perhaps the three most commonly used measures are the LD coefficient D [Lewontin and Ko-
jima, 1960], the standardized LD coefficient D′ [Lewontin, 1964], and the Pearson correlation r [Hill
and Robertson, 1968]. To define these terms, let A and a be the reference and alternative alleles,
respectively, at locus 1. Similarly let B and b be the reference and alternative alleles at locus 2.
The LD coefficient is defined to be the difference between the true haplotype frequency and the
haplotype frequency under independence:

D := pAB − pApB, (1)

where pAB denotes the frequency of haplotype AB, pA denotes the allele frequency of A, and pB
denotes the allele frequency of B. Note that this definition necessarily implies that

pAB = pApB +D, pAb = pApb −D, paB = papB −D, and pab = papb +D. (2)

The range of D is constrained by the allele frequencies [Lewontin, 1964] by

−min{pApB, (1− pA)(1− pB)} ≤ D ≤ min{pA(1− pB), (1− pA)pB}, (3)

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.03.234476doi: bioRxiv preprint 

https://github.com/dcgerard/ld_simulations
https://cran.r-project.org/package=ldsep
https://doi.org/10.1101/2020.08.03.234476
http://creativecommons.org/licenses/by-nc-nd/4.0/


and so Lewontin [1964] suggested the standardized LD coefficient:

D′ := D/Dmax, where (4)

Dmax :=

{
min{pApB, (1− pA)(1− pB)} if D < 0,

min{pA(1− pB), (1− pA)pB} if D > 0.
(5)

The D′ coefficient is free to vary between -1 and 1, though it still depends on the loci-specific allele
frequencies [Lewontin, 1988]. Finally, the Pearson correlation between loci is

r :=
D√

pA(1− pA)pB(1− pB)
. (6)

It is common to report not D, D′, and r, but rather their absolute values or their squares. This
is because the sign of the LD between loci depends on the mostly arbitrary labels of the alternative
and reference alleles.

2.2 Pairwise gametic LD estimation in autopolyploids under HWE

In this section, we consider estimating gametic LD from a population of autopolyploid individuals
under HWE. We will begin by deriving the joint distribution of genotypes at two loci conditional
on the LD coefficient and the allele frequencies at both loci. These genotype distributions will
then be used, along user-provided genotype likelihoods, to develop a procedure to estimate LD in
the presence of genotype uncertainty. Maximum likelihood theory will be used to derive standard
errors of these estimators.

Let XiAB, XiAb, XiaB, and Xiab be the number of AB, Ab, aB, and ab haplotypes (respectively)
in individual i. If each autopolyploid individual is K-ploid, then under HWE we have

(XiAB, XiAb, XiaB, Xiab) ∼ Multinomial(K; pAB, pAb, paB, pab). (7)

Researchers typically do not have access to individual haplotypes as in (7). Rather, most methods
assume that researchers have available the dosages of each allele, which we call the genotypes. Let
GiA := XiAB + XiAb and GiB := XiAB + XiaB be the number of reference alleles at loci 1 and 2,
respectively, in individual i. Then we may sum over the X’s to obtain the joint distribution of GiA

and GiB (Supplementary Section S1).

Pr(GiA = gA, GiB = gB|D, pA, pB) =

min(gA,gB)∑
z=max(0,gA+gB−K)

K!pK+z−gA−gB
ab pgA−zAb pgB−zaB pzAB

(K + z − gA − gB)!(gA − z)!(gB − z)!z!
.

(8)

Equation (8) is conditional on D, pA, and pB due to the relations in (2). Equation (8) contains the
distribution of the genotypes under HWE, conditional on D and allele frequencies, and generalizes
the formulas in Table 1 of Hill [1974] to autopolyploids.

If the genotypes were known without error, then we could estimate D (along with pA and pB)
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by maximum likelihood estimation (MLE) using the following log-likelihood:

L(D, pA, pB|G) =
n∑

i=1

logPr(giA, giB|D, pA, pB), (9)

where G = (g1, . . . ,gn) and gi = (giA, giB) are the observed genotypes for individual i. Since D′

and r are both functions of D, pA, and pB (4)–(6), this would also yield the MLEs of D′ and r.
We have implemented maximizing (9) in our software using gradient ascent. We call the resulting
MLEs D̂g, D̂′g, and r̂g for “genotypes”.

However the genotypes are not known without error [Gerard et al., 2018]. Maruki and Lynch
[2014] and Bilton et al. [2018] accounted for this in diploid sequencing data by adaptively estimating
the sequencing error rate at each locus. However, their models ignore important features concerning
polyploid sequencing data, particularly allele bias and overdispersion [Gerard et al., 2018]. Li [2011]
and Fox et al. [2019] take the more modular approach of allowing the input of genotype likelihoods
for diploids derived from any genotyping software. Letting the input be genotype likelihoods allows
the use of different genotyping platforms and software that may account for different features of
the data. This also results in greater generalizability since different data types (e.g., microarrays
[Fan et al., 2003], next-generation sequencing [Baird et al., 2008, Elshire et al., 2011], or mass
spectrometry [Oeth et al., 2009]) can all result in genotype likelihoods that may then be fed into
these LD estimation applications. We thus take this approach and consider estimating LD from
genotype likelihoods.

We will now describe a procedure to estimate LD while integrating over genotype uncertainty
using genotype likelihoods. Let us denote the data for individual i at loci 1 and 2 by yiA and yiB,
respectively. Let p(yiA|gA) and p(yiB|gB) be the probabilities of the data at loci 1 and 2 given
genotypes gA and gB. These probabilities are the genotype likelihoods and are assumed to be
provided by the user. All of the results in this manuscript use the genotype likelihoods from the
updog software [Gerard et al., 2018, Gerard and Ferrão, 2019], but we do not require this in the
methods below and any genotyping software may be used as long as it returns genotype likelihoods.
The log-likelihood of D, pA, and pB given the data is:

L(D, pA, pB|y) =

n∑
i=1

log

 K∑
gB=0

K∑
gA=0

p(yiA|gA)p(yiB|gB)Pr(gA, gB|D, pA, pB)

 . (10)

We developed an expectation-maximization (EM) algorithm [Dempster et al., 1977] to maximize
(10) and estimate haplotype frequencies and, thus, LD (Section S2). For diploids (K = 2), this
estimation procedure reduces down to that proposed in Li [2011] and implemented in the ngsLD

software [Fox et al., 2019] (Figure S1). However, we found it more efficient to maximize likelihood
(10) using gradient ascent. Optimization was performed over the unit 3-simplex using the uncon-
strained transformed parameter space used in Betancourt [2012] before back-transforming to the
original parameter space. When LD is close to 1, this can cause MLEs on the boundary of the
parameter space and, thus, nonsensical standard error estimates (described below). We thus take
the approach of [Agresti and Coull, 1998] and add a small penalty on the haplotype frequencies.
This penalty is equivalent to placing a Dirichlet(2,2,2,2) prior on the haplotype frequencies and
corresponds to the “add two” rule. We call the resulting penalized MLEs D̂gl, D̂

′
gl, and r̂gl for

“genotype likelihoods”.
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Standard errors are important for hypothesis testing [Brown, 1975], read-depth suggestions
[Maruki and Lynch, 2014], and hierarchical shrinkage [Dey and Stephens, 2018]. However, most
LD estimation methods do not return standard error estimates. We now provide a description for
how to obtain such estimates using standard maximum likelihood theory. First, we numerically
approximated the Hessian matrix of L(pab, pAb, paB) evaluated at the maximum likelihood estima-

tors (p̂ab, p̂Ab, p̂aB), H := ( ∂2L
∂pi∂pj

)|pab=p̂ab,pAb=p̂Ab,paB=p̂aB . This likelihood can be either that using

genotypes (9) or that using genotype likelihoods (10), both of which are functions of (pab, pAb, paB)
since the haplotype frequencies must sum to one. Standard maximum likelihood theory guarantees
that for large n, the limiting covariance matrix of (p̂ab, p̂Ab, p̂aB) is well approximated by −H−1

[Lehmann and Casella, 1998]. The MLEs of the various LD measures (D̂, D̂′, and r̂) are all functions
of (p̂ab, p̂Ab, p̂aB), and so we can use the δ-method to obtain the limiting variance of these LD esti-
mators. For example, let g = ( ∂r

∂pab
, ∂r
∂pAb

, ∂r
∂paB

)ᵀ be the gradient of r with respect to (pab, pAb, paB)

evaluated at (p̂ab, p̂Ab, p̂aB). Then the limiting variance of r̂ is −gᵀH−1g. The gradient calculations
are all standard and so have been omitted. We have implemented this procedure for standard error
calculation in our software.

2.3 Composite measures of LD

The methods in Section 2.2 were developed under the assumption of HWE in autopolyploids. The
goal in this section is to develop measures of LD that are (i) valid measures of association when
HWE is violated, (ii) identified even when only genotype information is provided, and (iii) reduced
to the gametic measures of LD (Section 2.1) when HWE is satisfied in autopolyploids. These
measures will be called “composite” measures of LD, as they account for associations not just at
the gametic level.

The easiest composite measure to obtain that satisfies our goals is that which generalizes r (6).
Let GA and GB be the genotypes of a randomly selected K-ploid individual at loci 1 and 2. Then,
quite simply, the composite measure of correlation is the Pearson correlation between genotypes:

ρ := cor(GA, GB). (11)

We prove in Section S3 that ρ equals r when HWE is satisfied in autopolyploids.
In diploids, Cockerham and Weir [1977] (attributing their result to Peter Burrows’ unpublished

work) suggested a composite measure of LD which they defined as the sum of gametic LD and
non-gametic LD. This sum depends only on genotype frequencies, not the haplotype frequencies,
and is thus identified even under general violations from HWE. Under HWE, this composite LD
measure was equal to D, and so Weir [1979] suggested its use even when HWE was satisfied. Let
qij denote the probability of a randomly selected individual containing genotype i on locus 1 and
j on locus 2. Then the coefficient as defined in Cockerham and Weir [1977] is

2q22 + q12 + q21 +
1

2
q11 − 2pApB, (12)

where pA = 1
2

∑2
gA=0 gA(qgA0 + qgA1 + qgA2) and pB = 1

2

∑2
gB=0 gB(q0gB + q1gB + q2gB ). It is easy to

show that (12) is actually 1/2 the covariance of the genotypes [Weir, 2008, Rogers and Huff, 2009,
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Section S4]. This immediately suggests a generalized composite LD coefficient for polyploids:

∆ :=
1

K
cov(GA, GB) =

1

K
E[GAGB]− 1

K
E[GA]E[GB] =

1

K

K∑
gA=0

K∑
gB=0

gAgBqgAgB −KpApB, (13)

where

pA =
1

K

K∑
i=0

i

K∑
j=0

qij =
1

K
E[GA] and pB =

1

K

K∑
j=0

j

K∑
i=0

qij =
1

K
E[GB]. (14)

In Section S3, we show that under HWE in autopolyploids, ∆ (13) equals D (1). We provide a
decomposition of ∆ in Section 2.3.1 that generalizes the decomposition in Cockerham and Weir
[1977].

To define a composite measure that generalizes D′ for polyploids there are two approaches
that we can take, depending on what properties of the genotype distributions we condition on
while finding the maximum value of ∆. D′ is found by normalizing D with the maximum value
of D while fixing the allele frequencies. The allele frequency at a locus can be considered both a
representation of the marginal distribution of an allele and the expected value of an allele. Thus,
while normalizing ∆, we can either find the maximum value of ∆ while conditioning on the marginal
distribution of genotypes, or while conditioning on the expected value of genotypes.

This first approach generalizes that of Zaykin [2004] and Hamilton and Cole [2004] from diploids
to polyploids. They found the maximum value of ∆ in closed-form for diploids while conditioning
on the marginal distributions of genotypes at both loci. For our generalization, we note that we can
formulate this maximization problem as a linear program [Nocedal and Wright, 2006] and so can
solve it efficiently for any ploidy level. Specifically, we seek to find the sij ’s that solve the following
maximization problem:

maximize
K∑
i=0

K∑
j=0

ijsij (15)

subject to

K∑
i=0

K∑
j=0

sij = 1,

K∑
j=0

sij = ci for all i = 0, 1, . . . ,K,

K∑
i=0

sij = dj for all j = 0, 1, . . . ,K, and

sij ≥ 0 for all i = 0, 1, . . . ,K and j = 0, 1, . . . ,K,

(16)

where ci and dj are the provided marginal probabilities of genotype i at locus 1 and genotype j at
locus 2, respectively. Since (15)–(16) formulates a standard linear program, many out-of-the-box
optimization software packages may be used to solve it [Berkelaar et al., 2016, e.g.]. The optimal
values of the sij ’s may then be used to find the maximum value of ∆ using (13), which can then
be used to normalize ∆. If ∆ is negative then we instead minimize (15) and normalize ∆ by the
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absolute value of the minimum. Specifically, let ∆m be the maximum of value of (13) when ∆ > 0,
or the absolute value of the minimum of (13) when ∆ < 0, where we use constraints (16). Then
we define

∆′g := ∆/∆m, (17)

where the subscript is for “genotype frequency”.
For diploids, Zaykin [2004] noted that normalizing by the maximum covariance conditional on

the marginal distributions of genotypes at each locus did not result in D when HWE was fulfilled.
The same is true for polyploids, though we note that under HWE there appears to be a simple
piecewise-linear relationship between D′ and ∆′g (Figure S2). As such, Zaykin [2004] in diploids
also recommended the second approach of maximizing the covariance conditional on the expected
genotype. We could also formulate these bounds as a linear program. However, we can actually
represent the bounds on ∆ (13) in closed-form (Theorem S2):

−K min((1− pA)(1− pB), pApB) ≤ ∆ ≤ K min(pA(1− pB), (1− pA)pB). (18)

Equation (18) would suggest dividing ∆ by K min((1−pA)(1−pB), pApB) when ∆ < 0, and dividing
∆ by K min(pA(1 − pB), (1 − pA)pB) when ∆ > 0. This would result in a composite measure of
LD that is bounded within [−1, 1]. However, the resulting measure would still not equal D′ when
HWE is satisfied. Thus, we prefer the following composite measure of LD

∆′a :=
1
K cov(GA, GB)

∆e
=

∆

∆e
, where (19)

∆e :=

{
min{pApB, (1− pA)(1− pB)} if ∆ < 0,

min{pA(1− pB), (1− pA)pB} if ∆ > 0.
(20)

We prove in Section S3 that this ∆′a (for “allele frequency”) is equal to D′ under HWE in autopoly-
ploids but is still estimable when HWE is violated. For the rest of this manuscript, we will only
consider ∆′a and not ∆′g.

Though a perceived disadvantage of (19) would be that it is constrained to fall within [−K,K]
rather than [−1, 1], we find it compelling that ∆′a can be viewed as a direct generalization of D′

and is equal to D′ when HWE is satisfied in autopolyploids. However, a researcher may always
divide (19) by K to obtain a measure that is constrained to be within [−1, 1].

2.3.1 A decomposition of ∆

Cockerham and Weir [1977] derived their composite LD measure by summing gametic and non-
gametic LD. From a different point of view, this can be seen as a decomposition of ∆. We will now
derive a generalized decomposition of (13) for polyploids. Let zkA be the indicator variable that
equals 1 if an individual has the A allele on locus 1 of chromosome k, and 0 otherwise. Similarly, let
zkB be the indicator variable that equals 1 if an individual has the B allele on locus 2 of chromosome
k, and 0 otherwise. Then the genotype for an individual equals

GA =
K∑
k=1

zkA and GB =
K∑
k=1

zkB. (21)
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Thus,

∆ =
1

K
cov(GA, GB) (22)

=
1

K
cov(

K∑
kA=1

zkAA,
K∑

kB=1

zkBB) (23)

=
1

K

K∑
kA=1

K∑
kB=1

cov(zkAA, zkBB). (24)

Equation (24) is as simple a decomposition as can be attained for ∆ without further assumptions.
However, in the special case of auto- and allopolyploidy, we can further reduce (24). In the case of
autopolyploidy, we have the following two identities:

DAB := cov(ziA, ziB) = cov(zi′A, zi′B) for all i and i′, and (25)

DA/B := cov(ziA, zjB) = cov(zi′A, zj′B) for all i 6= j and i′ 6= j′, (26)

where DAB is gametic LD and DA/B is non-gametic LD. Thus, for autopolyploids, we obtain

∆ = DAB + (K − 1)DA/B, (27)

which more clearly demonstrates the generalization of the decomposition in Cockerham and Weir
[1977] from diploids to autopolyploids. In the case of HWE, DA/B = 0 and we obtain ∆ = DAB.

In the case of allopolyploidy with an even ploidy level, there are K/2 homologous pairs. There
are three types of LD that may occur. First, there is gametic LD in homologous pair i, denoted
DABi. Second, there is non-gametic LD in homologous pair i, denoted DA/Bi. Third, there is
non-gametic LD between a chromosome in homologous pair i and a chromosome in homologues
pair j, denoted DA/Bij . Thus, in the case of allopolyploids, we obtain

∆ =
2

K

K/2∑
i=1

DABi +

K/2∑
i=1

DA/Bi + 4

K/2−1∑
i=1

K/2∑
j=i+1

DA/Bij

 . (28)

In the case of HWE, we have DA/Bi = 0 for all i and DA/Bij = 0 for all (i, j). This indicates that
for allopolyploids, in HWE, the composite measure of LD (24) is the average of gametic LDs for
all homologous pairs:

∆ =
1

K/2

K/2∑
i=1

DABi. (29)

2.4 Estimating composite measures of LD

When genotypes are known, it would be appropriate to use the sample moments of genotypes to
estimate ρ (11), ∆ (13), and ∆′a (19). When genotypes are not known, it is natural to plug-in
a good estimator of the genotypes, such as the posterior means, into the sample moments. The
typical methods of covariance and correlation standard errors may then be used (Section S7). This
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is fast and so the sample correlation of posterior genotypes has been used in the literature [Clark
et al., 2019, Fox et al., 2019] (though not with the capability of returning standard errors). We will
denote such estimators by ρ̂mom, ∆̂mom, and ∆̂′mom for “moment-based”.

However, as we will see in Section 3.1, using the posterior mean in such moment-based estimators
results in LD estimates that are biased low. We can explain this by the law of total covariance:

cov(GA, GB) = cov(E[GA|Y ], E[GB|Y ]) + E[cov(GA, GB|Y )], (30)

where Y contains the data. The covariance of posterior means is only the first term on the right
hand side of (30), and so does not account for the posterior covariance of genotypes. Thus, the
covariance of the posterior means is necessarily a biased estimator for ∆.

When genotypes are not known we can still estimate these composite LD measures by first
estimating the qij ’s in (13) using maximum likelihood and then using these estimates to obtain the
MLEs for ρ, ∆, and ∆′a. The likelihood to be maximized is

n∏
`=1

K∑
i=0

K∑
j=0

p(y`A|i)p(y`B|j)qij (31)

One EM step to maximize (31) consists of

w`ij =
p(y`A|i)p(y`B|j)q

(old)
ij∑

ij p(y`A|i)p(y`B|j)q
(old)
ij

, qij =
1

n

n∑
`=1

w`ij . (32)

We will call the resulting MLEs ρ̂gc, ∆̂gc and ∆̂gc for “general categorical”, as the qij ’s are allowed
to vary over the space of general categorical distributions.

To calculate standard errors, it would be possible to take the same approach as in Section
2.2 and derive asymptotic variances using the Fisher information and appealing to the δ-method
(Section S6). However, issues arise with ploidies greater than two. As there are (K + 1)2 possible
genotype conditions ((K+1)2−1 free parameters), except for very large n it will not be uncommon
for the MLEs to occur on the boundary of the parameter space, thereby violating the regulatory
conditions for the asymptotic standard errors of the MLE [Lehmann and Casella, 1998]. In such
cases, we appeal to bootstrap standard errors [Efron, 1979] for the composite measures of LD.

Equation (31) uses a general categorical distribution with support over the possible genotype
pairs. This distribution over genotype pairs is the most flexible possible, but yields (K + 1)2 −
1 parameters to estimate. Adding constraints over the space of possible genotype distributions
can improve estimation performance as long as the genotype frequencies follow these constraints.
Gerard and Ferrão [2019] introduced the proportional normal distribution, a very flexible class of
distributions with support over genotypes at one locus. We now generalize this distribution to
include support over the genotypes at two loci. Let µ ∈ R2 and let Σ ∈ R2×2 be a positive definite
matrix. Then the proportional bivariate normal distribution with support over {0, 1, . . . ,K}2 is:

Pr(gA, gB|µ,Σ) =
N(
(
gA
gB

)
|µ,Σ)∑K

i=0

∑K
j=0N(

(
i
j

)
|µ,Σ)

, (33)

where N(x|µ,Σ) is the bivariate normal density evaluated at x with mean µ and covariance matrix

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.03.234476doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.234476
http://creativecommons.org/licenses/by-nc-nd/4.0/


Estimators Type Input Notes

D̂g, D̂′
g, r̂g Gametic Genotypes

D̂gl, D̂
′
gl, r̂gl Gametic

Genotype
Likelihoods

A Dirichlet(2, 2, 2, 2) prior is placed on the
haplotype frequencies.

∆̂mom, ∆̂′
mom, ρ̂mom Composite Genotypes

Can accept continuous genotypes as in-
put.

∆̂gc, ∆̂′
gc, ρ̂gc Composite

Genotype
Likelihoods

Uses the general categorical class of geno-
type distributions.

∆̂pn, ∆̂′
pn, ρ̂pn Composite

Genotype
Likelihoods

Uses the proportional bivariate normal
class of genotype distributions.

Table 1: Summary of LD estimators. The ∆̂′ estimators all estimate ∆′a (19), not ∆′g (17).

Σ. This distribution, though seemingly ad hoc, can be seen as a generalization of the distribution of
genotypes under HWE (Figure S3). Though its use for modeling genotypes when HWE is violated
can be rationalized by the flexible shapes of genotype distributions it is capable of representing
(Figure S4).

Using the proportional bivariate normal distribution, the log-likelihood to be maximized is:

n∑
`=1

log

 K∑
i=0

K∑
j=0

p(y`A|i)p(y`B|j)Pr(i, j|µ,Σ)


=

n∑
`=1

log

 K∑
i=0

K∑
j=0

p(y`A|i)p(y`B|j)N(
(
i
j

)
|µ,Σ)

− n log

 K∑
i=0

K∑
j=0

N(
(
i
j

)
|µ,Σ)

 (34)

We can maximize (34) using gradient ascent. We performed this maximization over the space of µ
and lower-triangular matrix L where Σ = LLᵀ is the Cholesky decomposition of Σ. Asymptotic
standard errors may be obtained using standard results from maximum likelihood theory. That is,
we obtain the Hessian of the log-likelihood (34) evaluated at the maximum likelihood estimators
(µ̂, vec(L̂)), where vec(L) is the vectorization of the lower-triangle of L. Call this Hessian H.
The MLEs of ρ, ∆, and ∆′a are all functions of the MLEs (µ̂, vec(L̂)). To see this, set qij =
Pr(i, j|µ,Σ) and substitute the qij ’s in (S73), (S75), and (S84). Thus, they each admit a gradient

for the functions mapping from (µ̂, vec(L̂)) to ρ̂, ∆̂, and ∆̂′a. Call each gradient g. Then the
asymptotic variance of an estimator of composite LD is −gᵀHgᵀ. We have implemented all gradient
calculations numerically. We additionally placed weakly informative priors over µ and Σ as we
noticed some scenarios resulted in divergent optimization behavior:

µ ∼ N(0, (K/2,K/2)ᵀ,diag((2K)2, (2K)2)), Σ ∼Wishart2(I2, 2). (35)

The induced distribution over L can be found by Bartlett’s decomposition [Bartlett, 1934]. We will
denote the resulting MLEs by ρ̂pn, ∆̂pn and ∆̂′pn for “proportional normal”.

A summary of the various estimators we have proposed in this paper are presented in Table 1.
The ∆̂′ estimators all estimate ∆′a (19), not ∆′g (17).
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3 Results

3.1 Pairwise LD simulations under HWE

In this section we run simulations where genotypes are generated for autopolyploids under HWE.
Under HWE for autopolyploids, both the gametic (Section 2.2) and the composite (Section 2.4)
estimators are valid estimators of gametic LD.

These are the steps of a single simulation replication. Given the major allele frequencies (pA
and pB) and Pearson correlation r (6), the haplotype frequencies (pAB, pAb, paB, pab) are uniquely
identified. For individual i ∈ {1, 2, . . . , n = 100} at a given ploidy level K, we simulated the number
of each haplotype they contained (XiAB, XiAb, XiaB, Xiab) given the haplotype frequencies using
(7). Genotypes were calculated by GiA := XiAB + XiAb and GiB := XiAB + XiaB. Given these
genotypes, read-counts were simulated using updog’s rflexdog() function at a specified read-depth,
a 0.01 sequencing error rate, no allele bias, and an overdispersion value of 0.01. Updog was then
used to generate genotype likelihoods, posterior mode genotypes, and posterior mean genotypes.
These outputs were fed into ldsep to provide the estimators listed in Table 1. The parameters that
varied within the simulation were: the read depth ∈ {1, 5, 10, 50, 100}, the ploidy K ∈ {2, 4, 6, 8},
the major allele frequencies (pA, pB) ∈ {(0.5, 0.5), (0.5, 0.75), (0.9, 0.9)}, and the Pearson correlation
r ∈ {0, 0.5, 0.9}. When pA = 0.5 and pB = 0.75, r is constrained to be less than 1/

√
3 ≈ 0.58, and

so in this scenario the r = 0.9 setting was omitted. Each unique combination of parameters was
replicated 200 times.

The conclusions for estimating r2 and ρ2 when pA = pB = 0.5 are presented in Figures 1, S5, and
S6. Mean-squared error performance for estimating D and D′ when pA = pB = 0.5 are presented in
Figures S7 and S8, respectively. Results for other scenarios are similar and are available on GitHub
(https://github.com/dcgerard/ld_simulations). The general conclusions are:

• The moment-based estimators of composite LD (∆̂mom, ∆̂′mom, ρ̂mom) have a strong bias
toward 0 until a large read-depth is attained (Figure S5). This bias makes these estimators
look like they perform very well when LD is close to zero, but they consequently perform very
poorly for large levels of LD.

• Maximum likelihood estimation of gametic LD using genotype likelihoods (D̂gl, D̂
′
gl, r̂gl)

generally dominates maximum likelihood estimation of gametic LD using posterior mode
genotypes (D̂g, D̂′g, r̂g) in terms of bias and mean squared error (MSE) (Figures S5 and 1).

• Maximum likelihood estimation using the genotype likelihoods is generally unbiased (Figure
S5). It pays for this lower bias by having a larger standard error (Figure S6), but it also
produces lower MSE in non-zero LD regimes (Figure 1).

• Even though these data were simulated under HWE, estimators of composite measures of LD
using genotype likelihoods generally perform as well as the estimators of gametic LD when
estimating r2 (Figure 1). The HWE assumption helps when estimating D and D′ (Figures
S7 and S8).

• Using genotype likelihoods is mostly important in settings of high ploidy. All methods behave
rather similarly in diploids, but the genotype likelihood approaches perform much better at
higher ploidy levels in high LD regimes (Figure 1).

Figures 2 and S9 highlight that our standard errors for the LD estimators are generally accurate
except when the read-depth is 1. Computation time for each method is presented in Figure S11. We
see there that ploidy is the major cause of computation time increases and that genotype likelihood
methods tend to be much slower than methods that use estimated genotypes. However, all methods

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.03.234476doi: bioRxiv preprint 

https://github.com/dcgerard/ld_simulations
https://doi.org/10.1101/2020.08.03.234476
http://creativecommons.org/licenses/by-nc-nd/4.0/


take less than half a second on average.

3.2 Pairwise LD simulations when HWE is violated

In this section, we evaluate the performance of the various LD estimators when HWE is violated.
We do this by simulating genotypes directly from the proportional bivariate normal distribution.
In this case, since HWE is violated, the composite LD estimators (Section 2.4) are still appropriate
measures of association, but the estimators of gametic LD (Section 2.2) are estimators under a
misspecified model.

Each replication, given a ploidy K, we generated genotypes for 100 individuals from a propor-
tional bivariate normal distribution with mean µ ∈ R2 and covariance matrix Σ = (σij) ∈ R2×2.
Given these genotypes, we simulated read-counts using updog’s rflexdog() function at a speci-
fied read-depth, a 0.01 sequencing error rate, no allele bias, and an overdispersion value of 0.01.
Updog was then used to generate genotype likelihoods, posterior mode genotypes, and posterior
mean genotypes. These outputs were fed into ldsep to provide the estimators listed in Table
1. The parameters that varied within the simulation were: the ploidy K ∈ {2, 4, 6, 8}, the mean
parameter µ = (p1K, p2K) where (p1, p2) ∈ {(0.5, 0.5), (0.5, 0.75), (0.9, 0.9)}, the scale parameter
σ11 = σ22 ∈ {K2/4,K2}, the association parameter σ12 ∈ {0, 0.5

√
σ11σ22, 0.9

√
σ11σ22}, and the

read-depth ∈ {1, 5, 10, 50, 100}. Each unique combination of parameter values was replicated 200
times.

The conclusions for estimating ρ2 when µ1 = µ2 = K/2 and σ11 = σ22 = K2/4 are presented
in Figures 3, S12, and S13. The results for other scenarios are similar and are available on GitHub
(https://github.com/dcgerard/ld_simulations). The general conclusions are:

• Composite measures perform the best under high levels of LD. Most methods are unbiased
under low levels of LD, but only composite measures are unbiased under high levels of LD.

• The composite measure using genotype likelihoods and the proportional normal genotype
distribution class (∆̂pn, ∆̂

′
pn, ρ̂pn) generally had the best performance overall, while using the

general categorical class of genotype distributions (∆̂gc, ∆̂
′
gc, ρ̂gc) resulted in higher standard

errors.
Computation times for each method are presented in Figure S14, the results being similar to those
described in Section 3.1.

3.3 LD estimates using data from Uitdewilligen et al. [2013]

We evaluated all pairwise LD estimators discussed in this paper on the genotyping-by-sequencing
data from Uitdewilligen et al. [2013]. These data come from a diversity panel of autotretraploid
Solanum tuberosum (2n = 4x = 48). We obtained pairwise LD estimates from all SNPs on two con-
tigs that have an alternative allele frequency between 0.1 and 0.9. One contig (labeled CONT0988)
targets a gene involved in sucrose synthesis, and one contig (labeled CONT1561) targets a zinc
finger. These contigs are located on two different super scaffolds. These contigs were chosen
somewhat arbitrarily, but the results we present below are robust to the selection of contigs and
the reader is encouraged to change the contigs in our reproducible analysis scripts on GitHub
(https://github.com/dcgerard/ld_simulations).

The main results are presented in Figure 4. We would expect methods to perform well if
they exhibit (i) large LD estimates between SNPs within a contig and (ii) small LD estimates
between SNPs on different contigs. Both contigs are relatively small (1113 bp and 1585 bp) and
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Figure 1: Mean-squared error of r2 estimators (y-axis) stratified by read-depth (x-axis), estimation
method (color), ploidy (row-facets), and true r2 (column-facets) for the simulations from Section
3.1. Except in low-LD regimes, the MLE using genotype likelihoods has the smallest MSE. The
moment-based estimator has a lower MSE in low-LD regimes because of its strong bias toward 0.
Simulations were performed with pA = 0.5 and pB = 0.5.
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Figure 2: Standard errors (x-axis) of gametic (first row) and composite (second row) LD estimators
when using genotype likelihoods from the simulations in Section 3.1. The y-axis contains the median
of the estimated standard errors. Each point is a different simulation setting. The line is the y = x
line and points above that line indicate that the estimated standard errors are typically larger than
the true standard errors. Standard errors are reasonably unbiased except when the read-depth is 1
(color and shape).

so should exhibit large levels of LD within each contig. Generally, the composite estimates of ∆
using the proportional bivariate normal genotype class had the largest LD estimates within each
contig (Figure 4 (A) and (B)). For LD estimation between contigs, the methods behaved similarly
(Figure 4(C)). Heatmaps of LD estimates of r2 or ρ2 are presented in Figures S15–S19.

3.4 LD estimates using data from McAllister and Miller [2016]

In this section, we evaluate our LD estimators using the genotyping-by-sequencing data from
McAllister and Miller [2016], downloaded from Dryad as a variant call format file [McAllister and
Miller, 2017]. These data come from natural populations of Andropogon gerardii, where reads were
mapped onto the Sorghum bicolor genome. A. gerardii contains two common cytotypes: hexaploid
(2n = 6x = 60) and enneaploid (2n = 9x = 90). All results in this section use only hexaploid
individuals. Unlike the data from Uitdewilligen et al. [2013], the individuals from McAllister and
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Figure 3: Average mean-squared error (y-axis) stratified by read-depth (x-axis), ploidy (row-facets),
and association parameter of the proportional bivariate normal distribution (column-facets) for the
simulations from Section 3.2.
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Figure 4: Squared Pearson correlation estimates subtracted from ρ̂2
pn for SNPs on contig CONT0988

(A) and on contig CONT1561 (B). A positive value (above the red dashed line) indicates that
ρ̂2
pn is larger. (C) Squared Pearson correlation estimates on different contigs (CONT0988 and

CONT1561) on different super scaffolds where better LD estimates should be closer to 0 (red
dashed line).

Miller [2016] were sequenced at relatively low depth (on the order of 10× versus 60×).
As in Section 3.3, we selected two arbitrary regions of the Sorghum bicolor genome, located on

two different chromosomes, and extracted all biallelic SNPs from these two regions. SNPs were
discarded if they contained an alternative allele frequency less than 0.1 or greater than 0.9. SNPs
were also discarded if their average read-depth was less than 3. We then estimated genotypes using
updog [Gerard et al., 2018] using a proportional normal prior class [Gerard and Ferrão, 2019]. The
resulting genotype likelihoods were used to estimate pairwise LD between all SNPs.

Heat-maps of all pairwise LD estimates are provided in Figures S21–S25. It at first appears that
there is a relatively rapid decay of pairwise LD. However, this is likely because the genomic regions
span 100 kb, which is much larger than the regions explored in Section 3.3. The second dominant
result is that estimating LD by maximum likelihood using posterior mode genotypes performed
very poorly. The other methods performed comparably. Though, there was greater noise in the
methods that estimate composite LD using genotype likelihoods. When the LD estimates are
shrunk using the hierarchical shrinkage procedure of Stephens [2016] and Dey and Stephens [2018],
the results appear to be very close (Figures S26–S29), indicating the signal-to-noise ratio was very
similar for the different estimators. This shrinkage was performed on the Fisher-z transformation
[Fisher, 1921] of the estimated Pearson correlation, whose distribution in simulations appears to be
very well approximated by the normal distribution (Figure S10). The major difference between the
shrunken LD heatmaps is that genotype likelihood methods result in a fewer number of non-zero
LD estimates, but each are of higher magnitude.

4 Discussion

In this manuscript, we reviewed gametic measures of LD and then derived generalizations of Bur-
rows’ composite measures of LD to polyploids. For the composite generalizations of Lewontin’s D′,
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this involved deriving novel bounds on the covariance between genotypes. We provided a collection
of methods to estimate both gametic LD and composite LD in the presence of genotype uncertainty
by directly using genotype likelihoods. For composite LD, this involved developing a novel class of
distributions over the genotypes. We validated our methods both in simulations and on real data.

In Section 2.3, though we were able to find closed-form bounds on ∆ when conditioning on the
genotype expectations, we resorted to the methods of linear programming to numerically find the
bounds on ∆ when conditioning on the marginal distributions. Under more general conditions,
Whitt [1976] characterized the maximum and minimum correlation between two random variables
given fixed marginals, corresponding to scenario (15)–(16). Specifically, given random variables X
and Y with inverse cumulative distribution functions F−1(·) and G−1(·), Whitt [1976] found that

cor(F−1(U), G−1(1− U)) ≤ cor(X,Y ) ≤ cor(F−1(U), G−1(U)), (36)

where U is a Uniform(0, 1) random variable. Using (36), Leonov and Qaqish [2020] derived a
purpose-built algorithm to find the bounds on the correlation given two random variables that
follow general categorical distributions. This algorithm could be used to solve (15)–(16) and might
be computationally faster. However, solving the linear program (15)–(16) is not the computational
bottleneck we face when estimating LD. The time to solve (15)–(16) for an octoploid species is on
the order of a millisecond, whereas the optimization procedures discussed in Section 2.4 take about
half a second (Figures S11 and S14). We thus leave improved optimization of (15)–(16) as future
work.

We briefly discussed covariance shrinkage in this manuscript. Covariance shrinkage has a long
history, dating back at least to James and Stein [1961] and has shown great promise in improv-
ing covariance estimates in high dimensional regimes, including in genomic studies [Schäfer and
Strimmer, 2005]. Yet, most LD estimators do not use any form of regularization or shrinkage (with
the exception of Wen and Stephens [2010]). An off-the-shelf approach that we have used in this
manuscript is “adaptive shrinkage” on the Fisher-z transformed correlation matrix [Stephens, 2016,
Dey and Stephens, 2018] (Figures S26–S29). This shrinkage estimator is not purpose-built for LD
estimation, and so there are many avenues for improvement (e.g., by accounting for known physical
locations of SNPs). Research on LD shrinkage estimation is now more accessible with the accurate
standard errors that we derived in this manuscript.

Data availability

All methods discussed in this manuscript are implemented in the ldsep package, available on
the Comprehensive R Archive Network https://cran.r-project.org/package=ldsep. Scripts
to reproduce the results of this research are available on GitHub https://github.com/dcgerard/

ld_simulations.
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Supplementary Material

S1 Derivation of Equation (8)

Under Hardy-Weinberg equilibrium, (XiAB, XiAb, XiaB, Xiab) follows a multinomial distribution (7)
with size parameter K and probability parameters p = (pAB, pAb, paB, pAB). We will denote the
multinomial probability mass function by Multinom(XiAB, XiAb, XiaB, Xiab|K,p). Letting GiA =
XiAB +XiAb and GiB = XiAB +XiaB, the change of variables results in

Pr(GiA, GiB|p) =
∑

XiAB ,XiAb,XiaB ,Xiab s.t.
GiA=XiAB+XiAb,

GiB=XiAB+XiaB , and
XiAB+XiAb+XiaB+Xiab=K

Multinom(XiAB, XiAb, XiaB, Xiab|K,p). (S1)

Noting that

XiAb = GiA −XiAB (S2)

XiaB = GiB −XiAB (S3)

Xiab = K −XiAb −XiaB −XiAB (S4)

= K −GiA −GiB +XiAB, (S5)

and then relabeling z = XiAB, (S1) becomes

Pr(GiA, GiB|p) =
∑
z

Multinom(z,GiA − z,GiB − z,K −GiA −GiB + z|K,p). (S6)

It remains to find the limits of the summation in (S6). Since each X lies between 0 and K we have

0 ≤z ≤ K (S7)

0 ≤ GiA − z ≤ K ⇒ GiA −K ≤z ≤ GiA (S8)

0 ≤ GiB − z ≤ K ⇒ GiB −K ≤z ≤ GiB (S9)

0 ≤ K −GiA −GiB + z ≤ K ⇒ GiA +GiB −K ≤z ≤ GiA +GiB. (S10)

Taking the intersection of bounds (S7)-(S10), we obtain

max(0, GiA +GiB −K) ≤ z ≤ min(GiA, GiB). (S11)

Placing the bounds of (S11) in (S6) and substituting in the multinomial probability mass function
yields (8).

S2 EM algorithm to estimate haplotype frequencies in autopoly-
ploids under HWE

The following derivation generalizes from diploids to polyploids the EM algorithm described in Li
[2011] and later used in Fox et al. [2019]. However, unlike the algorithm in Li [2011] that uses
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the haplotypes as the latent variable, we use the number of each haplotype as the latent variable.
This simplifies the EM algorithm derivation for polyploids and significantly reduces the number of
summands each iteration from 4K to

(
K+3
K

)
. For example, for an octoploid species like strawberry

(K = 8), the number of summands reduces from 65536 each iteration to 165 each iteration.
For individual i, let Ai1 be the number of “00” haplotypes, Ai2 be the number of “01” hap-

lotypes, Ai3 be the number of “10” haplotypes, and Ai4 be the number of “11” haplotypes. Let
Ai = (Ai1, Ai2, Ai3, Ai4). Then A ∼ Multinom(K,p), where p = (p1, p2, p3, p4) are the haplotype
frequencies. Let yi = (yi1, yi2) be the data at loci 1 and 2 for individual i. We assume the user
provides p(yi1|g1) and p(yi2|g2), the genotype likelihoods given genotypes g1 and g2 for individual i
at loci 1 and 2. Let y = (y1, . . . ,yn) and A = (A1, . . . ,An). Then the complete log-likelihood is:

p(y,A|p) =
n∑

i=1

∑
a s.t.

a1+a2+a3+a4=K

I(Ai = a) log [p(yi1|a3 + a4)p(yi2|a2 + a4)Pr(a|p)] . (S12)

The E-step involves calculating the following posterior probabilities:

wia := Pr(a|yi,p(old)) (S13)

=
p(yi1|a3 + a4)p(yi2|a2 + a4)Pr(a|p(old))∑

a s.t.
a1+a2+a3+a4=K

p(yi1|a3 + a4)p(yi2|a2 + a4)Pr(a|p(old))
(S14)

=
p(yi1|a3 + a4)p(yi2|a2 + a4) Multinom(a|K,p(old))∑

a s.t.
a1+a2+a3+a4=K

p(yi1|a3 + a4)p(yi2|a2 + a4) Multinom(a|K,p(old))
(S15)

(S16)

The M-step thus involves maximizing the following objective function:

n∑
i=1

∑
a s.t.

a1+a2+a3+a4=K

wia log [p(yi1|a3 + a4)p(yi2|a2 + a4)Pr(a|p)] (S17)

=
n∑

i=1

∑
a s.t.

a1+a2+a3+a4=K

wia log [Pr(a|p)] + C, (S18)

where C is some constant with respect to p. Using Lagrange multipliers, we find that the update
is

η` :=
n∑

i=1

∑
a s.t.

a`>0 and
a1+a2+a3+a4=K

a`wia (S19)

p
(new)
` =

η`∑
` η`

(S20)
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If one uses a Dirichlet(α) prior on the haplotype proportions, then (S19) is modified to

η` :=
n∑

i=1

∑
a s.t.

a`>0 and
a1+a2+a3+a4=K

a`wia + (α` − 1). (S21)

S3 Moments of genotypes

In this section, we derive the moments for the genotypes at two loci under the assumption of HWE.
The calculations are simple, but demonstrate that composite measures of LD are equal to gametic
measures of LD when HWE is fulfilled. Let

(X1, X2, X3, X4) ∼ Multinom(K, p1, p2, p3, p4), (S22)

where X1 are the counts of haplotype 00, X2 are the counts of haplotype 10, X3 are the counts
of haplotype 01, and X4 are the counts of haplotype 11. Then we have the following moments of
multinomial counts:

E[Xi] = Kpi (S23)

var(Xi) = Kpi(1− pi) (S24)

cov(Xi, Xj) = −Kpipj when i 6= j. (S25)

Let

G1 = X2 +X4 (S26)

G2 = X3 +X4. (S27)

Then

pA = (p2 + p4) (S28)

pB = (p3 + p4) (S29)

E[G1] = K(p2 + p4) = KpA (S30)

E[G2] = K(p3 + p4) = KpB (S31)

var(G1) = var(X2) + var(X4) + 2 cov(X2, X4) (S32)

= Kp2(1− p2) +Kp4(1− p4)− 2Kp2p4 (S33)

= K(p2 + p4)(1− (p2 + p4)) (S34)

= KpA(1− pA) (S35)

var(G2) = K(p3 + p4)(1− (p3 + p4)) (S36)

= KpB(1− pB) (S37)
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We will now derive the covariance between G1 and G2:

K∆ = cov(G1, G2) (S38)

= E[G1G2]− E[G1]E[G2] (S39)

= E[X2X3] + E[X2X4] + E[X3X4] + E[X2
4 ]− E[G1]E[G2] (S40)

= K(K − 1)(p2p3 + p2p4 + p3p4) +Kp4(1− p4) +K2p2
4 −K2(p2 + p4)(p3 + p4) (S41)

= K[p4 − (p2 + p4)(p3 + p4)] (S42)

= KD (S43)

The correlation between G1 and G2 is

ρ = cor(G1, G2) (S44)

=
cov(G1, G2)√

var(G1) var(G2)
(S45)

=
KD√

K2pA(1− pA)pB(1− pB)
(S46)

=
D√

pA(1− pA)pB(1− pB)
(S47)

= r. (S48)

Under HWE, ∆e defined in (20) is equal to

∆e =

{
min{pApB, (1− pA)(1− pB)} if ∆ < 0,

min{pA(1− pB), (1− pA)pB} if ∆ > 0
(S49)

= Dmax. (S50)

Thus,

∆′a :=
1
K cov(G1, G2)

∆e
(S51)

= D/Dmax (S52)

= D′. (S53)
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S4 Burrows’ ∆ and genotype covariance

Let GA and GB be the genotypes of a diploid at loci 1 and 2. Then the covariance between GA

and GB is

1

2
cov(GA, GB) =

1

2
(E[GAGB]− E[GA]E[GB]) (S54)

=
1

2

2∑
gA=0

2∑
gB=0

gAgBqgAgB − 2pApB (S55)

= 2q22 + q21 + q12 +
1

2
q11 − 2pApB (S56)

= (12). (S57)

S5 Closed-form bounds for ∆ conditional on allele frequencies

Theorem S1. Suppose X and Y are random variables such that 0 ≤ X,Y ≤ K almost surely.
Furthermore, suppose E[X] = KpA and E[Y ] = KpB. Then

E[XY ] ≤ K2 min(pA, pB). (S58)

Proof. The following proof was provided by Dr. Y. Samuel Wang, University of Chicago, via a
personal correspondence.

E[XY ] = E[|XY |] (S59)

≤ min
p,q≥1

1/p+1/q=1

E[|X|p]1/pE[|Y |q]1/q (S60)

≤ min
p,q≥1

1/p+1/q=1

max
X̃,Ỹ

E[X̃]=KpA,E[Ỹ ]=KpB
0≤X̃,Ỹ≤K

E[|X̃|p]1/pE[|Ỹ |q]1/q (S61)

= min
p,q≥1

1/p+1/q=1

[KppA]1/p[KqpB]1/q (S62)

= min
p,q≥1

1/p+1/q=1

K2p
1/p
A p

1/q
B (S63)

≤ K2 min(pA, pB). (S64)

Equation (S60) follows by Hölder’s inequality. Equation (S62) holds because for any p ≥ 1, the
maximum over X̃ is achieved when Pr(X̃ = K) = pA and Pr(X̃ = 0) = 1 − pA. Similarly, the
maximum over Ỹ is achieved when Pr(Ỹ = K) = pB and Pr(Ỹ = 0) = 1 − pB. Equation (S64)
results by letting p =∞ and q = 1 when pB ≤ pA, and letting p = 1 and q =∞ when pB ≥ pA.

Theorem S2. Let X and Y be two random variables, each with support on {0, 1, . . . ,K}. Fur-
thermore, suppose that E[X] = KpA and E[Y ] = KpB. Then

−K2 min{pApB, (1− pA)(1− pB)} ≤ cov(X,Y ) ≤ K2 min{pA(1− pB), (1− pA)pB}, (S65)
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and these bounds are tight.

Proof.

cov(X,Y ) = E[XY ]− E[X]E[Y ] (S66)

≤ K2 min(pA, pB)− E[X]E[Y ] (Theorem S1) (S67)

= K2 min(pA, pB)−K2pApB (S68)

= K2 min{pA(1− pB), (1− pA)pB}. (S69)

Bound (S69) is tight since it is achieved when Pr(X = K) = pA, Pr(X = 0) = 1 − pA, Pr(Y =
K) = pB, and Pr(Y = 0) = 1− pB.

To prove the lower bound, first set U := K − Y . Then E[U ] = K(1− pB) and we have

cov(X,U) ≤ K2 min{pApB, (1− pA)(1− pB)}. (S70)

But cov(X,U) = − cov(X,Y ), and thus

cov(X,Y ) ≥ −K2 min{pApB, (1− pA)(1− pB)}. (S71)

S6 MLE standard errors when using the general categorical geno-
type distribution

The following are the derivatives relating to the log of (31) necessary to derive asymptotic standard
errors of the MLEs when using the general categorical genotype distribution to estimate composite
measures of LD. The Hessian of the log of (31) can be calculated in closed form:

dL

dqijdqkm
= −

n∑
`=0

Pr(D`1|i)Pr(D`2|j)Pr(D`1|k)Pr(D`2|m)(∑K
i=0

∑K
j=0 Pr(D`1|i)Pr(D`2|j)qij

)2 (S72)

For ∆, we have

∆ =
1

K

K∑
i=0

K∑
j=0

ijqij −
1

K

 K∑
i=0

i

K∑
j=0

qij

 K∑
j=0

j

K∑
i=0

qij

 (S73)

d∆

dq`m
=
`m

K
− `

K

 K∑
j=0

j

K∑
i=0

qij

− m

K

 K∑
i=0

i

K∑
j=0

qij

 , (S74)
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For ρ2, we have

ρ2 =
K2∆2

var(GA) var(GB)
(S75)

var(GA) =
K∑
i=0

i2
K∑
j=0

qij −

 K∑
i=0

i
K∑
j=0

qij

2

(S76)

var(GB) =

K∑
j=0

j2
K∑
i=0

qij −

 K∑
j=0

j

K∑
i=0

qij

2

(S77)

d var(GA)

dq`m
= `2 − 2`

 K∑
i=0

i
K∑
j=0

qij

 (S78)

d var(GB)

dq`m
= m2 − 2m

 K∑
j=0

j

K∑
i=0

qij

 (S79)

dρ2

dq`m
=

2K2∆ d∆
dq`m

var(GA) var(GB)
−

K2∆2 d var(GA)
dq`m

var(GA)2 var(GB)
−

K2∆2 d var(GB)
dq`m

var(GA) var(GB)1
(S80)

For ∆′, we have

E[GA] =

K∑
i=0

i

K∑
j=0

qij (S81)

E[GB] =
K∑
j=0

j
K∑
i=0

qij (S82)

∆e :=

{
min{E[GA]E[GB], (K − E[GA])(K − E[GB])}/K2 if ∆ < 0,

min{E[GA](K − E[GB]), (K − E[GA])E[GB]}/K2 if ∆ > 0.
(S83)

∆′ = ∆/∆e (S84)

d∆′

dq`m
=

d∆
dq`m

∆e
−

∆ d∆e
dq`m

∆2
e

(S85)

d∆e

dq`m
=



`E[GB ]+mE[GA]
K2 if ∆ < 0

and E[GA]E[GB] < (K − E[GA])(K − E[GB])
−`(K−E[GB ])−m(K−E[GA])

K2 if ∆ < 0

and E[GA]E[GB] > (K − E[GA])(K − E[GB])
`(K−E[GB ])−mE[GA]

K2 if ∆ > 0

and E[GA](K − E[GB]) < (K − E[GA])E[GB]
−`E[GB ]+m(K−E[GA])

K2 if ∆ > 0

and E[GA](K − E[GB]) > (K − E[GA])E[GB]

(S86)

We will now provide an example of how to obtain standard errors for the MLEs. Let q =
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(q00, q01, . . . , qij , . . . , qKK), let q̂ be the MLEs of q, and let H be the Hessian of the log-likelihood
with elements (S72). Then standard maximum likelihood theory states that H−1/2(q̂ − q) →
N(0, I). Since the covariance and correlation of genotypes are functions of the qij ’s, we can use the
δ-method to obtain the limiting variances of the covariance and correlation of the genotypes. For
example, if we set g to contain the elements of (S74), then the asymptotic variance we use for ∆̂gc

is −gᵀH−1g.
The asymptotic standard errors are not valid at points for which the gradient does not exist,

which for ∆′ occur when ∆ > 0 and E[GA] = E[GB], when ∆ < 0 and E[GA] + E[GB] = K, or
when ∆ = 0. These situations occur with Lebesgue measure 0, and so should not invalidate the
standard errors.

S7 Standard errors of moment-based estimators

The results in this section can be derived directly from well-known results in the literature [Ex-
ample 6.6.4 Lehmann and Casella, 1998, e.g.]. These results hold only for multivariate normal
random variables, which is not applicable when estimating LD. However, we found that for most
estimators the approximations are decent (Figure S9). Improved asymptotic standard errors could
be implemented by using the techniques described in Chapter 8 of Ferguson [2002].

Let ρ̂ be the sample correlation between genotypes, let ẑ = atanh(ρ̂), let ∆̂ be the sample
covariance between genotypes divided by K, let ∆̂′ be the sample estimator of ∆′, let σ2

1 be the
variance of genotypes at locus 1, let σ2

2 be the variance of genotypes at locus 2, let µ1 be the mean
genotype at locus 1, and let µ2 be the mean genotype at locus 2. Then

√
n(ρ̂mom − ρ)→ N

(
0, (1− ρ2)2

)
(S87)

√
n(ρ̂2

mom − ρ2)→ N
(
0, 4ρ2(1− ρ2)2

)
(S88)

√
n(ẑmom − z)→ N(0, 1) (S89)

√
n(∆̂mom −∆)→ N

(
0, σ2

1σ
2
2/K

2 + ∆2
)

(S90)

Equation (S88) follows from the δ-method using (S87). Equation (S90) follows because K∆̂mom is
the sample covariance of dosages. Equation (S89) is well known [Fisher, 1921, Hotelling, 1953].

For the composite measure ∆′ (19), since

∆̂e → ∆e :=

{
min(µ1µ2, (K − µ1)(K − µ2))/K2 if ∆ < 0,

min((K − µ1)µ2, µ1(K − µ2))/K2 if ∆ > 0,
(S91)

we have by Slutsky’s theorem that

√
n(∆̂′mom −∆′)→ N

(
0,
σ2

1σ
2
2/K

2 + ∆2

∆2
e

)
. (S92)
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Figure S1: Maximum likelihood estimates of D between 20 simulated loci of 100 diploid individuals
in HWE as calculated by ngsLD (x-axis) and ldsep (y-axis). The line is the y = x line. The
estimates are identical.
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Figure S2: Relationship between D′ (4) (x-axis) and ∆′g (y-axis) (17) for populations with different
ploidy (color) under HWE. Row-facets index the allele frequency at the first locus and column-
facets index the allele frequency at the second locus. The red dotted line is the y = x line. The
functional relationship appears to be piecewise linear with a change of slope at 0.

29

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.03.234476doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.234476
http://creativecommons.org/licenses/by-nc-nd/4.0/


pA = 0.9, pB = 0.9, r = 0.9 pA = 0.9, pB = 0.9, r = 0

pA = 0.5, pB = 0.75, r = 0.5 pA = 0.5, pB = 0.75, r = 0 pA = 0.9, pB = 0.9, r = 0.5

pA = 0.5, pB = 0.5, r = 0.5 pA = 0.5, pB = 0.5, r = 0.9 pA = 0.5, pB = 0.5, r = 0

0 1 2 3 4 5 6 0 1 2 3 4 5 6

0 1 2 3 4 5 6

0
1
2
3
4
5
6

0
1
2
3
4
5
6

0
1
2
3
4
5
6

Dosage at Locus 1

D
os

ag
e 

at
 L

oc
us

 2

Distribution

HWE

Normal

Probability

0.1

0.2

0.3

0.4

0.5

Figure S3: Joint probability distribution of two dosages. Probabilities are denoted by size. The
target probability distribution is denoted by solid black circles, the closest (in Kullback-Leibler
divergence) probability distribution to the target distribution among the class of proportional bi-
variate normal distributions is denoted by hollow orange circles. Each facet represents one of the
settings of pA, pB, and r used in the simulation study in Section 3.1.
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Figure S4: Joint probability distribution of two dosages. Probabilities are denoted by size. These
probability distributions were chosen randomly among the class of proportional bivariate normal
distributions. The proportional bivariate normal distribution can take on a variety of shapes beyond
those when assuming HWE.
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Figure S5: Bias of estimates of r2 (y-axis) stratified by read-depth (x-axis), estimation method
(color), ploidy (row-facets) and true r2 (column-facets). The moment-based estimator has a strong
bias toward zero. The MLE using genotype likelihoods is the least-biased. Simulations were
performed with pA = 0.5 and pB = 0.5.
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Figure S6: Standard error of r2 estimators (y-axis) stratified by read-depth (x-axis), estimation
method (color), ploidy (row-facets) and true r2 (column-facets). Methods that use genotype likeli-
hoods have higher standard errors. Simulations were performed with pA = 0.5 and pB = 0.5.
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Figure S7: Mean-squared error of D estimators (y-axis) stratified by read-depth (x-axis), estimation
method (color), ploidy (row-facets), and true D (column-facets) for the simulations from Section
3.1. Simulations were performed with pA = 0.5 and pB = 0.5.
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Figure S8: Mean-squared error of D′ estimators (y-axis) stratified by read-depth (x-axis), esti-
mation method (color), ploidy (row-facets), and true D′ (column-facets) for the simulations from
Section 3.1. Simulations were performed with pA = 0.5 and pB = 0.5.
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Figure S9: Standard errors of LD estimators (x-axis) versus the median of the estimated standard
errors (y-axis) from the simulations in Section 3.1. Scales are freely varying between facets to allow
for visualization. Each point is a different simulation setting. The scenarios where the read-depth
was 1 were excluded due to poor behavior. The line is the y = x line and any points above that
line indicate that the estimated standard errors are typically larger than the true standard errors.
Column-facets index the LD measure being estimated: D (1), D′ (4), r (6), r2, z = atanh(r), and
∆′g (17). Row-facets index the estimators: “g” for (D̂g, D̂

′
g, r̂g), “gl” for (D̂gl, D̂

′
gl, r̂gl), “mom” for

(∆̂mom, ∆̂
′
mom, ρ̂mom), and “pn” for (∆̂pn, ∆̂

′
pn, ρ̂pn). Two empty facets are present because gametic

methods cannot estimate ∆′g, a purely composite measure.
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Figure S10: QQ-plots of of the Fisher-z transformation of r̂gl when pA = 0.5 and pB = 0.5 from the
simulations in Section 3.1. The estimates appear to approximately follow a normal distribution.
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Figure S11: Mean computation time in seconds (y-axis) for each method (facets) stratified by the
simulation settings (x-axis) for the simulations in Section 3.1. Methods using genotype likelihoods
are generally slower, but all methods take less than half a second on average.
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Figure S12: Average bias (y-axis) stratified by read-depth (x-axis), ploidy (row-facets) and associ-
ation parameter of the proportional bivariate normal distribution (column-facets).
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Figure S13: Average standard error (y-axis) stratified by read-depth (x-axis), ploidy (row-facets)
and association parameter of the proportional bivariate normal distribution (column-facets).
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Figure S14: Mean computation time in seconds (y-axis) for each method (facets) stratified by the
simulation settings (x-axis) for the simulations in Section 3.2. Methods using genotype likelihoods
are generally slower, but all methods take less than half a second on average.
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Figure S15: Heatmap of r̂2
g from Section 3.3 using posterior mode genotypes. The data come from

Uitdewilligen et al. [2013].
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Figure S16: Heatmap of r̂2
gl from Section 3.3. The data come from Uitdewilligen et al. [2013].
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Figure S17: Heatmap of ρ̂2
mom from Section 3.3 using posterior mean genotypes. The data come

from Uitdewilligen et al. [2013].
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Figure S18: Heatmap of ρ̂2
gc from Section 3.3. The data come from Uitdewilligen et al. [2013].
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Figure S19: Heatmap of ρ̂2
pn from Section 3.3. The data come from Uitdewilligen et al. [2013].
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Figure S20: Histogram of mean read-depths of the SNPs used in Section 3.3 from the Uitdewilligen
et al. [2013] data.
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Figure S21: Heatmap of r̂2
g from Section 3.4 using posterior mode genotypes. The data come from

McAllister and Miller [2016].
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Figure S22: Heatmap of r̂2
gl from Section 3.4. The data come from McAllister and Miller [2016].
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Figure S23: Heatmap of ρ̂2
mom from Section 3.4 using posterior mean genotypes. The data come

from McAllister and Miller [2016].
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Figure S24: Heatmap of ρ̂2
gc from Section 3.4. The data come from McAllister and Miller [2016].
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Figure S25: Heatmap of ρ̂2
pn from Section 3.4. The data come from McAllister and Miller [2016].
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Figure S26: Heatmap of shrunken values of r̂2
g from Section 3.4 using posterior mode genotypes. The

data come from McAllister and Miller [2016]. Shrinkage was done using the methods of Stephens
[2016] and Dey and Stephens [2018].
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Figure S27: Heatmap of shrunken values of r̂2
gl from Section 3.4. The data come from McAllister

and Miller [2016]. Shrinkage was done using the methods of Stephens [2016] and Dey and Stephens
[2018].
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Figure S28: Heatmap of shrunken values of ρ̂2
mom from Section 3.4 using posterior mean genotypes.

The data come from McAllister and Miller [2016]. Shrinkage was done using the methods of
Stephens [2016] and Dey and Stephens [2018].
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Figure S29: Heatmap of shrunken values of ρ̂2
pn from Section 3.4. The data come from McAllister

and Miller [2016]. Shrinkage was done using the methods of Stephens [2016] and Dey and Stephens
[2018].
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