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Accurate assessment of the health status of individual animals is
a key step in timely and targeted treatment of infections, which is
critical in the fight against anthelmintic and antimicrobial resistance.
The FAMACHA scoring system has been used successfully to de-
tect levels of anaemia caused by infection with the parasitic nema-
tode Haemonchus contortus in small ruminants and is an effective
way to identify individuals in need of treatment. However, assessing
FAMACHA is labour-intensive and costly as individuals must be man-
ually examined at frequent intervals over the Haemonchus season.
Here, we show that accelerometers can measure individual activity in
extensively grazing small ruminants subject to natural Haemonchus
contortus worm infection in southern Africa over long time-scales,
and when combined with machine learning, can predict the smallest
pre-clinical increases in FAMACHA score as well as those individuals
that respond to treatment, all with high precision (>95%). We demon-
strate that these classifiers remain robust over time, and remarkably,
generalise without retraining across goats and sheep in different re-
gions and types of farming enterprise. Interpretation of the trained
classifiers reveal that as the effect of haemonchosis increases, both
sheep and goats exhibit a similar reduction in the fine-grained vari-
ation of their activity levels. Our study thus reveals common be-
havioural patterns across small ruminant species, which low-cost
biologgers can exploit to detect subtle changes in animal health and
enable timely and targeted intervention. This has real potential to im-
prove economic outcomes and animal welfare as well as limit the use
of anthelmintic drugs and hence diminish pressures on anthelmintic
resistance under conditions of both commercial and resource-poor
communal farming.

FAMACHA | Haemonchus contortus | Anthelmintic Resistance | Preci-
sion Livestock Farming | Accelerometers | Machine Learning

L ivestock farming in resource-poor (RP) communities
presents multiple challenges. Sheep and goat farming

in developing countries suffers from tremendous economic
losses from a variety of diseases, including parasitic helminth
infections (1). Optimal helminth management is imperative
for a farmer to achieve, but is complex and especially difficult
without access to expert help.

The gastro-intestinal nematode Haemonchus contortus (H.
contortus) has a particularly heavy impact on small ruminants
in tropical and subtropical regions, as these regions provide a
favourable environment for its development. Each female H.
contortus produces up to 10,000 eggs per day (2), and these
develop to infective larvae in a few days under warm and moist

conditions. Re-infection can result in high parasite burdens
and acute disease outbreaks often leading to death, especially
among young animals (3). Disease is primarily the result of
blood-feeding by adult worms in the abomasum, leading to
anaemia, protein loss, and associated consequences for health,
growth and fertility (4). The economic loss due to helminth
infection in sheep and goat production is substantial, for
example an estimated $40 million per annum in the Kano area
of northern Nigeria and $26 million per annum in Kenya (1).

Although multiple worm control strategies for RP farm-
ers exist (5), including chemical dewormers, vaccination, an-
thelmintic drugs, grazing management, specific diets and eth-
noveterinary remedies, they all require high manual labour
and other expenses (6, 7). In addition, widespread use of
anthelmintic drugs has led to high prevalence of anthelmintic
resistance (AR) in countries such as South Africa (8–10). This
is due to farmers relying on anthelmintics as the sole method
of control against helminth infection, and poor practices such
as treating the entire herd when only a few individuals are
affected. Although helminth infections are curable, they are
common and exact high ongoing costs relative to other diseases
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due to the complexity and operational difficulties of effective
and sustainable management (11). Indeed, farmers in Sub-
Saharan Africa rank helminths as the most important disease
in small ruminants, in spite of more visible (e.g. ectoparasitic)
and ostensibly more damaging (e.g. foot and mouth disease
virus) pathogens (12).

A path to more sustainable and efficient control of
Haemonchus infection is the effective clinical evaluation of
individual animals, and selective treatment of those unable
to cope (13), leaving the rest untreated. This is possible be-
cause helminths are aggregated among their hosts, such that
a few individuals in a group tend to carry the majority of
the disease burden, and disproportionally drive onward trans-
mission (14). The untreated individuals provide refugia for
anthelmintic-susceptible genotypes, slowing the development
of AR (13, 15, 16). The FAMACHA clinical system was de-
veloped to deliver on this principle in sheep and goats, and
consists of a calibrated colour chart against which the colour
of the conjunctivae of sheep and goats is compared (17, 18).
FAMACHA scores range from 1 to 5, with score 1 being the
most healthy, equating to haematocrit ≥ 28%, and score 5 the
most severely anaemic (haematocrit ≤ 12%). The scoring sys-
tem requires minimal training, provides immediate results and
does not rely on expensive equipment or laboratory analysis.
However, the training is specific and the trainers are mostly
in short supply, particularly in RP regions. Furthermore, the
system relies on frequent close handling and examination of
individual animals, which is laborious and costly, given that
examination of entire herds is required weekly during high risk
periods.

A promising alternative could be to use biologgers to
remotely monitor behaviour linked to poor health (19–22).
Thanks to advancements in on-animal sensor technology, ef-
fective tracking and monitoring of terrestrial animals can now
give access to large quantities of data on their behaviour and
their interactions between each other and with their environ-
ment (23). Accelerometry data has been successfully used to
classify livestock behaviour, for example Moreau et al. (24)
identified eating, resting and walking in goat activities by
using tri-axial accelerometers together with moving averages
and multiple thresholds. This approach is, however, unable
to detect localised events in activity and is highly sensitive to
the sensor position on the animal. Other studies used machine
learning approaches. Vazquez et al. (25) used a combination
of accelerometry and gyroscopic data with online learning to
avoid sheep behaviour (walking, standing and lying) classifi-
cation deterioration over time due to the intrinsic changing
nature of the input data. Scoley et al. (26) studied the effect
of milk and forage feeding in dairy calves with the IceQube®
automatic activity sensors (IceRobotics Ltd., Edinburgh, Scot-
land, UK). The study revealed that calves had activity level
which might be linked to hunger when they were fed con-
ventional level of milk replacement after being fed high level
of milk replacement in their early life. By combining GPS
data and 3-axis accelerometry data González et al. (27) were
able to accurately detect foraging and travelling behaviour in
grazing cattle. Högberg et al. (28) measured the accuracy of
two commercial sensors (CowScout(GEA Farm Technologies))
and the IceTag® (IceRobotics Ltd.) mounted on dairy cows.
Both devices use accelerometers to determine lying, standing
and walking. The study showed that lying and standing could

accurately be detected but walking detection was inaccurate.
Although these studies focus on specific activities and all

have the potential to be used for livestock management through
the monitoring of behaviour, in all cases they did not consider
the potentially rich raw data directly, but rather through
summary statistics such as the frequency of detected behavioral
events or lengths of behavioral periods, which are open to
subjective judgement, detection errors and inaccuracies. With
the aim of improving animal welfare and reducing drug use,
labour and other costs, we have developed a novel automated
approach for detecting changes in the FAMACHA score of
individual animals based solely on accelerometry data (Fig. 1).

Our study group consists of a sheep flock in Delmas,
Mpumalanga Province, South Africa, and a goat herd at
Cedara Government Agricultural Animal Production Research
Farm, Howick, KwaZulu-Natal, South Africa (Table 1). A
transponder containing an accelerometer was suspended by

Fig. 1. Schematic of our machine learning pipeline. (A) The biologger outputs
accelerometry data as a count of the instances the acceleration exceeded 2g over a
short interval. Here we show derived activity time series for two animals (blue/orange)
over a 5 days period with a bin size of 10 minutes. As can be seen, there are
significant differences in signal magnitude which we account for through preprocess-
ing. (B) After normalisation and variance stabilisation, we transform the data with a
Continuous Wavelet Transform (CWT), which separates the activity levels into longi-
tudinal dynamics (x axis) at a range of temporal scales (Frequency, y axis). Higher
frequencies represent transient bursts of activity, while lower frequencies represent
more consistent levels. For example, the day/night cycle can now clearly be seen.
(C) The high-dimensional CWT data is then combined with the FAMACHA report for
supervised machine learning. The scatter plot shows clustering of the animals in this
space (blue and orange points represent healthy and unhealthy animals respectively;
those not used for training are circled, and are used to test classification performance).
A Support Vector Machine with 10-fold cross-validation repeated 100 times is then
used to derive the classification boundary (red) and to derive predicted probabilities
that each animal is healthy or unhealthy (shading from blue to orange).
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Table 1. Characteristics of the study group

Cedara Delmas

Data collection period April 2012 to
July 2013

March 2015 to
April 2016

Species Goat Sheep
Animals tagged 227 64
Tag type Accitrack v1 Accitrack v2
Age range 2-6 years 2-6 years
Average weight 44.19 kg 72.79 kg
FAMACHA evaluation fortnightly weekly
Animals evaluated 64 31
FAMACHA 1 → 1 31.9% 34.9%
FAMACHA 1 → 2 12.8% 18.3%
FAMACHA 2 → 1 13.5% 18.4%
FAMACHA 2 → 2 13.9% 28.2%
FAMACHA 3+ 28.8% 0.2%

a sturdy ribbon around the neck of each animal and used to
measure activity levels continuously for more than a year (Ta-
ble 1). During this time, the FAMACHA score was assessed
every week for sheep, and every two weeks for goats. A su-
pervised machine learning pipeline was developed (Fig. 1) to
predict an increase in FAMACHA score from 1 ("optimal") to
2 ("acceptable"), as well as from 2 to 1 after individual an-
thelmintic treatment. Key to the performance of this pipeline
is the use of the Continuous Wavelet Transform (CWT) on
the binned accelerometry data so that the classifier can learn
discriminative features based across the time, duration and
intensity of fluctuations in activity levels. Classification drift
including robustness to seasonality was assessed through tem-
poral validation, while generalisability was assessed by using
the sheep farm as an external validation dataset for the goats,
and vice versa. As our model is linear, we were also able to

A – Sheep B

C – Goats D

Fig. 2. Classifying health status. The machine learning was trained to discriminate
FAMACHA rising to 2 against staying at 1 using 7 days of accelerometry data directly
preceding FAMACHA evaluation. (a) Scatter plot and (b) Receiver Operating Charac-
teristic (ROC) curve for training and testing on sheep. (c) Scatter plot and (b) ROC
curve for training and testing on goats.

perform inverse transformation of the trained classifiers for
visual interpretation of the behavioral cues that distinguish
healthy animals from those with a trajectory to poorer health.

Results.

Classifying health status. We first aimed at predicting which in-
dividuals would progress from a FAMACHA score of 1 to 2,
based solely on the 7 days of accelerometry data immedi-
ately prior to the increase. For this we had 200 examples
of FAMACHA 1→ 1 and 57 examples of FAMACHA 1→ 2
for the sheep at Delmas, respectively, and 176 examples of
FAMACHA 1→ 1 and 67 examples of FAMACHA 1→ 2 for
the goats at Cedara. With these annotations we trained and
tested our supervised machine learning pipeline using 10-fold
cross-validation repeated 100 times. As shown in Fig. 2, our
dimensionality reduction revealed clear clusters in the datasets
which could be accurately classified. The machine learning
pipeline was hence able to predict an increase in FAMACHA
score with mean precision of 96% and 98% for individual sheep
and goats (respectively) declining in health, and a consistently
low FAMACHA score with respective mean precision 95%
and 98% for sheep and goats. In a Receiver Operating Charac-
teristic (ROC) analysis, the mean area under the curve (AUC)
was 97% for the sheep and 98% for the goats.

Classifying the response to treatment. Each animal which scored
≥ 2 during a FAMACHA evaluation was immediately
treated with Levamisole (Ripercol-L, Bayer Animal Health)
at 7.5mg.kg−1 as part of routine husbandry (29). We hence
created a dataset to examine our ability to determine which
animals responded well to treatment, comparing those that
subsequently decreased from FAMACHA 2 to 1 with those that
continued at FAMACHA 2. This was based on classifying the
7 days of accelerometer data immediately following treatment.

A – Sheep B

C – Goats D

Fig. 3. Classifying the response to treatment. The machine learning was trained to
discriminate FAMACHA falling to 1 against staying at 2 using 7 days of accelerometry
data directly proceeding anthelmintic treatment. (A) Scatter plot and (B) Receiver
Operating Characteristic (ROC) curve for training and testing on sheep. (C) Scatter
plot and (D) ROC curve for training and testing on goats.
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A – Sheep B

C – Goats D

Fig. 4. Temporal validation. The machine learning was trained to discriminate
FAMACHA rising to 2 against staying at 1 using 7 days of accelerometry data directly
preceding FAMACHA evaluation. To assess concept drift, data from May to October
was used for training while data from November to April was used for testing. (A)
Scatter plot and (B) ROC curve for training and testing on sheep. (C) Scatter plot and
(D) ROC curve for training and testing on goats.

For this we had 32 examples of FAMACHA 2→ 1 and 26 ex-
amples of FAMACHA 2→ 2 for the sheep, and 35 examples of
FAMACHA 2→ 1 and 19 examples of FAMACHA 2→ 2 for
the goats. This resulted in a modest training set size which
may diminish the performance of the machine learning. Never-
theless, the classifier was able to predict a drop in FAMACHA
score indicating a response to treatment with mean preci-
sion 80% and 76% for the sheep and goats, respectively, and
no change in FAMACHA score with mean precision of 86%
and 91%. As shown in Fig. 3, the mean AUC was 95% for the
sheep and 96% for the goats.

Temporal validation to assess concept drift. The notion of "concept
drift" describes the decrease in performance of a given classifier
due to changing environmental or sensing conditions over a
period of time. In other words, training data collected at the
start of a given period becomes less representative of future
data. This is a common issue in long duration supervised
classification problems that use real life data which is, in most
scenarios, changing intrinsically (25). An analysis was devised
to test how much concept drift affects our findings. Two 6-
month periods of data were extracted from the sheep and goat
datasets to maximise seasonal differences: (i) the first 6 month
period from May to October; (ii) the subsequent 6-month
period from November to April. It is clear from observing
the resulting scatter plots of the trained classifiers (Fig. 4)
that while there is little observable drift in the activity of the
healthy animals, the less healthy animals cluster differently
depending on time period. Nevertheless, these clusters do not
interfere with the decision boundary and hence the overall
precision of prediction did not noticeably decrease, yielding
a mean precision of 96% and 96% for the less healthy sheep
and goats, respectively, a mean precision 98% and 100% for
the healthy sheep and goats, and a mean AUC of 95% for the

A – Trained on Sheep; Tested on Goats B

C – Trained on Goats; Tested on Sheep D

Fig. 5. External validation across farm, region and species. (A) Scatter plot and
(B) ROC curve for the classifier trained on the sheep at Delmas and tested on the
goats at Cedara. (C) Scatter plot and (D) ROC curve for the reciprocal.

sheep and 98% for the goats.

External validation to assess generalisability across farm, region,
and species. While a high degree of predictive power was
achieved by training the model on each farm independently, a
crucial requirement for the practical application of our tech-
nique is the ability of the classifier to generalise across farms
without retraining. To demonstrate this, we went a signif-
icant step further by examining the generalisability of our
approach from the goats to the sheep and vice-versa, hence
assessing not only the robustness of our approach across farms,
regions and a 3-year time gap, but also across species. In ad-
dition, version 1 of the Accitrack accelerometer tag was used
on the goats, whereas version 2 was used on the sheep, and
the FAMACHA evaluators were different on each farm. Since
in this study analysis we pooled the data from both farms, we
used 257 training samples for sheep, and 243 testing samples
for goats (and vice-versa). The result revealed that despite the
marked differences, it was still possible to accurately predict
the increase of FAMACHA score highly robustly (Fig. 5),
with a mean precision of 100% and 94% for the less healthy
sheep and goats respectively, a mean precision 99% and 99%
for the healthy sheep and goats, and a mean AUC of 98%
for the sheep and 98% for the goats. Similar to the temporal
validation above, the less healthy sheep and goats form sepa-
rate clusters in the classifier space. A modest drift between
healthy sheep and goats is also noticeable. Nevertheless, as we
maintain strong predictive power, this is compelling evidence
that the underlying behaviours captured by the accelerometers
are remarkably similar between the sheep and goats, and that
this is a robust and reproducible effect.

Interpreting the classifier. In order to understand how our model
discriminates between animals on healthy and less healthy tra-
jectories, we analysed the output of the classifiers in Fig. 2 by
multiplying the derived feature weights (which define the clas-
sification boundary) by the CWT of the mean accelerometer
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A – Accelerometer trace for sheep with FAMACHA 1 → 1 B – Learnt importance weights for sheep with FAMACHA 1 → 1

C – Accelerometer trace for sheep with FAMACHA 1 → 2 D – Learnt importance weights for sheep with FAMACHA 1 → 2

E – Accelerometer trace for goats with FAMACHA 1 → 1 F – Learnt importance weights for goats with FAMACHA 1 → 1

G – Accelerometer trace for goats with FAMACHA 1 → 2 H – Learnt importance weights for goats with FAMACHA 1 → 2

Fig. 6. Interpretation of the classifiers from Fig. 2. (A,C,E,G) Left: Mean accelerometer traces for the classifiers in Fig.2 illustrating noticeable differences between daily
activity patterns of the sheep and goats, but no clear differences between healthy and unhealthy animals. Right: CWT transformed mean accelerometer traces. (B,D,F,H) Left:
Mean accelerometer CWT multiplied by the learnt feature weights reveal CWT features that are important to classification in the healthy and unhealthy animals. Right: View of
the feature importance as differential accelerometer traces after inverse CWT.

traces for each class. As illustrated in Fig. 6, the result shows
that the trained model ascribes importance to high frequency
activity in the healthy group and low frequency activity in
the less healthy group. By performing an inverse CWT on
this result, we can also illustrate this effect as a differential
accelerometer trace, which shows that, compared to average
activity levels across the day and night, the healthy animals
appear to have frequent bursts of activity and rest throughout,
whereas the less healthy animals are more uniform in their
activity levels.

Investigating evolution of activity as parasitic burden increases.
With the aim of estimating when the impact of H. contortus
burden becomes detectable in the animal’s activity profile, and
hence potentially provide even earlier detection of ill health, for
the sheep farm at Delmas we sampled a series of input datasets
for our model over a 3 week period before a FAMACHA 2 test
result, each with a 7 day sliding window, starting from the
first week and moving to the third week by a fixed increment
of half a day. In order to ensure a consistent sample size
across the 3 week period, in this analysis we compared animals
that remained at FAMACHA 1 across the 3 weeks with those
that increased to FAMACHA 2 only at the end of the 3 week
period. This led to 63 examples of FAMACHA 1→ 1→ 1→ 1
and 29 examples of FAMACHA 1→ 1→ 1→ 2. Even though
this reduced the sample size considerably compared to Fig. 2,
Fig. 7 shows that we still see modest predictive power two
weeks before FAMACHA increased to 2 (mean precision 70%
& 24%, mean AUC 68%), rising to strong predictive power
a week before (mean precision 75% & 54%, mean AUC 83%)
and excellent performance just before (mean precision 90%
& 85%, mean AUC 98%; equivalent classifiers to Fig. 2, but
with a smaller training set).

Discussion. Our analyses reveal that a subtle increase in
FAMACHA score from 1 ("optimal") to 2 ("acceptable"), which
is considered sub-clinical disease, can be predicted to a high
degree of accuracy and precision from behaviour measured
using low-cost biologgers. We discovered that the discrimi-
native ability of our classifier was based on higher bursts of
short-duration activity levels in the healthy animals. More-
over, the phenomenon appears to be shared between goats and
sheep with such strong discriminative strength that a classifier
trained on goats in 2012/13 transferred without retraining to
a sheep farm 3 years later and 350 miles away, with no loss in
predictive power.

It is important to note that due to significant calibration
and mounting variation between transponders, including loos-
ening of the transponder over time, it was necessary to perform
normalisation of each activity trace to the herd/flock mean.
This meant that uniform reductions in activity level from
week to week are likely to be normalised out of our data.
Nevertheless, a completely uniform reduction in activity level
is biologically implausible; instead, intensities of some daily
activities are likely to be impacted more than others. Indeed,
we have shown that changes in the variation of activity levels
constitute a very strong predictor of early changes in health
status, as regards haemonchosis and are robust to technical
variation. Hence, while efforts in developed countries have
been focused on building high-precision, securely-mounted and
precisely fitted sensors, we demonstrate that robust results can
be gained from much simpler, low-cost systems with rudimen-
tary maintenance requirements suitable for both commercial
and RP farmers in developing countries.

In our work we have focused on accelerometry data, but ex-
ogenous covariates such as temperature, rainfall, body weight,
and production data could all be beneficial to the predic-
tion, particularly as H. contortus is well known to hatch after
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A Evolution of model accuracy over 3 weeks

B – Two weeks before FAMACHA 2 C

D – One week before FAMACHA 2 E

F – Immediately before FAMACHA 2 G

Fig. 7. Evolution of model accuracy for classifying health status of the sheep
on a 7 day sliding window over a 3 week period prior to FAMACHA increasing
to 2. (A) Classifier accuracy improves as animal activity becomes more discriminative
closer to a FAMACHA assessment of 2. (B) Scatter plot and (C) ROC curve for classi-
fier trained on 7 days of data 14 to 21 days prior to FAMACHA increase. (D) Scatter
plot and (E) ROC curve for classifier trained on 7 days of data 7 to 14 days prior
to FAMACHA increase. (F) Scatter plot and (G) ROC curve for classifier trained on
7 days of data directly preceding FAMACHA increase.

humid, hot weather, and to require rainfall for movement
onto pasture (30, 31). Nevertheless, optimal incorporation
of these data types is challenging because of their potential
non-linear and/or lagged or cumulative effect on health status.
Conversely, the fundamental advantage of high-dimensional
longitudinal data from accelerometers is that the end effect
of these covariates is intrinsically contained within the data
directly, which machine learning approaches have the poten-
tial to deconvolute. The ability of machine learning to detect
health-relevant changes in behaviour under variable climatic
conditions could make it especially useful as climate change
drives increasingly unpredictable transmission patterns among

helminths (32); and, hence, to support adaptation to climate
change by RP farmers (33).

Collecting robust annotated datasets is especially challeng-
ing in RP farming systems where farming practices are gen-
erally less consistent, regulated and well-funded. Because of
this and the need for intensive manual labour over a prolonged
period, our datasets are highly valuable. Although the training
data obtained is dependent on farm topology, location and
management, we have shown that a basic machine learning
pipeline can discriminate on behavioural cues dominated by
fluctuations in activity levels, which translates even across
species. Some concept drift was found, particularly among
animals with increasing parasitic burden. This suggests two
broad avenues for future research: (a) Starting from deploy-
ments of our pre-trained model, use of online reinforcement
learning techniques to create a ’life-long learning’ decision
support system which identifies animals for FAMACHA evalu-
ation and feeds back the results to dynamically update model
calibration and improve future predictions; (b) Multivariate
time-course statistical modelling to further characterise the
nature of sheep and goat behaviour in health and disease.

Notably, in this study we have focused on FAMACHA
evaluation of H. contortus infection; whether multi-label clas-
sification of a range of different disease states and transient
events is possible is currently unknown but would require a
greatly expanded study cohort to attain a suitable predictive
power for assessment. In addition, as our accelerometry data
is based on a simple activity count paradigm, we hypothesise
that activity traces could be derived from other sensor types,
such as video, for direct input into our prediction model.

Helminths negatively impact livestock productivity world-
wide, and in RP settings are considered ‘neglected cold spot’
diseases, in that they are preventable in principle, but farmers
continue to struggle to manage their effects (34). Technical
improvements in helminth control consequently have especially
high potential to positively impact farmer livelihoods, with
knock-on benefits for human nutrition and health (35). The
FAMACHA system has been successfully adopted by small-
holder farmers in Africa, but sustained use is difficult because
of high training and labour requirements (6, 36). Our results
show that it is feasible to apply machine learning approaches
to data streams that are attainable on smallholder farms in
Africa, to detect early changes in health status and support
timely and targeted intervention. In support of the practical
use of our platform, we also present evidence for an ability to
detect a response to treatment within 7 days, as well as demon-
strating that some predictive power exists up to two weeks
prior to a FAMACHA assessment score of 2. Both of these
findings may be conservative estimates given the substantively
smaller training sets available for these analyses.

Importantly, less healthy animals were characterised not by
lower activity levels, but by changes in behavioural variability.
This pattern is not easily detectable by statistical analysis of
activity metrics, but can be successfully discovered by machine
learning of data transformed by the CWT. Similar approaches
on animals under natural disease challenge could greatly en-
hance ability to detect and selectively intervene against a range
of disease states, in support of animal welfare, food security,
and sustainable antimicrobial use, including use in extensively
grazed systems.
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Methods.

Study group. Data were collected from a farm of 108 acres close
to Delmas in Mpumalanga Province, South Africa, and at
Cedara, a government research farm and agricultural college,
the pastures of which comprise of 25 acres adjacent to Hilton,
KwaZulu-Natal. As described in Table 1, 31 female adult Ile de
France sheep ewes at Delmas and 64 goats at Cedara were in-
dividually FAMACHA-evaluated (17) at weekly or fortnightly
intervals, respectively, and had associated longitudinal ac-
celerometry data recorded within the study period. On both
farms there were multiple improved pastures, which were ir-
rigated, and utilisation occurred by alternation at intervals
according to visual assessment of amounts of available water
and forage. At both farms young adult ewes/does were ran-
domly selected for the trials, without attention to reproductive
class, but remained with their flocks/herds of origin for the du-
ration of each trial. The animals were kraaled at night and let
out at a standard time in the mornings for herding to pasture,
where they remained until collected and returned to the kraals
in late afternoon. Adjustments were made according to sea-
son and special management events such as vaccination, hoof
inspection, which were conducted first thing in the morning.

Telemetric monitoring. Telemetric monitoring systems were sup-
plied by Accitrack Ltd., Paarl, South Africa. Tagged animals
on both farms were equipped with low cost RFID transpon-
ders suspended by a sturdy ribbon around the neck (Fig. 1).
A single solar-powered base station was installed on each
farm, mounted at the top of a five-meter wooden pole. Each
transponder contains an active RFID transceiver operating at
868Mhz as well as a battery and an A1 type accelerometer
for activity level measurement. The accelerometers had a set
acceleration threshold of 2g so that every time an acceleration
≥ 2g is sensed, a stored integer is incremented by +1. Ver-
sion 2 transponders had an increased range (10km versus 1km)
and a larger battery, at the expense of significantly increased
weight. In addition, version 2 transponders also output min-
imum and maximum acceleration for the three orthogonal
axes at each time interval, but this data was not utilised. All
tags were set to transmit the data every minute to the base
station, at which time the accelerometer count was reset to
zero. In order to extend battery life, the tag only transmits
data to the base station once a minute, with data transmit-
ted including the identifier of the transponder, the battery
level, the signal strength, a timestamp, and the activity level.
Data transmission is not performed if the signal-to-noise ratio
drops below 10dB, which can occur when there are significant
occlusions between the animal and base station. In these
cases, the data for that time interval is lost. Through mobile
connectivity with General Package Radio Services (GPRS),
the base station then regularly forwards the received data to
the Accitrack cloud repository.

Data management and visualisation. All raw data is stored on the
cloud repository for two weeks only due to storage limitations,
hence it was manually downloaded regularly by a researcher
at the University of Pretoria for archival (29). The exported
data took the form of Excel spreadsheets containing the sensor
outputs in the desired time frame. In cases where the data
was not retrieved from the cloud infrastructure, datasets for
that time period were lost. For this work, we parsed the
raw excel data into an SQL database. The table storing the

raw data recorded at the original minute resolution contains
40,659,086 records. The data was re-binned into multiple
time resolutions (∆t) for efficient interactive visualisation with
zooming capability. This tool was developed for exploratory
analysis to allow us to determine whether transponders were
faulty and failed to transmit, and provided visual verification of
expected behaviours such as decreased activity levels at night.
The visualisation also revealed the need for data pre-processing,
as changes in average activity signal amplitude across the herd
was observed due to varying calibration of the sensors. In
addition, the mounted position of the sensor on each animal
influenced the sensor’s measurement of acceleration, e.g. a
looser collar would allow broader movement of the sensor thus
higher activity values. In contrast, however, long wool tended
greatly to reduce the numbers of occasions on which activity
registered.

Pre-processing. We consider a set of animals r = 1, 2, . . . n
with associated FAMACHA scores fr,d evaluated on days
d = 1, 2, . . . T , where T is the total number of consecutive days
being sampled. Each FAMACHA evaluation is associated with
a trace of activity counts ar,d(ti) over time intervals ti where
i = 0, 1, . . . τ , where τ is the total number of samples within
a day (d with a temporal resolution of ∆t) either preceding
or proceeding the evaluation depending on the anaylsis. Only
traces containing a low percentage of missing data and zeros
(thus indicating the collar was attached to the animal and
functioning correctly) were retained. If the traces exhibited
either 50% of the values to be zeros or 20% of the values to be
nonexistent, then these were dismissed. For retained traces,
a simple padding of the missing data points with a constant
negative value was found not to impact the model performance
negatively.

To correct for scaling differences due to device calibration
and mounting differences between animals, and the mounting
loosening over time, we first define a mean "herd-level" activity
trace across all animals with FAMACHA evaluations on the
same day:

hd(ti) =
[∑n

r=1 ar,d(ti)
n

]
[1]

A scaling coefficient for each trace sr,d is then derived as the
median of the trace after having divided it by the herd-level
trace:

sr,d = median

([
h(t0)
ar(t0) , . . . ,

h(tτ )
ar(tτ )

])
[2]

Normalised activity traces br are then derived by multiplying
each original trace by its respective scaling coefficient:

br,d(ti) = sr,d × ar,d(ti) [3]

Because our activity data are counts and hence more closely
follow Poisson statistics than the Gaussian distribution ex-
pected by conventional machine learning methodology, after
normalisation we perform an Anscombe transform (37) for
approximate variance stabilisation to a Gaussian distribution:

b′r,d(ti) = 2×
√
br,d(ti) + 3
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Continuous wavelet transform. We apply a Continuous Wavelet
Transform (CWT) (38) to the variance-stabilized activity
traces described above. The CWT is a transformation of
a temporal signal to a representation in the frequency domain
localised by time, accomplished by performing a convolution of
a series of mother wavelets with different bandwidths over the
signal in the time domain using the following wavelet integral:

W {b(t, s)} =
∫ ∞
−∞

b(u) 1√
s
ψ∗
(
u− t
s

)
du [5]

where ψ∗ is a complex analytic wavelet, in this case we em-
ployed a Mexican hat wavelet with a wave length range of 60
minutes to 7 days. The above integral measures the variation
of the activity b(t) in the neighbourhood of t proportional to
the bandwidth of the wavelet s. The CWT gives an intuitive
understanding of our activity data and allows us to separate
out localised fluctuations in an animal’s activity. Fig. 1A
shows the accelerometry data of an animal over a 6 day period
in the time domain, while Fig. 1B shows the corresponding
CWT.

Machine learning with internal validation. Classification analyses
utilised a Support Vector Machine (SVM) (39). Train-
ing/testing datasets for this supervised machine learning tech-
nique were constructed using the FAMACHA scores and the
standardized CWT-transformed activity traces. Repeated
nested k-fold cross validation was used to optimize the hyper-
parameters and evaluate the model. Kim et al. (40) showed
that the repeated cross validation estimator outperforms the
non-repeated version by reducing the variability of the estima-
tor and providing lower bias. Hence we choose to use 100-times
repeated 10-fold cross validation to assess a realistic estimate
of the performance of the model predictions while making the
most of the dataset available. For the Area Under the Curve
(AUC) statistic, confidence intervals were computed using the
method of LeDell et al. (41).
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