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Abstract

Background The amount of data generated in large clinical
and phenotyping studies that use single-cell cytometry is
constantly growing. Recent technological advances allow
to easily generate data with hundreds of millions of single-
cell data points with more than 40 parameters, originating
from thousands of individual samples. The analysis of that
amount of high-dimensional data becomes demanding in
both hardware and software of high-performance computa-
tional resources. Current software tools often do not scale
to the datasets of such size; users are thus forced to down-
sample the data to bearable sizes, in turn losing accuracy and
ability to detect many underlying complex phenomena.

Results We present GigaSOM.jl, a fast and scalable im-
plementation of clustering and dimensionality-reduction for
�ow and mass cytometry data. The implementation of Gi-
gaSOM.jl in the high-level and high-performance program-
ming language Julia makes it accessible to the scienti�c
community, and allows for e�cient handling and processing
of datasets with billions of data points using distributed
computing infrastructures. We describe the design of Gi-
gaSOM.jl, measure its performance and horizontal scaling
capability, and showcase the functionality on a large dataset
from a recent study.

Conclusions GigaSOM.jl facilitates utilization of the
commonly available high-performance computing resources
to process the largest available datasets within minutes,
while producing results of the same quality as the current
state-of-art software. Measurements indicate that the per-
formance scales to much larger datasets. The example use on
the data from an massive mouse phenotyping e�ort con�rms
the applicability of GigaSOM.jl to huge-scale studies.

Keywords
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Key points

• GigaSOM.jl improves the applicability of FlowSOM-
style single-cell cytometry data analysis by increasing
the acceptable dataset size to billions of single cells.

• Signi�cant speedup over current methods is achieved
by distributed processing and utilization of e�cient al-
gorithms.

• GigaSOM.jl package includes support for fast visualiza-
tion of multidimensional data.

1 Background 1

Advances in single-cell technologies, such as Mass Cyto- 2

metry (CyTOF), Single-Cell RNA Sequencing (scRNA) and 3

Spectral Flow Cytometry [1, 2, 3], provide deep and com- 4

prehensive insights into the complex mechanism of cellular 5

systems, such as immune cells in blood, tumor cells and 6

their microenvironments, and various microbiomes, includ- 7

ing the single-celled marine life ecosystems. Mass cytometry 8

and spectral cytometry have enabled staining of the cells 9

with more than 40 di�erent markers to discover cellular 10

di�erences under multiple conditions. The samples collected 11

in recent studies often contain millions of measured cells 12

(events), resulting in large and high-dimensional datasets. 13

Traditional analysis methods, based on manual observation 14

and selection of the clusters in 2D scatter-plots, is becoming 15

increasingly di�cult to apply on data of such complexity: 16

For high-dimensional data, this procedure is extremely la- 17

borious, and the results often carry researcher or analysis 18

bias [4]. 19

Various dimensionality reduction, clustering, classi�ca- 20

tion and data mining methods have been employed to aid 21

with the semi- or fully-automated processing, including 22

the neural networks [5], various rule-based and tree-based 23

classi�ers in combination with clustering and visualiza- 24

tion [6, 7], or locality-sensitive and density-based statistical 25

approaches [8]. However, computational performance of the 26
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algorithms, necessary for scaling to larger datasets, is often27

neglected, and the available analysis software often relies on28

various simpli�cations (such as downscaling, which impairs29

the quality and precision of the result) required to process30

large datasets in reasonable time, without disproportionate31

hardware requirements.32

To improve the performance, the underlying algorithm33

of FlowSOM [9] introduced a combination of the Self-34

Organizing-Maps (SOMs) by Kohonen [10] and metaclus-35

tering, which allowed e�cient and accurate clustering of36

millions of cells [11]. FlowSOM is currently available as an37

R package that became an essential part of many work�ows,38

analysis pipelines and software suites, including FlowJo and39

Cytobank® [12]. Despite of the advance, the amount of40

data generated in large research-oriented and clinical studies41

frequently grows to hundreds of millions of cells, processing42

of which requires not only the e�ciency of the algorithm,43

but also a practical scalable implementation.44

Here, we present GigaSOM.jl, an implementation of the45

SOM-based clustering and dimensionality-reduction func-46

tionality using the Julia programming language [13]. Com-47

pared to FlowSOM, GigaSOM.jl provides two major im-48

provements: First, it utilizes the computational and mem-49

ory resources e�ciently, enabling it to process datasets of50

size larger than 108 cells on commonly available hardware.51

Second, the implementation provides horizontal scaling sup-52

port, and can thus utilize large high-performance computing53

clusters (HPC) to gain improvements in speed and tangible54

dataset size, allowing to process datasets with more than55

1010 cells in the distributed environment. Additionally, the56

implementation in Julia is su�ciently high-level for allowing57

easy extensibility and cooperation with other tools in Julia58

ecosystem. Several technical limitations imposed by the R-59

wrapped implementation in the C programming language of60

FlowSOM are also overcome.61

2 Methods62

The Kohonen Self-Organizing-Map (SOM) algorithm [10]63

is a kind of simpli�ed neural network with a single layer64

equipped with a topology. The task of the SOM training is65

to assign values to the neurons so that the training dataset66

is covered by neighborhoods of the neurons, and, at the67

same time, that the topology of the neurons is preserved68

in the trained network. A 2-dimensional grid is one of69

the most commonly used topologies, because it simpli�es70

interpretation of the results as neuron values positioned in71

the 2-dimensional space, and related visualization purposes72

(e.g. EmbedSOM [14]). At the same time, the trained net-73

work can serve as a simple clustering of the input dataset,74

classifying each data point to its nearest neuron.75

2.1 Batch SOM training 76

The original SOM training algorithm was introduced by Ko- 77

honen [15]. The map is organized as a collection of randomly 78

initialized vectors (called codebook, with weightsW (1)). The 79

training proceeds in iterations (indexed by time t), where in 80

each iteration a randomly selected data point in the dataset 81

is used to produce an updated codebook as 82

Wi(t+ 1) =Wi(t) + α(t)h(t)� (x−Wi(t)),

where α is the learning rate parameter, i is the neuron 83

nearest to the randomly selected data point x, and h is the 84

vector of topological distances of the codebook vectors to 85

the best matching unit. The learning has been shown to 86

converge after a predictable number of iterations if α and 87

neighborhood size in h and topological neighborhood size 88

are gradually lowered [10]. 89

A more scalable variant of the algorithm can be obtained 90

by running the single updates in batches where the values 91

of x are taken from the whole dataset at once; which can be 92

expressed in matrix form 93

W (t+ 1) = Ĥ(t) · N (X,W (t)) ·X,

where N (X,W (t)) is a binary matrix that contains 1 at 94

position i, j if and only if Wi(t) is the closest codebook 95

vector to Xj , and Ĥ(t) is a distance matrix of the codebook 96

in 2D map topology with rows scaled to sum 1. Notably, 97

the algorithm converges in the same cases as the online 98

version [16], and may be viewed as a generalized version of 99

k-means clustering, which is obtained by setting H(t) = I .) 100

Implementations of the batch training may employ sev- 101

eral assumptions that are not available with the online train- 102

ing: 103

• computation ofN can employ a pre-built spatial index- 104

ing structure on W (t), which is constant for the whole 105

batch, 106

• all computations involving X can be sliced and par- 107

allelized (moreover, because the accesses to X are 108

not randomized, the implementation is more cache- 109

e�cient and more suitable for SIMD- and GPU-based 110

acceleration) 111

• multiplication by Ĥ(t) can be associatively postponed 112

to work only with the small codebook matrix, saving 113

more than 50% required computation volume when 114

compared to online training with large neighborhoods. 115

2.2 Distributed implementation of Giga- 116

SOM.jl 117

The o�cially registered GigaSOM.jl package is a �exible, 118

horizontally scalable, HPC-aware version of the batch SOM 119

training written in the Julia programming language. The 120
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Figure 1: Architecture of GigaSOM.jl. Top: Data distribution process
divides the available FCS files into balanced slices, individual workers
retrieve their respective slice data using a shared storage. Below: The
SOM learning and visualization processes require only a minimal amount
of data transferred between the master and worker nodes; consisting of
the relatively small codebook in case of SOM learning (blue arrows) and
pre-rasterized graphics in case of visualization (green arrows).

language choice has allowed a reasonably high-level descrip-121

tion of the problem suitable for easy customization, while122

still supporting the e�cient low-level operations necessary123

for fast data processing. GigaSOM.jl contains a library of124

functions for loading the data from Flow Cytometry Stan-125

dard (FCS) �les, distributing the data across a network to126

remote computation nodes present in the cluster, running127

the parallelized computation, and to exporting and visualiz-128

ing the results. The overall design of the main implemented129

operations is outlined in Figure 1. Example Julia code that130

executes the distributed operations is provided in Supple-131

mentary Listing S1.132

2.2.1 Data distribution procedure133

Distributed computation process in GigaSOM is structured134

such as each computation node (‘worker’) keeps its own,135

persistent slice of the whole dataset, and the partial results136

from the nodes are aggregated by the master node. To137

establish this structure, GigaSOM implements a separate138

procedure that aggregates the input FCS �les and creates a 139

balanced set of slices equally distributed among the workers. 140

The distribution procedure is implemented as illustrated 141

in Figure 1 (top): First, the master node reads the headers 142

and sizes of individual FCS �les, verifying their structure and 143

determining the total number of stored data points. This 144

is used to create minimal descriptions of dataset slices of 145

equal size (each description consists only of 4 numbers of 146

the �rst and last �le and the �rst and last data point index), 147

which are transferred to individual workers. Each worker 148

interprets its assigned slice description, and extracts the part 149

of the data from the relevant FCS �les saved on a shared 150

storage. The resulting slices may be easily exported to the 151

storage and quickly imported again by individual workers, 152

thus saving time if multiple analyses run on the same data 153

(e.g., in case of several clustering and embedding runs with 154

di�erent parameters). 155

Importantly, a shared �lesystem is usually one of the most 156

e�cient ways to perform data transfers in HPC environ- 157

ments, which makes the dataset loading process relatively 158

fast. If a shared �lesystem is not available, GigaSOM.jl also 159

includes optional support for direct data distribution using 160

the Distributed.jl package. 161

2.2.2 Batch SOM implementation 162

After the nodes are equipped with the data slices, the batch 163

SOM training proceeds as illustrated in Figure 1 (bottom): 164

1. The master node initializes the SOM codebook (usually 165

by random sampling from available data). 166

2. The codebook is broadcast to all worker nodes. As 167

the size of the usual codebook is at most several tens 168

of kilobytes, data transfer speed does not represent a 169

performance bottleneck in this case. 170

3. The workers calculate a partial codebook update on 171

their data and send the results back to the master node. 172

4. Finally, the master node gathers the individual updates, 173

multiplies the collected result by Ĥ(t), and continues 174

with another iteration from step 2, if necessary. 175

Technically, the GigaSOM.jl implementation of steps 2–4 176

follows the structure of MapReduce data processing frame- 177

work [17], which has allowed us to clearly separate the 178

parallel processing implementation from actual computation 179

primitives, and thus to improve the code maintainability. 180

Apart from simplifying the implementation of various al- 181

gorithm modi�cations, the MapReduce abstractions enable 182

future transition to more complex data handling routines, 183

such as the support for distributed parallel broadcast and 184

reduction that is required for handling huge SOMs on very 185

large number of workers (Collange et al. [18] provide a com- 186

prehensive discussion on that topic). 187
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The time required to perform one iteration of the SOM188

training is mainly derived from the speed of the codebook189

transfer between nodes, and the amount of computation190

done by individual nodes. The current GigaSOM.jl imple-191

mentation transfers all codebooks directly between the mas-192

ter node and the workers, giving time complexity O(b) +193

O(nc ) for b computation nodes equipped with c CPUs, work-194

ing on a dataset of size n. This complexity can be improved195

toO(log2 b)+O(nc ) by using the aforementioned algorithms196

for parallel data broadcast and reduction, but we have not197

found a realistic dataset of size su�cient to gain any bene�t198

from such optimization.199

2.2.3 Spatial indexing200

Since the most computationally expensive step of the SOM201

training is the search for nearest codebook vectors for each202

dataset item (i.e., construction of the matrix N ), we have203

evaluated the use of spatial indexing structures for accelerat-204

ing this operation. GigaSOM.jl implementation can employ205

the structures available in the NearestNeighbors package,206

which include kd-trees and ball trees (also called vantage-207

point trees). [19, 20]208

Although the e�ciency of spatial indexing is vastly re-209

duced with increasing dataset dimensionality, the measure-210

ments in section Results show that it can provide signi�cant211

speedup with very large SOMs, even on data with more than212

20 dimensions.213

2.2.4 Visualization support214

To simplify visualization of the results, GigaSOM.jl includes215

a parallel reimplementation of the EmbedSOM algorithm in216

Julia [14], which quickly provides interpretable visualiza-217

tions of the cell distribution within the datasets. EmbedSOM218

computes an embedding of the cells to 2-dimensional space,219

similarly as the popular t-SNE or UMAP algorithms [21, 22].220

Unlike the usual dimensionality reduction algorithms, it uses221

the constructed SOM as a guiding manifold for positioning222

the individual points into the low-dimensional space, and223

achieves linear time complexity in the size of dataset. The224

parallel implementation of EmbedSOM is built upon the225

same distributed data framework as the batch SOMs — since226

EmbedSOM is designed to be trivially parallelizable, it can be227

run directly on the individual data slices, and gain the same228

speedup from parallel processing.229

In order to aid the plotting of the EmbedSOM output, we230

have additionally implemented a custom scatterplot raster-231

izer in package GigaScatter.jl, which includes functions232

for quick plotting of large amounts of low-alpha points. To233

enable plotting of exceedingly large datasets, the rasteri-234

zation can be executed in a distributed manner within the235

MapReduce framework, as shown in Supplementary Listing236

S1.237

3 Results 238

The main result achieved by GigaSOM is the ability to 239

quickly cluster and visualize datasets of previously unreach- 240

able size. In particular, we show that construction of a 241

SOM from 109 cells with 40 parameters can be performed in 242

minutes, even on relatively small compute clusters with less 243

than hundreds of CPU cores. The self-organizing map can 244

be used to quickly dissect and analyze the samples, as with 245

FlowSOM [? ]. This performance achievement vastly simpli- 246

�es the interactive work with large datasets, as the scientists 247

can, for instance, try more combinations of hyperparameters 248

and quickly get the feedback to improve the analysis and 249

clustering of the data. 250

In this section, we �rst compare the output of Giga- 251

SOM.jl to that of FlowSOM, showing that the change in the 252

SOM training algorithm has minimal impact on the qual- 253

ity of results. Further, we provide benchmark results that 254

con�rm that GigaSOM.jl scales horizontally, and details of 255

the speedup achievable by employing spatial indexing data 256

structures for acceleration of the nearest-neighbor queries. 257

Finally, we demonstrate the achievable results by processing 258

a gigascale dataset from a recent study by the International 259

Mouse Phenotyping Consortium (IMPC) [23]. 260

The presented performance benchmarks were exe- 261

cuted on a Slurm-managed HPC cluster equipped with 262

Intel®Xeon®E5-2650 CPUs; each node with 2 physical CPUs 263

(total 24 cores) and 128GB of RAM. All benchmarks were 264

executed several times, the times were measured as ‘real’ 265

(wall-clock) time using the standard Julia timer facility. Mea- 266

surements of the �rst runs were discarded to prevent the 267

in�uence of caching and Julia just-in-time compilation; re- 268

maining results were reduced to medians. 269

3.1 Validation of clustering quality 270

To compare the GigaSOM.jl output with the one from Flow- 271

SOM, we used a methodology similar to the one used by We- 272

ber and Robinson [11]. The datasets were �rst processed by 273

the clustering algorithms to generate clusters, which were 274

then assigned to ground truth populations so that the cov- 275

erage of individual populations by clusters was reasonably 276

high. The mean F1 score was then computed between the 277

aggregated clusters and ground truth. Unlike Weber and 278

Robinson [11], who use a complicated method of cluster as- 279

signment optimization to �nd the assignment that produces 280

the best possible mean F1 score, we employed a simpler 281

(and arguably more realistic) greedy algorithm that assigns 282

each generated cluster to a population with the greatest part 283

covered by that cluster. 284

The benchmark did not consider FlowSOM metacluster- 285

ing [9], since the comparison mainly aimed to detect the 286

di�erences caused by the modi�cations in SOM training. 287

For the comparison, we reused the datasets 288

Levine_13dim and Levine32_32dim from the clustering 289
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Figure 2: Comparison of GigaSOM.jl results with manual gating of the
Levine32 dataset. The confusion matrix is normalized in rows, showing
the ratio of cells in each aggregate of GigaSOM-originating clusters that
matches the cell types from manual analysis. Darker color represents
be�er match. The mean F1 score is comparable to FlowSOM. A more
comprehensive comparison is available in Supplementary Figure S1.

benchmark [11]. In a typical outcome, most populations290

were matched by GigaSOM.jl just as well as by FlowSOM,291

as displayed in Figure 2 (detailed view is available in292

supplementary �gure S1). Both methods consistently293

achieved mean F1 scores in the range of 0.65–0.7 on the294

Levine_13dim dataset and 0.81–0.84 on the Levine_32dim295

dataset for a wide range of reasonable parameter settings.296

In the tests, neither algorithm showed a signi�cantly better297

resulting mean F1 score.298

3.2 Scalable performance on large computer299

clusters300

The benchmark of implementation scalability was per-301

formed as follows: A randomly generated dataset was dis-302

tributed among the available computation nodes (workers)303

so that all CPUs are assigned an equal amount of data. For304

the benchmark, node counts as powers of two up to 256 have305

been chosen while the numbers of dataset parameters were306

chosen from multiples of 10 up to 50. The size of the dataset307

slice for a single node varied between 100, 200 and 300 thou-308

sand cells to verify the impact of data density in cluster. The309

dataset was then processed by the SOM training algorithm310

for SOM sizes 10×10, 20×20 and 40×40. The resulting SOMs311

were used for classifying the dataset into clusters (each input312

data point was assigned to a cluster de�ned by the nearest313

neighbor). An embedded view of the data was produced with314

the Julia implementation of EmbedSOM. All algorithms were315

also tested in variants where the naive search for nearest316

neighbors (or k-neighborhoods in case of EmbedSOM) was317

replaced by utilization of a spatial-indexing data structure,318

in particular by the kd-trees and ball-trees.319

The scalability results are summarized in Figure 3: All320

three implemented algorithms scale almost linearly with321

the dataset size, the size of the SOM, and the dimension322

of the dataset. They reach an almost linear speedup with 323

added compute capacity. In the case of SOM training, the 324

required communication among the nodes caused only a 325

negligible overhead; the majority of the computation pauses 326

was caused by the random variance in execution time of 327

computation steps on the nodes. The parallelized classi�ca- 328

tion and embedding algorithms did not su�er from any com- 329

munication overhead. Detailed benchmark results that show 330

precise energy requirements of the training per processed 331

data point, useful for deployment in large environments, are 332

available in supplementary �gure S2. 333

In�uence of the spatial indexing on the speed of vari- 334

ous operations was collected as relative speedups (or slow- 335

downs) when compared to a naive search. The results are 336

displayed in Figure 4. We have observed that both kd-trees 337

and ball-trees were able to accelerate some operations by a 338

factor above 2×, but the use of spatial indexing su�ered from 339

many trade-o�s that often caused performance decrease. 340

Most importantly, the cost of building the index has of- 341

ten surpassed the total cost of neighborhood lookups by 342

the naive method, which is most easily observable on the 343

measurements of ball-tree performance with smaller SOM 344

sizes. Both trees have struggled to provide su�cient speedup 345

in presence of higher dimensionality overhead (over 30), 346

and had only negligible impact on the execution time of 347

EmbedSOM computation, which was dominated by other 348

operations. 349

On the other hand, it was easily possible to gain speedups 350

around 1.5×for SOM training in most tests with lower di- 351

mension and large SOM, reaching 2.7×for a 20-dimensional 352

dataset (typical for current �ow cytometry) processed with 353

large 40×40 SOM. From the results, it seems appropriate 354

to employ the spatial indexing when the cost of other op- 355

erations outweighs the cost of building the index, and the 356

dimensionality overhead does not impede the e�ciency of 357

indexed lookup; in particular when training large SOMs of 358

dimensionality less than around 30, and when data occu- 359

pancy per node is su�ciently high. Detailed measurements 360

for all SOM sizes and dataset dimensions are available in 361

Supplementary Figure S3. 362

3.3 HPC analysis of previously unreachable 363

dataset sizes 364

To showcase the GigaSOM.jl functionality on a realistic 365

dataset, we have used a large dataset from the IMPC phe- 366

notyping e�ort [23] that contains measurements of mouse 367

spleens by a standardized T-cell targeting panel. with in- 368

dividual cohorts containing genetically modi�ed animals 369

(typically a single-gene knockouts) and controls; total 2905 370

samples contain 1,167,129,317 individual cells. (The dataset 371

is available from FlowRepository under the accession ID 372

FR-FCM-ZYX9.) 373

The dataset was intentionally prepared by a very simple 374

process — cell expressions were compensated, �uorescent 375
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Figure 3: Performance dependency of distributed algorithms in GigaSOM on data dimensionality, SOM size and number of available workers. Data
processing performance is displayed as normalized to median speed in cells per second (c/s).
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Figure 4: E�ect of data indexing structures on GigaSOM performance. The
plo�ed points show relative speedup of the algorithms utilizing kd-tress
(horizontal axis) and ball-trees (vertical axis) compared to the brute-force
neighbor search. Baseline (1× speedup) is highlighted by thick grid lines —
a point plo�ed in the upper right quadrant represents a benchmark mea-
surement that showed speedup for both kd-trees and ball-trees, upper le�
quadrant contains benchmark results where ball-trees provided speedup
and kd-trees slowed the computation down, etc.

Figure 5: Raw IMPC Spleen T-cell dataset, processed by GigaSOM.jl and
embedded by the Julia implementation of EmbedSOM. The figure shows
an aggregate of 1,167,129,317 individual cells. Expression of three main
markers is displayed in combination as mixed colors; CD8 in red, CD4
in green, and CD161 in blue. A more detailed, annotated version of the
visualization is available in Supplementary Figure S4.
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marker expressions were transformed by the common asinh376

transformation with co-factor 500, and all dataset columns377

were scaled to µ = 0 and σ = 1. The resulting data378

were used to train a 32×32 SOM, which was in turn used379

to produce the embedding of the dataset (with EmbedSOM380

parameter k = 16), which was rasterized. The �nal result381

can be observed in Figure 5. The detailed work�ow is shown382

in Supplementary Listing S1.383

Notably, on a relatively small 256-core computer clus-384

ter (total 11 server nodes within a larger cluster managed385

by Slurm), the whole operation, consisting of Julia initial-386

ization, data loading (82.6GB of FCS �les), SOM training387

for 30 epochs, embedding and export of embedded data388

(17.4GB) took slightly less than 25 minutes, and consumed389

at most 3GB of RAM per core. From that, each epoch390

of the parallelized SOM training took around 25 seconds,391

and the computation of EmbedSOM visualization took 3392

minutes. Distributed plotting of the result was done using393

the GigaScatter.jl package; the parallel rasterization and394

combination of partial rasters took slightly over 4 minutes.395

4 Conclusions396

In this paper, we presented the functionality of GigaSOM.jl,397

a new, highly scalable toolkit for analyzing cytometry data398

with algorithms derived from self-organizing maps. The399

results conclusively show that GigaSOM.jl will support the400

growing demand for processing of huge datasets, and bol-401

ster the utilization of the HPC hardware resources that are402

becoming widely available for labs and universities.403

The ability to process a gigascale dataset to a comprehen-404

sible embedding and precise, easily scrutinizable statistics405

in mere minutes may play a crucial role in both design406

and analysis methods of future cytometry experiments. We407

believe that the accessible and �exible nature of the Giga-408

SOM.jl implementation in Julia programming language will409

also drive a transformation of other tools in the ecosystem410

towards the support of big data processing paradigms.411

The resulting software is publicly available as a Julia412

package. The interoperability with the Julia ecosystem al-413

lows GigaSOM.jl to bene�t from many other available sci-414

enti�c computing packages, which simpli�es its deployment415

not only in cytometry, but also in other areas of research that416

employ self-organizing maps to extract information from417

large datasets.418

Data and software availability419

All data and software is available under https://doi.org/420

10.17881/lcsb.z5vy-fa75.421

• Package name: GigaSOM.jl422

• Package home page: https://git.io/GigaSOM.jl423

• Operating system(s): Portable to all Julia-supported 424

platforms 425

• Programming language: Julia 426

• Other requirements: – 427

• License: Apache License v2.0 428
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