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Abstract

This paper investigates the cause and detection of power-law scaling of brain wave
activity due to the heterogeneity of the brain cortex, considered as a complex system,
and the initial condition such as the alert or fatigue state of the brain. Our starting
point is the construction of a mathematical model of global brain wave activity
based on EEG measurements on the cortical surface. The model takes the form
of a stochastic delay-differential equation (SDDE). Its fractional diffusion operator
and delay operator capture the responses due to the heterogeneous medium and the
initial condition. The analytical solution of the model is obtained in the form of a
Karhunen-Loève expansion. A method to estimate the key parameters of the model
and the corresponding numerical schemes are given. Real EEG data on driver fatigue
at 32 channels measured on 50 participants are used to estimate these parameters.
Interpretation of the results is given by comparing and contrasting the alert and
fatigue states of the brain.

The EEG time series at each electrode on the scalp display power-law scaling, as
indicated by their spectral slopes in the low-frequency range. The diffusion of the
EEG random field is non-Gaussian, reflecting the heterogeneity of the brain cortex.
This non-Gaussianity is more pronounced for the alert state than the fatigue state.
The response of the system to the initial condition is also more significant for the
alert state than the fatigue state. These results demonstrate the usefulness of global
SDDE modelling complementing the time series approach for EEG analysis.

1. Introduction

Mental fatigue is a significant cause of accidents and injury in driving [11] and
in performing repetitive tasks, in-process works [1]. There have been many studies
undertaken to determine the association between mental fatigue and brain activity.
These studies mostly employed electroencephalography (EEG) to measure brain
activity and examined the changes in the EEG as a person moves from the alert
state to a fatigue state. Table 1 of [12] presents a summary of 17 such studies and
their findings. The changes in the EEG were commonly detected by computing the
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fast Fourier transform of the EEG time series and analysing transformed data at
the following frequency bands: delta wave (0.5 to 3.5 Hz), theta wave (4 to 7.5
Hz), alpha wave (8 to 13 Hz) and beta wave (14 to 30 Hz). Some main findings
from the above studies include that there seem to be no significant delta wave
changes associated with fatigue, theta and alpha wave activities increase significantly
during fatigue, but where, in the cortex, these changes occur is still to be probed,
and the association between beta wave activity and fatigue remains unclear. [29]
probed into the delta and beta frequency bands to verify the existence of power-law
scaling, usually realised in the form of 1/f -power spectrum. The authors of [29] used
irregularly resampled auto-spectral analysis in conjunction with ARMA modelling
to quantify the 1/f -component of magnetoencephalography, electroencephalography
and electrocorticography (MEG/EEG/ECoG) power spectra in the low (0.1 to 2.5
Hz) and high (5 to 100 Hz) frequency bands. Their findings confirm power-law
scaling in the MEG/EEG/ECoG in a more refined form of 1/fβ-power spectrum.
Furthermore, the results follow a spatial pattern in the sense that, in the higher
frequencies, steeper slopes are present in posterior areas. In contrast, for the lower
frequencies, steeper slopes are present in the frontal cortex.

Many complex systems in nature, from earthquakes to avalanches, are charac-
terised by scale invariance, which is usually identified by a power-law distribution
of variables such as event duration or the waiting time between events [6, 23]. The
1/f -noise is considered to be a footprint of such systems. 1/f -frequency scaling is
the behaviour of a system near critical points. As such, one commonly associates
self-organised critical states of a natural system with 1/f -frequency scaling [23].
Apart from MEG/EEG/ECoG, temporal signals displaying power-law scaling have
been observed in many works on the nervous system at various spatial scales, from
membrane potentials [16] to functional magnetic resonance imaging [20]. Despite
its potential importance, the physiological mechanism which generates power-law
scaling is still not well understood, and its significance for brain activity remains
controversial [10]. It has been argued [9] that the existence of power-law scaling
indicates that the brain is in a state of self-organised criticality. [8] pointed out
that, alternatively, 1/f -frequency scaling may be due to the diffusion of EEG sig-
nals through various extracellular media such as cerebrospinal fluid, dura matter,
cranium muscle and skin. Such a heterogeneous medium induces a combination of
resistive effects, due to the flow of current in a conductive fluid, and capacitive ef-
fects due to the high density of membranes. In [7], the authors showed theoretically
that 1/f -power spectra could be created by ionic current flow in such a complex
network of resistors and capacitors with random values.

This paper will contribute a new angle to the debate on the cause and detec-
tion of power-law scaling of brain wave activity. We focus on the quantification
of the cause, and subsequent response of the system, which models and interprets
the heterogeneity of the brain cortex. Our starting point is the construction of a
mathematical model of global brain wave activity based on all EEG measurements.
Instead of modelling wave activities at various locations or regions of the brain, we
will consider the evolution of the random field representing EEG over the entire cor-
tical surface. The model takes the form of a stochastic delay-differential equation
(SDDE) for this random field. Its two main components, the fractional diffusion
operator and the delay operator capture respectively the two critical features of
the system: the response due to the heterogeneous medium and the response to an
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initial condition, such as the alert or fatigue state of the brain. We will show that
these two components are capable of generating respectively asymptotic temporal
correlation and oscillatory rhythms of global EEG. The exponents of the fractional
diffusion operator depict the effect of the heterogeneous medium on the diffusion.
Thus, we build the power-law scaling which is due to heterogeneity of the medium
into diffusion, as predicted by the theory of [7]. Another advantage of the model is
that the asymptotic temporal correlation indicating power-law scaling is captured
by the same vital exponent of the fractional diffusion operator.

The main findings of the present work are as follows: (i) The EEG time series
at each electrode on the scalp display long memory, hence power-law scaling, as
indicated by their spectral slopes in the low-frequency range. The extent of this long
memory is significantly reduced from the alert state to the fatigue state. (ii) The
diffusion of the EEG random field is non-Gaussian, reflecting the heterogeneity of the
brain cortex. This non-Gaussianity is more severe for the alert state than the fatigue
state. (iii) The system response to the initial condition, as realised by the delay
parameter in the SDDE, is also stronger for the alert state than the fatigue state.
The results of (ii) and (iii) in the global (whole brain) context corroborate those of
(i) in the time series (individual electrode) context. The findings demonstrate the
usefulness of global SDDE modelling complementing the time series approach for
EEG analysis.

We will consider the cortical surface as the unit sphere S2, where we distribute
the 32 EEG channels. The measurement of EEG at time t and at location x of an
EEG channel on S2 is denoted by u(t,x). We will model the evolution of u(t,x),
hence of the whole cortical surface, by the stochastic differential equation

du(t,x) = −Ψ(−∆S2)u(t,x)dt− (−∆S2)
1/2 u(t− τ,x)dt+ dB(t,x), t ≥ 0, (1.1)

u (0,x) = 0, u (s,x) = g (x) , s ∈ [−τ, 0), x ∈ S2, (1.2)

where τ is the delay parameter, B(t,x) is an L2 (S2)-valued Brownian motion. This
Brownian motion and the fractional operator

Ψ(−∆S2) := (−∆S2)
α/2 (I −∆S2)

γ/2 ,

which includes (−∆S2)
1/2 as a special case, will be defined in the next section.

Briefly, ∆S2 is the Laplace-Beltrami operator, which models standard diffusion on
the unit sphere S2. The fractional operator Ψ(−∆S2) is formulated to reflect the
spatial heterogeneity of the cortex and the asymptotic temporal correlation of the
EEG random field. The delay parameter τ depicts the short-range memory and
oscillation in the evolution of the system.

We will elaborate on these intrinsic features of the model in the next section. We
obtain the analytical solution of the model in Section 3. This solution is presented in
the form of a Karhunen-Loève expansion. This expansion allows to derive a closed-
form expression for the covariance function of the random field u(t,x) defined by
model (1.1) and (1.2). A method to estimate the key parameters of the model and
the corresponding numerical schemes are then devised in Section 4. In Section 5, real
EEG data on driver fatigue at all 32 channels measured on up to 50 participants will
be used to estimate the fractional diffusion parameters α, γ and the delay parameter
τ . Interpretation of the results is given by comparing and contrasting the alert and
fatigue states of the brain. Elaboration of the above findings is also affected in this
section.
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2. Formulation of the model

In this section, we describe the components of a stochastic delay-differential
equation (SDDE) to model the EEG random field on the sphere. These components
include the delay response, fractional diffusion, driving noise and initial condition.

2.1. Random field on the unit sphere

The forward problem of EEG involves the solution of the equation b = Ax, where
b is a vector containing information on the measured EEG field and x is a vector
containing information on the source in the cortex generating the EEG field. A is an
m×n matrix where m is the number of electrodes and m is the number of potentials
to be solved on the cortical surface. Construction of the potential field from the
measured EEG field is the inverse problem, which requires inverting the matrix A.
The problem is ill-posed, and regularisation is needed. A well-known approach to
obtain the inverse solution is via singular value decomposition, as discussed in [33],
for example. This study examined the effects of measurement noise and the number
of electrodes on the accuracy of the inverse cortical EEG solution. The authors
used the spherical head model, where the cortical surface was, therefore modelled
as a sphere. They found that the results obtained with a spherical head model are
comparable to realistic geometry as long as the distance between the cortical surface
and the scalp is similar.

In this paper, we will also assume the spherical head setting, and consider the
cortical surface as the unit sphere S2. Each EEG channel occupies a location x on
S2. The EEG measurement at a time t and at a location x is denoted u (t,x). As
x varies over the entire S2, the field u(t,x) will describe the evolution of the entire
cortical surface, hence representing global brain wave activity. At each time point t,
u(t,x) is a random field on S2; therefore we will model its evolution by a stochastic
differential equation on S2 as formulated in (1.1).

Let R3 be the real 3-dimensional Euclidean space with the inner product x · y
for x,y ∈ R3 and the Euclidean norm |x| :=

√
x · x. Let S2 := {x ∈ R3 : |x| = 1}

denote the unit sphere in R3. The sphere S2 forms a compact metric space with the
geodesic distance dist(x, y) := arccos(x · y) for x,y ∈ S2.

Let L2 (S2) = L2(S2, µ) be the L2-space of all real-valued square-integrable func-
tions with respect to the Riemann surface measure µ on S2 with inner product

〈f, g〉 := 〈f, g〉L2(S2) :=

∫
S2
f(x)g (x)dµ (x) , f, g ∈ L2(S2),

and L2-norm ‖f‖L2(S2) :=
√
〈f, f〉.

In this paper, we use the complex-valued spherical harmonics

Yl,m(x) :=

√
(2l + 1) (l −m)!

(l +m)!
P

(m)
l (cos θ) eimφ, l ∈ N0, m = 0, 1, ..., l,

Yl,m(x) := (−1)m Yl,−m (x) , l ∈ N0, m = −l, ...,−1,

given in terms of the spherical coordinates (θ, φ) and the associated Legendre poly-

nomial P
(m)
l (t), t ∈ [−1, 1], of degree l and order m. The set {Yl,m : l ∈ N0, m =
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−l, . . . , l} is an orthonormal basis for the space L2 (S2). For l ≥ 0, the basis Yl,m
and the Legendre polynomial Pl(x · y) satisfy the addition theorem

l∑
m=−l

Yl,m(x)Yl,m(y) = (2l + 1)Pl(x · y), (2.1)

see [19, Chapter 5].
For x ∈ S2, using spherical coordinates, x := (sin θ sinϕ, sin θ cosϕ, cos θ), θ ∈

[0, π], ϕ ∈ [0, 2π). The Laplace-Beltrami operator on S2 at x is given by

∆S2 :=
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2
,

see [28, p. 38] and [13, Eq. 1.6.8]. This operator has Yl,m, l ≥ 0,m = −l, . . . , l, as
eigenfunctions with corresponding eigenvalues

λl := l(l + 1).

The Fourier coefficients for f in L2 (S2) are given by

f̂lm := 〈f, Yl,m〉 :=

∫
S2
f(x)Yl,m(x)dµ (x) , l ∈ N0,m = −l, . . . , l. (2.2)

Since Yl,m = (−1)mYl,−m and f̂lm = (−1)mf̂l,−m, a function f ∈ L2 (S2) has the
representation

f =
∞∑
l=0

(
f̂l0Yl,0 + 2

l∑
m=1

(
Ref̂lmReYl,m − Imf̂lmImYl,m

))
(2.3)

in the L2 (S2) sense.
Given a probability space (Ω,F , P ), we denote by L2 (Ω, P ) the L2-space on Ω

with respect to the probability measure P , endowed with the norm ‖·‖L2(Ω). For
two random variables X, Y on (Ω,F , P ), we write EX for the expected value of
X, Cov (X, Y ) := E (X − EX) (Y − EY ) the covariance between X and Y and
VarX := Cov (X,X) the variance of X.

Let L2 (Ω× S2) := L2 (Ω× S2, P ⊗ µ) be the real-valued L2-space on the product
space of Ω and S2, where P ⊗ µ is the corresponding product measure. Let B(S2)
denote the Borel σ-algebra on S2 and SO(3), the rotation group on R3. An F ⊗
B(S2)-measurable function X : Ω × S2 → R is called a real-valued random field
on the sphere S2. We will write X(x) or X(ω) for X(ω,x) for simplicity if no
confusion arises. We say a random field X is strongly isotropic if for any k ∈ N,
any k points x1, · · · ,xk ∈ S2 and any rotation ρ ∈ SO(3), the joint distributions
of X(x1), . . . , X(xk) and X(ρx1), . . . , X(ρxk) coinside. We say X is a Gaussian
random field on S2 if for each k ∈ N and x1, . . . ,xk ∈ S2, the random vector
(X(x1), . . . , X(xk)) has a multivariate Gaussian distribution.

2.2. Delay response

We consider the continuum limit of a large cluster of channels on the cortical
surface. A physical system with memory on the cortical surface can be represented
by a Volterra-type evolution equation

∂

∂t
u(t,x) =

∫ t

0

A(t− τ)
∂

∂τ
u(τ,x) + g(t,x), t ∈ R+, x ∈ S2, (2.4)
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u(0) = ξ(x),

in a Banach space E of functions u(t,x) on the unit sphere S2. The family of
linear, possibly unbounded, operators {A(t)}t≥0 can be thought of as representing
the response of the system under the influence of the medium, the initial condition
ξ(x) and the driving force g (t,x).

An approximation of Eq. (2.4) is given by

∂

∂t
u(t,x) = Au(t,x) +

m∑
r=1

Aru(t− rτ,x) + g(t,x). (2.5)

To provide a motivation for this approximation, let us consider the following situa-
tion. For a ∈ R, let ACp (a, b, E) be the vector space of all functions f : [a, b] → E
which are differentiable almost everywhere on (a, b) with derivative in Lp (a, b;E),
and such that

f(t) = f(a) +

∫ t

a

df

ds
(s)ds, t ∈ [a, b].

The functional

np (f) =


[
|f(a)|p +

∥∥df
dt

∥∥p
Lp

]1/p

, 1 ≤ p <∞,

max
{
|f(a)| ,

∥∥df
dt

∥∥
L∞

}
, p =∞

defined in [15] is a norm on ACp (a, b, E) , which is then a Banach space isometrically
isomorphic to E × Lp(a, b;E).

For f ∈ ACp(a, b, E), assuming A(t) is of scalar type on each interval [t−τ, t], [t−
2τ, t− τ ], . . . ,∫ t

0

A(t− s)df

ds
(s)ds =

(∫ t

t−τ
+

∫ t−τ

t−2τ

+ · · ·
)
A(t− s)df

ds
(s)ds

=

(
A1

∫ t

t−τ
+A2

∫ t−τ

t−2τ

+ · · ·
)

df

ds
(s)ds

= A1 (f(t)− f(t− τ)) + A2 (f (t− τ)− f (t− 2τ)) + · · ·
= A1f(t) + (A2 − A1) f (t− τ) + (A3 − A2) f (t− 2τ) + . . .

= Af(t) +A1f (t− τ) +A2f (t− 2τ) + · · · (2.6)

Note that an operator A(t) is of scalar type if A (t) = a(t)A, where A is a closed
linear, densely defined operator in E, and a ∈ L1

loc(R+), a scalar kernel. In (2.6), we
assume A(t) is of scalar type with a (t) = 1 on each interval [t−τ, t], [t−2τ, t−τ ], . . . .
Truncation of the expansion (2.6) at mτ then yields the approximation (2.5).

2.3. Fractional diffusion operator

In this subsection, we introduce the fractional diffusion operator. Let α > 0, γ ≥
0, and

Ψ(x) := Ψα,γ(x) := xα/2(1 + x)γ/2, x ∈ R+. (2.7)

The fractional diffusion operator Ψ(−∆S2) used in the model (1.1) is defined as

Ψ(−∆S2) := (−∆S2)
α/2 (I −∆S2)

γ/2 .
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Using (2.7), the operator Ψ(−∆S2) has eigenvalues

Ψ (λl) = λ
α/2
l (1 + λl)

γ/2, l ∈ N0 (2.8)

(see [14, p. 119-120]), and

Ψ(λl) � (1 + l)α+γ, l ∈ N0, (2.9)

where al � bl means cbl ≤ al ≤ c′bl for some positive constants c and c′.
The operator Ψ(−∆S2) on S2 is the counterpart of the fractional diffusion op-

erator in Rn. We recall that the operator A := −(−∆)α/2(I − ∆)γ/2, which is the
inverse of the composition of the Riesz potential (−∆)−α/2, α ∈ (0, 2], defined by
the kernel

Jα(x) =
Γ (n/2− α)

πn/24αΓ(α)
|x|2α−n, x ∈ Rn

and the Bessel potential (I −∆)−γ/2, γ ≥ 0, defined by the kernel

Iγ(x) = [(4π)γΓ(γ)]−1

∫ ∞
0

e−π|x|
2/se−s/4πs(−n/2+γ) ds

s
, x ∈ Rn,

(see [34]) is the infinitesimal generator of a strongly continuous bounded holomor-
phic semigroup of angle π/2 on Lp(Rn) for α > 0, α + γ ≥ 0 and any p ≥ 1, as
shown in [5]. This semigroup defines the Riesz-Bessel distribution if and only if
α ∈ (0, 2], α + γ ∈ [0, 2]. Let X (t) denote the process, named the Riesz-Bessel
motion (see [3, 4]), defined by this Riesz-Bessel distribution. When γ = 0, the frac-
tional Laplacian −(−∆)α/2, α ∈ (0, 2], generates the Lévy α-stable distribution. As
t → ∞, t−1/αX (t) converges in distribution to a symmetric α-stable random vari-
able, while as t → 0, assuming α + γ > 0, t−1/(α+γ)X (t) converges in distribution
to a symmetric (α + γ)−stable random variable [5]. Consequently, the exponent
α controls the tail behaviour of the distribution of the Riesz-Bessel motion and in-
dicates how often large jumps occur, while the exponent γ, through the value of
the sum α+ γ, controls the small-scale structure and describes the multifractal be-
haviour of the Riesz-Bessel motion. These results are used to interpret the meaning
of the component (−∆S2)

α/2 (I −∆S2)
γ/2 when we fit the EEG data for the alert

and fatigue states in Section 5.

2.3.1. Fractional diffusion in a heterogeneous medium

Let µM be a finite Borel measure with compact support M ⊂ Rn. We say that
the measure µM is a d(·)-measure if, for every x ∈M , it satisfies

c1r
d(x) ≤ µM (B(x, r)) ≤ c2r

d(x), 0 < d ≤ d(x) ≤ d < n, (2.10)

for r ∈ (0, r0) for some fixed r0, where c1, c2 are positive constants, and B(x, r)
denotes the closed ball with center x and radius r. The exponent d(x) is the local
dimension of µM . If d(x) = d, (µ − a.e.), d is called the fractal dimension of µM .
[32] showed that the transition probability densities of a class of processes can be
constructed from the fundamental solution of the equation

∂

∂t
p(t,x) = − (−∆µ)σ−

n−d
2 p(t,x), t ≥ 0, x ∈M, (2.11)
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where M is a compact set in Rn whose Borel measure µ has fractal dimension d,
and (−∆µ)s is the negative Laplacian on M . In (2.11), σ is the regularity order of a
Markov diffusion. The exponent σ− n−d

2
shows that this regularity order is reduced

by the amount n−d
2

, which is the fractal effect due to the fractal domain M in Rn.
This effect is built into the exponents of the diffusion operator in our model (1.1).

2.3.2. Asymtotic temporal correlation of fractional diffusion

To understand the temporal correlation of the fractional diffusion of the EEG
field u(t,x), let us look at a simpler version of model (1.1) without the delay term,
written in the form of stochastic partial differential equation

∂

∂t
u(t,x) = −(−∆)α/2(I −∆)γ/2u(t,x) + ε(t,x), (2.12)

u(0,x) = 0,

where x now varies in the two-dimensional planar cortical sheet R2, and ε(t,x) is
Gaussian space-time white noise (defined as a random Schwartz distribution). In
this situation of an unbounded spatial domain, Fourier transform techniques can be
applied, and the spectral density of the solution of (2.12) can be derived when the
solution is stationary. This derivation clarifies the meaning of the parameters α and
γ. In fact, for t ∈ R+, we denote by ε̂t(λ), λ ∈ R2, the complex-valued generalised
random function defined by the following weak-sense identity in L2(R+ × R2) :

ε(t,x) =

∫
R2

ei〈x,λ〉ε̂t(dλ),

with E
[
ε̂t(dλ)ε̂s(dµ)

]
= δ(t − s)δ(λ − µ)dλdµ for all λ, µ ∈ R2 and t, s ∈ R+. As

established in [2],

Proposition 2.1. A real-valued zero-mean solution, in the mean square sense, of
(2.12) defined on R+ × R2, under zero initial condition and assuming α+ γ > 2, is
given by

u(t,x) =

∫
R2

ei〈x,λ〉
∫ t

0

exp
(
−(t− s)|λ|α(1 + |λ|2)γ/2

)
ε̂s (dλ) ds, (t,x) ∈ R+ × R2,

(2.13)
where the integrals are interpreted in the mean-square sense. In addition, if α <
2, the process is asymptotically stationary with its asymptotic temporal covariance
function given by

Rx(τ) =

∫
R2

exp
{
−|τ ||λ|α(1 + |λ|2)γ/2

}
2|λ|α(1 + |λ|2)γ/2

dλ. (2.14)

Changing (2.14) to polar coordinates yields

Rx(τ) = S2

∫ ∞
0

exp
{
−|τ |ρα (1 + ρ2)

γ/2
}

ρα (1 + ρ2)γ/2
ρ : dρ,

where S2 is a constant resulting from the change to polar coordinates. Making the
change of variable u = |τ |ρα, we have

Rx(τ) = S2

∫ ∞
0

exp
{
−u(1 + u2/|τ |2)γ/2

}
α(1 + u2/|τ |2)γ/2

u2/α−2|τ |1−2/αdu.
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From the dominated covergence theorem,

lim
|τ |→∞

|τ |2/α−1Rx(τ) =
S2

α
Γ (2/α− 1) . (2.15)

Thus, we have asymptotic temporal correlation, which is governed by the exponent
α. It is seen from (2.14) that the covariance function has a slower decay than an
exponential function and, if α > 1, the temporal process will exhibit long-range
dependence. This finding is significant in the sense that we observe temporal long-
range dependence, with 1 < α < 2, even in the case of the (infinite-dimensional)
Ornstein-Uhlenbeck process (2.12). This result is a useful tool in our investigation of
existence of long-range dependence, hence power-law scaling, of global brain activity.

2.4. Driving noise

A real-valued Brownian motion β(t), t ≥ 0, with variance σ2 at t = 1 is a centered
Gaussian process on R+ which satisfies

β(0) = 0, E
(
|β(t)− β(s)|2

)
= σ2|t− s|.

The variance of β(t) is then E (|β(t)|2) = σ2t, t > 0.

Definition 2.2. Let β(1)(t) and β(2)(t) be independent real-valued Brownian motions
with variance 1 (at t = 1). A complex-valued Brownian motion B(t), t ≥ 0, with
variance σ2 is defined as

B(t) = σ
(
β(1)(t) + iβ(2)(t)

)
.

The noise in Eq. (1.1) is modelled by an L2(S2)-valued Brownian motion B(t)
defined as follows.

Definition 2.3. Let bl > 0, l ∈ N0 satisfy
∑∞

l=0(2l + 1)bl < ∞. Let Blm(t),
t ≥ 0, l ∈ N0, m = −l, . . . , l be a sequence of independent complex-valued Brownian
motions on R+ with variance bl at t = 1 and ImBl0(t) = 0 for l ∈ N0, t ≥ 0.
For t ≥ 0, the L2(S2)-valued Brownian motion is defined by the following expansion
(in the L2 (Ω× S2) sense) in spherical harmonics with Brownian motions Bl,m(t) as
coefficients:

B(t) :=
∞∑
l=0

l∑
m=−l

Blm(t)Yl,m(x). (2.16)

We also call B(t) in (2.16) a Brownian motion on S2, written B(t,x), x ∈ S2.
The random field B(t) in (2.16) is well-defined since for t ≥ 0, by Parseval’s identity,

E‖B(t)‖2
L2(S2) ≤

∞∑
l=0

l∑
m=−l

E|Bl,m|2 = t
∞∑
l=0

(2l + 1)bl <∞.

In this paper, we let B(t) be real-valued. For l ∈ N0, let√
blβ

(1)
l0 (t) := Bl0(t), β

(2)
l0 (t) := β

(1)
l0 (t),√

bl
2
β

(1)
lm (t) := ReBlm(t),

√
bl
2
β

(2)
lm (t) := −ImBlm(t) = ImBlm(t), m = 1, . . . , l,
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in law. Then, (β
(1)
lm (t), β

(2)
lm (t)), m = 0, . . . , l, l ∈ N0, is a sequence of independent

real-valued Brownian motions with variance 1 (at t = 1). In view of (2.3), we can
write B(t) for t ≥ 0, in the L2(Ω× S2) sense, as

B(t) =
∞∑
l=0

√
bl

(
β

(1)
l0 (t)Yl,0 +

√
2

l∑
m=1

(
β

(1)
lmReYl,m + β

(2)
lm ImYl,m

))
. (2.17)

For a bounded measurable function g on R+ (which is deterministic), the stochas-
tic integral

∫ t
s
g(u)dBlm(u) can be defined as a Riemann-Stieltjes integral. The

L2(S2)-valued stochastic integral
∫ t
s
g(u)dB(u), for t > s ≥ 0, can then be defined

as an expansion in spherical harmonics with coefficients
∫ t
s
g(u)dBlm(u) as

∫ t

s

g(u)dB(u) :=
∞∑
l=0

l∑
m=−l

(∫ t

s

g(u)dBlm(u)

)
Yl,m.

2.5. Initial conditions

Eq. (1.1) is solved under the initial conditions u(0,x) = 0, u(s,x) = g(x),
s ∈ [−τ, 0), x ∈ S2, where we assume g(x) to be a strongly isotropic Gaussian
random field on S2. It has the expansion

g =
∞∑
l=0

l∑
m=−l

ĝlmYl,m (2.18)

in the L2(Ω × S2) sense, where the Fourier coefficients ĝlm are independent and
normally distributed. We assume ĝlm has mean 0 and variance cl.

3. Analytical solution

In this section, we show the analytic solution of the proposed SDDE by Karhunen-
Loève expansion and prove its convergence. The solution relies on the theory of
fundamental solution of delay-differential equations in Banach spaces outlined in
the Appendix. We then provide an explicit formula for the covariance function of
the solution.

3.1. Karhunen-Loève representation

Model (1.1) is a special case of (A.1) with A = −(−∆S2)
α/2(I −∆S2)

γ/2, m = 1
and A1 = −(−∆S2)

1/2. As noted in Subsection 5.3.1, the operator (−∆S2)
α/2(I −

∆S2)
γ/2 has eigenvalues Ψ(λl) = λ

α/2
l (1 + λl)

γ/2, with λl = l(l + 1), l ∈ N0, and
eigenfunctions {Yl,m : l ∈ N0, m = −l, . . . , l}. Thus,

− (−∆S2)
α/2(I −∆S2)

γ/2Yl,m = Ψ(λl)Yl,m, l ∈ N0, m = −l, . . . , l. (3.1)

Therefore, the semigroup generated by (−∆S2)
α/2(I−∆S2)

γ/2 has the representation

T (t)u =
∞∑
l=0

l∑
m=−l

e−Ψ(λl)t 〈u, Yl,m〉Yl,m(x), x ∈ S2.
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It is seen that A1 = −(−∆S2)
1/2 satisfies condition H3; thus, using (A.6), the

fundamental solution G(t) of (1.1) is given by, for t ∈ [(k − 1)τ, kτ ] and u ∈
D
((
−∆S2

) k−1
2

)
,

G(t)u = −
k∑
i=1

∞∑
l=0

l∑
m=−l

(t− (i− 1)τ)i−1

(i− 1)!
e−Ψ(λl)((t−(i−1)τ))

〈
(−∆S2)

i−1
2 u, Yl,m

〉
Yl,m(x)

= −
k∑
i=1

∞∑
l=0

l∑
m=−l

(t− (i− 1) τ)i−1

(i− 1)!
e−Ψ(λl)((t−(i−1)τ))

〈
u, (−∆S2)

i−1
2 Yl,m

〉
Yl,m(x)

=
k∑
i=1

∞∑
l=0

l∑
m=−l

(√
λl(t− (i− 1)τ)

)i−1

(i− 1)!
e−Ψ(λl)(t−(i−1)τ) 〈u, Yl,m〉Yl,m (x) ,

where the last equality is due to that −∆S2 is essentially self-adjoint [24, p. 299],
and (3.1) is used for γ = 0 and α = i− 1. We then obtain

G(t)Yl,m(x) = µl(t)Yl,m(x), t ∈ [(k − 1)τ, kτ ], x ∈ S2, (3.2)

with

µl(t) =
k∑
i=1

(√
λl(t− (i− 1)τ)

)i−1

(i− 1)!
e−Ψ(λl)(t−(i−1)τ). (3.3)

3.1.1. Periodic motion generated by the delay operator

Now let us look at the effect of the delay in the SDE. Denote by C = C ([−τ, 0];E)
the Banch space of continuous maps ψ : [−τ, 0]→ E with the sup norm. We consider
the governing component of Eq. (1.1) in the phase space C:

du(t)

dt
= Au(t) + A1u(t− τ), t > 0, (3.4)

where the operators A,A1 are as defined above. Let C =C ([−τ, 0];R). For each
l ∈ N0, we define the maps Al,m : C→ R by

Al,m (ψ)Yl,m = A1 (ψYl,m) .

We introduce the subspaces

Bl,m = {〈v, Yl,m〉Yl,m : v ∈ C}

of C which satisfy A1Bl,m ⊂ span{Yl,m}. Then, on Bl,m, the linear equation (3.4) is
equivalent to the functional delay differential equation on R :

dz(t)

dt
= Ψ(λl)z(t) + Al,mz(t− τ), t > 0, (3.5)

(see [17, Eq. 1.6k]) with characteristic equations

λYl,m −Ψ(λl)Yl,m − Al,m(ψ)Yl,m = 0

(see [17, Eq. 1.3k]), which reduce to

λ−Ψ(λl)− Al,me−λτ = 0, l ∈ N0, m = −l, . . . , l. (3.6)
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For each l, we re-write Eq. (3.6) as

λτ + xl + yle
−λτ = 0, (3.7)

where xl = −Ψ(λl)τ , yl = −Al,mτ . We look for solutions to Eq. (3.7) of the form
λ = iω. Eq. (3.7) then becomes

iωτ + xl + yle
−iωτ = 0,

which yields, for the real and imaginary parts,

xl + yl cosωτ = 0, (3.8)

ωτ − yl sinωτ = 0. (3.9)

From Eq. (3.9),

yl =
ωτ

sinωτ
. (3.10)

Inserting this into (3.8) yields

xl = −ωτ cosωτ

sinωτ
. (3.11)

The parametric equations (3.10) and (3.11) describe a curve of yl vs xl in terms of
ωτ . For a range of ωτ , such as 0.5π < ωτ < 0.9π, the curve is almost linear, which
is known as the Hopf curve. We can re-write Eq. (3.5) in terms of xl and yl:

dz(t)

dt
= −xl

τ
z(t)− yl

τ
z(t− τ), t > 0. (3.12)

An equation of the form (3.12) was used to study periodic breathing in [18]. In fact,
Eq. 2 in [18] is of the form (3.12), and their characteristic equation is of the form
(3.6). By numerical simulation, it was found that, for the values of (x, y) below
the Hopf curve, the equilibrium solution z(t) = 0 is stable, while above the curve it
is unstable and there are periodic oscillations. That is, periodic motion occurs for
(x, y) above the Hopf curve as demonstrated in Fig. 3 in [18].

Going back to model (1.1) and (1.2), continuing from (3.3) and using (A.7), its
mild solution is then given by

u(t,x) =

∫ t

0

G(t− s)dB(s) +

∫ 0

−τ
G(t− τ − s)(−∆S2)

1/2g(s)ds

=
∞∑
l=0

l∑
m=−l

(∫ t

0

µl(t− s)dBlm(s) +

∫ 0

−τ
µl(t− τ − s)(−∆S2)

1/2ĝlm(s)ds

)
Yl,m(x)

=
∞∑
l=0

l∑
m=−l

(∫ t

0

µl(t− s)dBlm(s) +

∫ 0

−τ

√
λlµl(t− τ − s)ĝlm(s)ds

)
Yl,m(x),

(3.13)

where the second equality uses G(s)(−∆S2)
1/2 = O if s < 0, and the last equality

uses (2.16), (2.18), (3.2) and the commutativity of G(t) and (−∆S2)
1/2, and (3.1) is

used when γ = 0, α = 1. Noting the condition u(s,x) = g(x), s ∈ [−τ, 0), x ∈ S2
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in (1.2), the Karhunen-Loève representation of the mild solution of model (1.1) and
(1.2) is then

u(t,x) =
∞∑
l=0

l∑
m=−l

(∫ t

0

µl(t− s)dBlm(s) +
√
λl ĝlm

∫ 0

−τ
µl(t− τ − s)ds

)
Yl,m(x).

(3.14)

Theorem 3.1. The expansion of u(t,x) in (3.14) converges in L2 (Ω× S2).

Proof. By Parseval’s identity, the squared L2-norm of u(t) at t is

‖u(t)‖2
L2(Ω×S2)

= E

[
∞∑
`=0

∑̀
m=−`

∣∣∣∣∫ t

0

µl(t− s)dBlm(s) +
√
λlĝlm

∫ 0

−τ
µl(t− τ − s)ds

∣∣∣∣2
]

≤ 2
∞∑
`=0

∑̀
m=−`

{
E

[∣∣∣∣∫ t

0

µl(t− s)dBlm(s)

∣∣∣∣2
]

+ E

[∣∣∣∣√λl ĝlm

∫ 0

−τ
µl(t− τ − s)ds

∣∣∣∣2
]}

.

In view of Itô’s isometry theorem [31, Lemma 3.1.5],

E

(∣∣∣∣∫ t

0

µl(t− s)dBlm(s)

∣∣∣∣2
)

= bl

∫ t

0

|µl(t− s)|2 ds. (3.15)

Then,

‖u(t)‖2
L2(Ω×S2)

≤ 2

(
∞∑
`=0

∑̀
m=−`

bl

∫ t

0

|µl(t− s)|2 ds+
∞∑
`=0

∑̀
m=−`

λlcl

∣∣∣∣∫ 0

−τ
µl(t− τ − s)ds

∣∣∣∣2
)

≤ 2

(
∞∑
l=0

(2l + 1)bl

∫ t

0

|µl(u)|2 du+
∞∑
l=0

(2l + 1)λlcl

∫ t

t−τ
|µl(u)|2du

)
=: 2(I1 + I2), (3.16)

where cl is the variance of ĝlm. For the first term of (3.16), by (3.3) and Jensen’s
inequality,

I1 ≤
∞∑
l=0

dt/τe∑
k=1

(2l + 1)bl

∫ kτ

(k−1)τ

|µl(u)|2du

=

dt/τe∑
k=1

∞∑
l=0

(2l + 1)bl

∫ kτ

(k−1)τ

∣∣∣∣∣
k∑
i=1

(√
λl(u− (i− 1)τ)

)i−1

(i− 1)!
e−Ψ(λl)(u−(i−1)τ)

∣∣∣∣∣
2

du

≤
dt/τe∑
k=1

k∑
i=1

k (kτ − (i− 1)τ)2(i−1)

((i− 1)!)2

∞∑
l=0

(2l + 1)blλ
i−1
l

∫ kτ

(k−1)τ

e−2Ψ(λl)(u−(i−1)τ)du

=

dt/τe∑
k=1

k∑
i=1

k (kτ − (i− 1)τ)2(i−1)

((i− 1)!)2

∞∑
l=0

(2l + 1)blλ
i−1
l

2ψ(λl)
e−2Ψ(λl)(ξk−(i−1)τ),
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where the last line holds for some ξk in ((k−1)τ, kτ) by the mean value theorem. As

ξk > (k− 1)τ ≥ (i− 1)τ , the series for `,
∑∞

l=0

(2l+1)blλ
i−1
l

2ψ(λl)
e−2Ψ(λl)(ξk−(i−1)τ) converges

for i = 1, . . . , k and k = 1, . . . , dt/τe. Thus, I1 <∞.
In a similar way, for some ξ′k ∈ ((k − 1)τ, kτ),

I2 ≤
∞∑
`=0

(2l + 1)λlcl

dt/τe∑
k=dt/τe−2

∫ kτ

(k−1)τ

|µl(u)|2du

≤
dt/τe∑

k=dt/τe−2

k∑
i=1

k (kτ − (i− 1)τ)2(i−1)

((i− 1)!)2

∞∑
l=0

(2l + 1)clλ
i
l

2ψ(λl)
e−2Ψ(λl)(ξ

′
k−(i−1)τ) <∞.

This together with I1 <∞ and (3.16) shows ‖u(t)‖L2(Ω×S2) <∞.

3.2. Covariance function

As given by (3.13), the solution u(t,x) has mean 0 by assumption. At a fixed
time t, its covariance function is then

E (u(t,x)u(t,y)) =
∞∑
`=0

∑̀
m=−`

∞∑
`′=0

`′∑
m′=−`′

Yl,m(x)Yl′,m′(y)

× E

(∫ t

0

∫ t

0

µl(t− v)µl′(t− v′)dBlm(v)dBl′m′(v
′)

+

∫ 0

−τ

∫ 0

−τ

√
λlµl(t− τ − s)

√
λl′µl′(t− τ − s′)ĝlm(s)ĝl′m′(s

′)dsds′
)
.

(3.17)

By the independence of B(t) and g(t), and the independence of the coefficients at
different indices (l,m), the covariance function (3.17) becomes

E (u(t,x)u(t,y)) =
∞∑
`=0

l∑
m=−l

cl

(∫ 0

−τ

√
λlµl(t− τ − s)ds

)2

Yl,m(x)Yl,m(y)

+
∞∑
`=0

∑̀
m=−`

E

(∣∣∣∣∫ t

0

µl(t− v)dBlm(v)

∣∣∣∣2
)
Yl,m(x)Yl,m(y),

(3.18)

where we used (2.18). Thus, using (3.15) and the addition theorem (2.1) again, Eq.
(3.18) becomes

E (u(t,x)u(t,y)) =
∞∑
`=0

(
cl

(∫ 0

−τ

√
λlµl(t− τ − s)ds

)2

+ bl

∫ t

0

(µl(t− v))2 dv

)
× (2l + 1)Pl(x · y). (3.19)

Using Pl (x · x) = Pl(1) = 1, we then obtain the variance of u(t,x) as

V (t,x) = E (u(t,x))2

=
∞∑
`=0

(2l + 1)

(
cl

(∫ 0

−τ

√
λlµl(t− τ − s)ds

)2

+ bl

∫ t

0

(µl(t− v))2dv

)
.

(3.20)
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4. Methods for parameter estimation

In this section, we provide some methods for numerical estimation of the frac-
tional exponents α and γ, the delay parameter τ , and the exponent θ in the variances
of the initial condition of the SDDE (1.1) and (1.2).

4.1. Estimation of the fractional diffusion

To estimate the exponents α and γ, we let

ul,m(t) = 〈u(t), Yl,m〉 . (4.1)

Then, using (3.14),

ul,m(t) =

∫ t

0

µl(t− s)dBlm(s) +
√
λl ĝlm

∫ τ

0

µl(t− s)ds, (4.2)

where we have used the change of variable τ + s → s in the second integral. We
noted in Subsection 2.1 that, for a bounded measurable function f on R+ (which is
deterministic), the stochastic integral

∫ t
0
f(s)dBlm(s) can be defined as a Riemann-

Stieltjes integral.
We now consider the representation

ε = 〈f, e〉 =

∫
R
f(s)dBlm(s)

for f ∈ C∞0 (R), the space of infinitely differentiable functions with compact support
in R. The function 〈f, e〉 is linear and continuous with respect to the L2-norm over
C∞0 (R). We may treat ε as a random Schwartz distribution, and identify ε(t) with

the derivative dBlm(t)
dt

. Then, Eq. (4.2) can be written formally as

ul,m(t) =

∫ t

0

µl(t− s)ε(s)ds+
√
λl ĝlm

∫ τ

0

µl(t− s)ds,

from which and (3.3) we obtain

dul,m(t)

dt
=

∫ t

0

d

dt
µl(t− s)ε(s)ds+ µl(0)ε(t) +

√
λl ĝlm

∫ τ

0

d

dt
µl(t− s)ds

= −Ψ(λl)ul,m(t) + µl(0)ε(t)

+
√
λl

∫ t

0

k∑
i=1

(√
λl(t− s− (i− 1)τ)

)i−2

(i− 2)!
e−Ψ(λl)(t−s−(i−1)τ)ε(s)ds

(4.3)

+ λl ĝlm

∫ τ

0

k∑
i=1

(√
λl(t− s− (i− 1)τ)

)i−2

(i− 2)!
e−Ψ(λl)(t−s−(i−1)τ)ds. (4.4)

For this initial estimation of α, γ, we will compute the values of ul,m(t) from (4.1)
for large l so that

e−Ψ(λl) = e−l
α/2(l+1)α/2(1+l(l+1))γ/2 (4.5)
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is small. In this setting, the integrals in (4.3) and (4.4) are approximately zero for
l sufficiently large. Then, ul,m(t) satisfies the equation

dul,m(t)

dt
= −Ψ(λl)ul,m (t) + µl(0)ε(t). (4.6)

For each l,m, Eq. (4.6) is an Ornstein-Uhlenbeck equation for ul,m(t) driven by
white noise ε(t). By [22], for each m = −l, . . . , l,

1
2
T

∫ T
0

(ul,m(t))2dt
→ Ψ(λl)

as T →∞. Then, using n samples ul,m(t1), ..., ul,m(tn), tj = jT/n,

Ψ(λl) ≈ Ψ
(n)
l :=

1
2
T

∑n
j=2(ul,m(tj))2(tj − tj−1)

. (4.7)

By (4.5) and (4.7), we propose to estimate the parameters α and γ by solving the
following nonlinear least squares problem: for L2 ≥ L1 ≥ 1 and L1, L2 sufficiently
large,

min
0<α≤2,γ≥0
0<α+γ≤2

L2∑
l=L1

l∑
m=−l

(
lα/2(l + 1)α/2(1 + l(l + 1))γ/2 −Ψ

(n)
l

)2

. (4.8)

When L1 is sufficiently large, Eq. (4.8) is approximately by

min
0<α≤2,γ≥0
0<α+γ≤2

L2∑
l=L1

l∑
m=−l

(
(l(l + 1))α/2+γ/2 −Ψ

(n)
l

)2

. (4.9)

In practice, we first estimate α + γ for L1 sufficiently large by (4.9), then estimate
α using a smaller L1 and setting γ = 0 in (4.8).

4.2. Estimation of the delay parameter and initial condition

In this subsection, we estimate the parameters for the delay operator and the
initial condition. This estimation is proceeded under the assumption that the delay is
the response of the system due to the initial condition u (s,x) = g (x) for s ∈ [−τ, 0)
and x ∈ S2. We assume the variances of ĝlm take the form

cl := (1 + l)−(2θ+2) (4.10)

for θ > 1. Then, the estimation involves the parameters τ and θ.
Going back to the form (4.2) and using (3.20) we find

E (ul,m(t))2 = λlcl

(∫ τ

0

µl(t− s)ds
)2

+ bl

∫ t

0

(µl(t− s))2 ds, (4.11)

where the second term on the right-hand side vanishes as t→ 0. We recall that µl(t)
of (3.3) is defined for t ∈ [(k − 1) τ, kτ ]. Thus, for t→ 0, k = 1, µl(t) = e−Ψ(λl)t and∫ τ

0

µl(t− s)ds =

∫ τ

0

e−Ψ(λl)(t−s)ds.
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Figure 1: Left: Position of 32 channels for EEG signals. Right: 512 nodes of Gauss-
Legendre product rule on the sphere

Since 0 < t− s < t, we get t− s→ 0 as t→ 0. Hence,∫ τ

0

µl(t− s)ds→ τ,

and by (4.11),

E (ul,m(t))2 → τ l (l + 1)−(2θ+1) . (4.12)

We compute E (ul,m(t))2 by discretising the integral with n sample times as

ûl,m =
1

n

n∑
j=1

(ul,m (tj))
2

over a partition 0 = t1 < t2 < ... < tn = t0 of the interval [0, t0], where t0 is a small
positive number. Then, the formula (4.12) suggests to estimate the parameters τ
and θ by solving the nonlinear least-squares problem: for a positive integer L,

min
τ,θ>0

L∑
l=1

l∑
m=−l

(
log ûl,m − log τ + (2θ + 1) log

(
l(l + 1)

))2
. (4.13)

5. Parameter estimation on real EEG data

5.1. EEG dataset

We view the brain as part of the sphere S2 ⊂ R3. The left panel of Fig. 1
shows the location of the 32 EEG channels. At each channel, the EEG brain wave
was measured for 20 seconds composing of 5120 time points. Fig. 2 displays the
EEG patterns on S2 at t = 6, 12, 18 seconds. Figures 2a,b,c show the EEG for the
alert state, while Figures 2d,e,f for the fatigue state. They illustrate two apparently
different patterns of the random field of brain wave activity on S2.

5.2. Fourier coefficients

We compute the Fourier coefficients ul,m by the fast spherical harmonic trans-
form [26, 25] using EEG measurements. To increase the accuracy of evaluation, we
extrapolate the measured EEG data at 32 channels on S2 to 512 nodes of the Gauss-
Legendre product rule, as shown in the right panel of Fig. 1. The Gauss-Legendre
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(a) Alert, t = 6s (b) Alert, t = 12s (c) Alert, t = 18s

(d) Fatigue, t = 6s (e) Fatigue, t = 12s (f) Fatigue, t = 18s

Figure 2: Two states of brain wave activity at t = 6, 12, 18 seconds

tensor product rule is a (polynomial-exact but not equal-area) quadrature rule with
positive weights on S2 [21, 35]. The tensor product of the Gauss-Legendre zeros
on [−1, 1] determines the latitude and equally-distributed nodes on the circle at a
latitude. The Gauss-Legendre rule with N nodes is exact for polynomials of degree
n: ∫

S2
f(x)dx =

N∑
i=0

wif(xi)

for all spherical polynomials f of degree up to n, and the number of points N =
n× (b(n− 1)/2c + 1). The function value at an extrapolation point is set equal to
the value at the closest channel.

5.3. Parameter estimation

In this section, we estimate the parameters of the SDDE using real EEG data.
The parameters include β, α, α + γ, τ and θ.

5.3.1. Power-law scaling of EEG time series

For a discussion on power-law scaling in EEG time series, let us recall a few facts
on fractional Gaussian noise. The generalised derivative (in the sense of Schwartz
distributions) of fractional Brownian motion BH , 0 < H < 1, is called fractional
Gaussian noise. For H ∈ [1/2, 1), this noise process is commonly known as 1

fβ
-noise,

with 0 ≤ β = 2H − 1 < 1, where f stands for frequency. To avoid confusion,
we will write 1

|λ|β when we refer to the spectral density of 1
fβ

-noise. In the range

0 < β < 1, 1/fβ-noise is stationary, strongly dependent and interpolates between
white noise (1/f 0-noise, which has a constant spectral density) and pink noise (1/f 1-
noise, which has a spectral density proportional to the reciprocal of the frequency).
For 1 < β = 2H + 1 < 3, 1/fβ-noise is non-stationary and possesses short-range
dependence for 1 < β < 2 (0 < H < 1/2) and long-range dependence for 2 < β < 3
(1/2 < H < 1). The change from stationary strongly dependent 1/fβ-noise, 0 <
β < 1, to nonstationary 1/fβ-noise, 1 < β < 3, can be considered as a change of
states of the system. Pink noise (1/f 1-noise) represents the changing point between
these two states.
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Figure 3: EEG time series at channel O2

As an illustration, we show the EEG time series at channels O2 and P4 in the
alert and fatigue states. There is clear intermittency in the O2 time series in the
fatigue state. This is depicted by a singularity at a frequency in the range 100 < ω <
300 in its periodogram. The appearance of this frequency for intermittency is likely
due to the closed eye tendency when a driver is tired. Similar strong intermittency
is found in the P4 time series in the fatigue state.

The spectral slopes of the O2 and P4 time series at low frequencies (ω ≤ 100)
are β = 1.33 and 1.23 respectively for the alert state, and β = 1.37 and 1.28
respectively for the fatigue state. These slopes are obtained via the regression of
log f (λ) against log |λ| based on the 1/fβ-noise model log f (λ) ∼ −β log |λ| as λ→
0. The estimated slopes indicate that the alert-state time series are nonstationary
and possess short-range dependence with H = 0.165 and 0.115 respectively using
the formula 2H + 1 = β. The Hurst indices are H = 0.185 and 0.14 for O2 and P4
respectively in the fatigue state, indicating that there is no significant change (in
the low-frequency behaviour of these time series) from the alert state to the fatigue
state.
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Figure 4: Log-periodogram of the EEG time series at channel O2 shown in Fig. 3

5.3.2. Global power-law scaling

The covariance function of (2.15) is of the form

R(t) = |t|−κ L(t), t ∈ R, (5.1)

with 0 < κ < 1 for 1 < α < 2, and L (x) being a function slowly varying at infinity.
A Tauberian theorem [27, p. 66] implies that the spectral density f(λ) corresponding
to R(t) behaves as

f(λ) ∼ c(κ)L

(
1

|λ|

)
|λ|κ−1 (5.2)

as |λ| → 0, where the Tauberian constant c(κ) =
Γ( 1−κ

2 )
2κ
√
πΓ(κ/2)

. Thus, at a fixed loca-

tion, the asymptotic solution of (2.12) behaves as 1/fβ-noise, with β = 2 (1− 1/α).

Consequently, the parameter α of the fractional diffusion operator (−∆S2)
α/2 (I −∆S2)

γ/2

of (1.1) quantifies its 1/f 2(1− 1
α)-noise behaviour at low frequencies. Under the as-

sumptions of this global model, there may not be any formula connecting this low-
frequency behaviour via β = 2 (1− 1/α) with the bahaviour via β = 2H + 1 of
the EEG time series investigated above because the α-component in the operator
(−∆S2)

α/2 (I −∆S2)
γ/2 picks up only a part of the memory in the EEG global field.

The remaining part is embedded in the delay operator (−∆S2)
1/2 u(t− τ,x). How-

ever, as described, this 1/f 2(1− 1
α)-noise behaviour can be used as an indicator to

distinguish between the alert and fatigue states. This interpretation is included in
the next subsection.

5.3.3. Behaviour of global EEG

We use (4.7) and (4.13) to estimate the parameters α, γ and the delay parameter
τ as well as the exponent θ. In the optimization problem (4.8), we set L1 = 30
and L2 = 50. Table 1 reports the numerical estimates and standard deviations of
α, α + γ, τ and θ averaged over a sample of up to 50 participants in the alert and
fatigue states. For each participant, we use EEG measurements over 20 seconds at
all 32 channels on the scalp. Fig. 7 plots the paths of the estimated values of α, α+γ
and τ over these participants.

First of all, the averaged value α = 1.116 in Table 1 for the fatigue state yields
β = 0.21, hence κ = 0.79 in the spectral density (5.2). This result indicates that
global EEG exhibits long memory, hence global power-law scaling in the fatigue
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Figure 5: EEG time series at channel P4

state, as predicted by the covariance function (5.1) and the spectral density (5.2).
The path of α in Fig. 7 also shows that α is consistently larger than 1 over the
sample of participants, hence exhibiting power-law scaling in the fatigue state. The
averaged value of α smaller but close to 1 for the alert state in Table 1 does not
lend support for the assertion of long memory in the alert state. This would indi-
cate weakly dependent non-stationarity rather than strongly dependent stationarity
in the solution for the alert state. This agrees with the assertion of higher non-
Gaussianity in the alert state, which we discuss next.

The estimates of α and α+γ are obtained for t sufficiently large. The value of α
around 1 in Table 1 confirms that global EEG is α-stable in both alert and fatigue
states. This degree of non-Gaussianity is distinct from the Gaussianity of standard
diffusion when α = 2. It demonstrates the fractal effect due to a multifractal medium
on the diffusion as anticipated in Eq. (2.11). The result agrees with the diffusion
of EEG signals through a heterogeneous medium due to the flow of current in a
conductive fluid and the high density of membranes as heralded in [7]. The lower
value of α in Table 1 and consistently over the entire sample of participants in Fig. 7
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Figure 6: Log-periodogram of the EEG time series at channel P4 shown in Fig. 5

for the alert state indicates that global EEG has larger jumps and more rugged paths
in the alert state than in the fatigue state. The lower value of α+ γ, in Table 1 and
Fig. 7, corroborates the assertion that paths of global EEG are more multifractal in
the alert state than in the fatigue state. All these interpretations are suggested by
the analytical results of the fractional diffusion model of Subsection 2.3.

The mean value of the delay parameter τ in Table 1 is obtained under the
assumption that the delay response is due to the initial condition, that is, when the
alert or fatigue state starts. Hence τ is evaluated as t→ 0 in the estimation scheme.
The larger value of τ shown in Table 1 indicates that global EEG has longer delay,
hence stronger memory, in the alert state than in the fatigue state. This result is
also maintained consistently over the sample of participants in Fig. 7.

The above analysis confirms the occurrence of strong response of the system
to the initial state within the context of non-Gaussian diffusion. The occurence is
intuitively consistent with the behaviour of a driver in the alert or fatigue state.
The results provide additional tools to construct global indicators to distinguish
between these two states of brain activity complementing those afforded by time-
series techniques.

Table 1: Averages and standard deviations of the parameters α, α+ γ, τ and θ over up
to 50 participants

Average α α + γ τ θ

Alert 0.921± 0.207 1.676± 0.141 0.183± 0.061 2.323± 0.042
Fatigue 1.116± 0.208 1.773± 0.132 0.160± 0.048 2.334± 0.041
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(a) α (b) α+ γ (c) τ

Figure 7: Paths of fractional diffusion exponents α, α+ γ and delay parameter τ over a
sample of up to 50 participants
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Appendix A. Fundamental solution of delay-differential equations

In order to derive the solution of the system (1.1) and (1.2), we recall the following
theory of fundamental solution of delay-differential equations in Banach spaces due
to [30]. Let E be a Banach space. We denote by B(E) the Banach space of all
bounded linear operators from E into itself. We consider the following differential
system with m delay terms:

du(t)

dt
= Au(t) +

m∑
r=1

Aru(t− rτ) + f(t), t ≥ 0, (A.1)

u(0) = u0, u(s) = g(s), s ∈ [−mτ, 0), (A.2)

where τ > 0 is a constant, u(t), f(t), g(t) ∈ E. The operatorsA andAr, r = 1, ...,m,
possibly unbounded, are assumed to satisfy the following assumptions:

H0. The operator A generates a strongly continuous semigroup {T (t), t ≥ 0} on
E;

25

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.03.234120doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.234120
http://creativecommons.org/licenses/by-nc-nd/4.0/


H1. The Ar, r = 1, ...,m, are closed linear operators with dense domains D(Ar) in
E;

Hq
2. For each r, there exists a function Mr(·) ∈ Lq([0, τ ]) such that ‖T (t)Aru‖ ≤
Mr(t)‖u‖ for almost all t ∈ [0, τ ] and all u ∈ D(Ar).

Let u0 ∈ E, f ∈ Llocp (R+;E) , g ∈ Lp′ (−mτ, 0;E) be given, and let Assumption

Hq′

2 with 1/p′ + 1/q′ = 1 be satisfied, where p, p′ ∈ [1,∞]. Then, the function

u(t;u0, f, g) = T (t)u0 +

∫ t

0

T (t− s)f(s)ds+
m∑
r=1

∫ t

0

(T (t− s)Ar)g(s− rτ)ds (A.3)

is well defined and is strongly continuous on [0, τ ]. This function is defined to be
the mild solution of the system (A.1) and (A.2), see [30].

Let now f = 0, g = 0 and let Assumptions H0, H1 and H1
2 be satisfied. Then,

as given by (A.3), the mild solution u(t;u0) = u(t;u0, 0, 0) can be constructed for
any u0 ∈ E. The mapping G : R+ ×E → E defined by G(t, u0) = u(t;u0) generates
a one-parameter family of bounded operators {G(t), t ≥ 0}, where G(t) is defined
by G(t)u = G(t, u) for u ∈ E and satisfies

(i) G(t) = T (t) for all t ∈ [0, τ ] and G(t) ∈ B(E) for all t ≥ 0;

(ii) for each u0 ∈ E, G(t)u0 is continuous on R+.

By [30], we can define the function G(t) as the fundamental solution of Eq. (A.1).
From the given semigroup {T (t), t ≥ 0} we define the operators T1(t), . . . , Tk(t),

t ≥ 0, inductively by

T1(t) = T (t)

Tk(t) =

min(k−1,m)∑
i=1

∫ t

0

T (t− s)AiTk−1(s)ds for k = 2, 3, . . . (A.4)

From (A.4), an explicit form of Tk(t) can be derived. We first define the index sets
Λ(j, k) for all j, k = 1, 2, . . . by

Λ(j, k) = {(i1, . . . , ij) : 1 ≤ i1, . . . , ij ≤ m and i1 + · · ·+ ij = k} .

Note that Λ(j, k) = ∅ for j > k. The following integral expression of Tk(t) for k ≥ 2
is then obtained:

Tk(t) =
k−1∑
j=1

∑
Λ(j,k−1)

∫ t

0

T (t− sj−1)Ai1· · ·
∫ s1

0

T (s1− s)AijT (s)dsds1 . . . dsj−1. (A.5)

Summarising, we obtain the following result, which is given by [30, Theorem 3.1].

Theorem Appendix A.1. Let Assumptions H0, H1 and H1
2 be satisfied. Then the

set of one-parameter family of strongly continuous operators {Tk(·) : k = 1, 2, ...}
can be constructed as in (A.5), and the fundamental solution G(t), t ≥ 0, is given
by

G(t) =
k∑
i=1

Ti(t− (i− 1)τ),

where t ∈ [(k − 1)τ, kτ ].
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We introduce an additional condition:

H3. For each r, Ar commutes with T (t) for all t ≥ 0, i.e., for any u ∈ D(Ar) and
t ≥ 0, T (t)u ∈ D(Ar) and ArT (t)u = T (t)Aru.

Then, by H3 and (A.5), Tk(t) is given formally by

Tk(t) =
k−1∑
j=1

∑
Λ(j,k−1)

tj

j!
T (t)Ai1 . . . Aij , k = 2, 3, ...

Consequently, G(t), t ∈ [(k − 1) τ, kτ ], is represented formally as

G(t) = T (t) +
k∑
i=2

i−1∑
j=1

∑
Λ(j,i−1)

1

j!
(t− (i− 1)τ)jT (t− (i− 1)τ)Ai1 . . . Aij . (A.6)

The mild solution (A.3) can then be given in terms of G(t) as

u(t;u0, f, g) = G(t)u0 +

∫ t

0

G(t−s)f(s)ds+
m∑
r=1

∫ 0

−rτ

(
G(t−rτ−s)Ar

)
g(s)ds, (A.7)

where G(s)Ar = O, the null operator on E, if s < 0. This is given by [30, Theo-
rem 4.2].
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