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Abstract 

Recent studies suggest insect declines in parts of Europe; however, the generality of these trends 

across different taxa and regions remains unclear. Standardized data are not available to assess 

large-scale, long-term changes for most insect groups but opportunistic citizen science data is 

widespread for some taxa. We compiled over 1 million occurrence records of Odonata 

(dragonflies and damselflies) from different regional databases across Germany. We used 

occupancy-detection models to estimate annual distributional changes between 1980 and 2016 

for each species. We related species attributes to changes in the species’ distributions and 

inferred possible drivers of change. Species showing increases were generally warm-adapted 

species and/or running water species while species showing decreases were cold-adapted species 

using standing water habitats such as bogs. We developed a novel approach using time-series 

clustering to identify groups of species with similar patterns of temporal change. Using this 

method, we defined five typical patterns of change for Odonata – each associated with a specific 

combination of species attributes. Overall, trends in Odonata provide mixed news – improved 

water quality, coupled with positive impacts of climate change, could explain the positive trend 

status of many species. At the same time, declining species point to conservation challenges 

associated with habitat loss and degradation. Our study demonstrates the great value of citizen 

science data for assessing large-scale distributional change and conservation decision-making.  

 

Keywords: Biodiversity monitoring, Citizen Science, Long-term change, Occupancy-Detection 

models, Range-shifting, Trait-based
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Introduction 

Recent studies suggest long-term declines of insect populations in different parts of Europe 

(Conrad et al. 2006; Hallmann et al. 2017; Valtonen et al. 2017; Homburg et al. 2019). Such 

declines are a major conservation concern, especially because they could have a broad range of 

cascading effects for other species (Hallmann et al. 2014; Cardoso et al. 2020). However, many 

studies on insect change are based on local or small-scale datasets. Assessing change over large-

spatial scales is difficult for most insect taxa due to a lack of standardized monitoring. 

Nonetheless, effective conservation policies strongly rely on knowledge of the large-scale trends 

of species. To facilitate conservation decision-making, there is an urgent need to make use of all 

available data to estimate large-scale and long-term changes in insect populations and 

communities. 

While large-scale standardized insect monitoring is rare, at least beyond butterflies (van 

Swaay et al. 2008), large amounts of opportunistic data, without a common sampling protocol, 

are collected by citizen science (CS) (Chandler et al. 2017). CS data are associated with 

numerous statistical challenges but they have the advantage of a large spatial coverage and a 

reasonable time-span. Moreover, since some citizen scientists are active year-round, CS data also 

tend to capture a larger proportion of the biological community, including rare species, than 

standardized data (Bradter et al. 2018). As CS data has become more accessible, there has been 

simultaneous development of methods to analyze such data (van Strien et al. 2013; Isaac et al. 

2014; Rapacciuolo et al. 2017). Occupancy-detection models have emerged as one approach that 

is robust to different ways citizen scientists collect data, by explicitly modelling heterogeneity in 

survey effort and species detectability (Isaac et al. 2014). 

Odonata are a good case study for the application of occupancy-detection models to study 

long-term change since, despite a few exceptions, they are mostly not surveyed by structured 

monitoring over large spatial scales but are subject to extensive CS recording. Recent studies of 

dragonflies in different European countries suggest many species have increased (Powney et al. 

2015; Termaat et al. 2019). In general, there is evidence of recent population increases of many 

freshwater organisms in Europe, thought to be due to better waste water treatment enabling 

recovery from previous impacts of water pollution (van Strien et al. 2016; Van Klink et al. 

2020), especially following the implementation of the European Water Framework Directive 
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(WFD) in the 2000s (Giger 2009; Hering et al. 2010). Climate changes signals have also been 

apparent by the northward expansion of southern species (Hickling et al. 2006; Ott 2010).  

We used opportunistic data, including CS data, to study Odonata distributional change – 

both in terms of mean long-term trends and specific temporal patterns of change – since 1980 in 

Germany, which contains the largest number of Odonata species in Europe (Brockhaus et al. 

2015; Kalkman et al. 2018). We further identified species attributes (i.e., species-specific 

characteristics) associated with distributional changes. Our analysis was part exploratory, to 

identify predictive attributes, and part hypothesis-driven, for some key attributes assumed to link 

to specific drivers. We hypothesized that sensitivity to climate change may be affected by 

species’ temperature preferences; while sensitivity to environmental management would be 

affected by species’ habitat preference. Specifically, we predicted increases of warm-adapted and 

early spring species and decreases of cold-adapted species, as well as increases of running water 

species, since these are thought to most benefit from improved water and environmental 

management (Termaat et al. 2015). We expected to see recovery of running water species 

especially during the 2000s when the WFD activities began. By contrast, increases associated 

with climate change were expected to be already visible from the 1980s. Finally, we tested 

whether communities had become more dominated by widespread and generalist species in line 

with biotic homogenization (Powney et al. 2015). 

 

Methods 

Data compilation 

In collaboration with the Society of German speaking Odonatologists (GdO) and various 

conservation agencies representing different federal states, we compiled occurrence records on 

Odonata across Germany. The aggregated dataset comprised heterogeneous data, collected by 

both official and voluntary nature conservation organizations, without a common sampling 

protocol; however, experienced naturalists collected most of the data (Mauersberger et al. 2013; 

Trockur 2013; Petzold & Fritzlar 2014; Brockhaus et al. 2015). Available data usually included 

information on observer or project, date of observation, life stage of species (e.g. larva, exuviae, 

adult) and geographic coordinates or ordinance survey quadrant (Meßtischblatt Quadrant, 
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MTBQ) of c. 5 x 5 km (Goertzen & Suhling 2019). Observations of adults comprised 93% of the 

data; hence, larvae data were excluded but exuviae were retained. In total, we compiled over 1 

million records (Fig. 1). 

 

Figure 1: Distribution of Odonata occurrence records for each c. 5 x 5 km survey quadrant in 

Germany. Shading refers to the number of occurrence records. Data shown were subset to 

quadrats with records in at least 2 years since 1980. 

 

Data processing 

We excluded: (1) data before 1980 since there were relatively few; (2) survey quadrant if they 

had not been visited in at least two separate years and (3) species seen in less than 25% of years 

(4 species: Coenagrion hylas, Gomphus simillimus, Lestes macrostigma, Onychogomphus 

uncatus) due to insufficient data to estimate a trend. We included seasonal migratory species, 

such as Anax ephippiger and Sympetrum fonscolombii, even though they do not overwinter in 

Germany. Overall, 81 species of Odonata were included in the last published atlas for Germany 

(Boudot & Kalkman 2015; Brockhaus et al. 2015) –  our analysis included 77 species after 

applying the above exclusion criteria (Table S1). The finest unit of our analysis was a visit, 

referring to data collected on a given date in a given survey quadrant by a given observer/project. 
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Therefore, we organized the data into a list of species records seen on a given visit. As a measure 

of sampling effort, we calculated the total number of recorded species (often called “list length”) 

on each visit.  

 

Attribute data 

We selected attributes that reflect species’ exposure, sensitivity or adaptive capacity to 

environmental changes, such as climate change, land-use or conservation measures.  

Distribution: We estimated species’ European geographic range size as the number of occupied 

grids in a recent atlas (Boudot & Kalkman 2015).  

Species temperature preference: Species’ temperature preferences were calculated by overlaying 

each species’ European distribution with an average temperature map from E-OBS v. 19e 

(Cornes et al. 2018) following other studies (Jiguet et al. 2007). For each species, we calculated 

the mean of the mean daily temperatures of occupied grid cells. While we call this variable 

“temperature preference”, its calculation did not aim to estimate species’ optimal temperatures 

but rather to place species on a gradient from those preferring cooler temperature to those 

preferring warmer temperatures. 

Life-history: Data on voltinism, i.e., number of generations per year, was compiled from Corbet 

et al. (2006). We applied a weighted mean of fuzzed-coded species affinities (summed to 10) to 

different categories: multivoltine (coded as 5), bivoltinie (4), univoltine (3), semivoltine (2), and 

partivoltine (1). This weighted mean ranged between 1 (for a fully partivoltine species) and 5 

(for a fully multivoltine species).  

Phenology: Mean start dates of the main flight period were taken from Boudot & Kalkman 

(2015). Species’ phenologies vary geographically but the data presented was usually for Bavaria, 

southern Germany. However, like for temperature preference, the aim was to only create a 

variable that placed species on a gradient from those appearing early in the year to those 

appearing later. 
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Habitat: Main habitat preferences were classified according to descriptions in Dijkstra (2006) 

and Boudot & Kalkman (2015). Each species was coded to whether they use the following 

habitats: streams, rivers, ponds, lakes, ditches, canals, fenland, bogs, forest and quarries/pits.  

Morphology: Wing length (median of lower and upper values) was taken from Dijkstra (2006).  

Threat-level: We compiled data on the 2015 red list classification for each species in Germany 

(Ott et al. 2015). We aligned the German categories with the international IUCN categories 

following Jansen et al. (2020). 

Attribute data are provided in Data S1. 

 

Annual occupancy estimates 

We used occupancy-detection models that account for imperfect detection, which have been used 

in previous studies using opportunistic CS data (van Strien et al. 2013; Outhwaite et al. 2020) 

and tested in simulation studies (Isaac et al. 2014). Imperfect detection occurs when a species 

inhabits a site but is not detected by the observer during a visit. Detection probability here also 

includes recording probability (i.e. the citizen scientist does not necessarily record all species 

that they detect). Detection probability of species is estimated by making an assumption about 

closure: a period during which species’ occupancy does not change. The number of times a 

species was/was not seen during this period of closure informs on detectability. We estimated the 

flight season of each species as between the lower 5% and upper 5% of days of year when each 

species was seen across all records. We only fit the model for each species to the subset of 

records during the flight season to meet the closure assumption. Models were fit to each species 

separately.  

Letting 𝑧𝑖,𝑡 refer to the true occupancy status for a species in a survey quadrat i in a year t, we 

modelled occurrence probability (𝜓) as a function of site and year variation. Year variation was 

modelled by including year as a fixed effect factor. Site variation was modelled as a series of 

random terms: ecoregion variation (‘Naturräumliche Großregionen Deutschlands’) (Bundesamt 

für Naturschutz 2008) at two spatial scales (level 1: 7 coarser-scale regions and level 2: finer-

scale 487 regions) and survey quadrant variation: 
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𝑧𝑖,𝑡  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜓𝑖,𝑡) 

𝑙𝑜𝑔𝑖𝑡(𝜓𝑖,𝑡) = 𝑌𝑒𝑎𝑟𝑡 +  𝐸𝑐𝑜𝑟𝑒𝑔𝑖𝑜𝑛_1𝑖 + 𝐸𝑐𝑜𝑟𝑒𝑔𝑖𝑜𝑛_2𝑖 + 𝑄𝑢𝑎𝑑𝑟𝑎𝑛𝑡𝑖  

Detection probability (𝑝) was modelled for each visit j to a given quadrant in a given year, and 

assumed to depend on year, day of year (accounting for species’ phenology) and survey effort (a 

single list with 1 species record, a short list with 2–3 species records, or a longer list). 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑗) =  𝛼𝑦𝑒𝑎𝑟[𝑗] + 𝑦𝑑𝑎𝑦𝑗 + 𝑦𝑑𝑎𝑦𝑗
2 + 𝑠𝑖𝑛𝑔𝑙𝑒_𝑙𝑖𝑠𝑡𝑗 + 𝑠ℎ𝑜𝑟𝑡_𝑙𝑖𝑠𝑡𝑗 

The observed detection data for a given species, y (0 or 1), on each visit are then assumed to be 

drawn from a Bernoulli distribution conditional on the presence of the species in that quadrant 

and year: 

𝑦𝑗| 𝑧𝑖,𝑡   ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑧𝑖,𝑡  .  𝑝𝑗) 

We also ran dynamic-occupancy models that explicitly model changes in occupancy between 

years as either caused by persistence probability when the site was occupied in the previous year 

or by colonization probability when the site was not occupied in the previous year. For most 

species, these models produced similar patterns to the simpler occupancy model above; but for 

the rarer species, the parameters of the dynamic-occupancy model showed lower convergence 

and large uncertainty, especially for the earlier years when there was less data. Hence, we used 

our simpler occupancy model that produced satisfactory results for the larger number of species. 

Using the predicted occurrences (𝑧𝑖,𝑡), we calculated a number of derived parameters: (1) the 

proportion of survey quadrants that were occupied by a species in each year (hereafter 

‘occupancy proportion’); (2) the slope of a regression line through the annual occupancy 

proportions for each species (hereafter ‘trend’) and (3) proportional change in occupancy 

proportion between the first and last years. These statistics were calculated during model fitting 

and hence the uncertainty in occupancy predictions was retained in each parameter. 

The models were fit by Bayesian inference using JAGS, a program for fitting hierarchical 

models using Markov Chain Monte Carlo simulation. We used vague priors for most parameters 

but a random walk prior, to share information across years, for the year effect on occupancy 

(Outhwaite et al. 2018). We used 3 chains with 50000 iterations, discarding the first 25000 as 
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burn-in. Model convergence was assessed by the Rhat statistic and traceplots. The model code is 

provided in the Supplementary Material. 

 

Long-term trends 

We analyzed the inter-specific variation in distribution trends using a linear regression model, 

with species attributes as explanatory variables and species’ trend estimates as the response. 

Correlations among species’ attributes were examined to check for any possible collinearity 

issues. We first conducted an exploratory analysis with each of the habitat variables in simple 

regression models. Using these models, we identified habitat variables that explained variation in 

trends (i.e., if p<0.05). We then combined the selected habitat variables along with the other 

variables (temperature preference, voltinism, flight start date and wing length) in a multiple 

regression model of long-term trends. We performed step-wise deletion, removing insignificant 

attributes, to identify the best model. We also used a linear model to compare the trends of 

species with different red list status. 

Since species do not necessarily provide independent data points due to shared evolutionary 

histories, we checked whether the results of the regression were consistent after accounting for 

species relatedness. We used the taxonomic classification to build a simple phylogenetic tree 

with equal branch lengths for each taxonomic rank. We then included the tree as a correlation 

structure (corPagel –based on Brownian motion) in a generalized least squares model (Paradis & 

Schliep 2019). Since this had little effect on the effect sizes of the attributes, and the estimated 

phylogenetic signal was close to zero (likelihood ratio test between models with and without the 

correlation structure, p=0.15), we present the simpler model without this correlation structure. 

 

Temporal patterns 

We used a time-series clustering method to group together species showing similar dynamics 

using the TSclust package (Montero & Vilar 2014). The mean estimates of annual occupancy 

proportions were preprocessed via logit transformation. We used the Pearson correlation 

coefficient as a dissimilarity measure and clusters were split using partitional clustering. We 
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selected the number of clusters using several cluster indices (average silhouette width, dunn 

index, separation index), assessed over the range of 2 to 20 clusters. We visualized the temporal 

change in each pattern by calculating the geometric mean of species’ occupancy proportions in 

each cluster. To include the uncertainty of species’ occupancies, we also combined 1000 random 

draws from the posterior of the annual occupancy estimates for the species in each cluster and 

calculated the mean and upper and lower 2.5% quantiles.  

 

Assemblage-level properties 

To examine the implications of the species-level changes for the total Odonata species pool 

(referred to here as assemblage-level), we aggregated the predicted occupancy proportions of all 

species. We calculated for each year: mean species richness and diversity (Shannon index) based 

on species’ occupancy proportions and community-weighted means for range size (mean range 

size weighted by occupancy proportion). We retained the uncertainty of the species’ estimates by 

repeating the calculations for 1000 random draws from the posterior distributions of the species’ 

occupancies and calculating the mean and upper and lower 2.5% quantiles. 

We used R version 3.6.3 for all analysis. Statistical significance was assessed when 95% 

confidence intervals did not overlap zero. 
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Results    

Long-term trends 

 

Fig. 2:  Estimated nationwide trends in Odonata species’ distributions. (A) species’ long-term 

trends (0 = no trend), ordered by their magnitude of trend; (B) ratio in the estimated number of 

occupied grids between the last (2016) and first (1980) year (ordered by their magnitude of 

change, 1 = no change) and (C) boxplots (outliers are showed as solid points) of the association 

between long-term trend and red list classification (number of species in each group is shown in 
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brackets). See Fig. S1 for time-series of individual species and Data S1 for data on the trends of 

each species. 

Of the 77 species, we found that 37 species were significantly increasing and 18 were 

significantly decreasing (Fig. 2A). Of the species with no significant trend, 20 species had a 

small trend estimate (within 5% long-term change) while 2 species had a larger mean trend 

estimate. Species with both a large positive trend and undergoing large range expansions 

included: Crocothemis erythraea (increased in occupancy by a factor of 84, from 0.3% to 27% of 

occupied survey quadrants) and Erythromma viridulum (increased by a factor of 8) (Fig. 2B). By 

contrast, species with large negative trends and undergoing large range contractions included: 

Sympetrum danae (decreased by a factor of 0.40, from 79% to 32% of occupied survey 

quadrants) and Coenagrion hastulatum (decreased by a factor of 0.28) (Fig. 2B). The proportions 

of dragonflies versus damselflies increasing (25/50 vs 12/27) and decreasing (9/50 vs 9/27) were 

not significantly different (chisq test, p=0.4). Estimated population trends were consistent with 

the 2015 red list classification. Threatened species (vulnerable, endangered, critically 

endangered) had less positive population trends than species of least concern or near threatened 

(P<0.05, Fig. 2C). 

In the analysis of habitat associations, species using river habitats tended to increase; 

while species associated with bog habitats tended to decrease (Fig. 3). In a multiple regression 

model, the most important attributes explaining variation in species’ long-term trends were 

temperature preference, flight start date, wing length and river use (Fig. 4). Temperature 

preference was positively associated with species’ trends: warm-adapted species increased while 

cool-adapted species decreased (Fig. 3). Species that appear as flying adults earlier in the year 

also had more positive population trends. Wing length and river habitat use were also positively 

associated with trends (Fig. 3). While bog use was negatively associated with species’ trends in 

the simple regression model, it was no longer significant in the multiple regression model (Fig. 

4). This was probably because bog species were associated with colder temperature preferences 

(r = - 0.54), leading to a more uncertain effect of bog use after accounting for temperature 

preference (Fig. 4). Voltinism had little importance (Figs 3 & 4). Together, temperature 

preference, wing length, flight start date and river use explained 29% of the variation in trends 

among species.  
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Fig. 3 Relationships between each attribute and species’ population trends, each point is a 

species. The blue line is a fitted simple regression line.  Boxplots are shown for river and bog 

use. The dashed horizontal line is the line of stable trends. 
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Fig. 4: Effect of species’ attributes on their long-term distribution trends tested in a multiple 

regression model. Continuous variables (all except river and bog use) were scaled to units of 2 

standard deviations to facilitate comparison with the binary habitat variables. The dashed red line 

is the line of no effect. Shown are the mean effect ± 95% confidence interval.  
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Analysis of temporal patterns 

 

Fig. 5: Time-series clusters and associated attributes. (A) Each cluster reflects a common pattern 

of change in occupancy over time for a group of species. The index represents the annual mean 

occupancy estimate relative to 1980. The number of species in each cluster were: 34, 11, 5, 7 and 
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20. (B) The plots below shown boxplots or barcharts for attribute values within each cluster. See 

Table S2 for list of species in each cluster. (A) was repeated by removing species with the most 

extreme occupancy changes in each cluster to check they were not driving the patterns the mean 

patterns – but similar patterns were found (Fig. S2). 

Time-series clustering of species’ occupancy dynamics resulted in five grouping of species with 

similar patterns of change (Fig. 5). Despite the different temporal patterns, clusters 1 and 2 and 

clusters 3 and 4 did not have significantly different long-term trends. Cluster 1, the largest group 

of 34 species, comprised species with a persistent increase in occupancy but with a decline in the 

last years (Fig. 5A). Warm-adapted riverine species were most likely to be within this first group 

(Fig. 5B). Cluster 2 included 11 species that were initially stable but increased since the 2000s – 

this group included some of the most warm-adapted species (Fig. 5). Cluster 3 included 5 

species, all using bog habitats, which showed variable trends but were typically declining mid 

2000s onwards. Cluster 4 included 7 species that declined during the 1980s and 90s and tended 

to be cold-adapted bog species (Fig. 5). Finally, cluster 5 comprises 20 species with a mostly 

consistent decline and tended to be cold-adapted and short-winged species (Fig. 5).  

 

Assemblage-level consequences 

 

 

Fig. 6: Time-series of aggregate predictions across all species: mean species richness and 

diversity per survey quadrat, and weighted mean of European range size. Shown are means and 

95% CI of the mean. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.03.234104doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.234104
http://creativecommons.org/licenses/by/4.0/


Predicted mean species richness per quadrat has generally increased over the time period; 

however, some periods of decline were apparent, especially during the 1980s and during the 

2010s (Fig. 6). Diversity shows similar trends, with increases until 2010 and decreases since 

then. Time-series of the weighted mean in range size suggested no simple shift towards 

widespread species – larger-range species became more dominant in the 1980s but smaller-range 

species became more dominant in the 1990s and 2000s. 

 

Discussion 

Freshwater habitats have faced multiple anthropogenic threats, including eutrophication, 

acidification, climate change and canalization (Vörösmarty et al. 2010). Globally, freshwater 

vertebrate species are reported to be declining (He et al. 2019). Hence, our findings of many 

stable or increasing Odonata species since 1980 in Germany might seem surprising. However, 

our results are consistent with other studies on Odonata species that show increasing trends in 

Europe (Powney et al. 2015; van Strien et al. 2016; Termaat et al. 2019) and more generally 

positive trends in biomass of freshwater insects (Van Klink et al. 2020). 

Climate change probably plays a key role in the success of many Odonata species in 

Europe. As highly-mobile organisms, many Odonata species may have adaptive capacity to 

respond to climate change, demonstrated by range-shifts reported in other countries (Hickling et 

al. 2005; Braune et al. 2008; Flenner & Sahlen 2008), and may be responding stronger to climate 

change than many other terrestrial species (Hassall 2015). We find that formerly rare warm-

adapted species such as the scarlet darter, Crocothemis erythraea, and the small red-eye 

damselfly, Erythromma viridulum, have undergone large range expansions across Germany. 

Increases of species typically appearing earlier in the year might also be linked to warming 

temperature. Earlier and longer reproduction seasons may increase the potential for more than 

one generation within a year (Braune et al. 2008) or allow early breeders to monopolize 

resources ahead of later-breeding species (Suhling & Suhling 2013). Additionally, we found that 

wing-length was an important predictor. One of the biggest winners has been the Emperor, Anax 

imperator, a strong flier with long wings (Ruppell 1989).  
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Our findings may also reveal the impacts of improved environmental management, 

especially for rivers. Many running water species were increasing 1980 onwards even though the 

EU Water Framework Directive (WFD), which aimed to improve water quality, was not adopted 

until 2000 (Hering et al. 2010). This is probably because there were a range of other conservation 

and environmental management projects to improve water quality prior to 2000 in Germany 

(Detering 2000; Giger 2009). These projects included expansion of water purification plants; 

improved watercourse management (less removal of vegetation and disturbance of sediments); 

Fauna-Flora-Habitat Directive activities that targeted specific species and conservation measures 

to improve degraded wetlands. Positive trends of dragonflies in the Netherlands were also 

thought to partly reflect habitat improvements (Termaat et al. 2015). River restoration projects in 

Europe have also allowed some recovery of other taxa, such as fish, though not necessarily to 

former historic states (Thomas et al. 2015). The success of riverine species may also reflect some 

synergism in the impacts of climate change and environmental management, since improvements 

in water quality may have facilitated climate change-driven range-expansion by increasing the 

establishment success of immigrants (Braune et al. 2008). 

Despite improvements in some freshwater habitats, we also identified a significant 

number of declining, ‘loser’ species. Decreases of cold-adapted species could represent range 

contraction due to physiological stress under warming climates; however, more likely, they are a 

consequence of habitat loss, associated with climate change and land-use. Some declining 

species, such as the black darter, Sympetrum danae, and the northern damselfly, Coenagrion 

hastulatum, are cold-adapted and typical of bog or moorland habitats, which are among the most 

threatened habitats in Europe (European Environment Agency 2015). Overall, species of 

standing water habitats had more negative trends than those of running water habitats. While 

some types of standing water habitats, such as gravel quarries/sand pits, might have become 

more common, especially in eastern Germany, decreases in groundwater level due to 

overexploitation of water resources has probably reduced the availability of many small standing 

waterbodies. Small or shallow waterbodies have been also vulnerable to droughts (Opitz et al. 

2019). The success of on-going conservation projects to restore bogs and other standing water 

habitats requires on-going monitoring (Dolny et al. 2018; Krieger et al. 2019). 
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Many studies on biodiversity change have focused on the simple long-term mean trend of 

a species but this approach can mask a diversity of more complex temporal responses (Outhwaite 

et al. 2020). Indeed, recent analyses of invertebrate changes in the UK found both time-periods 

of increases and time-periods of decreases, which varied among taxa (Macgregor et al. 2019; 

Outhwaite et al. 2020). For instance, UK freshwater organisms decreased between 1970 and the 

mid-1990s but increased from then until 2010 (Outhwaite et al. 2020). Moreover, simple trend 

models can produce trend estimates driven by fluctuations in particular years (Seibold et al. 

2019). Using time-series clustering, we defined five characteristic patterns of change that were 

common across multiple species and which separated species that differed in paths of change, 

even when their long-term mean trend was similar. While there are other approaches to visualize 

the time-series patterns for specific groups of species, often called multi-species indicators (e.g., 

the Farmland Bird Index), species are pre-assigned to groups with current methods and the 

resulting indicators can be sensitive to grouping decisions (Gregory et al. 2019). Here, we show 

how it is possible to allow species to naturally group based on the similarity of their dynamics, 

which has the potential to reveal the role of previously overlooked community changes and may 

be less prone to subjective species selection decisions. Our approach may be used to develop an 

alternative sets of multi-species indicators that represent the multi-facetted nature of change 

within communities. 

Despite evidence of species turnover, we found no trend towards biotic homogenization 

nor overall loss of diversity. Nonetheless, our findings have various implications for freshwater 

conservation in Germany. The strong associations between species attributes and population 

trends support the use of trait-based vulnerability assessments for conservation decision-making 

(Conti et al. 2014). However, increasing populations for some species represent expansion into 

new regions; while for other species, increases rather reflect recovery to formerly occupied parts 

of the range. The former group may be regarded as ‘neonatives’ (Essl et al. 2019) and contribute 

to the development of novel species interactions and assemblages (Carrasco et al. 2018), with 

currently unclear repercussions for established/native species (Flenner & Sahlen 2008; Suhling 

& Suhling 2013). Decreasing populations of other species have led to a decline mean in species 

richness during the 2010s. Standstills in the recovery of Odonata have been reported in the 

Netherlands (van Grunsven et al. 2020) and in the UK (Outhwaite et al. 2020). On-going 

monitoring and synthesis of habitat assessments is needed to assess the likely cause. 
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Since our analysis is based on opportunistic data, concerns should always remain about 

the robustness of the trends. The occupancy models aimed to account for observational processes 

but we cannot rule out changes in survey efforts affecting some of our results. Also, our analysis 

only focused on changes in distributions and not changes in abundance. For some species, 

increases or decreases in abundance may not yet have translated into changes in occupancy. We 

also only examined changes from 1980 onwards – most likely more historical data would 

highlight the earlier negative impacts of past water pollution and enable assessment of how much 

species have been able to recover from former historical ranges (Goertzen & Suhling 2019; 

Outhwaite et al. 2020).  

Using an extensive citizen science dataset, our analysis revealed a complex picture of 

positive and negative, linear and non-linear distribution changes of Odonata species in Germany 

over the past 35 years. Climate change, habitat change and environmental management have 

probably all played a role. Cold-adapted habitat specialists of standing water habitats are likely 

to be most vulnerable to further environmental change; while increases of species associated 

with river habitats signal the conservation successes that can be achieved by better 

environmental management. Overall, our study demonstrates the value of the intensive recording 

efforts of citizen scientists in the past and highlights the need to support these efforts in the 

future, especially given signs of on-going Odonata declines over the last decade. 
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