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12 Abstract

13 Callus formation and adventitious shoot differentiation could be observed on the cut 

14 surface of completely decapitated tomato plants. We propose that this process can be 

15 used as a model system to investigate the mechanisms that regulate indirect 

16 regeneration of higher plants without the addition of exogenous hormones. This study 

17 analyzed the patterns of trans-zeatin and miRNA expression during in vivo 

18 regeneration of tomato. Analysis of trans-zeatin revealed that the hormone cytokinin 

19 played an important role in in vivo regeneration of tomato. Among 183 miRNAs and 

20 1168 predicted target genes sequences identified, 93 miRNAs and 505 potential 
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21 targets were selected based on differential expression levels for further 

22 characterization. Expression patterns of six miRNAs, including sly-miR166, 

23 sly-miR167, sly-miR396, sly-miR397, novel 156, and novel 128, were further 

24 validated by qRT-PCR. We speculate that sly-miR156, sly-miR160, sly-miR166, and 

25 sly-miR397 play major roles in callus formation of tomato during in vivo regeneration 

26 by regulating cytokinin, IAA, and laccase levels. Overall, our microRNA sequence 

27 and target analyses of callus formation during in vivo regeneration of tomato provide 

28 novel insights into the regulation of regeneration in higher plants.  

29 Keywords: Cytokinin, Callus formation, Organogenesis, Tissue culture, Tomato

30 Introduction

31 Tissue culture established over 150 years ago continues to play an important role in 

32 plant propagation, and continues to be utilized in both basic and applied plant 

33 research, including gene transformation and molecular breeding [1,2]. In-depth 

34 studies into mechanisms of regulation of regeneration of higher plants using in vitro 

35 culture techniques, identified several proteins and transcription factors such as 

36 WUSCHEL (WUS), SHOOT MERISTEMLESS (STM), BABY BOOM (BBM), and 

37 MONOPTEROS (MP) [3–6]. However, both direct regeneration and indirect 

38 regeneration via an intermediate callus phase are introduced by various plant growth 

39 regulators supplemented media in traditional tissue culture. Yin[7] reported that 157 

40 unique proteins were significantly differentially expressed during callus 
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41 differentiation in rice when treated with different relative concentrations of the 

42 hormones cytokinin and auxin. Additionally, even though somatic embryogenesis 

43 (SEG) has been proposed to be a model system of plant embryogenesis, the 

44 expression of gene families such as those of MIR397 and MIR408 was detected in 

45 somatic embryos (SE), but greatly decreased in zygotic embryos (ZE) in conifer 

46 species[8]. 

47 An interesting phenomenon has been observed that in vivo adventitious shoots can be 

48 regenerated from cut surfaces of stems or hypocotyls after removal of both apical and 

49 axillary meristems in some species such as Cucurbita pepo[9], tomato[10], and 

50 poinsettia [11]. In tomato, the surface of cut stems regenerates plenty of shoots via 

51 callus formation. This in vivo generation does not depend on the presence of 

52 exogenous hormones. We propose that this phenomenon is particularly useful as a 

53 model system to study the innate molecular mechanisms of plant regeneration

54 MicroRNAs (miRNAs) are a class of small noncoding-RNAs (20–24 nt) that regulate 

55 gene expression at post-transcriptional levels by directly binding to their 

56 targets[12,13]. In the past 20 years, miRNAs have been shown to play key roles at 

57 each major stage of plant development [14–17]. Furthermore, recent studies have 

58 shown that miRNAs are involved in callus initiation, formation and differentiation. 

59 For example, the expression levels of miR408, miR164, miR397, miR156, miR398, 

60 miR168, and miR528 were up-regulated during maize SE induction[18]. Another 

61 study demonstrated that over-expression of miR167 inhibited somatic embryo 
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62 formation by inhibiting the auxin signaling pathway in Arabidopsis[19]. In citrus, the 

63 ability of the callus to form SEs was significantly enhanced by either over-expression 

64 of csi-miR156a or by individual knock-down of its two target genes, CsSPL3 and 

65 CsSPL14[20].

66 Recently，the large scale application of next-generation sequencing has proved to be a 

67 useful tool to identify the patterns of miRNA expression during plant regeneration. 

68 Genome-wide miRNAs and their targets have been analyzed during explant 

69 regeneration in vitro in wheat[21] , rice[22,23], cotton[24], peanut[25], sweet orange 

70 [26], coconut[27], larch[28], maritime pine[8], Norway Spruce[29] , longan[30], 

71 yellow-poplar[31], radish[32], Lilium [33], and Tuxpeno maize[34]. However, all 

72 these studies were performed on in vitro specimens, which relys on the presence of 

73 exogenous hormones to regenerate plantlets. The aim of the present study was to 

74 identify the pattern of miRNA expression during callus formation in in vivo 

75 regeneration in tomato through sequencing. We assessed 92 known miRNAs and 

76 identified 91 novel miRNAs, of which several were found to be developmentally 

77 regulated. We also analyzed dynamic changes in cytokinin levels during in vivo 

78 regeneration of tomato.

79 Materials and Methods 

80 Plant materials

81 The tomato cultivar micro-TOM was used in this study. Seeds were placed on 
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82 moistened filter papers for approximately 3 to 4 d until the seeds sprouted. The 

83 germinated seeds were seeded into a tray of 72 cells filled with a mixture of nutrient 

84 soil, matrix, vermiculite and perlite (2:2:1.5:0.5(v/v/v/v)), and grown in a culture 

85 room with temperature ranging from 23 to 28 °C and 16/8 h light/dark photoperiod. 

86 When the seedlings had grown 6 to 8 true leaves, the primary shoot was decapitated 

87 horizontally. All axillary buds that appeared after decapitation were resected at the 

88 base.

89 HPLC analysis of trans-zeatin 

90 Cutting surfaces of stems (3 mm long) were sampled at 0, 9, 12, 15, 18, 21, 24 and 30 

91 d after decapitation. The samples were immediately frozen in liquid nitrogen and 

92 stored at -80 °C. Trans-zeatin was extracted with 80% methanol from samples and 

93 analyzed using HPLC (Agilent 1100) connected to an UV detector (λ = 274 nm). The 

94 passing fraction was further purified by Sep-pak C18 column (Waters). Gradient 

95 elution was with a mixture of water-methanol (75:25 (vol:vol)) with an elution rate of 

96 1.0 mL/ min at a column temperature of 35 °C. The absorbing material was Agilent 

97 C18 with a particle size of 5 μm loaded into a stainless steel column (250 × 4.6 mm). 

98 Lovastatin addition during the tomato regeneration in vivo 

99 Lovastatin (Sigma-Aldrich, USA) dissolved in DMSO (stock solution: 0.124 M) and 

100 the final concentrations of 123.6μM was applied. 20μL lovastatin was dripped on 

101 cutting surfaces of 10 tomato stems after decapitation with 1μL Tween-20. Another 
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102 10 tomato plants were treated with water as control. 

103 A lovastatin (Sigma-Aldrich, USA) stock solution at a concentration of 0.124 M was 

104 prepared by dissolving in DMSO and applied at a final concentration of 123.6 μM. A 

105 solution of 20 μL lovastatin and 1 μL Tween-20 was applied on the cut surfaces of 10 

106 tomato stems after decapitation. An additional equal number of tomato plants were 

107 treated with water as control.

108 sRNA library construction and RNA sequencing

109 Total RNA was extracted from decapitated stem at 0 and 15 d in three biological 

110 replicates. Each biological replicate was from a pool of 8–10 tomato plants. RNA 

111 samples of the three biological replicates were mixed in equal amount and used for 

112 the construction of libraries. The small RNA library was constructed using 3 μg total 

113 RNA from each treatment respectively as input materials. The sequencing library was 

114 generated by NEBNext® Multiplex Small RNA Library Prep Set for Illumina® (NEB, 

115 USA), with added index codes to attribute sequences of each sample as recommended 

116 by the manufacturer. Briefly, the NEB 3ʹ SR Adaptor was connected to 3ʹ end of 

117 miRNA, siRNA and piRNA directly. After the 3ʹ ligation reaction, the single-stranded 

118 DNA adaptor was transformed into a double-stranded DNA molecule by 

119 hybridization of the SR RT Primer with excess of 3ʹ SR Adaptor (kept free after the 3ʹ 

120 ligation reaction). This step significantly reduced the formation of adaptor-dimers. In 

121 addition; dsDNAs were not the T4 RNA Ligase 1-mediated-substrates, and therefore 
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122 were not ligated to the 5ʹ SR Adaptor in the following ligation step. The 5ʹ ends 

123 adapter was connected to the 5ʹ ends of miRNAs, siRNA, and piRNA. Reverse 

124 transcription reaction was performed using M-MuLV Reverse Transcriptase (RNase 

125 H–) after ligation with adapters, and Long Amp Taq 2X Master Mix, SR Primer for 

126 Illumina and index (X) primer was used for PCR amplification. An 8% 

127 polyacrylamide gel was used for purifying PCR products, small RNA fragments 

128 approximately 140–160 bp were recovered and dissolved in elution buffer. Finally, 

129 the quality of library was evaluated on the 2100 system of Agilent Bioanalyzer using 

130 DNA High Sensitivity Chips. TruSeq SR Cluster Kit v3-cBot-HS (Illumina, San 

131 Diego, CA, USA) was used to evaluate index-coded samples on a cBot Cluster 

132 Generation System. After clustering, the library preparations were sequenced on an 

133 Illumina Hiseq 2500 platform, and 50 bp single-end reads were generated.

134 MiRNA identification and target prediction  

135 All sequenced data were firstly filtered with the removal of N% >10% reads, length 

136 <18 nt or >30 nt, with 5ʹ adapter contamination, 3ʹ adapter null or insert null and low 

137 quality reads to obtain clean reads. The remaining clean reads were mapped to the 

138 reference sequence by Bowtie to obtain unique reads and analyze the length 

139 distribution and expression of unique sRNAs. Unique reads were mapped to miRNA, 

140 rRNA, tRNA, snRNA, snoRNA, repeat masker, NAT, TAS, exon, intron, and others. 

141 Mapped sRNA tags were used to search for known miRNAs. With miRBase20.0 as 
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142 reference, the potential miRNAs were identified using modified software mirdeep2 

143 and srna-tools-cli, and then the secondary structures were drawn. We used miREvo 

144 and mirdeep2 to predict novel miRNAs through the precursor structure of each 

145 miRNA unannotated in the previous steps, including the analysis of the secondary 

146 structure, the dicer cleavage site, and the minimum free energy. We used miFam.dat 

147 (http://www.mirbase.org/ftp.shtml) to compare our candidate miRNA families with 

148 known miRNA families from other species. 

149 We used psRobot_tar in psRobot to identify the potential gene targets of known and 

150 novel miRNAs.

151 Differential expression analysis of miRNAs 

152 We used the TPM (transcript per million) value to estimate the differential expression 

153 levels of miRNAs between stem and callus[35]. The TPM ratio of miRNAs between 

154 stem and callus libraries was computed as log2 (callus/stem). miRNAs with p value 

155 <0.05 and log2 (callus/stem) <−1 or >1 were regarded to have as significantly 

156 differential expression levels through the Bayesian method.

157 MiRNAs quantification by qRT-PCR

158 Primers were designed by stem-loop method to perform RT-PCR assays according to 

159 Chen’s design[36]. A 20 μL final volume Reverse transcription (RT) reaction was 

160 carried out to validate the expression levels of selected miRNAs extracted from stem 

161 and callus respectively. The final 20 μL reaction system included 1 μL template, 1 μL 
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162 stem-loop primer, 1 μL dNTP mixture, 4 μL buffer, 1 μL reverse transcriptase and 0.5 

163 μL RNase inhibitor. In the reaction tube, stem-loop primer, dNTP mix and template 

164 were added first, and then the template was denatured at 65 °C for 5 min to improve 

165 the efficiency of reverse transcription. The tube was placed on ice to cool for 2 min, 

166 followed by the addition of the buffer, reverse transcriptase and RNase inhibitor. The 

167 tube was then incubated at 45 °C for 60 min, followed by 95 °C for 5 min. The 

168 reverse transcription reaction was completed by cooling on ice for 2 min. After 

169 reverse transcription, 1 μL of the RT reaction mixture was used for PCR. The PCR 

170 system was 25 μL, containing 12.5 μL PCR mix, 1 μL template, 1 μL downstream 

171 primer and 1 μL upstream primer, supplemented to 25 μL with nuclease-free water. 

172 The PCR conditions were as follows: 94 °C for 2 min, 94 °C for 30 s, 60 °C for 1 min 

173 for 35 cycles, followed by a final extension of 72 °C for 5 min. Following the PCR 

174 assay, gel electrophoresis was used to detect the amplified products.

175 Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assays were 

176 performed using a C1000 TouchTM Thermal Cycler (Bio-Rad, Hercules, CA, USA). 

177 The reaction system included 5 μL SYBR® Premix Ex TaqTM (Takara, China), 1 μL 

178 template, 0.2 μL upstream primer, 0.2 μL downstream primer and 3.6 μL 

179 nuclease-free water. The reaction conditions were as follows: 94 °C for 2 min, 94 °C 

180 for 30 s, 60 °C for 1 min, and final extension at 72 °C for 5 min for 35 cycles. The 

181 sequences of all primers used in this study are compiled in S1 Table. 
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182 Results 

183 Phenotypic analysis of in vivo regeneration

184 In tomato, a primary shoot shows apical dominance and inhibits outgrowth of axillary 

185 buds. After excising the main shoot apex, the dormant axillary buds began to develop 

186 immediately to replace the lost shoot apex. Since all new axillary buds were excised, 

187 light-green callus gradually formed at the cut surface of primary shoots and axillary 

188 buds followed by progression to the compact and nodular stage with a maximum 

189 diameter of up to 1 cm. When the callus entered its differentiation stage, a large 

190 number of purple dots appeared on its surface, and finally the shoots appeared to 

191 regenerate through callus (Fig. 1). It took 30 days to obtain macroscopic shoots after 

192 decapitation at 25°C. These features of in vivo regeneration were similar to the 

193 responses seen in tissue culture (Tezuka et al., 2011).

194 Fig. 1. External appearance of the different stages of in vivo regeneration in 

195 tomato. 

196 (A) The decapitated primary shoot; (B),(C) The callus formed on the cutting surface 

197 at 15 and 25d after decapitation; (D) The adventitious shoots differentiated from 

198 callus.

199 Analysis of trans-zeatin during in vivo regeneration

200 HPLC analysis of trans-zeatin during in vivo regeneration of tomato micro-TOM is 
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201 presented in Fig. 2. Trans-zeatin was not detected in 0 d stem, but was detected in 

202 gradually increasing amounts correlated with the progress of callus initiation, 

203 formation and differentiation. These results show that cytokinin plays a key role 

204 during in vivo regeneration of tomato. These data correlated well with previous 

205 studies showing that 6-benzyladenine treatment increased the number of adventitious 

206 shoot amounts during in vivo tomato regeneration [37]. Furthermore, our findings are 

207 also supported by other studies which used zeatin as the only exogenous hormone 

208 during in vitro regeneration of tomato [38–40].

209 Fig. 2. HPLC analysis of trans-zeatin levels during in vivo regeneration of tomato 

210 micro-TOM. 

211 The samples were the cutting surface of stem at 0, 9, 12, 15, 18, 21, 24 and 30 d after 

212 decapitation.

213 Cytokinins are a heterogenous group of N6-substituted adenine derivatives[41]. 

214 Lovastatin is a potent inhibitor of the mevalonate pathway, and in principle blocks the 

215 synthesis of isopentenyl-pyrophosphate and inhibit the biosynthesis of cytokinin[42]. 

216 Lovastatin (1 µM) has been shown to completely inhibit the growth of cultured 

217 tobacco cells [43]. However, in this study, the addition of high levels lovastatin (123 

218 µM) to the cut surface of decapitated stems did not inhibit tomato regeneration in vivo. 

219 There was no obvious difference in the number of regenerated adventitious shoots 

220 between lovastatin and control treated plants. Together, these observations suggested 

221 that cytokinin was not biosynthesized de novo in the cells at the cut surface or in the 
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222 callus during in vivo regeneration. Cytokinin is found in the xylem sap as a 

223 long-distance signal in intact plants [44–46]. To date, the trans-zeatin is the major 

224 form of cytokinin in xylem sap [47]. The trans-zeatin is produced mainly in the root, 

225 and can then be transported from the root to shoot[48]. Therefore, we speculate that 

226 cytokinin was also transported over long distances from the root to callus cells during 

227 in vivo regeneration of tomato.

228 Deep-Sequencing of sRNAs in stem and callus

229 To study the vital role of miRNAs during in vivo regeneration, the cut surfaces of 

230 stems at 0 and 15 days after decapitation were used to construct two sRNA libraries. 

231 Both of these libraries were sequenced with 13.6 and 11.0 million raw reads obtained 

232 from stem and callus libraries, respectively (S2 Table). After removal of the low 

233 quality reads as described in the Materials and Methods section, 9.5 and 7.5 million 

234 clean sRNAs were obtained from the stem and callus libraries, the stem and callus. 

235 Among these, 7.4 and 6.6 million were unique reads aligned to the reference 

236 sequences (Table 1). Unique sRNAs ranged from 18 to 30 nt in length in the two 

237 libraries (Fig. 3). The most common lengths of unique sequences in each library were 

238 21–24 nt, with 24 nt long reads being the majority, followed by 23 nt. 

239 Fig. 3. Length distributions of unique sRNAs in stem and callus. 

240 Table 1. Sequencing data filtering of two sRNA libraries produced from stem 

241 and callus. 
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Number of reads (Percentage of reads)
Type

Stem Callus

Raw reads 13,563,211 (100.00%) 10,988,386 (100.00%)

Low quality reads 37,106 (0.27%) 9,399 (0.09%)

N% > 10% reads 722 (0.01%) 197 (0.00%)

Length <18nt and >30nt 3,576,896(26.37%) 3,162,932(28.78%)

5’ adapter contamine 6,440 (0.05%) 7,265 (0.07%)

3’ adapter null or 

Insert null
466,960 (3.44%) 329,058 (2.99%)

Clean reads 9,475,087(69.86%) 7,479,535(68.07%)

Unique reads 7,385,048 (54.45%) 6,653,378 (60.55%)

242 Table 2 summarizes the categories of unique reads. High levels of small RNA 

243 expression from rRNA and NAT genes were observed in both libraries. The number 

244 of miRNAs was more abundant in stem tissue as compared to the callus of tomato, 

245 mainly due to the high expression of sly-miR171, sly-miR396 and sly-miR397.

246 Table 2. Reads categories of two small RNA libraries derived from stem and 

247 callus. 

Number of reads (Percentage of reads)
Type

Stem Callus

Unique reads 7,385,048 (100%) 6,653,378 (100%)

Known miRNA 175634 (2.38%) 128569(1.93%)
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rRNA 318166(4.31%) 295130(4.44%)

tRNA 0(0.00%) 0(0.00%)

snRNA 3493(0.05%) 4302(0.06%)

snoRNA 16964(0.23%) 18823(0.28%)

Repeat 525093(7.11%) 521017(7.83%)

NAT 648360(8.78%) 646505(9.72%)

Novel miRNA 28342(0.38%) 21589(0.33%)

TAS 16594(0.22%) 17806(0.27%)

Exon 203176(2.75%) 197359(2.96%)

Intron 357484(4.84%) 323339(4.86%)

Othersa 5091742(68.95%) 4478939(67.32%)

248 aOthers, refers to the number and proportion of the sRNA aligned to the reference 

249 sequences but not aligned to the known miRNA, ncRNA, repeat, NAT, novel miRNA, 

250 TAS, Exon and Intron.  

251 Identification of known miRNAs

252 To identify known miRNAs, sRNA sequences obtained from deep sequencing were 

253 contrasted to other currently annotated miRNAs of known mature plant species in 

254 miRBase. A total of 92 known miRNAs were identified, belonging to 29 miRNA 

255 gene families in the two sRNA libraries. Overall, 88 and 91 mature miRNAs were 

256 identified in the stem and callus tissues, respectively (S3 Table). As shown in Fig. 4, 
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257 the sly-miR159 family was the most abundantly expressed, while sly-miR9471, 

258 sly-miR6022, sly-miR396, and sly-miR166 families were moderately abundant. 

259 Furthermore, the secondary structures of known miRNAs are shown in Fig. 5 (A) and 

260 S1 Fig. 

261 Fig. 4. Reads of known miRNA families at stem and callus.  

262 Fig. 5. Secondary structure of identified miRNA precursors. 

263 The red protrusions are the mature sequences. (A) Known miRNA: sly-miR159; (B) 

264 Novel miRNA: novel 110.

265 Predicted novel miRNAs 

266 Unannotated miRNAs were used to predict novel miRNAs. We identified 91 novel 

267 miRNAs were identified in total, of which 82 were mapped in both libraries (S4 

268 Table). The expression levels of novel miRNAs were distinctly different. Most of 

269 them showed comparatively low expression levels (63 novel miRNAs in stem 

270 samples and 68 novel miRNAs in callus had less than 120 raw reads). In contrast, two 

271 novel miRNAs (annotated as novel 1 and novel 9) in both libraries contained more 

272 than 1,000 reads. The most abundantly expressed novel miRNA was novel 1 with a 

273 total of 23,938 reads in both libraries. The predicted secondary structures of novel 

274 pre-miRNAs are showed in Fig. 5 (B) and S2 Fig. 
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275 Identification of differentially expressed miRNAs

276 A total of 49 known and 44 novel miRNAs pertaining to the two libraries were 

277 expressed with significant differences with regards to log2 (callus/stem) (>1 or<-1) 

278 and P-value (<0.05) criteria (Fig. 6) (S5 Table). For known miRNAs, 24 miRNAs 

279 were up-regulated and 25 miRNAs were down-regulated in callus vs. stem tissue 

280 samples. Among the novel miRNAs, 17 were up-regulated and 27 were 

281 down-regulated in callus vs. stem tissues (Fig. 7). When miRNA distributions were 

282 assessed between the two libraries, 44 known defined miRNAs and 37 novel miRNAs 

283 were generally expressed in both libraries. The comparison of miRNA expression 

284 showed that 1 known and 7 novel miRNAs were expressed only in the stem, while 4 

285 novel miRNAs were expressed solely in callus tissue, respectively (Fig. 8).

286 Fig. 6. Cluster analyses of differentially expressed miRNAs. 

287 Red denotes highly expressed miRNAs, while blue denotes weakly expressed 

288 miRNAs. The color is from red to blue, indicating that log10 (TPM + 1) is from large 

289 to small.

290 Fig. 7. The number of known and novel up- and down- regulated miRNAs in 

291 callus vs. stem tissue.

292 Fig. 8. Venn diagram of the number of specifically expressed miRNAs at stem 

293 and callus. 

294 (A) Known miRNAs; (B) Novel miRNAs. 
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295 The miRNAs with lower p-value include sly-miR166 and sly-miR397. The 

296 significantly down-regulated expression of sly-miR166 in callus cells could be related 

297 to its role in promoting callus formation by down-regulating homeodomain leucine 

298 zipper class III (HD-ZIP III) levels [49–51]. The most significantly down-regulated 

299 gene in callus tissue was sly-miR397, which is known to play an important role in the 

300 accumulation of laccases during callus formation[52,53]. 

301 To confirm miRNAs expression levels in stem and callus and verify the 

302 deep-sequencing results, four known and two novel miRNAs were selected randomly 

303 for qRT-PCR. These miRNAs expression patterns resembled the deep-sequencing 

304 results, suggesting that sRNA sequencing data were reliable (Fig. 9). 

305 Fig. 9. The relative expression levels of 6 (four known and two novel) miRNAs by 

306 qRT-PCR. 

307 The bars represents the relative expression and standard deviation of the 6 miRNAs. 

308 qRT-PCR value of miRNAs in stem was set to 1, and values of miRNAs in callus 

309 were scaled.

310 Target prediction

311 To analyze the biological functions of differentially expressed miRNAs in stem and 

312 callus tissues, the psRobot software was used to predict target genes. Among 1186 

313 predicted target genes, a total of 505 known and 6 novel differentially expressed 

314 miRNA target genes were identified (S6 Table). Functional annotations of BLAST 
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315 analysis for predicted target genes indicated that these targets contained mRNA 

316 coding regions for zinc finger protein (sly-miR165, sly-miR164, sly-miR391, 

317 sly-miR394, sly-miR396, sly-miR477, sly-miR482, sly-miR6027, sly-miR9469, 

318 sly-miR9478, and sly-miR9479), and MYB (sly-miR156, sly-miR319, sly-miR9469, 

319 and sly-miR9478) protein. Furthermore, some miRNAs were found to target 

320 transcription factors, such as SQUAMOSA promoter binding protein-like gene (SPL) 

321 (sly-miR156)[54], Auxin response factors (ARFs) (sly-miR160)[55], HD-ZIP III 

322 (sly-miR166)[56], NAM (sly-miR164 and sly-miR9478)[57], and MADS 

323 (sly-miR396 and sly-miR9477)[58], which are all known to be involved in plant 

324 regeneration. Laccase(sly-miR397) was also important in the regulation of plant 

325 development and regeneration[22,23]. The target genes of some miRNAs specifically 

326 expressed in the callus were CCAAT-binding (sly-miR169a), zinc finger 

327 (sly-miR9469-3p and sly-miR9469-5p), SQUAMOSA promoter binding protein 

328 (SBP-box), MADS-box and K-box (sly-miR9477-5p). Interestingly, all the target 

329 genes of novel 46 (solyc05g015840.2, solyc12g038520.1, solyc10g078700.1, 

330 solyc05g015510.2, solyc05g012040.2, and solyc04g045560.2) were the same as those 

331 targeted by sly-miR156e-5p, sly-miR156d-5p, and sly-miR156a.

332 Discussion

333 Recently great progress has been made in understanding the role of miRNAs in 

334 regulating the transitions between different development stage in plants, such as those 
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335 from vegetative-to-reproductive, juvenile-to-adult and aerial stem-to-rhizome 

336 transitions[59–62]. In the present study, we demonstrate that miRNAs are involved in 

337 complex regulatory networks during stem-callus transition during in vivo regeneration 

338 of tomato. We identified a total of 183 miRNAs (92 conserved and 91 novel 

339 miRNAs) by next-generation sequencing. Previous studies on miRNAs, including Xu 

340 et al.[30] identified 289 known miRNAs and 1087 novel miRNAs in longan, while 

341 Wu et al. [26] reported 50 known and 45 novel miRNAs in citrus. Taken together, 

342 these data show that distinct types of miRNAs are expressed at different levels during 

343 the process of regeneration in different species.

344 Cytokinin triggers a complex gene expression program in plant tissue culture that 

345 results in adventitious shoot regeneration[63]. The current model for cytokinin signal 

346 transduction is a multi-step phosphorelay. First, Arabidopsis histidine kinase (AHKs), 

347 the cytokinin receptors in the plasma membrane, perceive the cytokinin signal 

348 triggering a multi-step phosphorelay. At the end of this pathway, B-ARR receives the 

349 phosphoryl group and becomes active. As transcription factors, B-type ARRs can 

350 activate the expression of cytokinin-responsive genes and A-type ARRs. Interestingly, 

351 the expression of A-type ARRs interferes with the function of B-type ARR proteins 

352 through a negative feedback loop[64,65]. Cytokinin thus plays a vital role during in 

353 vitro regeneration. It can not only induce adventitious buds alone, but also cooperate 

354 with auxin. Many studies have confirmed that miRNA regulate hormone signaling 

355 genes involved in regeneration.
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356 MiR156/SPL module involved in callus formation by 

357 regulating cytokinin signaling pathway

358 Siddiqui et al. [66] summarized the most common expressed miRNAs during SEG in 

359 11 economically plants. Of these, miRNA156 was found to be most frequently 

360 detected in six of the 11 plant species tested. Sequences of miR156 were highly 

361 conserved in plants [67]. In the present study, sly-miR156d-5p and sly-miR156e-5p 

362 were newly identified and shown to be expressed differently in stem and callus tissue. 

363 Promoter binding protein (SBP) domain SQUAMOSA was predicted to be one of the 

364 targets of sly-miR156d-5p and sly-miR156e-5p. SBP domain proteins, putative 

365 plant-specific transcription factor gene families, have been shown to participate in 

366 various plant biological processes and to be involved in vegetative-to-reproductive 

367 phase transition[68–70], pollen sac development[71], gibberellins (GAs) signaling 

368 network [72] and establishment of lateral meristems[73]. As SBP-box gene family 

369 members, 10 of 16 SPL genes were shown to be targets of miR156 in Arabidopsis, 

370 while 10 of the 15 SPL genes were proposed to be targets of miR156 in citrus [74,75]. 

371 The function of the miR156-SPLs module was confirmed to be crucial in callus 

372 production in citrus in vitro callus through targeted inhibition of miR156-targeted 

373 SPLs and over-expression of csi-miR156a[20]. Therefore, differential expression 

374 levels of miR156 during tomato callus generation in the present study, suggest that is 

375 likely to play an important role in in vivo regeneration.

376 Zhang et al. [76] demonstrated that miR156 participates in regulation of shoot 
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377 regeneration in vitro. MiR156 expression gradually increases with age and suppresses 

378 the expression of its target SPL genes. Down-regulated SPLs attenuate cytokinin 

379 signaling by binding to the B-type Arabidopsis response regulators (ARR) 

380 transcription factor. The data presented here show that cytokinin levels increase 

381 during in vivo regeneration in tomato. However, sly-miR156d-5p and sly-miR156e-5p 

382 were found to be up- and down-regulated, respectively. Thus, the regulation of 

383 miR156-SPL-ARR module during in vivo callus formation and shoot regeneration in 

384 tomato needs to be further investigated.

385 IAA level regulated by miR166 in callus formation

386 Low expression levels of sly-miR166c-5p and sly-miR166c-3p were observed during 

387 the change from stem to callus stages in this study. Previous research has shown that 

388 miR166, together with miR156 and miR396 were down-regulated during callus 

389 formation from tea plant stem explants[77]. miR166 was identified to target Class III 

390 homeodomain leucine zipper (HD-Zip III) gene family of transcription factors, 

391 including REVOLUTA (REV), PHABULOSA (PHB), PHAVOLUTA (PHV), 

392 CORONA (CNA), and ATHB8 in Arabidopsis [49]. HD-ZIP III proteins play an 

393 important role in plant regeneration by regulating the differentiation of stem cells and 

394 the establishment of shoot apical meristem (SAM) and RAM [78–80]. 

395 More recently, REV was demonstrated to activate genes upstream of several auxin 

396 biosynthesis, transport, and response genes. Brandt et al. [81] identified that REV 
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397 targeted the auxin biosynthetic enzymes TAA1 and YUCCA5(YUC5), and directly 

398 affected the levels of free auxin. In Arabidopsis, loss-of-function mutants of REV 

399 showed lower expression levels of the PIN1 and PIN2 auxin transporters and 

400 reduction in the tip-to-base transport of auxin[82]. Additionally, REV function is 

401 necessary for polar auxin transport in the shoot[83] . Li et al.[51,84,85] demonstrated 

402 that over-expression of LaMIR166a and down-regulated of LaHDZIP31-34 genes 

403 results in different IAA levels in pro-embryogenic masses of L. leptolepis. The 

404 authors speculated that LaMIR166 targeted HD-ZIP III genes likely regulate auxin 

405 biosynthesis and response genes. Overall, these results indicated the complex 

406 regulaory relationships between miR166 and plant development. Further, Ma et al. 

407 [62] reviewed five key microRNAs involved in developmental phase transitions in 

408 seed plant, and miR166 was one of them.

409 Other miRNAs related to the phytohormone signaling during 

410 in vivo regeneration

411 There is no doubt that auxin signaling and transport is a versatile trigger of plant 

412 developmental changes incluing regeneration [86]. Based on a number of previous 

413 studies, which focussed on miRNAs involved in regulation of the auxin signaling, in 

414 Arabidopsis, miR393 was shown to contribute to SE, leaf development and 

415 antibacterial resistance by repressing auxin signaling[87–89]. Two auxin response 

416 factors genes, ARF6 and ARF8, are targeted by miR167 [90]. During callus formation, 
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417 miR160 was defined as a key repressor by modulating the interplay between auxin 

418 and cytokinin. The callus initiation was repressed by over-expression of miR160 or 

419 reduced expression of its target ARF10. ARF10 can inhibit cytokinin signaling A-type 

420 genes ARR15[91]. Although A-type genes ARR15 and ARR7 were identified to inhibit 

421 callus formation, those of the B-type genes ARR1 and ARR21 can enhance its 

422 initiation[92,93]( Fig. 10).

423 Fig. 10. Genetic networks of callus formation during in vivo regeneration of 

424 tomato regulated by miRNA-target modules together with their downstream 

425 targets. 

426 Arrows represent activation, while lines with a bar represent repression. The solid 

427 lines represent the results predicted by this study, and the dotted lines represent the 

428 results from references. The up-regulated miRNAs are shown in the blue box, while 

429 the down-regulated miRNAs are shown in orange ones. miRNA targets are shown in 

430 green oval frames. 

431

432 Cell proliferation relied not only on high levels of auxin but also on low level of 

433 cytokinin during in vitro callus induction in Arabidopsis [94]. This study showed the 

434 down-regulation of sly-miR160 and low concentrations of cytokinin in callus were 

435 crucial in callus formation. We predict that a similar interplay between 

436 microRNA/phytohormone levels may exist between in vivo and in vitro regeneration 

437 in tomato.
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438 MiR397 repressed callus formation through inhibition of 

439 laccases expression

440 The expression of Sly-miR397 was most significantly down-regulated in callus tissue. 

441 MiR397 has been validated to target laccases (LAC2 and LAC17 in this study), a 

442 group of polyphenol oxidases[52,95]. In higher plants, laccases are associated with 

443 lignin and xylem synthesis,  and are proposed to play a role in secondary cell wall 

444 thickening [23,96,97]. Lignin is an essential component of plant secondary cell walls, 

445 which influence plant growth and differentiation[98]. Previous studies indicated that 

446 callus tissue first contains lignified parenchyma cells, followed by the formation of 

447 short vessels and traumatic resin ducts after plant injury, and the induction of vessels 

448 requires the involvement of lignin[53,99]. Overall, we predict that low expression 

449 levels of Sly-miR397 in callus tissue permits the accumulation of laccases, leading to 

450 the increase of lignin deposition within the callus. 

451 Conclusion

452 We used a new model system to study the dynamic changes in trans-zeatin levels and 

453 the regulatory patterns of miRNA expression during in vivo regeneration of tomato. 

454 The significant changes in trans-zeatin levels at 0, 9, 12, 15, 18, 21, 24 and 30 d after 

455 decapitation proves that trans-zeatin plays a crucial role during in vivo regeneration in 

456 tomato. However, the treatment with excess lovastatin on the cut surface of tomato 

457 stems did not inhibit callus formation, which indicated that de novo biosynthesis of 
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458 cytokinin did not occur in the cut surface of tomato stems. A total of 92 known and 91 

459 novel miRNAs were identified from the stem explant and the callus regenerated from 

460 the cutting surfaces after decapitation, respectively, of which 49 known and 44 novel 

461 miRNAs exhibited differential expression between the two libraries. In addition, a 

462 total of 505 known miRNA target genes and 6 novel miRNA target genes were further 

463 identified. We predict that these differentially expressed miRNAs and their relevant 

464 target genes play an important role in callus formation during in vivo regeneration of 

465 tomato. Among these, sly-miR156, sly-miR160, sly-miR166, and sly-miR397 are 

466 predicted to be involved in callus formation during in vivo regeneration of tomato by 

467 targeting SPL, HD-ZIP III, ARFs, and LAC proteins, as well as by regulating 

468 cytokinin, IAA, and laccase levels. The findings of this study provide a useful 

469 resource for further investigation on callus formation during in vivo regeneration of 

470 tomato. 
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