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Abstract 

Tuberculous meningitis (TBM) remains the most devastating form of tuberculosis (TB) 

with high mortality despite effective antimicrobial treatment. As mortality has been 

linked to excessive inflammation, anti-inflammatory glucocorticoids are now routinely 

used as adjunctive treatment with antimicrobial therapy. However, they reduce mortality 

by only ~ 30%, raising the possibility that only a subset of TBM deaths are caused by 

inflammatory pathophysiology. Studies in Vietnam found that the survival benefit of 

adjunctive glucocorticoids was limited to individuals with a common promoter variant in 

the leukotriene A4 hydrolase (LTA4H) gene encoding an enzyme that regulates 

inflammatory eicosanoid expression. The variant constitutes a C/T transition with TT 

homozygotes having increased expression over CT heterozygotes and CC homozygotes. 

In Vietnam, the LTA4H TT genotype predicted survival, consistent with dexamethasone 

benefiting only those individuals with a dysregulated hyper-inflammatory response. 

However, a study of TBM patients in Indonesia did not find the LTA4H TT genotype to 

confer a significant survival benefit. Given the potential of personalized life-saving anti-

inflammatory therapies guided by LTA4H genotype, we have used Bayesian methods to 

analyze the data from both studies. Bayesian analysis reveals that the LTA4H TT 

genotype confers survival benefit in both the Vietnam and Indonesia cohorts that begins 

within days and continues long-term. However, its benefit is nullified in the most severe 

cases where other factors cause early mortality.  LTA4H TT genotype is associated with 

increased survival in HIV-positive patients also. Thus, our analysis extends the 

association of LTA4H genotype with TBM survival to populations outside of Vietnam 

and to HIV-positive patients. Patient LTA4H genotyping used in conjunction with disease 
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severity assessment may help to target glucocorticoids to patients most likely to benefit 

from this broadly-acting immunosuppressive regimen despite its significant adverse 

effects. 
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INTRODUCTION 

Tuberculous meningitis (TBM) is the most severe form of tuberculosis. Despite 

effective antimicrobial therapy, it results in 20-25% mortality in HIV-negative 

individuals and ~ 40% mortality in HIV-positive individuals (Stadelman et al., 2020, in 

press; Thwaites, van Toorn, & Schoeman, 2013). A long-standing hypothesis that an 

excessive intracerebral inflammatory response underlies TBM mortality (Shane & Riley, 

1953) led to multiple trials of adjunctive anti-inflammatory treatment with 

glucocorticoids (e.g. dexamethasone) (Prasad, Singh, & Ryan, 2016; Wilkinson et al., 

2017).  Findings from a randomized controlled trial (RCT) in Vietnam that adjunctive 

dexamethasone improved survival by ~ 30% led to it becoming standard of care 

treatment (Thwaites et al., 2004). However, the modest benefit of adjunctive 

dexamethasone treatment suggested a heterogeneity in glucocorticoid-responsiveness 

(Donald & Schoeman, 2004; Schoeman & Donald, 2013). Findings in a zebrafish model 

of TB provided a testable hypothesis for a mechanism underlying this heterogeneity 

(Thwaites et al., 2004; Tobin et al., 2012; Tobin et al., 2010). The zebrafish findings 

suggested that either deficiency or excess of leukotriene A4 hydrolase (LTA4H), a key 

enzyme that regulates the balance of pro- and anti-inflammatory eicosanoids, increase 

susceptibility to TBM for opposite reasons - too little or too much inflammation (Tobin et 

al., 2012; Tobin et al., 2010). It became possible to test the prediction when a common 

human functional LTA4H promoter variant (rs17525495) was identified comprising a C/T 

transition that controlled LTA4H expression, with the T allele causing increased 

expression (Tobin et al., 2012). A retrospective analysis of patient LTA4H rs17525495 

genotypes in the Vietnam dexamethasone RCT cohort confirmed the prediction 

(Thwaites et al., 2004; Tobin et al., 2012). Among HIV-negative patients, the survival 

benefit of dexamethasone was restricted to patients with the hyper-inflammatory TT 
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genotype, with CC patients potentially harmed by this treatment (Tobin et al., 2012). 

These findings supported the model that mortality from TBM was due to two distinct 

inflammatory states, and that LTA4H genotype might be a critical determinant of 

inflammation and consequently of the response to adjunctive anti-inflammatory 

treatment. If true, then personalized genotype-directed adjunctive glucocorticoid 

treatment would be warranted, with the drug given only to TT patients. This would be 

particularly important given the possible harm to the hypo-inflammatory CC group, as 

well as the adverse effects of long-term high dose treatment with a broadly acting 

immunosuppressant.  

To further these findings, two new studies of the association of LTA4H genotype 

with TBM survival in HIV-negative patients were performed in Vietnam and Indonesia, 

respectively (Thuong et al., 2017; van Laarhoven et al., 2017). Because glucocorticoid 

adjunctive therapy had become standard of care owing to the benefit observed in the 

randomised controlled trial (Thwaites et al., 2004), all patients received it in both studies. 

Therefore, the prediction that could be tested was that TT mortality is less than CC+CT 

mortality. Whereas the Vietnam study confirmed this prediction, the Indonesia study did 

not. The Vietnam cohort had an overall mortality of 18.8%, similar to that reported in the 

literature (Stadelman et al., 2020, in press). A striking feature of the Indonesia cohort was 

its more than two-fold increased mortality in comparison with the Vietnam cohort. 

Moreover, most of the Indonesia cohort deaths occurred early with a median time to 

death of eight days versus 50 days in Vietnam (Table 1). This high early mortality raised 

the possibility that the impact of the LTA4H variant differs by disease severity, and may 

not be relevant in more severe disease (Fava & Schurr, 2017).  If so, then the effects of 

the LTA4H genotype were being masked by the preponderance of extremely severe cases 

in the Indonesia cohort (Fava & Schurr, 2017).   
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Both studies used, as the primary metric of significance testing, Cox regression 

modelling, an approach that assumes that the ratio of hazard rates between groups is 

constant throughout the observed period (Bradburn, Clark, Love, & Altman, 2003; 

Greenland et al., 2016).  Therefore, it could miss important differences in these studies of 

TBM, a disease which can present acutely yet have a prolonged time course with vastly 

differing mortality risks over time (Thuong et al., 2017; Thwaites et al., 2013; van 

Laarhoven et al., 2017). Moreover, testing the hypothesis that LTA4H effects are limited 

to specific disease severity grades requires subgroup analysis. The use of frequentist 

statistics would limit the ability to perform such subgroup analyses because the penalties 

it sets for multiple comparisons do not reflect real-world situations (Gelman & Loken, 

2013; Smith & Ebrahim, 2002). Bayesian analysis is ideally suited to simultaneously 

estimate treatment effects in multiple subgroups because it results in different interactions 

with the number of results obtained which are much less problematic than those arising in 

frequentist analysis (Box 1). 

Therefore, we used a Bayesian approach to analyze data from the two cohorts 

(Gelman & Loken, 2013; MacKay, 2003; Zampieri et al., 2020) (see also Methods). 

Bayesian analysis also enables the detection of significant differences that might be 

limited to just a part of the time-course and therefore would allow analysis to be 

independent of the kinetics of death in the Vietnam and Indonesia cohorts. Finally, 

medical management decisions are guided by an assessment of the probabilities of 

outcome. In TBM, the question faced by the clinician is how likely is glucocorticoid 

therapy going to help or harm a patient. Bayesian paradigms, unlike frequentist ones, 

understand probability in a real-world way, using it to indicate the plausibility of a 

particular conclusion (MacKay, 2003; Zampieri et al., 2020). 

The severity grade-specific analyses, coupled with temporal analyses made 

possible by Bayesian methods, reveal that the LTA4H TT genotype is associated with 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2020. ; https://doi.org/10.1101/2020.08.03.233791doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.233791
http://creativecommons.org/licenses/by/4.0/


A Bayesian analysis of mortality from TB meningitis 

 7 

survival in both HIV-negative cohorts and that this association extends to HIV-positive 

patients as well.  

METHODS 

The anonymized patient cohort data used here has been previously described in 

detail (Thuong et al., 2017; van Laarhoven et al., 2017).  Our analysis included all 439 

HIV-negative patients from the Vietnam study and 376 of the 515 HIV-negative patients 

from the Indonesia study. The remaining 139 Indonesian patients were excluded for lack 

of information on LTA4H rs17525495 genotype (87), baseline disease severity (44) or 

outcome (8).  All 325 HIV-positive patients from Vietnam were analyzed. HIV-positive 

patients from Indonesia were excluded due to small sample size and lack of the 

information above (n=93). All Vietnam patients were admitted to one of two tertiary care 

referral hospitals in Ho Chi Minh City, Vietnam: Pham Ngoc Thach Hospital for 

Tuberculosis and Lung Disease (designated Hospital 1) and the Hospital for Tropical 

Diseases (designated Hospital 2) (Heemskerk et al., 2016). All patients were treated with 

adjunctive dexamethasone for the first 6-8 weeks with the regimen adjusted to disease 

severity on presentation (Thwaites et al., 2004). 

Patient cohorts were compared overall as well as stratified into disease severity 

groups based on the TBM grade and by LTA4H genotypes, into the TT group (previously 

linked with response to steroids) and the combined CC and CT genotypes (non-TT 

group). The Bayesian analysis methods used are detailed in Supplementary Methods. We 

limited analysis to the first 9 months of the one-year observation period in Indonesia to 

be compatible with the 9-month observation period in Vietnam. 

RESULTS 
 
Characteristics of the Vietnam and Indonesia HIV-negative cohorts 
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The age range of patients was similar in the Vietnam and Indonesia cohorts with 

Indonesia patients tending to be younger (Table 1). We compared the cohorts for disease 

severity on presentation using both measures used in the studies, the Glasgow Coma 

Score (GCS) and the modified British Medical Research Council TBM grade (TBM 

grade) (Box 2). The Indonesia cohort had more severe disease on presentation by both 

measures (Table 1 and Figure S1). We used the TBM grade for further analyses because 

it divides patients into just three severity groups, making comparisons more feasible. 

Importantly, it also provides clinically relevant separation of GCS 15 patients, the most 

highly represented in both cohorts (Figure S1), into those with and without focal 

neurological signs.  

 

 LTA4H TT genotype association with survival becomes stronger with increasing 

disease severity in Vietnam HIV-negative patients 

Because the Indonesia cohort was skewed towards more severe disease on 

presentation, one explanation for the lack of an LTA4H genotype association with 

survival in Indonesia was that the underlying association is overridden by severe 

disease, a strong independent correlate of mortality (Fava & Schurr, 2017; Wang et al., 

2019). Indeed, a detailed comparison of the Vietnam and Indonesia cohorts showed that 

76% of Indonesia patients presented in Grade 2 versus 47% of the Vietnam patients 

(Table 1).  This increase was driven entirely by a shift from Grade 1 (9% vs 37% in 

Vietnam).  The cohorts had nearly equal proportions of Grade 3 patients (15% each).  

Therefore, the ~ 2-fold-increased overall mortality in Indonesia could be largely 

accounted for by a corresponding increase of Grade 2 patients (1.6 fold higher than 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2020. ; https://doi.org/10.1101/2020.08.03.233791doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.233791
http://creativecommons.org/licenses/by/4.0/


A Bayesian analysis of mortality from TB meningitis 

 9 

Vietnam). Disease severity as assessed by BMRC Grade or GCS at presentation is also a 

strong predictor of earlier death (Fava & Schurr, 2017; Wang et al., 2019), and the 

Indonesia patients died sooner (median time to death 8 days versus 50 days in Vietnam) 

(Table 1).  

If LTA4H genotype associates with survival most strongly in mild disease, then 

the association seen for the entire Vietnam cohort (Thuong et al., 2017) should be 

strongest in Grade 1 patients. We tested this prediction with Bayesian analysis using a 

prior that was intentionally uninformative and very wide, while still being centered on 

clinician-expected survival curves and hazard rates. We included additional parameters 

to allow for the possibility that not all patient deaths would be linked to the same mode 

of death. Importantly, the model and priors used allowed us to incorporate our pre-

existing knowledge that mortality risk to a population of TBM patients varies smoothly 

with time, rather than occurring at a number of discrete times common to all patients as 

is implied by the maximum likelihood solution illustrated by a Kaplan-Meier plot. The 

details of the model and the priors are in Supplementary methods. The definitions of 

terms and abbreviations used throughout the paper are in Box 3.  

In the original Vietnam study, the TT genotype was associated with survival and 

the CC and CT genotypes had similarly increased mortality over TT (Thuong et al., 

2017), so we compared TT survival to that of CT and CC combined (non-TT). We first 

confirmed that the TT variant distribution did not differ by grade on presentation (Table 

2). Bayesian analysis confirmed that the TT genotype was associated with a survival 

advantage in the overall cohort (Figure 1A). Moreover, the analysis revealed that this 

survival advantage manifested early and persisted over most of the observation period 
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(Figure 1A). The Bayesian method enables a more detailed evaluation of mortality risk 

over time through a hazard rate analysis. This analysis reinforced the significantly higher 

hazard rate for non-TT starting at 4 days and persisting through 120 days (Figure 1A, 

inset).  

When we stratified the Vietnam patients by grade and LTA4H genotype, we got a 

surprising result. The LTA4H TT association with survival was barely present in Grade 

1, a bit more in Grade 2, and strongest in Grade 3 where it reached significance (Figure 

1B-D). Similar to the overall cohort, the Grade 3 increased survival probability for TT 

also manifested early and persisted throughout (Figure 1D). Hazard rate analysis again 

showed that non-TT patients had a greatly increased risk of mortality very early (Figure 

1D, inset). The non-TT over TT hazard rate ratio peaked at 16 on day 3 (Figure 1D, 

inset). This early high peak dropped only gradually over time; it was 5 at day 100 and 

remained >1 throughout (data not shown).  

In sum, our analysis revealed that in Vietnam, LTA4H TT was associated with 

survival, not in mild disease as suggested earlier (Fava & Schurr, 2017), but rather in the 

most severe disease grade. In fact, the bulk of the overall association was being driven 

by Grade 3 patients who constituted only 15.9% of the cohort (Table 1). Non-TT 

patients were at greatest risk of dying within days of admission, a risk that diminished 

with time but remained greater than the TT patients throughout. 

 

In Indonesia HIV-negative patients, the LTA4H TT genotype effect does not extend 

beyond Grade 2  
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Bayesian analysis found that, in the overall Indonesia cohort, survival of the TT 

patient group was higher than non-TT though falling short of significance (maximum 

probability 0.92) (Figure 1E). Moreover, this analysis detected that the hazard rate for 

non-TT patients was higher than TT patients from day 1 to day 13; the non-TT over TT 

ratio reached significance on days 2 and 3, at which time the non-TT hazard rate was 

twice that of TT. Thus, while the TT beneficial effect was weaker than in Vietnam 

(compare Figure 1E to 1A), hazard rate analysis showed that as in Vietnam, TT benefit 

manifested early (Figure 1E inset, compare to Figure 1A inset). For the grade stratified 

cohorts, the analysis of Grade 1 patients was uninformative as there was only one TT 

patient in this group who survived throughout (Table 2 and Figure 1F; also see 

Supplementary Methods section 4). In Grade 2, the TT survival effect was significant, in 

contrast to Grade 2 Vietnam (compare Figure 1G to 1H). Rather, the pattern of the 

Grade 2 association was similar to Vietnam Grade 3 with a significant early TT survival 

benefit. As in Vietnam, the TT survival benefit started within days with an early hazard 

rate peak for the non-TT group. In Grade 3, the LTA4H TT effect was again absent.  

Since Grade 2 patients constitute the bulk of the Indonesia cohort (75.5%), why 

was the LTA4H genotype effect in this grade not reflected in the overall cohort analysis? 

This was particularly curious given that in Vietnam the overall significant effect was 

being driven very substantially by Grade 3 patients who constituted only 15.9% of the 

cohort.  We saw that the LTA4H TT benefit was weaker and less prolonged in Indonesia 

Grade 2 than in Vietnam Grade 3 (compare Figure 1G to 1D). Non-TT patients had 

similar mortality in Indonesia Grade 2 and Vietnam Grade 3 (compare Figure 1G to 1D). 
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Thus, Bayesian analysis revealed an LTA4H TT survival association in Indonesia 

as well. The association being only in Grade 2 and not in Grade 3 patients suggested an 

upper limit of disease severity for its efficacy. 

 

Grade for grade mortality rate differences may explain the difference in grade-

specific LTA4H TT effects in Vietnam and Indonesia  

Why might LTA4H effects stop after Grade 2 in Indonesia? A closer comparison 

of the overall survival between the two sites suggested that there were mortality 

differences between the two cohorts for all grades combined and in grade for grade 

comparisons that were LTA4H-independent (Figure 1). For instance, Indonesia Grade 2 

non-TT patients had a mortality risk similar to that of Vietnam Grade 3 non-TT patients 

(compare Figure 1D and 1G). We confirmed by Bayesian analysis that within each 

cohort, mortality risk increased with grade severity (Thuong et al., 2017; van Laarhoven 

et al., 2017) (Figure 2). From early on, Grade 1 survival was significantly greater than 

Grade 2, which was significantly greater than Grade 3 (Figure 2A and B). The hazard 

rate ratios highlighted that while the risk of increased mortality with higher grade was 

highest early, it was sustained long-term (Figure 2C and D). Importantly, both the 

survival and hazard rate analyses again pointed to an increased grade-for-grade risk of 

mortality in Indonesia over Vietnam.  

Next, we directly compared grade for grade mortality between the cohorts. 

Vietnam survival probability was higher in all grades, and significantly so for Grades 2 

and 3 with survival gaps of 18% and 24%, respectively (Figure 3A, C and E). Similarly, 

hazard rates did not differ significantly between the cohorts in Grade 1 (Figure 3B), but 
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there was a significant and substantial increase in early hazard rates for Indonesia 

Grades 2 and 3 (Figure 3D and 3F).  

In sum, these analyses show that the inherent higher mortality associated with 

more severe disease on presentation was sharply accentuated in Indonesia. Indonesia 

grade 2 patients experienced similar mortality risk as Vietnam Grade 3 patients with the 

Indonesia Grade 3 patients experiencing far greater mortality. This higher mortality 

could potentially explain the finding that the LTA4H TT survival advantage did not 

extend to Indonesia Grade 3 patients. It may be that the TT genotype advantage, in 

response to corticosteroid treatment, is overridden by other factors that cause extreme 

mortality. 

 
LTA4H TT genotype is associated with increased survival in HIV-positive patients 

 
HIV-positive TBM patients suffer ~ twice the mortality of their HIV-negative 

counterparts and the original RCT found that dexamethasone did not confer a significant 

survival benefit in HIV-positive patients (Stadelman et al., 2020, in press; Thwaites et 

al., 2004).  The Vietnam study analyzed here also examined LTA4H genotype 

association with survival in dexamethasone-treated HIV-positive patients of similar ages 

and TBM grades to the HIV-negative cohort (Thuong et al., 2017) (Table 1). The TT 

association with survival was small, failing to reach statistical significance (Thuong et 

al., 2017). We noted that HIV-positive patients suffered the expected increase in overall 

mortality, twice that of HIV-negative patients (Table 1). Therefore, it was possible that 

in this cohort as in the Indonesia HIV-negative cohort, a weaker LTA4H TT survival 

effect that did not extend to Grade 3 was being masked in the overall cohort analysis.  

We first analyzed overall (LTA4H-independent) mortality differences in the HIV-
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positive patients. Like their HIV-negative counterparts, mortality rates were grade-

dependent - Grade 3 > Grade 2 > Grade 1 (Figure 4A and B).  A direct grade for grade 

comparison of the HIV-positive and HIV-negative patients showed that HIV-positive 

mortality was significantly higher in all grades (Figure 4C, E, G). While both groups 

had an early peak in hazard rate, this peak was higher in HIV-positive patients (Figure 

4D, F, H). The HIV-positive hazard rate remained higher long-term, consistent with 

HIV-positive patients being broadly immunosuppressed. Thus, HIV-positive patients 

experienced an increased grade-for-grade mortality risk over HIV-negative patients.  

Bayesian analysis of LTA4H genotype effects in the overall HIV-positive cohort 

confirmed that TT patients did not survive significantly better than non-TT (Figure 5A). 

When we asked if the LTA4H effect was limited to less severe grades, we found that it 

was present in both Grades 1 and 3.  LTA4H TT patients in both Grades 1 and 3 had a 

higher survival probability than non-TT (Figure 5C and G).  

However, Grade 2 analysis gave an unexpected result. TT patients had lower 

survival probability than non-TT (Figure 5E). The patients had been admitted to one of 

two hospitals (Table S1 and Methods), and it appeared that this reversal in non-TT versus 

TT deaths was being driven substantially by three of the eight Grade 2 TT patients in 

Hospital 1 dying on day 7-8. In contrast, only 7 of the 68 non-TT patients admitted to 

Hospital 1 had died by day 8.  

In sum, ignoring the likely spurious Grade 2 result, the LTA4H TT genotype was 

also associated with survival in HIV-positive patients, albeit with a weaker effect. 

Intriguingly, the effect persisted and indeed was strongest in Grade 3 despite this 

subgroup having a greater mortality risk than Indonesia Grade 3 HIV-negative patients 
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(compare Figure 5G to Figure 1H). Rather, the increasing effect strength with grade 

mirrored the picture seen in Vietnam HIV-negative patients.  

 

DISCUSSION 

The finding in two independent cohorts in Vietnam collected from 2001-2004 and 

2011-2015 that a common functional human variant was associated with responsiveness 

to adjunctive glucocorticoid treatment in TBM represented an ideal example of 

pharmacogenomics, coming as it did from mechanistic understanding of the underlying 

reason (Sadée & Dai, 2005; Thuong et al., 2017; Tobin et al., 2012).  The potential 

importance of these findings was heightened with subsequent pathway analyses in the 

zebrafish (where the LTA4H link to disease severity was discovered) identifying more 

specific, inexpensive, steroid-sparing drugs that might circumvent LTA4H-mediated 

pathology (Roca & Ramakrishnan, 2013; Roca, Whitworth, Redmond, Jones, & 

Ramakrishnan, 2019). It was disappointing and puzzling when a similar study of TBM 

patients in Indonesia failed to find a significant association (van Laarhoven et al., 2017). 

In a commentary published alongside the Indonesia and second Vietnam studies, Fava 

and Schurr suggested that background genetic differences between the cohorts might 

account for the lack of an LTA4H association (Fava & Schurr, 2017). However, noting 

that the Indonesia cohort presented with more severe disease and died earlier, they 

postulated that rather than invoking an unknown genetic phenomenon, it was more likely 

that the beneficial effects of dexamethasone for the LTA4H TT genotype were nullified in 

more severe disease. This concept of the disease being too severe for outcomes to be 

influenced by intervention has precedent. The beneficial effect of fluoroquinolones in 
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TBM is present in Grade1 or 2 disease, but lost in Grade 3 disease (Thwaites et al., 2011). 

To test if increased grade severity on presentation in Indonesia was sufficient to account 

for the loss of the LTA4H TT survival effect, a grade for grade analysis within and 

between the two cohorts was necessary, while taking into account the temporal changes 

in mortality risk over the several months-long observation period. Moreover, both the 

magnitude and the time to mortality seemed to vary dramatically between the cohorts 

(Table 1). We realized that Bayesian methods were ideal for these complex and 

intrinsically multivariate comparisons and possibly the only path to a biologically and 

clinically relevant understanding.  

When we analyzed the Vietnam cohort separated by grade severity, we saw that 

there was indeed a relationship between LTA4H effect and grade severity. However, it 

was opposite to what had been predicted (Fava & Schurr, 2017). The TT survival benefit 

became stronger not weaker with increasing grade. The analysis also suggested the reason 

for this. Patients with mild disease on presentation did well regardless of LTA4H 

genotype, so that the added benefit of the TT genotype was small. In Indonesia, the 

LTA4H TT effect was present in Grade 2 and completely absent in Grade 3, a finding that 

was perplexing until we analyzed the LTA4H-independent mortality risk of the two 

cohorts. The Indonesia cohort did not just contain a greater number of patients presenting 

at a more severe grade as had been noted earlier (Fava & Schurr, 2017), but patients in 

this cohort had substantially higher early mortality than their Vietnam counterparts even 

grade for grade (Table 1). Indonesia patients had nearly twice the mortality risk in Grade 

2 and ~ 50% higher risk in Grade 3. Tellingly, Grade 2 Indonesia overall mortality risk 

was virtually identical to Grade 3 Vietnam (38% versus 37.9%), suggesting that this level 
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of overall mortality represents the boundary of the beneficial effect of LTA4H TT. Thus, 

LTA4H TT efficacy was limited by other factors that cause mortality. These factors 

appear independent of severity grade on presentation, and if they exceed a threshold 

(represented by about ~ 40% mortality) then the beneficial effect of LTA4H TT is lost.  

Analysis of mortality risk enabled by temporal hazard rate analyses provided further 

insight. For all grades in both cohorts, the risk of death was greatest within days. So also 

was the excess grade for grade mortality risk in Indonesia. Likewise, the survival benefit 

of LTA4H TT also occurred early. Thus the LTA4H TT survival benefit was being 

nullified in Indonesia Grade 3 by unrelated factors increasing mortality risk in the same 

time period.  

What might these factors be? Perhaps dysregulated inflammation had reached the 

point of no return in Indonesia Grade 3 TT patients in a manner not revealed by standard 

metrics of judging disease severity. If this were the case then glucocorticoids might no 

longer be beneficial. Since both TT and non-TT patients suffered identical excess 

mortality risk, its cause would be LTA4H-independent. Indonesia patients tended to be 

younger than Vietnam patients in all grades (Table 1), and perhaps were more prone to 

develop such a response. The more likely possibility is that better ancillary care was 

possible in Vietnam where all patients were enrolled into a clinical trial versus only 17% 

in Indonesia (Thuong et al., 2017; van Laarhoven et al., 2017). Optimized respiratory 

support, in particular, would be essential to keep patients alive through the early high risk 

stage in order allow for anti-inflammatory effects of glucocorticoids to benefit the TT 

patients.  
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Why was the LTA4H TT effect misunderstood to be limited to the least severe 

patients in both cohorts (Fava & Schurr, 2017)? Two reasons might explain this. First, it 

was not appreciated that apart from having fewer Grade 1 patients, Indonesia patients also 

suffered higher grade for grade mortality risk (Fava & Schurr, 2017). Second, because of 

a paucity of less severe patients, a subgroup analysis was performed in an attempt to tease 

out an effect in this group.  Patients were divided into GCS 14-15 (less severe) versus < 

13 (more severe), and a nonsignificant TT survival benefit was found in the GCS 14-15 

group only, supporting the idea that TT effects, if any, were limited to the less severe 

group (Supplementary Figure 2A and B). However, our analysis now shows the two 

reasons why this grouping resulted in the LTA4H TT effect going unrecognized: 1) GCS 

15 does not separate patients by whether or not they have neurological signs, so it 

includes all BMRC Grade 1 and some BMRC Grade 2 patients (Box 2); 2) the grouping 

used resulted in the Grade 2 patients being split so that some were grouped with Grade 3 

and the remaining with Grade 1; 3) of the 11 TT patients in the GCS 14-15 grouping only 

1 TT patient was in Grade 1, with the remaining 10 in Grade 2, so the effect seen in their 

GCS 14-15 was entirely from Grade 2 patients (compare Figure S2B to S2C). In any case 

this subgroup TT effect would have been impossible to detect with the frequentist 

analyses used. 

Grade-specific Bayesian analysis of the HIV-positive TBM patients in the 

Vietnam cohort reveals a TT benefit in these patients as well. Grade-specific Bayesian 

analysis showed an overall salutary effect on survival in Grades 1 and 3. As discussed in 

the Results section, we suspect that the likely spurious reversal of the TT and non-TT 

survival benefit in Hospital 1 Grade 2 prevented finding a TT benefit on overall survival. 
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It is difficult to formulate a pathophysiological mechanism that would explain this 

reversal in the intermediate grade exclusively in HIV-positive patients, while still 

maintaining the TT survival advantage in both lower and higher severity. We note that, 

having reported on a long series of Bayesian significant results where each result gives a 

0.95 posterior probability that a particular hypothesis is true, we might expect on average 

one in twenty of those hypotheses to be false, despite the result (Box 1). This particular 

result (with a posterior probability of 0.962) seems most likely to be one such, given that 

we have ~ 30 significant results in this analysis, and that the data for this group may be 

skewed by a small cluster of deaths at a single time point in one hospital. Therefore, the 

TT effect is most likely to occur across all grades, and by extension glucocorticoids are 

likely to provide benefit to TT individuals in all grades, albeit a weaker effect than their 

HIV-negative counterparts. That the TT effect would be present in HIV-positive Grade 3 

patients might seem surprising at first blush because this group has an even higher 

mortality risk than Indonesia Grade 3 HIV-negative patients (75.2% versus 63.8%) (Table 

1). The time of mortality in these groups provides a likely explanation. The median time 

to mortality was four times longer (37 days for Vietnam HIV-positive vs. 8 days for 

Indonesia). These analyses suggest that HIV-positive Grade 3 patients have a more 

prolonged risk of mortality for reasons that are independent of corticosteroid treatment 

and LTA4H genotype. Thus, the use of Bayesian methods has identified HIV-negative 

subgroups of TT patients that gain the most survival benefit from dexamethasone 

treatment.  

HIV-positive TT patients also have an early survival benefit albeit weaker than in 

their HIV-negative counterparts. This may reflect a distinct pathophysiology from early 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2020. ; https://doi.org/10.1101/2020.08.03.233791doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.233791
http://creativecommons.org/licenses/by/4.0/


A Bayesian analysis of mortality from TB meningitis 

 20 

on. This idea is supported by a subgroup analysis in the original Vietnam study which 

found that LTA4H TT did not associate with survival in severely immunocompromised 

individuals with a CD4 T lymphocyte count <150. Rather it appeared to be limited to 

those with CD4 >150, although the small number of patients in this group precluded 

finding significance. Together, our findings set the stage for using Bayesian methods for 

subgroup analyses of two ongoing trials where 1) the survival of HIV-negative CC+CT 

patients randomized to getting dexamethasone or placebo is being compared to that of TT 

patients who are all getting dexamethasone (Donovan, Phu, Thao, et al., 2018), and 2) the 

benefit of dexamethasone is being examined for HIV-positive patients of all three 

genotypes by randomizing them to get dexamethasone or not (Donovan, Phu, Mai, et al., 

2018). 

 Finally, in addition to providing guidance for TBM pharmacogenomic 

approaches, we hope that our analyses highlight the unique value of Bayesian methods 

for providing guidance for other complex diseases with difficult treatment decisions. The 

vital importance of defining the patient populations and subgroups which will benefit the 

most from specialised interventions and treatments is increasingly appreciated (Sadée & 

Dai, 2005).  This is not only to target such treatments to those who will benefit, but to 

avoid their adverse effects in those individuals who have little chance of experiencing a 

clinically relevant benefit from them.  Our finding that the LTA4H TT genotype’s 

salutary role is incumbent on the optimization of other factors that maximize patient 

survival has broad implications for pharmacogenomic approaches.  
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Box 1. Contrast of "95% significant" in Bayesian and frequentist paradigms (MacKay, 
2003) 
 
Bayes: "A is significantly greater than B" = Posterior probability that A greater than B is at 
least 0.95.  
 
Frequentist: "A is significantly greater than B" = For any circumstance where A is at most B, 
the probability of getting data in this critical region, as we did, was at most 0.05. 
 
Therefore: 
 
1. We expect 1 in 20 of Bayesianly (95%) significant results to be truly negative and 
therefore false positives; 
 
2. We expect up to 1 in 20 of truly negative results to be frequentistly significant (at the 95% 
level) and therefore false positives. 
 
Therefore (assuming all positives are at 95% level): 
 
- In the frequentist paradigm, the expected number of false positive results is proportional to 
the number of comparisons done on true negatives; 
 
- In the Bayesian paradigm, the expected number of false positive results is proportional to 
the number of apparent positive results, and unaffected by any vast number of accompanying 
apparent negative results. 
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Box 2. TBM disease severity classification 
 
Glasgow Coma Score (GCS) A general measure of consciousness used for a wide range of 
neurological deficits, particularly brain trauma, by scoring eye opening and verbal and motor 
responses to stimuli, to assign a numerical value from 3-15 corresponding to decreasing 
severity, where 3 corresponds to completely unresponsive, deep coma and 15 to fully 
conscious (Teasdale & Jennett, 1974).  
 
Modified British Medical Research Council (BMRC) TBM Grade A classification scheme 
specifically tailored to assess TBM severity. It is derived from the GCS, and additionally 
incorporates the presence of focal neurological signs. The TBM grade is scored between 1-3 
corresponding to increasing severity, converse to the GCS classification. 
 
GCS and BMRC Grade relationship BMRC Grade 1 - GCS=15 with no focal neurological 
signs; BMRC Grade 2 - GCS=11-14, or GCS=15 with focal neurological signs, BMRC 
Grade 3 -  GCS<10 (Heemskerk et al., 2011). 
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Box 3 Definitions and usages 
 
Definitions 

• Posterior probability - the probability after seeing the data 
• Mean posterior survival probability at time T - the expectation after seeing the data of 

the fraction of patients that will still be alive at time T 
• Hazard rate - the fraction of those still surviving that will die per unit time. A high 

hazard rate at a particular time indicates that patients are at high risk of dying at that 
time 

• Mean posterior hazard rate at time T - the expectation after seeing the data of the 
hazard rate at time T 

 
Abbreviated and example usages 

 
Onwards -  for the rest of the 270-day observation period 
 
Throughout - for the entire 270-day observation period 
 
“A was significantly greater than B at time T” -  the posterior probability that A was 
greater than B, at time T, was at least 0.95 
 
“A was not significantly different from B” - the posterior probability that A was greater 
than B was between 0.05 and 0.95 throughout 
 
“Group A survival was 30% greater than group B” - the mean posterior survival 
probability at 270 days, pA, was 30% absolute greater than the corresponding probability 
pB for group B.  (“absolute” here meaning that pA= pB + 0.3, and not that pA = pB × 1.3) 
 
“Probability that group A survival was better than group B at time T was 0.97” - the 
posterior probability that group A survival probability at time T was greater than group B 
survival probability at time T was 0.97 (Note that this is not a reference to the mean 
posterior probability.) 
 
“The hazard rate ratio for group A over group B peaked at X at time T and remained 
greater than Y throughout” or “Group A had an X-fold higher relative risk of death at 
time T which remained greater than Y throughout” -  the mean posterior hazard rate for 
group A, divided by that for group B, peaked at a value of X at time T and remained 
greater than Y at all times up to 270 days. 
 
“The probability that hazard rate for group A was greater than that of group B was 0.97 
at time T” -  the posterior probability was 0.97 that the hazard rate for group A at time T 
was greater than that for group B at time T (Note that this is not a reference to the mean 
posterior hazard rate.) 
 
“The hazard rate for group A was greater than that for group B at time T” - the mean 
posterior hazard rate for group A was greater than that for group B at time T. 
 
“survival gap” - the difference in mean posterior survival probability between the two 
groups being considered at 270 days 
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Table 1. Characteristics of the Vietnam and Indonesia cohorts 

 HIV-negative HIV-positive 
 Vietnam Indonesia Vietnam 

Total  439 376 325 
Glasgow Coma Score  

median (range) 
 

15 (4-15) 
 

13 (5-15) 
 

15 (3-15) 

BMRC TBM grade 
no. (% of total) 

1 
2 
3 

 
 

163 (37.1) 
206 (47.0) 
70 (15.9) 

 
 

34 (9.0) 
 284 (75.5) 
 58 (15.4) 

 
 

137 (42.15) 
124 (38.15) 

64 (19.7) 
Age in years 

median (range) 
 

41 (18-93) 
 

28 (14-90) 
 

33 (18-63) 

Age in years by TBM grade 
median (range) 

1 
2 
3 

 
 

  39 (18-85) 
 47 (18-93) 
 33 (18-86) 

 
 

27 (16-45) 
29 (14-90) 
26 (14-64) 

 
 

32 (18-53) 
34 (20-63) 
33 (19-46) 

Overall mortality 

no. (%) 

 

83 (18.8) 

 

146 (39.9) 

 

129 (40.4) 

Time to median mortality  

(days) 

 

50 

 

8  

 

37  

Mortality by BMRC TBM 
grade  

No. dead (% of grade) 
1 
2 
3 

 
 
 

12 (6.8) 
45 (21.9) 
26 (37.9) 

 
 
 

5 (15.9) 
106 (38.0) 
35 (63.8) 

 
 
 

32 (23.8) 
50 (40.9) 
47 (75.2) 
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Table 2. LTA4H genotype frequency in HIV-negative and HIV-positive cohorts 

 HIV-negative HIV-positive 
 Vietnam Indonesia Vietnam 

rs17525495 LTA4H 
no. (% total) 

CC 
CT 
TT 

 
 
 

184 (41.9) 
212 (48.3) 

43 (9.8) 

 
 
 

216 (57.5) 
128 (34.0) 

32 (8.5) 

 
 
 

146 (44.9) 
133 (40.9) 
46 (14.2) 

No. (% of grade total) 
Grade 1 

CC 
CT 
TT 

 
 

64/163 (39.3) 
81/163 (49.7) 
18/163 (11.0) 

 
 

21/34 (61.8) 
12/34 (35.3) 

1/34 (2.9) 

 
 

59/137 (43.1) 
56/137 (40.9) 
22/137 (16.1) 

Grade 2 
CC 
CT 
TT 

 
86/206 (41.8) 

100/206 (48.5) 
20/206 (9.7) 

 
161/284 (56.7) 
99/284 (34.9) 
24/284 (8.5) 

 
57/124 (46.0) 
52/124 (41.9) 
15/124 (12.1) 

Grade 3 
CC 
CT 
TT 

 
34/70 (48.6) 
31/70 (44.3) 

5/70 (7.1) 

 
34/58 (58.6) 
17/58 (29.3) 
7/58 (12.1) 

 
30/64 (46.9) 
25/64 (39.1) 
9/64 (14.1) 
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Figure 1.  

 

 

Figure 1.  Effect of LTA4H rs17525495 genotype on HIV-negative patient survival probability over all grades in Vietnam (A) 
and Indonesia (E), and stratified by grade (B - D, F - H).  Coloured lines represent mean posterior survival probability curves for 
the nine-month observation period. Shaded areas represent 95% Bayesian confidence limits for posterior probability.  
Comparisons where TT (purple) to non-TT (green) differences were significant have boxed insets showing hazard rates for the 
first 30 days; all other comparisons, not significant. The number of patients at the starting time point are indicated in parentheses. 
In Vietnam, overall (A), TT survival was significantly higher than non-TT from day 39 onwards with maximum probability 0.98, 
survival gap 11%; non-TT hazard rate was significantly higher than TT from day 4 to day 120, with their ratio peaking at 3 on day 
6 and remaining >1 until day 223. (D) Grade 3 TT survival was significantly higher from day 3 onwards with maximum 
probability 0.97, survival gap 30%. The TT hazard rate dropped from the start, while the non-TT hazard peaked at 16 times higher 
than TT on day 3; non-TT over TT hazard rate ratio remained > 1 throughout. In Indonesia, overall (E), TT survival was non-
significantly higher than non-TT (maximum probability 0.92); the non-TT hazard rate was greater than the TT hazard rate from 
day 1 to day 13, significantly so (and by 2-fold) on days 2 and 3 (maximum probability 0.97). (F) Grade 1 comparisons were 
uninformative due to TT sample size (n=1). (G) Grade 2 TT survival was significantly higher on days 4-32 with maximum 
probability 0.99, survival gap 9%. The TT hazard rate dropped from the start, while the non-TT hazard peaked at 5 times higher 
than TT on day 3. The non-TT over TT hazard rate ratio remained > 1 until day 15. 
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Figure 2.  

 
Figure 2.  HIV-negative patient survival, stratified by grade.  Mean posterior survival probability curves (coloured lines) overlaid 
by Kaplan-Meier survival plots (black lines) for Vietnam (A) and Indonesia (B), and mean posterior hazard rate curves for the 
first 30 days for Vietnam (C) and Indonesia (D). Shaded areas represent the 95% Bayesian confidence limits for posterior 
probability. The number of patients in each group at the starting time point are indicated in parentheses. (A) Vietnam Grade 1 over 
Grade 2 survival was significantly greater from day 7 onwards with maximum probability 0.999, survival gap 14%; Grade 2 over 
Grade 3 survival was significantly greater for from day 1 onwards with maximum probability 0.999, survival gap 16%. (B) 
Indonesia Grade 1 over Grade 2 survival was significantly greater from day 2 onwards with maximum probability 0.999, survival 
gap 21%; Grade 2 over Grade 3 survival was significantly greater from day 2 onwards with maximum probability 0.999, survival 
gap 25%. (C) Vietnam hazard rate ratio was >1 for both grade comparisons (inset magnifies Grade 1 and Grade 2 differences) 
with Grade 2 over 1 ratio peaking at 5.5 on day 7 and Grade 3 over 2 ratio peaking at 13.9 on day 1. (D) Indonesia Grade 2 over 1 
hazard rate ratio was >1 up to day 215 and Grade 3 over 2 ratio was >1 throughout, peaking at 11.2 on day 1 for Grade 2 over 1, 
and at 2.3 on day 5 for Grades 3 over 2. 
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Figure 3.  

 
Figure 3. Grade stratified survival curves (A, C, E) and hazard rate curves for the first 30 days (B, D, F) for HIV-negative patients 
comparing Vietnam (orange lines) and Indonesia (green lines).  The number of patients at the starting time point are indicated in 
parentheses. (A) Grade 1 survival did not differ significantly between Vietnam and Indonesia. (B) Indonesia hazard rate was ~2-
fold higher than Vietnam in Grade 1 from day 0 to day 150, but the difference did not reach significance. (C) Grade 2 survival 
was significantly lower in Indonesia than Vietnam from day 1 onwards with maximum probability 0.999, survival gap 18%. (D) 
The hazard rate ratio in Grade 2 for Indonesia over Vietnam peaked at 8.4 on day 1 and remained >1 until day 180. (E) Grade 3 
survival was significantly lower in Indonesia than Vietnam from day 2 onwards with maximum probability 0.999, survival gap 
24%. (F) Grade 3 hazard rate ratio for Indonesia over Vietnam peaked at 3.6 on day 3 and remained >1 until day 165.  
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Figure 4.  

 
Figure 4. HIV-positive patient survival, stratified by grade. Mean posterior survival probability curves (A, C, E, G) and mean 
posterior hazard rate curves for the first 30 days (B, D, F, H). Shaded areas represent 95% Bayesian confidence limits. (A) 
Bayesian survival probability curves overlaid by Kaplan-Meier survival plots (black lines). Grade 2 survival was significantly 
greater than Grade 1 from day 5 onwards (maximum probability 0.99, survival gap 17%), and Grade 2 survival was significantly 
greater than 3 from day 3 onwards (maximum probability 0.99, survival gap 32%). (B) Hazard rate ratio was >1 from day 1 to day 
176 for Grade 2 over Grade 1, peaking at 4.8 on day 5. For Grade 3 over 2 the hazard rate ratio was 3.3 at the start, fell to 2.1 on 
day 13, then rose steadily to 3.8 on day 270 and remained >1 throughout. (C-H) Grade-stratified nine-month survival of HIV-
positive patients (orange lines) compared to their HIV-negative counterparts from Figure S2A (blue lines) (C, E, G).and their 
respective hazard rates (D, F, H). (C) Grade 1 HIV-positive survival was significantly lower than HIV-negative from day 11 
onwards (maximum probability 0.999, survival gap 16%). (D) Grade 1 HIV-positive over HIV-negative hazard rate ratio was >3 
throughout, peaking at 3.5 on day 65. (E) Grade 2 HIV-positive survival was significantly lower from day 4 onwards (maximum 
probability 0.999, survival gap 19%). (F). Grade 2 HIV-positive over negative hazard rate ratio was >1 throughout, peaking at 3.4 
on day 2. (G) Grade 3 HIV-positive survival was significantly lower than HIV-negative from day 11 onwards (maximum 
probability 0.999, survival gap 35%). (H) Grade 3 HIV-positive over HIV-negative hazard rate ratio rose steadily to peak at 3.0 at 
30 days and remained >1 throughout. 
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Figure 5. 

 
 
Figure 5. Effect of LTA4H rs17525495 genotype on HIV-positive patient survival probability for the nine-month observation 
period in Vietnam, overall (A) and stratified by grade (C, E, G), and hazard rates for the first 30 days, overall (B) and stratified by 
grade (D, F, H).  Coloured lines represent mean posterior survival probability curves and mean posterior hazard rate curves. 
Shaded areas represent 95% Bayesian confidence limits. The number of patients at the starting time point are indicated in 
parentheses. (A, B) Overall TT and non-TT survival and hazard rates were not significantly different. (C, D) Grade 1 TT survival 
was higher from day 41, with the difference significant from day 241 onwards (maximum probability 0.95, survival gap 18%). 
The non-TT hazard rate was significantly lower than TT from day 48 onwards; the non-TT over TT hazard rate ratio was >1 from 
14 days onwards, peaking at 8 at day 250.  (E, F) Grade 2 non-TT survival was significantly higher than TT from day 252 
onwards (maximum probability 0.95, survival gap 21% in favour of non-TT), but hazard rates did not differ significantly. (G, H) 
Grade 3 TT survival was significantly higher than non-TT from days 12-72 with maximum probability 0.97, survival gap 18%; 
hazard rate ratio for non-TT over TT peaked at 3.7 on day 3 and remained >1 throughout. 
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Table S1. Characteristics of the HIV-positive Vietnam cohort separated by hospital 
 

Hospital  1 2 

Total  187 138 
Age in years 

median (range) 
 

33 (18-53) 
 

33 (22-63) 

Glasgow Coma Score  
median (range) 

 
15 (5-15) 

 
14 (3-15) 

BMRC TBM grade 
no. (% of total) 

1 
2 
3 

 
 

90 (48.1) 
68 (36.4) 
29 (15.5) 

 

 
 

47 (34.1) 
56 (40.6) 
35 (25.4) 

Overall mortality 

no. (%) 

 

76 (41.2) 

 

53 (39.3) 

Time to median mortality  

(days) 

 

37 

 

34 

Mortality by BMRC TBM 
grade  

No. dead (% of grade) 
1 
2 
3 

 
 
 

20 (22.8) 
33 (49.2) 
23 (79.3) 

 
 
 

12 (26.0) 
17 (30.8) 
24 (71.8) 
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Figure S1.  

 

 

Figure S1. Glasgow Coma Scores (GCS) for Vietnam and Indonesia HIV-negative patients.  Frequency of GCS values indicated 
on the Y-axis as a percentage of the total cohort (n=376 Indonesia, n=439 Vietnam). 
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Figure S2. 

 

Figure S2. LTA4H rs17525495 genotype as predictor for 365-day mortality in HIV-negative TBM patients in Indonesia. Panels A 
and B are comparable to Figure S2B of van Laarhoven et al. 2017. (A) All patients with GCS<13. (B) Patients with GCS=14 or 15 
(note that 1 patient with TT genotype, GCS=15 was censored on day 30 in the original data set but later found to have died on day 
41). (C) The subset of patients from (B) with GCS 14 or 15 excluding those in BMRC Grade 1 (GCS 15 without neurological 
signs). 
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Version 1.26

1 Overview

We adopt the Bayesian paradigm. Accordingly we define below a probabilistic generative model for
patient lifetime x given model parameters θ and a suitable prior distribution on θ. We assume that,
when observed, such lifetime data may be censored at known times t that are independent of the
underlying lifetimes and the model parameters, so that for each patient we observe either a time of
death x or a time of censoring t at which the patient was alive.

We then collect a data set of values x̂ of x or t for a set of patients, and apply Bayes’ theorem to deduce
the posterior distribution P (θ|x̂) of the model parameters.

1
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Figure 1: Output of test run using synthetic data for which the right answer is known. The true survival
probability curve is shown in green, with the Kaplan-Meier plot for the generated data in black. In blue
are shown many samples from the posterior distribution on the survival probability curve, calculated
from P (θ|x̂), which indicate the uncertainty in the inferred distribution. The synthetic dataset comprised
300 hypothetical patients of whom the time of death of 153 was censored.

Since this distribution is hard to visualise, we draw samples of θ from it using Markov chain Monte Carlo
(MCMC) methods described below. For each such sample of θ we calculate the distribution of lifetime
x given θ and hence the survival probability q(t|θ) and hazard rate h(t|θ) functions against patient time
since admission, using the following relationships:

q(t|θ) = P (x ≥ t|θ) = 1−
∫ t

0

P (x|θ) dx

h(t|θ) = − d

dt
log(q(t|θ)).

An example resulting set of survival probability curves is shown in Figure 1, with the corresponding
hazard rate curves being shown in Figure 2.

Now, given a set of such curves, we can calculate the mean posterior survival probability (resp. hazard
rate) at each time point and plot the posterior mean survival probability (resp. hazard rate) against
time. Similarly we can find the 2.5% and 97.5% centiles. Examples of the posterior mean and centile
curves for survival probability corresponding to Figure 1 are shown in Figure 3.

Further, given two such sets of survival probability or hazard rate curves (such as the survival probability
curves shown in Figure 4 and zoomed in in Figure 5), we can also calculate at each time point the
probability that a value taken at that time from a random curve from set 1 is greater than a similar
value taken from a random curve from set 2. As we can see from these two figures, this probability is
higher at 10 days than at 1 day or 100 days. These probabilities, at each time point, can then be plotted
giving in this example Figure 6, showing the probability that underlying survival in group 1 is greater
than that in group 2 at each time point.

In order to carry out this process, we need to specifically define the lifetime distribution model P (x|θ),
and we now turn to this.

2 Lifetime model

We suppose that there exist an unknown number J of different mechanisms causing death, and that
each such mode of death has a different lifetime distribution.

2
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Figure 2: Output of test run using synthetic data for which the right answer is known. The true hazard
rate curve is shown in green. In blue are shown many samples from the posterior distribution on the
hazard rate curve, calculated from P (θ|x̂), which indicate the uncertainty in the inferred distribution.
The synthetic dataset comprised 300 hypothetical patients of whom the time of death of 153 was
censored.

Figure 3: Output of test run using synthetic data for which the right answer is known. The true survival
probability curve is shown in green, with the Kaplan-Meier plot corresponding to the generated data in
black. In blue is the posterior mean survival probability against time, calculated from P (θ|x̂), and in
dotted lines the 2.5% and 97.5% centiles, which indicate the uncertainty in the inferred distribution. The
synthetic dataset comprised 300 hypothetical patients of whom the time of death of 153 was censored.

3
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Figure 4: Comparison of two runs generated independently from two subsets of patients, subset 1 (red)
consisting of 20 patients and subset 2 (green) consisting of 182 patients. The Kaplan-Meier plot for
subset 1 is in solid black and that for subset 2 in dot-dashed black. Since there were many more patients
in subset 2 than in subset 1, we expect greater variance in the inferred survival probabilities for subset
1 than for subset 2.

Figure 5: As for Figure 4 but zoomed in to the top left hand corner, showing greater separation and
less overlap of the red and green curves at 10 days than at 1 day or 100 days.

4
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Figure 6: Corresponding to Figures 4 and 5 this shows the probability that survival for subset 1 is
greater than that for subset 2 at each time point.

2.1 Combination of different modes of death

Let x denote a lifetime, i.e. the time until a patient dies. Let j ∈ {1, 2, ..., J} denote a particular
mechanism (or mode) of death. Let xj denote the time at which mode j would kill the patient; we set
xj =∞ to denote the possibility that that mode would never have killed the patient.

Then the patient’s time of death is given by

x = min
1≤j≤J

xj .

In particular x =∞ denotes the situation that the patient never dies (unlikely as this is).

2.2 Model of a single mode of death

We now drop the subscripts j, but assume that this subsection will be repeated J times with the
subscript js added to every random variable, with each of the repetitions being independent as far as
the model is concerned before being conditioned on observed data. When later we want to refer to the
complete set of J values of e.g. p, we will use bold face, e.g. p = (p1, p2, ..., pJ).

Thus we will set P (x|p, k,m, r), i.e. P (xj |pj , kj ,mj , rj), to be such that with probability p, xk is Gamma
distributed with parameters m′ = m and r′ = mrk, and otherwise x =∞. Thus we have

P (x|p, k,m, r) =


p|k| (mr

k)m

Γ(m) xmk−1e−m(rx)k (0 < x <∞)

1− p (x =∞)
0 (x ≤ 0).

Here p ∈ [0, 1], k ∈ R \ {0}, m, r > 0.

Note that we have here a distribution which has both a discrete and a continuous part, so that P (x|...)
is used as notation both for a probability and for a probability density: in other words, we have a
continuous distribution for finite positive x, given by a density function, whose interpretation is that
its integral from x1 to x2 is the probability that x1 < x < x2; but as we have a non-zero probability
1− p that x =∞, the integral from 0 (inclusive) to ∞ (exclusive) of the density given by the first line
of the above formula for P (x|p, k,m, r) must be p. On the other hand we have a discrete distribution
for x =∞, and 1− p is a probability, not a density.
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By way of very approximate intuition: p is the probability that a particular mode of death would kill
the patient at a finite time; r is the reciprocal of the overall timescale to deaths of those patients who
die; m governs how variable those times of death are – the smaller m is, the more variable are the times
of death; and the sign of k plays a part in determining whether the hazard rate for this mode of death is
increasing or decreasing, while the magnitude of k governs how abruptly the spread of death time is cut
off in the less spread out direction. Specifically, k = 0 makes no sense, as then we would have xk = 1
for all x, and an invalid distribution would result (so it should not be a surprise that the prior on k is
bimodal with zero density at zero).

2.3 Priors on the parameters

We specify the priors on the parameters in two stages. First, we specify their general form, and second
we choose specific values for the hyperparameters that then specify a unique prior.

2.3.1 General form of the priors

The total number J of modes is itself to be considered a random variable, on which we put the prior

P (J |αJ) = (1− αJ)αJ−1
J

for J ∈ N∗ = {1, 2, ...} and for some fixed αJ ∈ [0, 1).

The prior for the parameters p,m, r, k of each mode of death are taken to be independent, and as follows.

We take the prior on p to be Beta, with positive real parameters αp, βp > 0, so that

P (p|αp, βp) =
Γ(αp + βp)

Γ(αp)Γ(βp)
pαp−1(1− p)βp−1.

We take the prior on r to be Gamma, with parameters mr, rr > 0, so that

P (r|mr, rr) =
rmr
r

Γ(mr)
rmr−1e−rrr.

We take the prior on each of the parameters k and m to be the conjugate prior on each with respect to
this parameterisation. Thus for positive real parameters am, bm we have

P (m|am, bm) ∝ mbmme−(am+bm)m

Γ(m)bm
.

Similarly for parameters Nk ∈ N, ak ∈ R+ and bk = (b1, b2, ..., bNk
), ck = (c1, c2, ..., cNk

) ∈ RNk
+ we have

P (k|ak,bk, ck) ∝ |k|ak
Nk∏
n=1

bkcnn e−cnb
k
n .

2.3.2 Specific values of the hyperparameters and the resulting priors

Specific values were chosen for the hyperparameters by varying them and showing those users overseeing
the analysis (namely LW, MT, PE, LR, of whom PE and LR are infectious diseases clinicians) the
resulting distributions of samples of survival curves and hazard rates, then letting them choose the most
appropriate prior given their background experience. The prior chosen was intentionally uninformative
and very wide, while still being centred on the clinician-expected survival curves and hazard rates.
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Figure 7: Prior on J , the number of different modes of death.

The specific parameter values chosen were as follows:

aJ = 0.8

ap = bp = 0.5

am = bm = 1

mr = 0.5

rr = 30 days

Nk = 2

ak = 1

bk = (0.2, 0.2)

ck = (0.5, 0.5).

These result in the following depicted distributions for J, pj ,mj , rj , kj , and hence for the depicted samples
from the distributions for survival probability and hazard rate against time as well as the mean and
2.5% and 97.5% centiles for the last two: see Figures 7 to 15.

2.4 Summary

Thus the parameters θ consist of θ = (J,p,m, r,k), and the prior

P (θ) = P (J)
J∏
j=1

P (pj)P (mj)P (rj)(kj),

a combination of densities of different dimensionalities. This can be regarded a mixture of models, one
for each possible value of J , weighted by the prior on J : the model for J = 1 has only one possible
mode of death, while that for J = 2 has two possible modes of death, which are independent, and so on
for higher values of J .

In particular, when comparing two subsets A and B of patients, we use the same prior to infer the
posterior distribution of θ given x̂ for each subset of the patients independently. Thus a priori the
probability at each time t that qA(t) > qB(t) is 1

2 , the probability that qA(t) < qB(t) is 1
2 , and the

probability that qA(t) = qB(t) is zero (though it has non-zero probability density). In other words we
are asking how sure we are that qA(t) > qB(t) given the data, reckoning the alternative to be that
qA(t) < qB(t), and taking for granted that the probability that the two are exactly the same is zero.
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Figure 8: Prior on k.

Figure 9: Prior on m.

Figure 10: Prior on p.
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Figure 11: Prior on r.

Figure 12: Samples from resulting prior on survival probability against time.

Figure 13: Samples from resulting prior on hazard rate against time.
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Figure 14: Mean and 2.5% and 97.5% centiles of prior on survival probability against time.

Figure 15: Mean and 2.5% and 97.5% centiles of prior on hazard rate against time.
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2.5 Rationale

The basic Gamma model is a frequently used model of a failure mode that goes through several stages of
failing, each with an exponentially distributed lifetime, before final failure occurs. The additional effect
of the parameter k is to incorporate Weibull-type failure time models, allowing for both increasing and
decreasing hazard rates. The parameter p allows for the possibility that some modes of dying may not
be relevant for all patients, while the combination of the J submodels allows for a number of different
types of mechanisms of death to be relevant.

In particular, we specifically used independent priors on the parameters of the subsets being compared
because:

• When offered the choice the users (namely LW, MT, PE, LR, GT of whom PE, LR, and GT are
infectious diseases clinicians with GT having extensive experience with TB meningitis patients)
indicated unanimously that this correctly represented their prior beliefs;

• Because we restrict our use of posterior probabilities to those of the form P (U > V | data) rather
than P (U > V +α| data) for some α > 0, and because the additional effect of any non-independent
factors in the prior would be symmetric either side of the difference between the two subsets being
zero, the effect of any non-independent factors would be expected to be very small;

• If they did not believe the priors on the relevant disjoint subsets were independent, the clinicians
involved would find it very hard to specify exactly how similar each pair of subsets being compared
should be expected to be.

3 MCMC methodology

We introduce additional variables ji for each patient i which indicate whether the time of death was
censored (value 0) or was caused by a particular mode j of death (value j 6= 0 unknown). We also
introduce variables xi,j of unknown values giving for each patient the time of death that would have
resulted from mode j if no other modes had killed the patient first. These variables take the specific
value xi,j =∞ if mode j would in fact not have killed patient i at any finite time.

We initialise the parameters J,p,m, r,k from the prior and initialise the additional variables j and x
randomly to any set compatible with those and the observed variables x̂. These variables then form
θ1 = (J,p,m, r,k, j,x), the first of a sequence of samples (θn)n=1,... to be drawn.

3.1 Sampling methods

A thorough review of all the following methods is available either in [1] or in [2] except where otherwise
indicated.

The key point is that if we resample each variable by a method that satisfies detailed balance, and given
other weak conditions which are here fulfilled, Feller’s theorem [1] then guarantees the the sequence of
samples (θn) will eventually converge to a sequence of samples from the desired distribution P (θ|x̂).
The samples in this sequence will not be independent of each other, though the conditional distribution
of θn1

given θn0
will also converge to P (θ|x̂) as n1 →∞ with n0 fixed, i.e. to independence.

Sampling from the posterior was done by the MCMC technique of Gibbs sampling, i.e. sampling from
the following distributions palindromically:

1. P (k|x̂,x, J, j,m, r,p). This distribution has two parts (kj > 0 and kj < 0), each of which is log-
concave. We therefore first resample the sign of each kj using the Metropolis-Hastings algorithm
[1], then use adaptive rejection sampling [3] to resample the magnitude of kj given its sign, then
resample the sign again to maintain detailed balance.
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2. P (p|x̂,x, J, j,m, r,k). In this case the conditional distribution is from the Beta family, and stan-
dard methods [2] are available to sample from it.

3. P (m|x̂,x, J, j, r,k,p). This distribution is log concave, so we may use adaptive rejection [3]
sampling to sample from it.

4. P (r|x̂,x, J, j,m,k,p). For each j, this distribution is in general a product of a Gamma distribution

on rj and a much narrower Gamma distribution on r
kj
j . We therefore sample from the Gamma

relevant to the latter [2], using this as a proposal distribution for the Metropolis-Hastings algorithm
[1], resulting in the Hastings ratio coming from the Gamma on rj .

5. P (j|x̂, J,m, r,k,p) then P (x|x̂, J, j,m, r,k,p). The first of these is a discrete distribution which
is trivial to sample from, and the second reduces to a truncated Gamma distribution. To sample
from the latter we divide into two cases: if the shape parameter is ≥ 1 the distribution is log-
concave and we can use adaptive rejection sampling [3]; otherwise we use Metropolis-Hastings [1]
with either an exponential or a Gamma proposal distribution, depending which is estimated to be
likely to be quicker given the other parameters.

6. P (J |x̂,x, j,m, r,k,p) (where only values of j unused in j are allowed to be removed) followed, if
J has increased, by sampling the new elements of m, r,k,p from the prior distributions on these
variables. Resampling of J uses a discrete conditional distribution, and is done using a proposal
to either increase or decrease J by 1, and applying the appropriate Hastings ratio [1] to reject the
proposal in such a way as to achieve detailed balance.

10,000 samples were drawn from the posterior for subset of the data considered (e.g. for Indonesian TT
patients). The first 1,500 samples were discarded and the remainder kept for analysis. To check that
the software was correct we undertook two types of check:

1. The inference code was reviewed by somebody (RFS) different from its author (JC) looking for
bugs, and those found were removed after RFS and JC had conferred to reach agreement on them.

2. Multiple sets of synthetic data were generated (for which the true values of x, J, j,m, r,k,p were
therefore known) and the posterior distributions were compared with the true values (as for ex-
ample in Figure 1 above).

3.2 Convergence checks

In addition we checked for convergence of the Markov chains by starting them from different random
initial values of x, J, j,m, r,k,p, then the two corresponding sets of output samples were compared as
if they were made from two different sets of patients, giving plots analogous to Figures 4 and 6 above,
such as those shown in Figures 16 and 17 below, which show that the two distributions are sufficiently
close as to be in practice indistinguishable.

4 Example of inference

Because, in the Results section of this paper, one particular specific example of Bayesian inference
occurs whose interpretation is slightly tricky, it seems appropriate to discuss it specifically here. This
corresponds precisely to the comparison of TT and non-TT genotypes in Grade 1 Indonesia patients.

We refer to Figure 18. The situation before knowledge of the data is described by the prior mean survival
probability curve in solid magenta and its 2.5% and 97.5% centiles in dot-dash magenta, constructing the
95% prior confidence interval. (You may think, in the light of the data, that this prior is too pessimistic
— but the point is that this is what was thought before knowledge of the data.) Note that the only
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Figure 16: Samples captured from two runs on the same data started from different random values of
the parameters, illustrating that the resulting distributions are essentially identical.

Figure 17: Comparison probabilities (analogous to Figure 6) for survival probability against time from
two runs on the same data (and the same priors) started from different random values of the parameters.
If the two distributions are identical (as they should be up to uncertainty caused by the non-infinite
number of samples drawn during the MCMC runs), then at each time the probability that the “red”
distribution is greater than the “green” (see Figure 16) should be 0.5 . Thus this plot, together with
Figure 16, shows that the two distributions are essentially identical, and that the runs have converged
to a common distribution.
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Figure 18: Example of inference whose interpretation is explained in detail in section 4 of this document.
See also Figure 19. Prior mean and 2.5% and 97.5% centiles in magenta; posterior TT mean and centiles
in red; posterior non-TT mean and centiles in green; Kaplan-Meier plots for TT in solid black and for
non-TT in dash-dot black. There are 1 TT patient and 33 non-TT patients. (The Kaplan-Meier plot
for group 1 (TT) and the upper centile plots for both prior and group 1 posterior are approximately
coincident along the top of the graph.)

parts of the plot outside this confidence interval are a small piece at the bottom left and an extremely
thin sliver along the right-hand part of the top edge.

We now collect the TT patients’ data: there is, however, only 1 TT patient, who survives until 1 year
before being censored. A single patient, however, has only a small effect on the prior (just as a single
head-toss would not convince you a coin was biased): this shifts the posterior for the TT group upwards
to the red lines, mean (solid) and centiles (dot-dash).

On the other hand when we collect the non-TT patients’ data, there are 33 of them, so they have a bigger
effect, both raising the mean and narrowing the 95% posterior confidence interval to the corresponding
green plots. Even though these 33 patients survive less well than the single TT patient, they lift the
posterior mean more than does the single TT patient, but the green 95% posterior confidence interval
is much narrower than the red one.

Finally, analogous to Figures 4 and 6, we can calculate the probability that the TT population survives
better than the non-TT population at each time point, getting Figure 19: the conclusion is that it has
become very slightly less probable that TT survives better than non-TT than it was before (before it
was 0.5 precisely), but in essence the posterior probability that TT survives better than non-TT remains
not far off 0.5 throughout the time-course.

Of course, in most examples in the paper, there are more patients in both groups being compared, and
we are more likely to get a more definite conclusion.

5 Sensitivity to choice of priors

Specifically for comparisons of TT and nonTT subsets, where the subsets consist of very different
numbers of patients, there is particular scope for otherwise unexpected sensitivity to the choice of
uninformative priors. To assess this we initially checked, for one such comparison, the effect of using a
different prior, namely

aJ = 0.8

ap = bp = 1
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Figure 19: Example of comparison probabilities for inference whose interpretation is explained in detail
in section 4 of this document. See also Figure 18.

Figure 20: Samples of the survival probability against time for an alternative prior.

am = bm = 1

mr = 0.5

rr = 30 days

Nk = 2

ak = 1

bk = (1, 2)

ck = (1, 2),

which results in the set of samples of survival probability curves shown in Figure 20.

As can be seen by comparing this with Figure 12, this alternative prior does not envisage nearly as
many early deaths in the first few days as the chosen prior, but equally believes it to be more unlikely
that survival would be near 100% at much later times.

The effect of this on a comparison of a small subset and a large subset would be expected to be to
shift the posterior on the small subset upwards in the early period and downwards in the late period
compared with the large subset, increasing the significance of the early comparison if the small subset
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Figure 21: As for Figure 6, showing samples of the survival probability against time for an alternative
prior.

survived better than the large subset at that time, and reducing it if in the other direction (and vice
versa at late times).

In the case of the comparison shown in Figure 6 above, switching to the alternative prior gives Figure
21, indeed confirming this expectation: the peak significance, at around 10 days, increases from 0.994
to 0.996, while at 1 year the comparison probability reduces from 0.893 to 0.886 .

We remark, however, that even with this significant change in the prior, the inferred comparison prob-
abilities change remarkably little. We have therefore not reported detailed comparisons of alternative
priors throughout the results.
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